ANALOG ELECTRONICS [As per Choice Based Credit System (CBCS) scheme]				
Subject Code	5EM 15EC32	IA Marks	20	
Number of	04	Exam Marks	80	
Lecture	0.1			
Hours/Week				
Total Number of	50	Exam Hours	03	
Lecture Hours		CREDITS – 0	4	
Course objectives	• This course wil	enable stude	nts to:	
Recall and explain	in various B.IT r	arameters co	nnections an	d configurations
Explain and Det	monstrate B.IT A	mplifier Hybr	id Equivalent	and Hybrid Models
Recall and Expl	ain construction	and character	ristics of JFE	Ts and MOSFETs
Explain various	types of FET bia	sing and Den	nonstrate the	use of FET amplifiers
 Demonstrate an 	d Construct Free	quency respon	ise of BJT and	d FET amplifiers at
various frequen	cies.	1 5 1		1
Define, Demons	trate and Analyz	e Power ampli	fier circuits in	n different modes of
operation.	1 4 1 5 11	1 10 11	• •,	
Demonstrate an	d Apply Feedbac	k and Oscillat	for circuits us	sing FET.
Modules	Modules Teaching Hours Revised Bloom's Level			
Module -1				
BJT AC Analysis: BJT AC Analysis: BJT Transistor Modeling, The re transistor model, Common emitter fixed bias, Voltage divider bias, Emitter follower configuration. Darlington connection-DC bias; The Hybrid equivalent model, Approximate Hybrid Equivalent Circuit- Fixed bias, Voltage divider, Emitter follower 				

Module -2		
Field Effect Transistors: Construction and Characteristics of JFETs, Transfer Characteristics, Depletion type MOSFET, Enhancement type MOSFET. FET Amplifiers: JFET small signal model, Fixed bias configuration, Self bias configuration, Voltage divider configuration, Common Gate configuration. Source-Follower Configuration, Cascade configuration.	10 Hours	L1, L2, L3
Module -3	Γ	Γ
BJT and JFET Frequency Response: Logarithms, Decibels, Low frequency response – BJT Amplifier with RL, Low frequency response- FET Amplifier, Miller effect capacitance, High frequency response – BJT Amplifier, High frequency response-FET Amplifier, Multistage Frequency Effects.	10 Hours	L1, L2, L3
Module -4	I	
Feedback and Oscillator Circuits: Feedback concepts, Feedback connection types, Practical feedback circuits, Oscillator operation, FET Phase shift oscillator, Wein bridge oscillator, Tuned Oscillator circuit, Crystal oscillator, UJT construction, UJT Oscillator.	10 Hours	L1,L2, L3, L4
Module -5		
Power Amplifiers: Definition and amplifier types, Series fed class A amplifier, Transformer coupled class A amplifier, Class B amplifier operation and circuits, Amplifier distortion, Class C and Class D amplifiers. Voltage regulators: Discrete transistor voltage regulation - Series and Shunt Voltage regulators.	10 Hours	L1, L2, L3

Course outcomes:

After studying this course, students will be able to:

- Acquire knowledge of
 - Working principles, characteristics and basic applications of BJT and FET.
 - Single stage, cascaded and feedback amplifier configurations.
 - Frequency response characteristics of BJT and FET.
 - Power amplifier classifications such as Class A, Class B, etc.
- Analyse the performance of
 - FET amplifier in CS configuration.
 - Power Amplifiers and Oscillator circuits.
- Interpretation of performance characteristics of transistors amplifiers, frequency Response and Oscillators.
- Apply the knowledge gained in the design of transistorized circuits, amplifiers and Oscillators.

Graduate Attributes (as per NBA):

- Engineering Knowledge.
- Problem Analysis.
- Design / development of solutions (partly).
- Interpretation of data.

Question paper pattern:

- The question paper will have ten questions.
- Each full question consists of 16marks.
- There will be 2 full questions (with a maximum of four sub questions) from each module.

• Each full question will have sub questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

Robert L. Boylestad and Louis Nashelsky, "Electronics devices and Circuit theory", Pearson, 10th Edition, 2012, ISBN: 978-81-317-6459-6.

- 1. Adel S. Sedra and Kenneth C. Smith, "Micro Electronic Circuits Theory And Applicatication," 5th Edition ISBN:0198062257
- 2. Fundamentals of Microelectronics, Behzad Razavi, John Weily ISBN 2013 978-81-265-2307-8
- 3. J.Millman & C.C.Halkias–Integrated Electronics, 2nd edition, 2010, TMH. ISBN 0-07-462245-5
- **4.** K. A. Navas, "Electronics Lab Manual", Volume I, PHI, 5th Edition, 2015, ISBN:9788120351424.

DIGITAL ELECTRONICS [As per Choice Based Credit System (CBCS) scheme]					
L	SEMES	STER – III (EC/TC)	-	
Subject Code	15EC33	IA Marks	20		
Number of	04	Exam Marks	80		
Lecture					
Hours/Week	10		0.0		
Total Number of	50	Exam Hours	03		
Lecture Hours	<u> </u>				
Course objectives	This course will e	<u>REDITS - 04</u>			
 Describe, Illustr Algebraic Equat Define and De Subtractors, Bir Describe, Dem Synchronous Se 	rate and Analyze Co ions using Karnau escribe Decoders, nary comparators, onstrate, Analyze	ombinational Logic gh Maps and Quin Encoders, Digit Latches and Maste and Design of State diagrams an	c circu al m cr-Sla Mea d Rea	uits, Simplific Clusky Techn ultiplexers, A ve Flip-Flops. aly and Moo risters and Co	ation of iques. Adders and ore Models, unters.
	Modules			Teaching Hours	Revised Bloom's Taxonomy (RBT) Level
Module – 1					
Principles of comb logic, canonical forr truth tables, Karn specified functions equations, Quine-M McCluskey using do Tables. (Text 1, Chapter 3)	Dination logic : Defining ns, Generation of sy augh maps-3,4,5 (Don't care terms) IcCluskey minimization't care terms, Ref	inition of combinat witching equations variables, Incompl Simplifying Max ation technique, Qu duced prime implic	ional from etely term uine- cants	10 Hours	L2, L3
Module -2					
Analysis and desa approach to combined decoders, Encoders as Boolean function Cascading full added (Text 1, Chapter 4)	sign of combina pinational logic de , digital multiplexe on generators, Ad ers, Look ahead car	tional logic: Gen esign, Decoders, ers, Using multiple ders and subtrac ry, Binary compara	heral BCD exers ctors, tors.	10 Hours	L1, L2, L3
Module -3					
Flip-Flops: Basic considerations, Th flip-flops): SR flip-fl Characteristic equa	Bistable elemen e master-slave fli ops, JK flip-flops, I tions. (Text 2, Cha	nts, Latches, Ti p-flops(pulse-trigg Edge triggered flip-f pter 6)	ming gered flops,	10 Hours	L1,L2

Module -4		
Simple Flip-Flops Applications : Registers, binary ripple counters, synchronous binary counters, Counters based on abift maniatum. Design of a superscript structure of a superscript structure of a superscript structure.	10 Hours	L1,L2
shift registers, Design of a synchronous counters, Design of a synchronous mod-n counter using clocked T IK D and SP		
flip-flops. (Text 2, Chapter 6)		
Module -5	I	
Sequential Circuit Design: Mealy and Moore models, State machine notation, Synchronous Sequential circuit analysis, Construction of state diagrams, counter design. (Text 1, Chapter 6)	10 Hours	L2, L3,L4
Course outcomes:	L	
After studying this course, students will be able to:		
Acquire knowledge of		
 Combinational Logic. 		
 Simplification Techniques using Karnaugh Maps, Quine 	e-McClusky T	echnique.
• Operation of Decoders, Encoders, Multiplexers, Adders	and Subtract	ors.
• Working of Latches, Flip-Flops,		
o Designing Registers, Counters.		
• Analyse the performance of		
• Analyse the perior mance of • Simplification Techniques using Kornough Mons. Quin.		achnique
• Sunchronous Sequential Circuits	E-INICCIUSKY I	ecinique.
 Design and Develop Mealy and Moore Models for digital circuits 		
 Apply the knowledge gained in the design of Counters and 	Registers	
Graduate Attributes (as per NBA):	itegisters.	
• Engineering Knowledge.		
 Problem Analysis. 		
 Design / development of solutions (partly). 		
 Interpretation of data. 		
Question paper pattern:		
 The question paper will have ten questions. 		
 Each full question consists of 16 marks. 		
• There will be 2 full questions (with a maximum of four su	ıb questions)	from each
module.		1 1 591
Each full question will have sub questions covering all the top	bics under a r	nodule. The
students will have to answer 5 full questions, selecting one full question from each		
Text Books:		
1. Digital Logic Applications and Design, John M Yarbrough, 2001. ISBN 981-240-062-1.	Thomson Lea	rning,
2. Donald D. Givone, "Digital Principles and Design", Mc Gra	w Hill, 2002.	ISBN 978-
0-07-052906-9.		

- 1. D. P. Kothari and J. S Dhillon, "Digital Circuits and Design", Pearson, 2016, ISBN:9789332543539.
- 2. Morris Mano, *—Digital design*, Prentice Hall of India, Third Edition.
- 3. Charles H Roth, Jr., "Fundamentals of logic design", Cengage Learning.
- 4. K. A. Navas, "Electronics Lab Manual", Volume I, PHI, 5th Edition, 2015, ISBN: 9788120351424.

NETWORK ANALYSIS [As per Choice Based Credit System (CBCS) scheme] SEMESTER – III (EC (TC))				
Subject Code	15EC34	IA Marks	20	
Number	04	Exam Marks	80	
Total Number of Lecture Hours	50	Exam Hours	03	
CREDITS – 04				

Course objectives: This course enables students to:

- Describe, Apply and Analyze basic network concepts emphasizing Series and Parallel Combination of Passive Components, Source Transformation and Shifting.
- Describe, Apply and Analyze use of mesh and nodal techniques for Formulating the Transfer Function of Networks.
- Apply and Analyze various network theorems in solving the problems related to Electrical Circuits.
- Describe and Analyze two port networks and methods of analyzing the Electrical Networks.

Modules	Teaching Hours	Revised Bloom's Taxonomy (RBT) Level
Module -1		
Basic Concepts: Practical sources, Source transformations, Network reduction using Star – Delta transformation, Loop and node analysis With linearly dependent and independent sources for DC and AC networks, Concepts of super node and super mesh.	10 Hours	L1, L2,L3,L4
Module -2		
Network Theorems: Superposition, Reciprocity, Millman's theorems, Thevinin's and Norton's theorems, Maximum Power transfer theorem and Millers Theorem.	10 Hours	L1, L2, L3,L4
Module -3		
Transient behavior and initial conditions: Behavior of circuit elements under switching condition and their Representation, evaluation of initial and final conditions in RL, RC and RLC circuits for AC and DC excitations.	10 Hours	L1, L2, L3,L4
Laplace Transformation & Applications : Solution of networks, step, ramp and impulse responses, waveform Synthesis.		

Module -4	-	
Resonant Circuits: Series and parallel resonance, frequency-response of series and Parallel circuits.	10 Hours	L1, L2, L3.L4
Q–Factor, Bandwidth.		
Module -5		
Two port network parameters: Definition of z, y, h and transmission parameters, modeling with these parameters, relationship between parameters sets.	10 Hours	L1, L2, L3,L4
Course outcomes:		
 Acquire knowledge for solving problems related to Series and Parallel combination of Passive Components Source Shifting. Network Theorems and Electrical laws to reduce circuit feasible solutions. Various Two port Parameters and their Relationship for Analyze the Performance of various Types of Networks U principles. 	, Source Trar complexities finding Netw Jsing differen	asformation and and to arrive at ork Solutions. t concepts and
 Graduate Attributes (as per NBA) Engineering Knowledge. Problem Analysis. Design / development of solutions. 		
 Question paper pattern: The question paper will have ten questions. Each full question consists of 16 marks. There will be 2 full questions (with a maximum of four module. Each full question will have sub questions covering al The students will have to answer 5 full questions, sele each module. 	r sub question l the topics u ecting one full	ns) from each nder a module. l question from
Text Books:		
1. M.E. Van Valkenberg (2000), "Network analysis", Pre- edition, 2000, ISBN: 9780136110958.	ntice Hall of I	ndia, 3 rd
 Roy Choudhury, "Networks and systems", 2nd edition Publications, 2006, ISBN: 9788122427677. 	, New Age Int	ernational
Reference Books:		
1. Hayt, Kemmerly and Durbin "Engineering Circuit Ana 2010.	alysis", TMH '	7 th Edition,
2. J. David Irwin /R. Mark Nelms, "Basic Engineering C 8 th ed, 2006.	Circuit Analys	sis", John Wiley,
3. Charles K Alexander and Mathew N O Sadiku, " Fun Circuits", Tata McGraw-Hill, 3 rd Ed, 2009.	damentals of	Electric

ELECTRONIC INSTRUMENTATION				
[As per Choice Based Credit System (CBCS) scheme] SEMESTER – III (EC/TC)				
Subject Code	15EC35	IA Marks	20	
Number of	04	Exam Marks	80	
Lecture				
Hours/Week				
Total Number of	50	Exam Hours	03	
Lecture Hours				
Ogenera abia atima a	<u>(</u>	$\frac{CREDITS - 04}{100000000000000000000000000000000000$		
 Define and E probability a Describe bas instruments. Describe bas Describe and 	Describe accuracy a nalysis. ic functional conce ic concepts of micr discuss functionin	epts of various ana coprocessor based ing and types of osc	s of errors, statistic log and digital mea instruments. cilloscopes and sign	cal and asuring nal
 generators, A Recognize a transducers. 	and DC bridges. and describe sign	nificance and wo	orking of differen	nt types of
	Modules		Teaching Hours	Revised Bloom's Taxonomy (RBT) Level
Measurement a: Precision, Resoluti Errors, Measurem Statistical Analysis Ammeters: DC An Ayrton Shunt or Shunt, Extending o (Thermocouple), Lis Voltmeters and M as a DC Voltmeter, Extending Voltm Voltmeter using Re Differential Voltme Considerations in Multimeter. (Text	nd Error: Definition and Significant nent error combinations (Text 2) numeter, Multiration of Ammeter Ranges mitations of Therm fultimeters: Introd DC Voltmeter, Mu eter Ranges, L ectifiers. Trans ter, True RMS Volt Choosing an Anation 1)	nitions, Accurac at Figures, Types nations, Basics nge Ammeter, Th t, Requirements a, RF Ammeter locouple. (Text 1) cuction, Basic Mete litirange Voltmeter oading, AC istor Voltmeter, meter, log Voltmeter,	y, of of of hours	L1, L2, L3
Module -2				
Digital Voltmeter Slope Integrating T Commonly used Approximations, C Resolution and S Specifications of D DVM. (Text 1)	s: Introduction, RA ype DVM, Integrat principles of Continuous Balance ensitivity of Digit VM, Microprocesse	MP technique, Du ing Type DVM, Mo ADC, Successi ce DVM, 3 ¹ / ₂ -Dig cal Meters, Gener or based Ramp typ	al 10 Hours st ve it, ral pe	L1, L2, L3

Digital Instruments: Introduction, Digital Multimeters, Digital Frequency Meter, Digital Measurement of Time, Universal Counter, Digital Tachometer, Digital pH Meter, Digital Phase Meter, Digital Capacitance Meter, Microprocessor based Instruments. (Text 1)		
Module -3		
Oscilloscopes: Introduction, Basic principles, CRT features, Block diagram of Oscilloscope, Simple CRO, Vertical Amplifier, Horizontal Deflecting System, Sweep or Time Base Generator, Storage Oscilloscope, Digital Readout Oscilloscope, Measurement of Frequency by Lissajous Method, Digital Storage Oscilloscope. (Text 1)	10 Hours	L1, L2, L3
Signal Generators: Introduction, Fixed and Variable AF Oscillator, Standard Signal Generator, Laboratory Type Signal Generator, AF sine and Square Wave Generator, Function Generator, Square and Pulse Generator, Sweep Generator. (Text 1)		
Module -4		
Measuring Instruments: Output Power Meters, Field Strength Meter, Stroboscope, Phase Meter, Vector Impedance Meter, Q Meter, Megger, Analog pH Meter. (Text 1)	10 Hours	L1, L2, L3
Bridges: Introduction, Wheatstone's bridge, Kelvin's Bridge; AC bridges, Capacitance Comparison Bridge, Inductance Comparison Bridge, Maxwell's bridge, Wein's bridge, Wagner's earth connection. (Text 1)		
Module -5		
Transducers: Introduction, Electrical transducers, Selecting a transducer, Resistive transducer, Resistive position transducer, Strain gauges, Resistance thermometer, Thermistor, Inductive transducer, Differential output transducers, LVDT, Piezoelectric transducer, Photoelectric transducer, Photovoltaic transducer, Semiconductor photo diode and transistor, Temperature transducers-RTD. (Text 1)	10 Hours	L1, L2, L3
Course outcomes:		
 After studying this course, students will be able to: Acquire knowledge and solve problems related to Accuracy and precision Functioning of various types of analog and digital measuring instruments. Different types of quantization, resolution and sensitivity in digital instruments such as frequency meters, tachometers, pH meters etc. Microprocessor based instrumentation Functioning of various types of Oscilloscopes and signal generators. 		
• Different types of transducers in various applications.		

- Apply the knowledge of passive component measurement
- Interpretation of performance characteristics of analog and digital measuring instruments.
- Understand the importance of life-long learning in the field of electronic instrumentation.

Graduate Attributes (as per NBA)

- Engineering Knowledge.
- Problem Analysis (partly).
- o Life-long learning.

Question paper pattern:

- The question paper will have ten questions.
- Each full question consists of 16marks.
- There will be 2 full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- **1.** H. S. Kalsi, "Electronic Instrumentation", McGraw Hill, 3rd Edition, 2012, ISBN:9780070702066.
- **2.** David A. Bell, "Electronic Instrumentation & Measurements", Oxford University Press PHI 2nd Edition, 2006 ISBN 81-203-2360-2.

- 1. A. D. Helfrick and W.D. Cooper, "Modern Electronic Instrumentation and Measuring Techniques", Pearson, 1st Edition, 2015,ISBN:9789332556065.
- 2. A. K. Sawhney, "Electronics and Electrical Measurements", Dhanpat Rai &Sons. ISBN -81-7700-016-0

ENGINEERING ELECTROMAGNETICS

[As per Choice Based Credit System (CBCS) scheme]

SEMESTER – III (EC/TC)				
Subject Code	15EC36	IA Marks	20	
Number of Lecture Hours/Week	04	Exam Marks	80	
Total Number of Lecture Hours	50	Exam Hours	03	
CF	REDITS – 04			
Course objectives: This course will ena	able students to:			
• Define and Describe Coluomb's law	and electric field in	tensity.		
- Define and E-mlain electric flars den	aiter Carran'a larra	d dimonson as		

- Define and Explain electric flux density, Gauss's law and divergence.
- Describe energy and potential along with concepts of current and conductors.
- Describe Poisson's and Laplace's Equations, and Uniqueness Theorem.
- Define and Describe basic concepts of Magnetostatics by studying the various laws, Stoke's Theorem and scalar and vector magnetic flux density.
- Explain Magnetic Forces, Materials and Inductance.
- Describe the concepts of time varying fields and Develop Maxwell's equations in Point and Integral Forms.
- Describe and Compare different Types of Wave Propagation.

Modules	Teaching Hours	Revised Bloom's Taxonomy (RBT) Level
Module - 1		
Coulomb's Law, Electric Field Intensity and Flux density Experimental law of Coulomb, Electric field intensity, Field due to continuous volume charge distribution, Field of a line charge, Electric flux density.	10 Hours	L1, L2
Module -2	·	
 Gauss's law and Divergence Gauss' law, Divergence. Maxwell's First equation (Electrostactics), Vector Operator ▼ and divergence theorem. Energy, Potential and Conductors Energy expended in moving a point charge in an electric field, The line integral, Definition of potential difference and potential, The potential field of point charge, Current and Current density, Continuity of current. 	10 Hours	L1, L2
Module -3	1	1
 Poisson's and Laplace's Equations Derivation of Poisson's and Laplace's Equations, Uniqueness theorem, Examples of the solution of Laplace's equation. Steady Magnetic Field Biot-Savart Law, Ampere's circuital law, Curl, Stokes' theorem, Magnetic flux and magnetic flux density, Scalar and Vector Magnetic Potentials. 	10 Hours	L1, L2

Module -4		
Magnetic Forces	10 Hours	L1, L2
Force on a moving charge, differential current elements, Force between differential current elements.		
Magnetic Materials Magnetisation and permeability, Magnetic boundary conditions, Magnetic circuit, Potential Energy and forces on magnetic materials.		
Module -5		
Time-varying fields and Maxwell's equationsFarday's law, displacement current,Maxwell'sequations in point form, Maxwell's equations in integrationform.Uniform Plane Wave	10 Hours	L1, L2, L3
Wave propagation in free space and good conductors Poynting's theorem and wave power, Skin Effect.		
 Course outcomes: After studying this course, students will be able to: Acquire knowledge and solve problems related to Basic Concepts of Electric Fields, Magnetic Fields a Basic Concepts to Solve Complex Problems in Electand Electromagnetic Waves. Time-varying fields and Maxwell's equations. Wave propagation in free space and dielectrics. Analyze Different Charge and Current Configurations to der Equations. Poisson's and Laplace's Equations, Uniqueness the Laplace's equation. Time-varying fields, Maxwell's equations, wave propridielectrics. Interpretation of Gradient, Divergence and Curl Operators. Maxwell's Equations in differential and integral formore Wave propagation in free space and dielectrics. Apply the knowledge gained in the design of Electric ar Electrical Machines and Antenna's and Communication 	and Electroma cric Fields, Ma cive Electroma corem, and so pagation in fr ms. d Electronic n Systems.	agnetic Waves. agnetic Fields agnetic Field olution of ee space and Circuits,
 Engineering Knowledge Problem Analysis Design / development of solutions (partly) 		
L		

Question paper pattern:

- The question paper will have ten questions.
- Each full question consisting of 16 marks.
- There will be 2 full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Book:

W.H. Hayt and J.A. Buck, "Engineering Electromagnetics", 7th Edition, Tata McGraw-Hill, 2009, ISBN-978-0-07-061223-5.

- **1.** John Krauss and Daniel A Fleisch, "Electromagnetics with applications", Mc Graw-Hill.
- 2. N. Narayana Rao, "Fundamentals of Electromagnetics for Engineering", Pearson.

	ANALOG ELECTRONICS LABORATOR	RY				
[As per Choice Based Credit System (CBCS) scheme]						
	SEMESTER – III (EC/TC)					
Laboratory Code	15ECL37	IA		20		
		Marks	3			
Number of	01Hr Tutorial (Instructions)	Exam	Marks	80		
Lecture	+ 02 Hours Laboratory					
Hours/Week		D	TTerran	0.2		
		Exam	Hours	03		
	CREDITS – 02					
Course objective	s: This laboratory course enables students to	o get pra	ctical e	experience		
in design, assemt	oly, testing and evaluation of					
Rectifiers and	l Voltage Regulators.					
BJT character	ristics and Amplifiers.					
• JFET Charac	teristics and Amplifiers.					
MOSFET Cha	racteristics and Amplifiers					
Power Amplif:	lers.					
RC-Phase shi	ft, Hartley, Colpitts and Crystal Oscillators.					
Laboratory Expe	riments:		Revise	d		
			Bloom'	's		
NOTE: The expen	iments are to be carried using discrete com	ponents	Taxono	omy		
only.			(RBT) I	Level		
1 Design and se	t up the following rectifiers with and without	filters	L1 L2	1.3 1.4		
and to determine	ripple factor and rectifier efficiency:	mers	D 1, D 2,	, 10, 14		
(a) Full Wave F	Rectifier (b) Bridge Rectifier					
2 Conduct exper	iment to test diode clipping (single / double en	ded) and	T1 T2	12 14		
clamping circuits	(positive/negative)	ueuj anu	LI, <i>LZ</i> ,	, L3, L 4		
ciamping circuits	(positive/negative).					
3. Conduct an ex	periment on Series Voltage Regulator using Ze	ener	L2, L3,	, L4		
diode and power	transistor to determine line and load regulation	on				
characteristics.						
4. Realize BJT Da	rlington Emitter follower with and without		L2, L3,	, L4		
bootstrapping and	d determine the gain, input and output imped	lances.				
		1.				
5. Design and set	up the BJT common emitter amplifier using	voltage	L2, L3,	, L4, L5		
divider bias with	and without feedback and determine the gain	-				
bandwidth produ	ct from its frequency response.					
6. Plot the transf	er and drain characteristics of a JFET and cal	lculate	L1, L2,	, <mark>L3, L4</mark>		
its drain resistan	ce, mutual conductance and amplification fac	tor.				
7 Degime satur	and plot the frequency responses of Operation of	1011805		TA TE		
1. Design, setup a	and plot the frequency response of Common S	ource	LZ, L3,	, L 4 , L3		
orei/MOSFEI a	inpinier and obtain the bandwidth.					

8. Plot the transfer and drain characteristics of n-channel MOSFET and calculate its parameters, namely; drain resistance, mutual conductance and amplification factor.	L1, L2, L3, L4			
9. Set-up and study the working of complementary symmetry class B	L2, L3, L4, L5			
push pull power amplifier and calculate the efficiency.				
10. Design and set-up the RC-Phase shift Oscillator using FET, and calculate the frequency of output waveform.	L2, L3, L4, L5			
11. Design and set-up the following tuned oscillator circuits usingBJT, and determine the frequency of oscillation.(a) Hartley Oscillator (b) Colpitts Oscillator	L2, L3, L4, L5			
12. Design and set-up the crystal oscillator and determine the frequency of oscillation.	L2, L3, L4, L5			
Course outcomes: On the completion of this laboratory course, the stu	idents will be			
able to:				
• Design and Test rectifiers, clipping circuits, clamping circuits and	voltage			
regulators.				
• Compute the parameters from the characteristics of JFET and MOSFET devices.				
• Design, test and evaluate BJT amplifiers in CE configuration.				
 Design and Test JFET/MOSFET amplifiers. 				
• Design and Test a power amplifier.				
Design and Test various types of oscillators.				
Graduate Attributes (as per NBA)				
Engineering Knowledge.				
Problem Analysis.				
Design/Development of solutions.				
Conduct of Practical Examination:				
• All laboratory experiments are to be included for practical examination.				
• Students are allowed to pick one experiment from the lot.				
• Strictly follow the instructions as printed on the cover page of answer script for				
 Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero. 				

DIGITAL ELECTRONICS LABORATORY							
[As per Choice Based Credit System (CBCS) scheme]							
SEMESTER – III (EC/TC)							
Laboratory Code	15ECL38	IA Marks	20				
Number of Lecture	01Hr Tutorial (Instructions)	Exam	80				
Hours/Week	+ 02 Hours Laboratory	Mark					
		Exam	03				
		Hour					
	CREDITS – 02						
Course objectives: experience in design, s o Demorgan's The o Full/Parallel Ad o Multiplexer usin o Demultiplexers o Flip-Flops, Shift	This laboratory course enables studer realisation and verification of corem, SOP, POS forms ders, Subtractors and Magnitude Compara- ng logic gates and Decoders t registers and Counters	its to get g	oractical				
Laboratory Experime	ents:	Revised	Bloom's				
	Torrow						
NOTE: Use discrete co	omponents to test and verify the logic	Тахопоту	(RBT)				
gates. The IC numbers	s given are suggestive; any	Level					
equivalent ICs can be	used.						
1. Verify		L1, L2, L3					
(a) Demorgan's The	eorem for 2 variables.						
(b) The sum-of prod	duct and product-of-sum expressions						
using universal gat							
2. Design and implem	L3, L4						
(a) Full Adder usin							
(b) Full subtractor							
3. Design and implem	L3, L4, L5						
4 Design and Implen	L3, L4, L5						
Comparator using	20, 21, 20						
5. Realize	L2, L3, L4						
(a) 4:1 Multiplexer	,,,						
(b) 3-variable funct							
6. Realize 1:8 Demux	and 3:8 Decoder using IC74138.	L2, L3, L4					
7. Realize the followin	L2, L3						
(a) Clocked SR Flip	-Flop (b) JK Flip-Flop.						
8. Realize the followin (a) SISO (b) SIPO (c	L2, L3						
9. Realize the Ring Co	L2. L3						
IC7476.							
10. Realize the Mod-N	L2, L3						
11. Simulate Full- Add	L2, L3, L4						
12 Simulate Mod_8 S	12 13 14						
aimulation tool							
sinuation tool.							

Course outcomes: On the completion of this laboratory course, the students will be able to:

- Demonstrate the truth table of various expressions and combinational circuits using logic gates.
- Design, test and evaluate various combinational circuits such as adders, subtractors, comparators, multiplexers and demultiplexers.
- Construct flips-flops, counters and shift registers.
- Simulate full adder and up/down counters.

Graduate Attributes (as per NBA)

- Engineering Knowledge.
- Problem Analysis.
- Design/Development of solutions.

Conduct of Practical Examination:

- All laboratory experiments are to be included for practical examination.
- Students are allowed to pick one experiment from the lot.
- Strictly follow the instructions as printed on the cover page of answer script for breakup of marks.
- Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero.

NOTE:

For experiment 11 and 12 any open source or licensed simulation tool may be used.