A-PDF Watermark DEMO: Purchase from www.A-PDF.com to remove the watermark 10MAT11 USN First Semester B.E. Degree Examination, June / July 2014 Engineering Mathematics – I 2. Any revealing of identification, appeal to evaluator and or equations written eg. 42: 8 - 50, will be treated as malpractice. Max. Marks:100 Time: 3 hrs. Note: 1. Answer any FIVE full questions, choosing at least two from each part. 2. Answer all objective type questions only on OMR sheet page 5 of the answer booklet. 3. Answer to objective type questions on sheets other than OMR will not be valued. Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the temaining blank pages. <u>PART – A</u> Choose the correct answers for the following : (04 Marks) 1 a. If $y_n = (\sqrt{17})^n e^{4x} \cos\left(x + n \tan^{-1} \frac{1}{4}\right)$ then y =_____ i) A) $e^{4x} \cos x$ $\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!}$is, C) $e^x \cos x$ D) None of these ii) B) Exponential series C) Meelaurin's series D) None of these A) Taylor's series iii) In the Rolle's theorem if F'(c) = 0 then the tangent at the point x = c is, A) parallel to y-axis B) parallel to x-axis C) parallel to both axes D) None of these iv) If $y = 3^x$ then $y_n =$ _____ A) $(\log x)3^x$ B) $3(\log x)^n$ C) $3^n \log 3^x$ D) $3^{5}(\log_{2} 3)^{5}$ If $x = \sin t$, $y = \sinh prove that$, $(1 - x^2)y_{n+2} - (2n+1)xy_{n+1} + (p^2 - n^2)y_n = 0$. (04 Marks) b. (06 Marks) State and prove Cauchy's mean value theorem in [0, 16]. С. Expand $\sqrt{1 + \sin 2x}$ by using Meclaurin's expansion. (06 Marks) d. (04 Marks) Choose the correct answers for the following : 2 a. The value of $\lim_{x\to\infty} (1+x)^{1/2}$ is, A) e B) 1 i) C) ¹/₋ D) ∞ The angle between two curves $r = ae^{\theta}$ and $re^{\theta} = b$ is, ii) B) $\frac{\pi}{4}$ A) $\frac{\pi}{2}$ C) 0 D) π $\frac{\mathrm{ds}}{\mathrm{dt}} = \sqrt{\left(\frac{\mathrm{dx}}{\mathrm{dt}}\right)^2} + \left(\frac{\mathrm{dy}}{\mathrm{dt}}\right)^2$ iii) A) Polar form B) Parametric form C) Cartesian form D) None of these $\lim_{x \to \infty} \frac{\log x}{\cot x} = \underline{\qquad}$ iv) A) 1 B) 0 Find a & b, if $\lim_{x \to 0} \frac{x(1 + a\cos x) - b\sin x}{x^3} = 1$. D) - 2 C) 2 (04 Marks) b. Find the pedal equation of the curve $r^2 = a^2 \cos 2\theta$ (06 Marks) e. Find the radius of curvature at any point t of the curve $x = a(t + \sin t)$ and $y = a(1 - \cos t)$. d.

1 of 4

(06 Marks)

3	a.	Che	oose the correct a	nswers for the follow	/ing :	10MAT11 (04 Musico)
		i)	If $u = (x - y)^2$ -	$+(y-z)^{2}+(z-x)^{2}$	then $\frac{\partial u}{\partial t} + \frac{\partial u}{\partial t} + \frac{\partial u}{\partial t}$ is,	(04 marks)
			A) 1	B) 24	$\begin{array}{ccc} Cx & Cy & Cz \\ C) & 2(x+y+z) \end{array}$	D) ()
		ii)	$e^x \cos y = \frac{e}{\sqrt{2}} \left[1 \right]$	$1+(x-1)-\left(y-\frac{\pi}{4}\right)+$	$\frac{(x-1)^2}{2} - (x-1)\left(y - \frac{\pi}{4}\right)$	$-\frac{1}{2}\left(y-\frac{\pi}{4}\right)^{2} + \dots$
			A) $\left(1,\frac{\pi}{4}\right)$	B) (0, 0)	C) (1, 1)	D) $\left(\frac{\pi}{4}, 1\right)$
		iii)	At (a, b) $\frac{\partial^2 u}{\partial x^2} =$	A. $\frac{\partial^2 u}{\partial y^2} = B$ and $\frac{\partial^2 u}{\partial y^2}$	$\frac{\partial^2 u}{x \partial y} = H$ and if $AB - H^2$	< 0 then such a point is
		iv)	A) Maximum If $J = \frac{\partial(u, v)}{\partial u}$	B) Minimum $J' = \frac{\partial(x, y)}{\partial (x, y)} \text{then } J'$	C) Saddle	D) Extremum
			$ \begin{array}{c} \partial(\mathbf{x},\mathbf{y}) \\ A \end{array} 0 $	$\partial(\mathbf{u},\mathbf{v})$ B) 2	C) ∞	D) 1
	b.	If u	$= f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$ the	n prove that $x \frac{\partial u}{\partial x} + \frac{\partial u}{\partial x}$	$y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = 0$.	(04 Marks)
	с.	lf u	$=\frac{xy}{z}, v=\frac{yz}{x}.$ w	$=\frac{zx}{y}$ then show that	t J $\left(\frac{u, v, w}{x, y, z}\right) = 4$ verify JJ'	= 1. (06 Marks)
	d.	For t	he kinetic energy	$E = \frac{1}{2}mv^2$ find appr	oximately the change in E	as the mass m changes
		from	49 to 49.5 and the	e velocity 'v' change	s from 1600 to 1590.	(06 Marks)
4	a.	Choe i)	se the correct ans The value of $\nabla \times$	wers for the followir Vφ is,	ng :	(04 Marks)
			A) 0	B) R	C) φ	D) 3
		ii)	Any motion in will be,	nich the curl of the ve	elocity vector is zero, then	the vector \vec{v} is said to
		;;;)	A) Constant	B) Solenoidal	C) Vector $\partial(x, y, z)$	D) Irrotational
			ni ornogonal cur	vilmear co-ordinates	the Jacobian $J = \frac{\partial(x, y, z)}{\partial(u, v, w)}$	$\frac{1}{2}$ is,
			A) $\frac{h_1}{h_2 h_3}$	B) $\frac{1}{h_1h_2h_3}$	C) $h_1h_2h_3$	D) $\frac{h_s}{h_1 h_2}$
		iv) .	A gradient of the : A) Scalar function	scalar point function	ϕ , $\nabla \phi$ is,	4 2
ł	э.	Find t	he value of the co	nstant a such that the	e vector field,	D) zero
		$\vec{F} = (a$	(a - 2)i + (a - 2)i	$x^{2}j + (1-a)xz^{2}k$ is	irrotational and hence fin-	d a scalar function φ
	:	such t	hat $\vec{F} = \nabla \phi$.			(04 Marks)
						(**************************************
C	;.]	Prove	that $\operatorname{curl}(\operatorname{curl} \overrightarrow{A}) =$	$= \nabla \left(\nabla \cdot \vec{A} \right) - \nabla^2 \vec{A} \cdot$		(06 Marks)

5 Choose the correct answers for the following : (04 Marks) a. The value of $\int \cos^3(4x) dx$ is, i) A) $\frac{1}{2}$ B) $\frac{1}{1}$ D) $\frac{1}{2}$ C) $\frac{\pi}{2}$ ii) If the equation of the curve remains unchange after changing θ to $-\theta$ the curve $r = f(\theta)$ is symmetrical about, A) A line perpendicular to initial line through pole B) Radially symmetric about the point pole. C) Symmetry does not exist D) Initial line The volume of the curve $r = a(1 + \cos \theta)$ about the initial line is, iii) A) $\frac{4\pi a^3}{3}$ B) $\frac{2\pi a^3}{3}$ C) $\frac{8\pi a^3}{3}$ D) $\frac{\pi a^3}{3}$ The assymptote for the curve $x^3 + y^3 = 3axy$ is equal to, iv) A) x + y + a = 0 B) x - y - a = 0C) No Assymptote D) x + y - a = 0Evaluate $\int_{-\infty}^{\pi} \frac{\log(1+\sin\alpha\cos x)}{\cos x} dx$. b. (04 Marks) Evaluate $\int_{0}^{2a} x^2 \sqrt{2ax - x^2} dx$. c. (06 Marks) Find the area of surface of revolution about x-axis of the astroid $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$. (06 Marks) d. Choose the correct answers for the following : 6 a. (04 Marks) In the homogeneous differential equation, $\frac{dy}{dx} = \frac{f_1(xy)}{f_1(xy)}$ the degree of the function, i) $f_1(xy)$ and $f_2(xy)$ are, B) Relatively prime C) Same A) Different D) None of these The integrating factor of the differential equation, $\frac{dy}{dx} + \cot xy = \cos x$ is, ii) C) $-\sin x$ A) cosx D) $\cot x$ B) $\sin x$ Replacing $\frac{dy}{dx}$ by $\left(-\frac{dy}{dx}\right)$ in the differential equation $f\left(x, y, \frac{dy}{dx}\right) = 0$ we get the iii) differential equation of, A) Polar trajectory B) Orthogonal trajectory C) Parametric trajectory D) Parallel trajectory. Two families of curves are said to be orthogonal if every member of either family cuts iv) each member of the other family at, C) $\frac{\pi}{6}$ D) $\frac{2\pi}{2}$ A) Zero angle B) Right angle b. Solve $(1 + e^{\frac{y}{y}})dx + e^{\frac{y}{y}}\left(1 - \frac{x}{y}\right)dy = 0$. (04 Marks) c. Solve $\frac{dy}{dx} + x \sin 2y = x^3 \cos^2 y$. (06 Marks)

d. Find the orthogonal trajectories of $r^2 = a^2 \cos^2 \theta$. (06 Marks)

7	a.	. Choose the correct answers for the following :	10MAT11 (04 Marks)
		$\begin{bmatrix} 7 & 0 & 0 \end{bmatrix}$	
		i) $A = \begin{bmatrix} 0 & 7 & 0 \end{bmatrix}$ is called,	
		A) Scalar matrix B) Diagonal matrix C) Identity matrix D) None of these
		ii) If $r = n$ and $x = y = z = 0$. The equations have only solutions have onlysolutions have only asolutions have only asolutions have only have only have only h	ition.
		A) Non trivial B) frivial C) Unique D iii) In Gauss Jordan method, the coefficient matrix can be reduced to) Infinite
		A) Echelon form B) Unit matrix C) Triangular form D)	Diagonal matrix
		iv) The inverse square matrix A is given by,	
		A) $ A $ B) $\frac{adjA}{ A }$ C) $adjA$ D	$\frac{ A }{adjA}$
	b.	Find the Rank of the matrix, 2 3 5 1.	(05 Marks)
		1 3 4 5	(· · · · · · · · · · · · · · · · · · ·
	с.	Investigate the values of λ and μ such that the system of equation	x + y + z = 6
		$x + 2y + 3z = 10$, $x + 2y + \lambda z = \mu$ may be i) Unique solution ii) Infinite	solution iii) No
		solution.	(06 Marks)
	d.	Using Gauss elimination method solve,	
		$2x_1 + x_2 + 3x_3 = 1, -3x_1 + 4x_2 - 5x_3 = 0, x_1 + 3x_2 - 6x_3 = 0$	(05 Marks)
8	a.	 Choose the correct answers for the following : i) A square matrix A of order 3 has 3 linearly independent eigen vector can be found such that P⁻¹AP is a 	(04 Marks) is then a matrix P
		A) Diagonal matrix B) Unit matrix	
		C) Singular matrix D) Symmetric matrix	
		(ii) The given values of matrix $\begin{bmatrix} 2 & \sqrt{2} \end{bmatrix}$	
		$\sqrt{2}$ 2 are,	
		A) $2 \pm \sqrt{6}$ B) $2 \pm \sqrt{2}$ C) $1 = \sqrt{6}$ D	None of these
		iii) Solving the equations $x + 2y + 3z = 0$, $3x + 4y + 4z = 0$, $7x + 10y +$	12z = 0, x, y and
		z values are,	
		A) $x = y - z = 0$ B) $x = y = z - 1$ C) $x \neq y \neq z \neq 1$ D) None of these
		iv) The index and significance of the quadratic form, $x_1^2 + 2x_2^2 - 3x_3^2$	are respectively
		and	
		A) Index = 1. Signature = 1 C) Index = 2. Signature = 1 D) Nu = $f(t)$	= 2
	b	Find all the eigen values and the corresponding eigen vectors of the matrix	
	0.	$\begin{bmatrix} 8 & -6 & 2 \end{bmatrix}$	
		$A = \begin{vmatrix} -6 & 7 & -4 \end{vmatrix}$.	(04 Marks)
		2 - 4 - 3	
		$\begin{bmatrix} 1 & -4 & -7 \end{bmatrix}$	
	C.	Reduce the matrix $A = \begin{bmatrix} 7 & -2 & -5 \\ 10 & -4 & -6 \end{bmatrix}$ into a diagonal matrix.	(06 Marks)
	d.	Reduce the quadratic form $3x^2 + 5y^2 + 3z^2 - 2yz + 2zx - 2xy$ to the canonic	cal form
			(06 Marks)
		* * * *	· · · · ·

4 of 4

	F	`irst/	Second Semes	ter B.E. Degre	e Examination, Ju	ine/July 2014
				Engineering	Physics	
Tim	e: 3	hrs.				Max. Marks:100
Note	e: 1. 2. 3. 4.	. Ans Ansv Ansv . Phys	wer any FIVE ful wer all objective ty ver to objective ty sical constants : V F C M A H H	l questions, choosi ype questions only pe questions on sho 'elocity of light, c = Planck's constant, h Charge on electron, Aass of electron, m (vagadro number, h Permittivity of vacu Soltzmann constant,	ng at least two from ea in OMR sheet page 5 d eets other than OMR w = 3×10^8 m/s h = 6.625×10^{-34} J.S. e = 1.602×10^{-19} C = 9.1×10^{-31} kg $N_A = 6.02 \times 10^{26}$ /k mol um, $\epsilon_0 = 8.85 \times 10^{-12}$ F k = 1.38×10^{-23} J/k.	e Ym
				PART	<u>– A</u>	
1	a.	Cho	ose the correct answ	vers for the followin	g;	(04 Marks)
		1)	It an electron, pr	oton, neutron and c	α - particle have the same	me velocity, the particle
			A) electron	B) proton	C) neutron	D) α - particle
		ii)	The Compton shi	ft for the back scatte	red photon is	, I
			A) $\frac{h}{}$	$(B) \frac{2h}{h}$	$C) \frac{h}{h}$	$D) - \frac{2h}{h}$
			$m_0 e$	m _o e	$2m_0e$	$=$ $3m_0e$
		iii)	The photoelectric	effect is observed o	nly if the wavelength of	light is
			A) above thresho	ld wavelength	B) below thresho	ld wavelength
		iv)	The law which	failed to account	for longer wavelength	of blackbody radiation
		,	spectrum is	lanca to account	ior longer marerengen	
			Á) Wein's la <mark>w</mark>		B) Rayleigh-Jear	n's law
		-	C) Plank's law		D) Maxwell's lay	W
	b.	Desc	ribe photoelectric	effect along with Eir	stein's explanation.	(06 Marks) Proglia hypothesis
	C.	Dest	The Davisson and	Germer experiment	for configmation of de-L	(07 Marks)
	d.	Calc	ulate the kinetic	energy of an electr	on of wavelength 18	nm [h = 6.63×10^{-34} ,
		m _e =	9.11×10^{-31} kg].			(03 Marks)
2	a.	Cho	ose the correct ans	wers for the followir	ng:	(04 Marks)
		i)	From the Heisent	berg's uncertainty re	lation, $\Delta L.\Delta \theta \ge \frac{h}{4\pi}$, L re	efers to
			A) length		B) linear displac	ement
			C) angular displac	cement	D) angular mom	entum
		ii)	The first excited	state energy of a par	ticle of mass m in a box	of width 'a' is given by
			A) zero	B) $\frac{h^2}{2}$	C) $\frac{2h^2}{2}$	D) $\frac{h^2}{1-2}$
			Warra 6	8ma ²	8ma ²	2ma ⁺
		111)	wave function as	sociated with a mate	crial particle is	

10PHY12/22

USN

-)
- , i)

A) single valued C) continuous D) all of these B) finite

10PHY12/22

potential well of infinite height and discuss the eigen values. (09 Marks) С. What is Heisenberg's uncertainty principle? Discuss its significance. (03 Marks) d. An excited atom has an average life time of 10⁻⁸ seconds. During this period, it emits a photon and returns to the ground state. What is the minimum uncertainty in the frequency of this photon? (04 Marks) 3 Choose the correct answers for the following : a. (04 Marks) The Fermi temperature is given by i) A) $\frac{2}{3} \frac{E_F}{K}$ B) $\frac{3}{2} \frac{E_F}{K}$ C) $\frac{E_F}{K}$ D) $\frac{2E_{F}}{K}$ ii) If the mobility of an electron in a metal increases, the resistivity A) decreases B) increases C) remains constant D) none of these The Fermi energy of a metal at absolute zero temperature is proportional to iii) (n - number of free electrons per unit volume). C) $n^{\frac{1}{2}}$ A) $n^{\frac{1}{3}}$ B) $n^{\frac{1}{2}}$ D) n^2 iv) The electron energies in classical free electron theory follow A) Maxwell-Boltzmann statistics B) Fermi-Dirac statistics C) Bose-Einstein statistics D) none of these b. Explain the failures of classical free electron theory. (06 Marks) c. Explain Fermi-energy and Fermi-factor. Discuss the probability of occupation of various energy states by electron at $T=0^{\circ}K$ and $T \ge 0^{\circ}K$ on the basis of Fermi factor. (06 Marks) Calculate the mobility and relaxation time of electron in copper assuming that each atom d. contributes one free electron for conduction. Given resistivity of copper = 1.73×10^{-8} ohm-m. At. weight = 63.5, density = 8.92×10^3 kg/m³, N_A = 6.02×10^{26} /kg mole. (04 Marks) Choose the correct answers for the following : a. (04 Marks) i) Copper is A) diamagnetic material B) paramagnetic material C) ferromagnetic material D) antiferromagnetic material ii) Electronic polarization A) increases with temperature B) decreases with temperature C) independent of temperature D) none of these iii) The unit of dipole moment per unit volume is A) coulomb/metre B) coulomb/metre² C) coulomb/mctre³ D) coulomb The electric susceptibility $\gamma =$ iv) B) $\frac{P}{\in E}$ D) $\frac{\epsilon_0 P}{E}$ C) $\frac{\epsilon_0 E}{P}$ A) $\in_{0} EP$ b. Describe the different polarization mechanism. (08 Marks) c. Explain hysteresis of ferroelectrics. (05 Marks) d. If a NaCl crystal is subjected to an electric field of 1 KV/m and the resulting polarization is

4

5

b. Obtain the time independent Schrodinger wave equation for a particle in one-dimensional

 4.3×10^{-8} c/m². Calculate the dielectric constant of NaCl. [$\epsilon_0 = 8.85 \times 10^{-12}$ Fm⁻¹].(03 Marks)

PART - B

Choose the correct answers for the following : a. The life time of an atom on a metastable state is of the order i) A) a few seconds B) unlimited C) a nano second D) few millisecond

(04 Marks)

10PHY12/22

		(ii	The ratio of Finstein'	s coefficients \mathbf{A} and \mathbf{B}	tic	
		,	A) $\frac{8\pi h\lambda^3}{c^3}$	B) $\frac{8\pi h^2 \lambda^3}{c^3}$	C) $\frac{8\pi h\gamma^3}{c^3}$	D) $\frac{8\pi h\gamma^3}{c^2}$
		iii)	Holography records A) only amplitude C) both amplitude an	nd phase	B) only phase D) neither amplitud	e nor phase
		iv)	Pumping process in a A) optical pumping	a diode laser is by B) forward bias	C) electric discharg	e D) none of these
	b. c. d.	Expla Expla Find	ain the construction an ain the principle of hol the ratio of population	d working of a He-Ne ography and mention ns of two energy leve	laser. its applications. Is in a laser if the tra	(07 Marks) (05 Marks) ansition between them
		prodı [K =	uces light of wavele $1.38 \times 10^{-23} \text{ J/K}$].	ength 6493 \mathring{A} , assum	ning the ambient t	emperature as 27°C. (04 Marks)
6	a.	Choo i)	ose the correct answers If the angle of inciden cladding, then the ray A) in the cladding	s for the following : nee of a ray is equal to travels	the critical angle at t B) in the core	(04 Marks) he interface of core an
		ii)	C) along the interface Fractional index char 1.68 and 1.56 is	nge for the optical fib	D) in the buffer ore of refractive index	c of core and cladding
		iii) iv)	 A) 0.0769 A type II supercondu A) complete Meissne B) incomplete Meissne C) complete Meissne D) incomplete Meiss Below the critical term 	B) 0.0714 etor in the vortex state er effect and zero elect ner effect and zero elect r effect and non-zero of ner effect and non-zero mperature, if the temp	C) 1.0769 e show trical resistivity etrical resistivity electrical resistivity o electrical resistivity perature of supercond	D) 0.9286 uctor is increased, the
	b.	What	critical field A) increases t is attenuation? Expla	B) decreases in the various mechan	C) remains constan isms through which a	t D) independent ttenuation takes place.
	c. d.	Expl The of its fibre	ain type-I and type-II s numerical aperture of s core, given the RI o is in water of RI 1.33.	superconductors. an optical fibre is 0.2 f the cladding is 1.59	when surrounded by Also find the accept	(07 Marks) (05 Marks) air. Determine the RI btance angle when the (04 Marks)
7	a.	Cho(i)	ose the correct answer A crystal of hexagon A) $a \neq b \neq c$, $\alpha \neq \beta \neq$ C) $a \neq b = c$, $\alpha = \beta =$	s for the following : al lattice has unit cell $\gamma \neq 90^{\circ}$ = 120°, $\gamma = 90^{\circ}$	with sides B) $a = b = c, \ \alpha = \beta$ D) $a = b \neq c, \ \alpha = \beta$	(04 Marks) $= \gamma = 90^{\circ}$ $= 90^{\circ}, \ \gamma = 120^{\circ}$
		ii)	A plane intercepts a	t a, $\frac{b}{2}$, 2c in a simpl	e cubic unit cell. The	e miller indices of the
		iii)	plane are A) (2 1 4) The coordination nur A) 2	B) (2 4 1) nber in face centered (B) 6	C) (4 2 1) cubic cell is C) 8	D) (1 2 4) D) 12
				2 ~£/	1	• • • • • •

		iv)	In the Bragg's equation, $2d \sin \theta = n\lambda$, the Δ the angle between the invident because	angle θ is						
		A) the angle between the incident beam and the normal to the difference relevant								
			C) the angle between the incident beam and the diffraction planes							
			D) none of these	The dimaction planes						
b. Define packing factor. Calculate the packing factor for so, here and fee structures - 4										
	c.	Desc	ribe the construction and working of a Brag	y's X-ray spectrometer	(07 Marks) (06 Marks)					
	d.	Dray	the following planes in a cubic unit cell:	, and may speed an even	(00 /// 11 // 3)					
		i) (2	0 0) ii) $(\overline{2} \ 1 \ 0)$ iii) $(1 \ \overline{3}$	2)	(03 Marks)					
8	a.	Cho	ose the correct answers for the following :		(04 Marks)					
		i)	Carbon nanotubes are made up of							
			A) graphene	B) mica sheet layers						
			C) honey comb	D) plastic						
		ii) The state of matter around the nano-size is known as								
			A) solid state	B) liquid state						
			C) plasma state	D) mesoscopic state						
		iii)	The elastic behaviour of a liquid is characterized by its							
			A) Young's modulus	B) Rigidity modulus						
			C) Bulk modulus	D) Poisson's ratio						
		iv)	Ultrasonic waves are produced by							
			A) electromagnetic induction	B) electric tuning fork						
			C) piezo electric effect	D) inverse piezo electric effect						
	b.	Write	e a note on fullerence. What are the applicati	ons of fullerences.	(08 Marks)					
	c.	Expl	ain with principle, how the flaw in a solid	can be detected by non-destructi	ve method					
		using	ultrasonics.		(08 Marks)					

USN														10C	HE12/22
	F	irst/Se	con	d Se	eme	ster	B.E	. Deg	gree	Exa	minati	ion, J	une /	July 2	014
						Eng	gine	erii	ng C	Che	misti	У			
Tin	ne: 3	hrs.												Max. N	1arks:100
Not	te: 1 2. 3.	Answe Answe Answe	r any r all r to c	v FI) obje obje c	VE fi ctive tive i	ıll qı type type (iestio ques quest	ons, ch tions c ions o	oosin only o n she	g at la n OM ets oti	east two IR shee her thai	from a t page : 1 OMR	each p 5 of th ! will n	art. e answe iot be va	r booklet. lued.
								PA	RT –	A					
1	a.	Choose i) C	the alom	corre	et an: ectroe	swers 1e is	s for t revers	he foll sible w	owing ith res	; : spect t	0,				(04 Marks)
		А	.) Cl	ior	ı		B) A	\g ⁺ ion	l		C) Hg_{2}^{24}	ion		D) None	of these
		ii) A	galv A) E B) Cl C) E D) N	anic lectr hemi lectr one c	ccll c ical e cal er ical e of the	conve nergy nergy nergy se	erts: y in to in to y in to	o chem electri heat e	ical er ical en energy	nergy ergy		7			
		iii) T	he E	[»] valu	c of t	hc ce	ll Zn	$/Z_{n}^{2^{+}}$	Fe^{2+} F	e is i	$f E_{r_{2}}^{\circ} =$	-0.44	and E	=-0.	76
		А	.) +0	.32 \	/		B)+	-1.2 V			C) = 0.	32.V		D) -1.2	V
		iv) E	xamj	ole of	f an ie Melo	on se etrod	lectiv	e elect	rode i	s,	B) Hydr	oven el	lectrod	e,	
		C	C) Pl	atinu	m ele	ectro	le				D) Glas	s electro	ode	-	
	b. с.	What is What a	s sing ire re	gle el feren	ectro ice el	de po ectro	otentia des?	al? Ob Explai	tain an n the o	expre constr	ession fo uction a	or the sa nd wor	ame. king o	f Calome	(05 Marks) l electrode.
	d.	An ele 0.5 M	ctroc and a	hemi a Cao	cal c imiur	ell is n wi	cons re in	structe CdSO.	d by i ₄ solut	immer ion of	rsing a s f 0.25 N	silver w 1 at 25°	vire in °C. Wr	AgNO ₃ ite the co	solution of all diagram, $\alpha^+ = \pm 0.80$
			12+		40				7 7	u cha	nge in n	ce ellei	igy. Oi	ven E A	$g = \pm 0.00$
		and E	ed-	= -0	.40,	F = 9	'6.5 K	J/Kg/V							(06 Marks)
2	a.	Choose	e the	corre	ct an	swer	s for t	he foll	lowing	Į :					(04 Marks)
		i) T	he do	ensity	y of F	I ₂ SO	4 to be	e main	tained	in the	e lead-ac	id stora	ige cell	lis,	
		А	.) 0.5				B) 1	.2			C) 2.4			D) None	e of these
		ii) Ir	ı wh	ich ł	batter	y, a	key	compo	nent	is sep	arated f	from re	est of	the batte	ry prior to
		a	ctivat	tion.			D) (lacand	051		C) Pasa	m		D) None	ofthese
		H T (iii)	i) FI	nna y Pactic	n tak	inor	D) : dace :	at anoc	ary le of a	batter	CJ Kese rv	IVC		DINOR	or mese
		A	A) Re	ducti	on	<u>6</u> P	B) A	Additic	n on	ouno	C) Neu	tralizat	ion	D) Oxic	lation
		iv) T	hc cl	cetre	lyte	used	in \dot{H}_2	$-O_2 fi$	uel cel	ll is,	<i>,</i>			,	
		A	() KC	911			B) 1	Nacl			C) NH ₄	OH		D) Kel	
	b.	Explai	n the	folle	wing	; batte	ery ch	narac le	ristics	:		1			
		i) Vol	ltage		ii)	Ene	rgy st	orage o	density	у С 1 1	ni) C	yele life	e		(06 Marks)
	е. А	Explain Explain	n the	cons	truct	ion a	na wa na wa	orking	01 N1 - of 14-	- Cat	hel cell	and me	ntion i	ts annlier	(U6 Marks)
	u.	плры		COHS	uuul	ion a	iiu wt	лкшу	01112.	021	uereen	anu me	nuon i	is apprice	(04 Marks)

10CHE12/22

3	a.	Choo i)	ose the correct answers for the following : Development of non porous and uniforr corrosion	n oxide film over a me	(04 Marks) etal surface due to
			 A) Decreases the corrosion rate C) Does not have any effect 	B) increases the corros D) None of these	ion rate
		ii)	Galvanizing is the process of coating of iron	1,	
			A) With Au B) With Zn	C) With Cu	D) None of these
		iii)	Which of the following is an example of ca	thodic coating,	
			A) Galvanizing B) tinning	C) painting	D) None of these
		iv)	Evolution of hydrogen type of corrosion oc	curs in,	
			A) Accdic medium B) Basic medium	C) Both a and b	D) None of these
	b.	Wha	t is metalic corrosion? Explain the electro ch	emical theory of corrosi	on. (05 Marks)
	с.	Disci	uss the effect of the following factors on cor	rosion rate:	
	1	1) N	ature oxide film II) Anodic to cathodic	area iii) Polari	zation (06 Marks)
	a.	Ехри	ain the following corrosion control methods:		
		1) U	(se of inhibitor ii) Galvanisation		(05 Marks)
4	a.	Choc	ose the correct answers for the following :		(04 Marks)
		i)	Technological importance of metal finishing	g is to impart,	
			A) Corrosion resistance	B) Solderability	
			C) Thermal resistance	D) All of these	
		ii)	Use of complexing agent during electrode d	eposition is to,	
			A) Obtain shining deposit	B) To check the metal	ion concentration
			C) Increase current density	D) None of these	
		iii)	The proess used to manufacture P.C.B is,		
			A) Electoplating B) Electrolessplating	C) Phosphating	D) None of these
		1V)	Electroless plating process is possible only	on,	
			A) Catalytically active surface	B) Inactive surface	
	h	What	C) Any surface	D) Only on plastic surf	ace
	υ.	w nat	is metal missing? Mention any 3 technolog	gical importance of meta	I finishing.
	c.	Expla	ain the factors that influence the nature of ele	ectrodenosit	(04 Marks)
		i) pH	of electolytic bath: ii) temperature ii	i) current density	(06 Marks)
	d.	What	is electroless plating? Explain the process o	f electroless plating of c	onder. (06 Marks)
				1 0	11 ())
			<u>PART – B</u>		
5	a.	Choo	se the correct answers for the following :		(04 Marks)
		i)	Methyl tertiary butyl ether is added to gasol	ine to,	
			A) To increase the ectane number	B) Minimize the knock	ing
			C) To increase the efficiency of diesel	D) All of these	
		11)	Which of the following posses zero octane r	number,	
			A) Iso Octane	B) α -Methyl naphthaler	ne
			C) $n - heptane$	D) Cyclohexane	
		m)	Photovoltaic cell is a,	_	
			A) Storage cell	B) Rechargeable cell	
			U) Fuel cell	D) Energy conversion of	levice
		IV)	Knocking is due to,		
			A) Slow combustion	B) Incomplete combust	ion
	la	W/1- +4	C) instantaneous explosive combustion $\frac{1}{2}$	D) All of these	
	U.	w nat calori	is calorine value of a fuel? Explain the fic value of a solid fuel.	bomb calorimeter met	hod to determine (06 Marks)

		10CHE12/22
5	c. d.	Calculate the gross and net calorific value of a coal sample from the following data: i) Weight of coal -0.73 g ii) Weight of water taken in calorimeter 1500 g iii) Water equivalent of calori meter = 470 g iv) Rise in temperature 2.3°C v) Percentage of hydrogen in coal sample 2.5% vi) Latent heat of steam is 587 calg ⁻¹ . (05 Marks) Explain the methods of doping of silicon to get solar grade silicon. (05 Marks)
6	а. b. c. d.	Choose the correct answers for the following :(04 Marks)i)Gibbs phase rule for general system: $(A) P + I = C - 2$ $B) P + F = C - 1$ $C) P + F = C + 1$ $D) P + F = C + 2$ ii)Which of the following is a one component system, $A)$ Water system $B)$ Lead - Silver system $D) P + F = C + 2$ ii)Which of the following is a one component system, $A)$ Water system $D)$ None of theseiii)Absorbance of light by a solution of a substance depends on, $A)$ Path length $B)$ Concentration of solution $C)$ Wavelength of incident light $D)$ All of theseiv)Flame photometry is suitable for the detection of, $A)$ Li $B)$ Cu $C)$ Fe $D)$ ZnState phase rule. Discuss the application of phase rule to water system.(05 Marks)Explain the principle and application of potentio metric titration with respect to redoxtitration.(06 Marks)Discuss the conductometric titration and mention the advantages.(05 Marks)
7	a. b. c. d.	Choose the correct answers for the following : (04 Marks) i) Which of the following is a co polymer? A) Polythene B) Nitrile rubber C) PVC D) Plexi glass ii) Requirement for conductivity in polymer is, A) Linear structure B) Presence of oxidising or reducing agents C) Conjugation D) All of these iii) Natural rubber is polymerized form of, A) Chloroperene B) Isoperene C) Propene D) None of these iv) Benzoyl peroxide is used as, A) Initiator B) Terminator C) Propogator D) None of these What is polymerization? Explain the addition polymerization's mechanism by taking poly ethylene as example. (05 Marks) Explain the mechanism of conduction in poly acetylene. (05 Marks) Explain the manufacture of following polymers and mention the uses: i) Polymethyl methacrylate. ii) Neoperene. (06 Marks)
8	a. b. c. d.	Choose the correct answers for the following :(04 Marks)i)Alkalinity in water is not due to,(04 Marks)a) H^+ B) OH^- C) CO_3^{2-} D) HCO_3^- ii)The titrant used in estimation of total hardness of water is, A) EDTAB) E.B.TC) NaClD) KOHiii)The reagent used in the estimation of sulphate ion in water is, A) Phenoldisufonic acidB) SPANDS C) AlumoniaD) Barium Chlorideiv)Temporary hardness of water is due to, A) Ca(HCO_3)2B) CaCl_2C) CaSO_4D) MgSO_4What is desalination of water? Explain electrodialysis method.(05 Marks)Explain the experimental method of determination of total hardness of water.(06 Marks)50 ml of sample of water consumed 15 ml of 0.01 MEDTA, before boiling and 5 ml of the same EDTA, after boiling. Calculate the total hardness, permanent hardness and temporary hardness.(05 Marks)
		\star \star \star \star

10CCP13/23

First/Second Semester B.E. Degree Examination, June/July 2014

Computer Concepts and C Programming

Time: 3 hrs.

Note: 1. Answer any FIVE full questions, choosing at least two from each part.

2. Answer all objective type questions only in OMR sheet page 5 of the answer booklet.

3. Answer to objective type questions on sheets other than OMR will not be valued.

				<u> PART – A</u>		
1	a.	Cho	ose the correct answers	for the following :		(04 Marks)
		i)	A computer converts	data into this		
			A) information	B) charts	C) software	D) input or output
		ii)				
			A) drive	B) RAM	C) ROM	D) memory
		iii)	The terms dots per in	ch (dpi) refers to		
			A) printer resolution	B) printer speed	C) printer output	D) printer size
		iv)	The earliest computer	r were system	ns.	
			A) digital B) pa	aper C) analog	D) slide rule	
	b.	Diffe	rentiate between syste	m software and appl	ication software.	(06 Marks)
	c.	Expl	ain with example, diffe	erent type of printers		(10 Marks)
2	a.	Cho	ose the correct answers	s for the following :		(04 Marks)
		i)	A list of command ch	noices in an OS is cal	lled	
			A) command line	B) check box	C) drop down list	D) menu
		ii)	is one of the	he benefits using netw	work.	
			C) Protection from v	rirus	D) Folder creation	
		iii)	FTP sites are often ca	illed		
			A) channels	B) archives	C) groups	D) domain
		iv)	DOS and Linux are c	xamples of	interface.	
			A) old fashion	B) GUI	C) command line	D) parallel
	b.	Expl	ain in detail, various ty	pes of network topo	logies.	(10 Marks)
	c.	Defi	ne the following:			
		1) Th	rashing 11) Butte	ering III) Spoo	ling	(06 Marks)
3	a.	Cho	ose the correct answer	s for the following :		(04 Marks)
		i)	Which of the followi	ng is a character con	stant?	
			A) 'C'	B) "c"	C) "b"	D) "?"
		ii)	Which field specifica	tion is used to refer	short int?	
			A) %c	B) %d	C) %fd	D) %hd
		iii)	A nibble is			
			A) 4 bits	B) 8 bits	C) 16 bits	D) 32 bits
		iv)	Identify formatted co	onsole input functior). -	
			A) getchar()	B) gets()	C) scanf()	D) fgets()
	b.	Expl	ain the structure of a C	program.		(06 Marks)
	c.	Wha	t are the different type	s of input and output	tunctions?	(10 Marks)

Max. Marks:100

10CCP13/23

4	a.	Choose the correct answers for the following : i) Λ is name given to the memory loc	ation where data can F	(04 Marks) be stored accessed or
		manipulated.		
		i) The data type does not occupy any	C) reserved word	D) variable
		A) long int B) float	C) void	D) double
		iii) An operator which acts on 3 operands	C) VOId	D) totuble
		A) Unary operator	B) Key operator	
		C) Binary operator	D) Ternary operator	
		iv) What is the output of the following code?	- ,	
		main ()		
		{printf (``%d``, `A`);}		
		A) 65 B) A	C) 65.0	D) Error
	Ь.	Evaluate the expressions where $a = 8$, $b = 15$, $c = -15$	4.	
		i) $2*((a\%5)*(4+(b-3)/(c+2)))$		
		ii) $100/20 \le 10 \le 5 \pm 100\% 10 - 20 = 5 > =$	1! = 20	(06 Marks)
	c.	Write a C program to find and output all the re	oots of a quadratic eq	juation for non zero
		coefficients.		(10 Marks)
		PART R		
5	a.	Choose the correct answers for the following :-		(04 Marks)
		i) The default return type of function is		(04 (ilaiks)
		A) int B) float	C) char	D) void
		ii) Which is the user defined function?	,	, .
		A) main() B) sqrt()	C) clrser()	D) gets()
		iii) A function that calls itself is known as	*	
		A) recursive function	B) iterative function	
		C) main function	D) none of these	
		iv) Parameters passed as arguments to the funct	ion call are called as	
		A) actual parameters	B) formal parameters	
	h	C) no parameters	D) none of these	1
	0.	rotated to the right by n bit positions as an unsign	C that returns the va	alue of the integer x
		main with different values for x and p and print the	e results with suitable ?	headings (08 M arks)
	с.	How are functions categorized based on the value	e returned by the fun	ction and parameter
		accepted?	to retained by the full	(08 Marks)
6	0	Chapter the convert encurses for the full.		
0	a.	i) Each case statement in switch is separated by	• ,	(04 Marks)
		A) break B) continue	y C) exit	D) goto
		ii) Several statements grouped together in brace	s is called	D) goto
		A) compound B) equivalent	C) complex	D) simple
		iii) In C language, "x?y:z" is equivalent to	-,	s) simple
		A) if $(x = -0)y$; else z;	B) if $(x = -1)z$; else y	V;
		C) if $(x = =0)y; z;$	D) if $(x = 1)y$; else z	Z.
		iv) How many times is the following loop execu	ited	
		for $(i = 0; i \le 5; i + \cdot)$		
		{printf("Hello");}		
	h	$\begin{array}{c} A \end{pmatrix} I \qquad B \end{pmatrix} 6$	C) zero	D) infinite
	0. C	Write a C program to find the sum of N natural nu What is the numerous for maintain	mbers.	(08 Marks)
	с.	what is the purpose of a switch case statement? Ex	cplain with syntax.	(08 Marks)

10CCP13/23

7	a.	Choose the correct answers for the following :		(04 Marks)			
		i) The number of elements in array A[3][4] is	5				
		A) 8 B) 12	C) 16	D) none of these			
		ii) If A[4] is declaration, then the first and las	t array index will be				
		A) 1, 4 B) 0, 3	C) 3, 0	D) none of these			
		iii) A function that is used to string copy is					
		A) streopy() B) strepy()	C) eopystring()	D) concat()			
		iv) Given $A[3][2] = \{1, 2, 3, 4, 5, 6\}$; The cle	ment in 3 rd row 2 nd col	is			
		A) 3 B) 4	C) 6	D) 2			
	b.	Explain initialization and declaration of 2D array	7.	(08 Marks)			
	c.	Write a C program to input N integers in a	single dimensional arra	ay and sort them in			
		ascending order using Bubble sort.	(08 Marks)				
8	a.	Choose the correct answers for the following :		(04 Marks)			
		i) execution of an instruction in	a computer system is	referred as parallel			
		computation.					
		A) Sequential B) Serial	C) Accurate	D) Simultaneous			
		ii) Open MP stands for					
		A) open multi parallelism	B) organized multi p	rogramming			
		C) open multi programming	D) organized multi p	arallelism			
		iii) An example of environment variable in open MP is					
		A) OMP_thread_limit	B) OMP_init_lock				
		C) OMP_thread_ref	D) OMP_get_bynan	ie			
		iv) Which of the following can be used as res	ource in parallel compu	ting?			
		A) Single computer with multi process	B) Network of comp	outers			
		C) Combination of above	D) None of these				
	b.	What are threads? Give the advantages and disad	lvantages of multiple th	reads. (08 Marks)			
	c.	Design and develop a parallel program in C to d	etermine and print prim	e numbers which are			
		less than 100 making use of the algorithm of Sie	ve of Eratosthenes.	(08 Marks)			

			A) water	B) soil	C) oil	D) all of these
		ii)	A bascule bridge is a			
			A) arch bridge	B) floating bridge	C) movable bridge	D) none of these
		iii)	Kerbs are the compo	nents of		,
			A) dam	B) bridges	C) roads	D) buildings
		iv)	Inspection gallery is	a part of		, 0
			A) bridge	B) dam	C) harbour	D) airport
	b.	Brie	fly explain the scope o	f any three fields of ci	vil engineering.	(09 Marks)
	C.	Expl	ain different types of 1	roads.		(07 Marks)
2	a.	Cho	ose the correct answer	s for the following :		(04 Marks)
		i)	When trying to turn a	a key into lock, follow	ing is applied.	•
			A) coplanar forces	B) moment	C) lever	D) couple
		ii)	The vertical compon	ent of a horizontal for	ce is	, <u>,</u>
			A) zero	B) one	C) both A and B	D) two
		iii)	Two equal and oppo	site forces separated b	y a distance will produ	ce.
		,	A) translation	·	B) rotation	
			C) both translation a	and rotation	D) none of these	
		iv)	The resultant of two	concurrent forces b	becomes maximum and	l minimum, if angle
		,	between them is			Ç.
			A) 0° and 180°	B) 0° and 90°	C) 90° and 0°	D) 0° and 0°
	b.	Defi	ne force and state its c	haracteristics.	_,	(06 Marks)
	c.	Forc	es acting on the gus	set plate of a joint i	in a bridge truss are	shown in Fig.O2(c).
		Dete	ermine the values of 'P	' and 'A' to maintain t	he equilibrium of the ic	$\sin t$
		Dett	annue the values of 1	5000 N. AP	ine equilientum of the je	,
				30		
				GAV SCOON		
				$\operatorname{Fig} \Omega^2(c)$		(10 Marks)
				1 15.02(0)		(To marks)
3	a.	Cho	ose the correct answer	s for the following :		(04 Marks)
		i)	The process of finding	ng the resultant of a sy	stem of forces is called	
			A) resultant	B) composition	C) resolution	D) none of these
		ii)	If two concurrent for	ces each of 'P' act at	right angles to each oth	er, their resultant is
			A) 2P	B) P	C) $\sqrt{2}$ P	D) $2\sqrt{P}$

First/Second Semester B.E. Degree Examination, June/July 2014

Elements of Civil Engineering and Engineering Mechanics

Time: 3 hrs.

1

a.

i)

Note: 1. Answer any FIVE full questions, choosing at least two from each part. 2. Answer all objective type questions only in OMR sheet page 5 of the answer booklet. 3. Answer to objective type questions on sheets other than OMR will not be valued.

 $\mathbf{PART} - \mathbf{A}$

USN

Choose the correct answers for the following :

Geotechnical engineering involves the study of

10CIV13/23

Max. Marks:100

(04 Marks)

(03 Marks)

(07 Marks)

(04 Marks)

- iii) Conditions of equilibrium for a coplanar concurrent force system is A) one B) two C) three D) four
- If two forces are parallel, then they cannot be iv) A) coplanar B) concurrent C) non coplanar D) non concurrent
- Two forces F_1 and F_2 act upon a body. If the magnitude of their resultant is equal to that of b. F_1 and direction perpendicular to F_1 , then find the magnitude and direction of force F_2 . Take $F_1 = 20$ N. (06 Marks)
- State Varignon's theorem of the moments. c.
- Determine the forces P, F and T required to keep the frame in equilibrium. d.

Fig.Q3(d)

- Choose the correct answers for the following : 4 a.
 - Centroid of a rectangle of base width 'b' and depth 'd' is i)
 - A) $\frac{b}{3}$ and $\frac{d}{3}$ B) $\frac{b}{2}$ and $\frac{d}{2}$ C) $\frac{b}{4}$ and $\frac{d}{4}$ D) all of these
 - An axis over which one half of plane figure is just a mirror of the other half axis is ii) A) bottom most axis B) axis of symmetry C) unsymmetrical axis D) top most axis
 - Centroid conveys some clue about iii) A) the orientation of a surface B) center of a body C) shape and disposition D) area of cross section
 - The centroid of a semicircle of radius 'r' with respect to its base is iv)

A) $\frac{3r}{4\pi}$ B) $\frac{3r}{8\pi}$ C) $\frac{4r}{3\pi}$ D) $\frac{4r}{\pi}$

- Determine the centroid of a right angle triangle form first principles. b.
- Find the centroid of the shaded area shown in Fig.Q4(c), obtained by cutting a semicircle of c. diameter 100 mm from the quadrant of a circle of radius 100 mm.

(10 Marks)

(06 Marks)

PART – B

Choose the correct answers for the following : 5 a.

- (04 Marks) The force equal and opposite to resultant is called as i) A) resultant B) equilibriant C) similar force D) all of these
- Lami's equation can be applied when number of unkown forces are ii) A) five B) two C) three D) four
- In a non concurrent force system, if $\Sigma H = 0$, $\Sigma V = 0$ then the resultant is iii) A) zero B) horizontal C) vertical D) moment
- A particle acted upon by two forces of equal magnitude is in equilibrium. The angle iv) between the forces is

(06 Marks)

- b. State and prove Lami's theorem.
- c. A 100 N sphere is resting in a trough as shown in Fig.Q5(c). Find the reactions at the contact points. Assume all contact surfaces are smooth.

(06 Marks)

An electric lamp fixture weighing 10 N hangs. From a point 'C' by strings AC at angle 60° d. and BC at angle 45° as shown in Fig.Q5(d). Determine the forces in strings. (04 Marks)

6 a. Choose the correct answers for the following : (04 Marks)

- Support reactions for statically determinate beams can be determined by applying i) A) Varignon's theorem B) Lami's theorem
 - C) conditions of static equilibrium D) none of these
- ii) When loads acts constant rate over given length of beam, it is called as A) point load B) UDL C) UVL D) none of these A fixed support can have iii) reactions.
- **B**) 2 D) 4 A) 1 C) 3 The number of reactions components at a hinged end of a beam is iv)
- A) 0 B) 2 D) 1 C) 3
- b. Find the reactions for a cantilever beam shown in Fig.Q6(b).

(06 Marks)

Determine the forces in all the members by the method of joints. c.

Choose the correct answers for the following : (04 Marks) 7 a. i) A friction force always acts ______ to the contact surface. B) parallel C) at 45° D) both A and C A) normal ii) friction is observed in the flow of liquids and gases. A) fluid B) static C) sliding

(10 Marks)

D) kinetic

(10 Marks)

* * * * *

Tin	ne: 3	hrs.	2	– Max. Marks:100
Nor	ta• 1	Answer any FIVE full questions chaosing	at least two from and	h navt
	2. 3.	Answer any FIVE juit questions, choosing a Answer all objective type questions only on (Answer to objective type questions on sheets Use of stagm tables is not parmitted	OMR sheet page 5 of other than OMR w	n pari. f the answer booklet. ill not be valued.
	٦.	DADT A		
1	a.	Choose the correct answers for the following :	•	(04 Marks)
-		i) The centrifugal forces generated by the ea	arth rotation on the fa	r side results in another
		bulge rise on this side of the earth.		
		A) Lunar tides B) Earth quakes	C) Volcanoes	D) None of these
		ii) The condition of steam in the boiler is alw	/ays,	
		A) Dry B) Wet	C) Saturated	D) Superheated
		iii) Super heater is used,		
		A) Inside the boiler drum	B) To convert wet	steam into dry steam
		C) In the path of the gases to increase vol	ume of steam	
		D) To increase temperature of steam above	ve saturation temperat	ture.
		(V) Babcock and whoox boller is	- Doller.	D) Eight tube
	Ь	With the help of a temperature anthalpy diag	C) Air tube	banism of its formation
	υ.	of steam	ram, explain the mee	(10 Marks)
	c.	Name any five boiler mounting and accessories	and state their functi	ons. (06 Marks)
	•••		and state men famou	
•	a.	Choose the correct answers for the following :		(04 Marks)
		i) In reaction turbine, the pressure drops,		
		A) ln nozzles	B) In moving blad	les
		C) In fixed blades	D) In both fixed a	nd moving blades.
		11) Kaplan turbine is,		1 1 ()
		A) A high head mixed flow turbine	B) An impulse tur	bine, outward flow
		iii) Delaval turbine is a	D) LOW IICau, axia	ti now.
		A) Impulse turbine	B) Reaction turbin	1e
		C) Velocity compounded turbine	D) Pressure comp	ounded turbine.
		iv) In a gas turbine, if the working substance	is continously recircu	lated, then it is called
		as,		
		A) Open cycle gas turbine	B) Closed cycle g	as turbine
		C) Mixed flow gas turbine	D) None of these	
	b.	Differentiate between open cycle and closed cy	cle gas turbine with n	eat sketches. (08 Marks)
	с.	Sketch and explain the working of a Kaplan tur	bine.	(08 Marks)
1	a.	Choose the correct answers for the following :		(04 Marks)
		i) In a 4 stroke Cl engine during suction stro	oke,	、 · · · ·
		A) Only air is sucked	B) Only diesel is	sucked
		C) Both air and diesel are sucked	D) Either air or di	esel is sucked
		ii) The inner diameter of engine cylinder is c	called as,	
		A) Stroke B) Clearance	C) Bore	D) Pitch

First/Second Semester B.E. Degree Examination, June / July 2014 **Elements of Mechanical Engineering**

USN

		 Q. NO. 3 (a) contd iii) In a diesel engine the fuel is ignited by, A) Spark B) Ignitor C) Heat resulting from compressing air that is supplied for combustion D) Combustion iv) Piston speed is equal to,
		A) Stroke * rpm B) 2*stroke*rpm C) 48 stroke*rpm D) $\frac{(\text{stroke} * \text{rpm})}{2}$
	b. c.	With the neat sketch, explain the working of 4 stroke diesel engine.(08 Marks)The following observations were obtained during a trial on a four stroke diesel engine:(08 Marks)Cylinder diameter = 25 cm;Stroke of the piston = 40 cmCrank shaft speed = 250 rpm;Brake load = 70 kgBrake drum diameter = 2 m;Mean effective pressure = 6 barDiesel oil consumption = 0.1 m³/min; $CV = 43900 \text{ kJ/kg}$ Specific gravity of diesel = 0.78(ii) IPFind : (i) BP(ii) IP(iii) FP(iv) nmech(08 Marks)
Л	9	Choose the correct answers for the following
	а. b. c.	i)The boiling point of ammonia is, A) 100°CB) $-33.3°C$ C) $33.3°C$ D) $0°C$ ii)Most commonly used refrigerant in vapour absorption refrigeration system is, A) FreonB) CO_2 C) SO_2 D) NH_3iii)Throttle value is used in refrigerator to, A) Compress refrigerantB) Expand the refrigerant D) Condense the refrigerantD) Condense the refrigerantiv)An ideal refrigerant should have, A) Low viscosityB) Low freezing point D) All of the aboveOf Marks)What are the desirable properties of refrigerant?(06 Marks)With a neat sketch, explain the construction and working of vapour absorption refrigeration system.(10 Marks)
-		$\frac{PART - B}{PART - B}$
5	a.	i) The process of enlarging an already drilled hole is (04 Marks)
		A) Spot facing B) Reaming C) Tapping D) Boring
		 is the process of generating internal threads A) Tapping B) Turning C) Knurling D) None of these The slowest speed in Lathe is adopted for the following operation :
		A) Turning B) Thread cutting C) Tapper turning D) Knurling iv) Twist drills are usually made of
	b. с. d.	A) HSSB) DiamondC) CarbidesD) MSList the four elements which specify the size of the Lathe.(06 Marks)Explain the difference between facing and turning operations.(04 Marks)Draw the neat sketch of radial drilling machine and label all its parts.(06 Marks)

10EME14/24

6	a.	Choose the correct answers for the following : (04 Marks)
		i) The cutting tool in a milling machine is mounted on
		A) Tool holder B) Arbor C) Column D) Table
		ii) is the one of the abrasive material used in grinding machine.
		A) Aluminum chloride B) Calcium chloride
		C) Silcon carbide D) Tungsten carbide
		(iii) The thickness of chip is maximum at the beginning of the cut and minimum at the end of the cut, cut in each case of
		A) Up milling B) Down milling C) Straddle milling D) None of these
		iv) One of the milling operation used to produce dovetail groove is
		A) Slot milling B) Straddle milling
		C) End milling D) Angular milling
	b.	Differentiate between Up milling and Down milling. (04 Marks)
	C.	With a neat diagram, explain the working of a vertical milling machine. (06 Marks)
	a.	with suitable sketches, explain the operation of centreless grinding machine. (06 Marks)
7	a.	Choose the correct answers for the following : (04 Marks)
		i) The hard filler material used in brazing
		A) Solder B) Flux C) Spelter D) Electrode
		ii) Support provided for rotating shaft is
		A) Bearing B) Lubricant C) Axle D) Hook
		111) Carburizing flame has
		A) One Zone B) Two Zone C) Three Zonc D) No Zone
		(v) In arc weiding the electrode which melt along with the work pieces and fill the joint is
		A) Consumable electrode B) Non consumable electrode
		(C) Both (a) and (b) (D) None of these
	h.	Sketch and explain electric arc welding process (06 Marks)
	с.	With a neat sketch, explain the different types of flames used in gas welding and specify
		their application. (04 Marks)
	d.	Explain with a near sketch, the method of splash lubrication. (06 Marks)
8	a.	Choose the correct answers for the following : (04 Marks)
		1) For converting rotary motion into rectilinear motion type of gear used is
		A) Spur gear B) Rack and pinion C) Spiral gear D) Bevel gear
		1) The ratio of diameter of driver and driven pulley is called
		A) module B) Pitch circle diameter D) Valuation
		U) Katio of tension D) velocity ratio.
		A) Helical gear (C) Reval gear (C) Warm gear
		iv) The ratio of nitch circle diameter to number of teath is
		A) Pitch B) Circular nitch C) Module D) Addendum
	h	List five advantages of gear drives over helt drives (05 Marks)
	с.	Define slip and creep with respect to belt drives (05 Marks)
	d.	Write the different types of gear trains with their applications. (06 Marks)
		* * * * *

10ELE15/25

First/Second Semester B.E. Degree Examination, June / July 2014 **Basic Electrical Engineering**

Time: 3 hrs.

Max. Marks:100

Note: 1. Answer any FIVE full questions, choosing at least two from each part.

- 2. Answer all objective type questions only on OMR sheet page 5 of the answer booklet.
 - 3. Answer to objective type questions on sheets other than OMR will not be valued.

PADT A

		C1	$\underline{\mathbf{IANI}} = \mathbf{A}$		
1	a.	Choose the correct answers for	or the following :	A	(04 Marks)
		i) The resistance of a cond	and inversly		
		proportional to its			
		A) Length & Arca	B) Area & Length		
		C) Length & Current		D) Length & Voltage	
		ii) When the conductor mo	ves perpendicular te	o the lines of flux the e	emf induced is
		A) Minimum B) Maximum	() Zero	D) None of these
		iii) The mutual inductance	between two coils .	of self inductance 0.8	L and 0.2 L have a
		co-efficient of coupling	A Q ie	or sen inductance 0.8	II and 0.2 II, have a
			0.7 IS,	C) 0.16 U	$\mathbf{D} = 0 + 1 + 1$
		(iv) An electric heater is rate	0.41	С) U. IO П The maniatan set of the he	D) 0.144 H
		A) 10 O	10.2 kW, 200 V.	The resistance of the ne	eater con is,
	15	A) 10 22 B	0.1Ω	C) 20 Ω	D) 200 Ω
	U.	Show that the equivalent resi	stance of two resist	ors connected in paral	lel in the ratio of the
		product of these two resistanc	es divided by the su	um of those two resista	nce values.
	0	Daming on several 6 1		C	(04 Marks)
	с. д	Transmits has in 1000 t	imically induced en	nf.	(06 Marks)
	u.	Two cons having 1000 turns a	and 1600 turns resp	ectively are placed clo	se to each other such
		that 60% of the flux produce	ed by one coil. If a	current of 10 A, flow	ing in the first coil,
		produces a flux of 0.5 mwb. F	ind the inductance	of the second coil.	(06 Marks)
r	0	Choose the competence for			
4	а.	Choose the correct answers to	or the following :	()	(04 Marks)
		i) An alternating current is	given by $i = 14.14$	$\sin\left(\omega t + \frac{\pi}{2}\right)$ has an rm	is value of
				6	
		amperes.			
		amperes. A) 10 A B) 14.14	C) 20 A	D) 0.707
		amperes. A) 10 A ii) In an a.c circuit, the ratio) 14.14 o of kW/KVA repre	C) 20 A esents	D) 0.707
		amperes. A) 10 A B ii) In an a.c circuit, the ratio A) Power factor B) 14.14 o of kW/KVA repre) Load factor	C) 20 A esents C) Form factor	D) 0.707 D) Peak factor
		amperes. A) 10 A B ii) In an a.c circuit, the rational A) Power factor B iii) A current drawn by a c) 14.14 o of kW/KVA repre) Load factor apacitor of 20 µF i 	C) 20 A esents C) Form factor s 1.382 A from a 220	D) 0.707 D) Peak factor V.A.C. supply. The
		amperes. A) 10 A B ii) In an a.c circuit, the ratio A) Power factor B iii) A current drawn by a c supply frequency is) 14.14 o of kW/KVA repre) Load factor apacitor of 20 μF i	C) 20 A esents C) Form factor is 1.382 A from a 220	D) 0.707 D) Peak factor V A.C. supply. The
		amperes. A) 10 A B ii) In an a.c circuit, the ratio A) Power factor B iii) A current drawn by a c supply frequency is A) 25 Hz B) 14.14 o of kW/KVA repre) Load factor apacitor of 20 μ F i	C) 20 A esents C) Form factor (s 1.382 A from a 220 C) 50 Hz	D) 0.707 D) Peak factor V A.C. supply. The D) 40 Hz
		amperes. A) 10 A B ii) In an a.c circuit, the ratio A) Power factor B iii) A current drawn by a c supply frequency is A) 25 Hz B iv) The unit of apparent pow	b) 14.14 o of kW/KVA repre- b) Load factor apacitor of 20 μ F i b) 60 Hz wer is	C) 20 A esents C) Form factor is 1.382 A from a 220 C) 50 Hz	D) 0.707 D) Peak factor V A.C. supply. The D) 40 Hz
		amperes. A) 10 A B ii) In an a.c circuit, the ratio A) Power factor B iii) A current drawn by a c supply frequency is A) 25 Hz B iv) The unit of apparent pow A) kW B	b) 14.14 o of kW/KVA repre- b) Load factor apacitor of 20 μ F i b) 60 Hz wer is, b) KVAR	C) 20 A esents C) Form factor is 1.382 A from a 220 C) 50 Hz	D) 0.707 D) Peak factor V A.C. supply. The D) 40 Hz
	b.	amperes. A) 10 A B ii) In an a.c circuit, the ratio A) Power factor B iii) A current drawn by a c supply frequency is A) 25 Hz B iv) The unit of apparent pow A) kW B Define: (i) Instantaneous value	b) 14.14 o of kW/KVA repre- b) Load factor apacitor of 20 μ F i b) 60 Hz wer is, b) KVAR lue(ii) Amplit	C) 20 A esents C) Form factor is 1.382 A from a 220 C) 50 Hz C) KVA	 D) 0.707 D) Peak factor V A.C. supply. The D) 40 Hz D) Joules (iv) Pariod with
	b.	amperes. A) 10 A B ii) In an a.c circuit, the ratio A) Power factor B iii) A current drawn by a c supply frequency is A) 25 Hz B iv) The unit of apparent pow A) kW B Define: (i) Instantaneous values	b) 14.14 o of kW/KVA repre- b) Load factor apacitor of 20 μ F i b) 60 Hz wer is, b) KVAR lue (ii) Amplit	C) 20 A esents C) Form factor is 1.382 A from a 220 C) 50 Hz C) KVA ude (iii) Cycle	 D) 0.707 D) Peak factor V A.C. supply. The D) 40 Hz D) Joules (iv) Period with
	b.	amperes. A) 10 A B ii) In an a.c circuit, the ratio A) Power factor B iii) A current drawn by a c supply frequency is A) 25 Hz B iv) The unit of apparent pow A) kW B Define: (i) Instantaneous val respect to sinusoidally varying Two impedances (150 - 1157)	b) 14.14 o of kW/KVA repre- b) Load factor apacitor of 20 μ F i b) 60 Hz wer is, b) KVAR lue (ii) Amplit g quantities.	C) 20 A esents C) Form factor is 1.382 A from a 220 C) 50 Hz C) KVA ude (iii) Cycle	 D) 0.707 D) Peak factor V A.C. supply. The D) 40 Hz D) Joules (iv) Period with (04 Marks)
	b. с.	amperes. A) 10 A B ii) In an a.c circuit, the ratio A) Power factor B iii) A current drawn by a c supply frequency is A) 25 Hz B iv) The unit of apparent pow A) kW B Define: (i) Instantaneous val respect to sinusoidally varying Two impedances (150 - j157) 50 Hz supply Find branch	b) 14.14 o of kW/KVA repre- apacitor of 20 μ F i b) 60 Hz wer is, b) KVAR lue (ii) Amplit g quantities.) Ω and (100 + j110	 C) 20 A esents C) Form factor is 1.382 Λ from a 220 C) 50 Hz C) KVA ude (iii) Cycle D) Ω are connected in p 	 D) 0.707 D) Peak factor V A.C. supply. The D) 40 Hz D) Joules (iv) Period with (04 Marks)
	b. с.	amperes. A) 10 A B ii) In an a.c circuit, the ratio A) Power factor B iii) A current drawn by a c supply frequency is A) 25 Hz B iv) The unit of apparent pow A) kW B Define: (i) Instantaneous val respect to sinusoidally varying Two impedances (150 - j157) 50 Hz supply. Find branch cu	b) 14.14 o of kW/KVA repre- b) Load factor apacitor of 20 μ F i b) 60 Hz wer is, b) KVAR lue (ii) Amplit g quantities.) Ω and (100 + j110 urrents, total currer	 C) 20 A esents C) Form factor is 1.382 A from a 220 C) 50 Hz C) KVA ude (iii) Cycle D) Ω are connected in p and total power const 	 D) 0.707 D) Peak factor V A.C. supply. The D) 40 Hz D) Joules (iv) Period with (04 Marks) arallel across 200 V, sumed in the circuit.
	b. c.	amperes. A) 10 A B ii) In an a.c circuit, the ratio A) Power factor B iii) A current drawn by a c supply frequency is A) 25 Hz B iv) The unit of apparent pow A) kW B Define: (i) Instantaneous val respect to sinusoidally varying Two impedances (150 - j157) 50 Hz supply. Find branch cu Draw the phasor diagram.) 14.14 o of kW/KVA repre-) Load factor apacitor of 20 μF i $\overline{) 60 \text{ Hz}}$, wer is,) KVAR lue (ii) Amplit g quantities.) Ω and (100 + j110 urrents, total currents	 C) 20 A esents C) Form factor is 1.382 A from a 220 C) 50 Hz C) KVA ude (iii) Cycle D) Ω are connected in p and total power constraints in the Line of the second se	 D) 0.707 D) Peak factor V A.C. supply. The D) 40 Hz D) Joules (iv) Period with (04 Marks) arallel across 200 V, sumed in the circuit. (06 Marks)
	b. с. d.	amperes. A) 10 A B ii) In an a.c circuit, the ratio A) Power factor B iii) A current drawn by a c supply frequency is A) 25 Hz B iv) The unit of apparent pow A) kW B Define: (i) Instantaneous val respect to sinusoidally varying Two impedances (150 – j157) 50 Hz supply. Find branch cu Draw the phasor diagram. Show that the power consum-	b) 14.14 o of kW/KVA repre- b) Load factor apacitor of 20 μ F i b) 60 Hz wer is, b) KVAR lue (ii) Amplit g quantities.) Ω and (100 + j110 urrents, total currents	 C) 20 A esents C) Form factor s 1.382 A from a 220 C) 50 Hz C) KVA ude (iii) Cycle D) Ω are connected in point and total power consistency is Vlcosφ. Draw 	 D) 0.707 D) Peak factor V A.C. supply. The D) 40 Hz D) Joules (iv) Period with (04 Marks) arallel across 200 V, sumed in the circuit. (06 Marks) aw the waveform for

(06 Marks)

10ELE15/25

Choose the correct answers for the following : 3 a. (04 Marks) The phase sequence of a three phase system is RYB. The other possible phase i) sequence is B) BRY A) YRB C) RBY D) None of these When the two wattmeters used to measure three phase power gives equal readings, ii) then the p.f of the circuit is given by _____ A) 0 B) 0.5 C) 1 D) 0.866 The power consumed by a $3-\phi$ load is given by the expression iii) D) $\sqrt{3}$ V₁ cos ϕ B) $V_L l_L \cos\phi$ C) $\sqrt{3} V_1 I_1 \cos \phi$ A) $3V_L I_L \cos\phi$ A 3- ϕ apparatus is ______ efficient than a 1 – ϕ apparatus. iV) A) More B) Less C) Both (A) & (B) D) None of these b. What are the advantages of $3-\phi$ systems over a single phase system? (06 Marks) c. A $3 - \phi$. 400 V, motor takes an input of 40 kW at 0.45 p.f. lag. Find the reading of each of the two single phase wattmeters connected to measure the input. (05 Marks) d. Obtain the relationship between line current and phase current in a balanced $3-\phi$ delta connected system. (05 Marks) 4 a. Choose the correct answers for the following : (04 Marks) i) The totating disc of the energy meter is made of B) Silver A) Copper C) Aluminum D) Platinum ii) One unit of electrical energy is equivalent to A) 3.6 kWs B) 3600 W.S C) | kWH D) 10 WH of lamps. iii) An intermediate switch is used in A) Three way control B) Two way control C) One way control D) Four way control The value of "Fusing Factor" is always iv)C) Zero A) Less than 1 B) Equal to 1 D) More than 1. With the help of neat diagram, explain the construction and principle of operation of a b. single phase induction type energy meter. (08 Marks) Write the circuit diagram and switching table for two-way and three-way control of lamp. c. Where is it used? (08 Marks) PART - B5 Chause the correct answers for the following : a. (04 Marks) i) The purpose of commutator in a d.c. generator is to A) Increase output voltage B) Convert emf from AC to DC C) Reduce sparking at brushes D) Increase the speed In a lap winding, the number of parallel paths is equal to ______, ii) B) 2P C) P D) 4P The speed of a d.c _____ motor is almost constant. iii) B) Series C) Compound A) Shunt D) None of these The torque produced by DC motor is directly proportional to _____. iv) A) VIa C) ϕI_a D) E_bI_a B) $I_a R_a$ b. Derive the expression for the e.m.f of a DC generator. (04 Marks) С. Sketch the various characteristics of DC shunt motor and mention its applications. (06 Marks) d. A DC shunt motor takes an armature current of 110 A at 480 V. The armature resistance is

d. A DC shunt motor takes an armature current of 110 A at 480 V. The armature resistance is 0.2 Ω . The machine has 6 poles and armature is lap connected with 864 conductors. The flux per pole is 0.05 Wb. Calculate i) speed ii) the torque developed by the armature.

(06 Marks)

10ELE15/25

7

a.

ii)

The transformation ratio in a transformer is equal to i)

- C) $\frac{N_2}{N_1}$ D) $\frac{I_2}{I_1}$ A) $\frac{E_1}{E_2}$ B) $\frac{N_1}{N_2}$
- The efficiency of a transformer is maximum when ii)

A) Iron loss is more than copper loss B) Iron loss is equal to copper loss

- C) Iron loss is less than copper loss D) None of these
- Core type of transformers are used to handle and voltages. iii) A) Low and High B) Low and Medium C) High and Medium D) None of these
- iv) Copper loss in a transformer is a loss. A) Constant loss B) Variable loss C) Friction loss D) None of these (06 Marks)
- b. Explain the construction and working of a transformer.

Choose the correct answers for the following :

- Find the number of turns on the primary and secondary side of a 440/230 V, 50 Hz single с. phase transformer, if the net area of cross section of the core is 30 cm^2 and the maximum flux density is 1Wb/m^2 . (04 Marks)
- d. A single phase transformer working at 0.8 pf has an efficiency 94% at both three fourth full load and full load of 600 kW. Determine the efficiency at half full -load, unity power factor.

(06 Marks)

(02 Marks)

(04 Marks)

D) None of these

- (04 Marks)
- A non salient pole rotor is used in _____ alternator. i) B) High speed (C) Medium speed A) Low speed D) A and B
- ii) The speed at which a 4-pole alternator has to be driven to generate a voltage at 50 Hz is
- A) 1000 rpm B) 1500 rpm C) 2000 rpm D) 1440 rpm
- iii) The E. M. F. induced in an alternator is given by the equation _____. A) 4.44 f ϕ z k_p k_d B) 2.22 k_p f ϕ z C) 2.22 f ϕ z k_p k_d D) 4.44 f ϕ z iv) The field winding of an alternator is _____ excited. A) DC C) Both DC and AC D) None of these B) AC
- How are alternators classified? With a near diagram, show the difference between them. b.

(08 Marks) A 2 – pole, 3 – phase alternator running at 3000 rpm has armature slots with 2 conductors in с. each slot. Calculate the flux per pole required to generate a line voltage of 2300 V. Distribution factor is 0.952 and pitch factor is 0.956. (06 Marks)

d. Define regulation of an alternator.

8 Choose the correct answers for the following : a.

The frequency of the rotor current is _____. i) C) sf²

- A) $\frac{s}{f}$ B) sf
- In a 3 phase induction motor, the slip speed is given by _____.
- C) $N_{\rm S} N$ D) $N N_{\rm S}$ A) Ns B) N
- iii) The synchronous speed of three phase induction motor is given by _____.
 - A) $N_S = \frac{120f}{P}$ B) $N_S = 120 \text{ fP}$ C) $\frac{120P}{f} = N_S$ D) $N_S = \frac{Pf}{120}$
- iv) A $3-\phi$ induction motor having 4- poles, 50 Hz runs at 1440 rpm, the slip is _____. A) 3% B) 5% C) 4% D) 1%

With a neat diagram, explain the working principle of $3 - \phi$ induction motor. b. (06 Marks)

- C. A 10 pole induction motor is supplied by a 6 – pole alternator which is driven at 1200 rpm. If the motor runs with a slip of 3%, what is its speed? (06 Marks)
- d. Why does an induction motor need a starter?

(04 Marks)

(04 Marks)

First/Second Semester B.E. Degree Examination, June/July 2014

Basic Electronics

Time: 3 hrs.

USN

Note: 1. Answer any FIVE full questions, choosing at least two from each part.

- 2. Answer all objective type questions only in OMR sheet page 5 of the answer booklet.
 - 3. Answer to objective type questions on sheets other than OMR will not be valued.
- PART A 1 Choose the correct answers for the following : a. (04 Marks) i) Zener diode can be used for rectification. This statement is A) true B) false C) neither true nor false D) none of these The maximum efficiency of full wave rectifier is ii) A) 40.6% B) 60.4% C) 78.5% D) 81.2% iii) The knee voltage of a silicon diode is C) 0.7V A) 0.3V B) 0.5V D) none of these If f Hz is the frequency of the input given to a half wave rectifier, the output frequency iv) – will be A) 2f Hz B) f Hz • C) 3f Hz D) 0.5f Hz b. Draw and explain the VI – characteristics of a Si-diode and Ge-diode. (06 Marks) With a neat circuit diagram, explain the working principles of full wave bridge rectifier and c. show that the ripple factor = 0.48, and efficiency = 81.2%. (10 Marks) 2 Choose the correct answers for the following : a. (04 Marks) i) The current conduction in BJT is because of A) electrons B) holes C) both electrons and holes D) none of these If $\alpha = 0.95$, then the value of β of transistor is ii) A) 0.05 B) 19 C) 100 D) 120 Common collector arrangement is generally used for iii) A) impedance matching B) voltage amplification C) current amplifier D) none of these The current relationship between two current gain in a transistor is _____ iv) D) $\beta = \frac{1+\beta}{\beta}$ A) $\beta = \frac{\alpha}{1-\alpha}$ B) $\beta = \frac{1+\alpha}{1-\alpha}$ C) $\beta = \frac{1-\alpha}{1+\alpha}$ b. Draw input and output characteristics of an NPN transistor in common base configuration
 - Draw input and output characteristics of an NPN transistor in common base configuration and explain. (10 Marks)
 - c. For a Silicon transistor $\alpha_{dc} = 0.995$, emitter current is 10 mA and leakage current l_{co} is 0.5µA. Find l_C , l_B , β and l_{CEO} . (06 Marks)

10ELN15/25

Max. Marks:100

10ELN15/25

3	a.	Cho i)	oose the correct answe Which of the follow	rs for the following : ing factor affects the Q)-point stability?	(04 Ma (ks)
			A) l _{co}	•	B) coupling capacito)r
			C) emitter resistor		D) bypass capacitor	
		ii)	The inter section of	the dc load line with gi	ven base current curve	is the
		:::>	A) h-point	B) D-point	C) Q-point	D) none of these
		111)	-1 or an emitter 10100	ver, the voltage gain is	(-C) loss than unity	D)
		iv)	The best biasing sta	bility is achieved by us	ino biasino mot	bod
		1.)	A) fixed	B) collector to base	C) voltage divider	D) none of these
	b.	Expl	lain the working of co	llector-to-base bias cire	cuit using an NPN trai	nsistor and derive the
	0	equa	RION IOF IB. na stability factor and	discuss the factors that	oonsa instability of hi	(08 Marks)
	U.	Den	ne staonity factor and	discuss the factors that	cause instability of bi	asing circuits. (08 Marks)
4	a.	Cho	ose the correct answer	s for the following :		(04 Marks)
		1)	A) voltage	B) current	C) pulse	D) power
		ii)	PNPN device is an _	'.		
			A) UJT	B) SCR	C) MOSFET	D) MODFET
		111)	used as a re	elaxation oscillator.	Co. DIT	
		iv.)	- A) MUSFET - The intrinsic standar	B) SCK Fratio of UIT	C) BJI	D) UT
		10)	A) equal to one		B) must be less than	unity
			C) must be greater th	nan unity	D) must be zero	unny
			-			
	b.	Expl	ain the working of tw	vo transistor model of	an SCR and obtain th	ne expression for the
		anod	le current.		(1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(08 Marks)
	C.	тлач	v the equivalent circui	and vi-characteristic	of UJ1 and explain it.	(08 Marks)
				<u> PART – B</u>		
5	a.	Cho	ose the correct answer	s for the following :		(04 Marks)
		i)	Oscillator uses	type of feedback.		
			A) positive	B) negative	C) reverse	D) both A and B
		11)	The frequency of osc	cillations in an oscillate	or is given by	
			A) $\frac{1}{2\pi \Gamma}$	Β) 2πLC	C) $2\pi\sqrt{LC}$	D) $\frac{1}{2\pi \sqrt{1-C}}$
		iii)	With pegative feedby	ack the bandwidth of a	n amplifier	
		,	A) decreases	B) increases	C) both A and B	D) constant
		iv)	The magnitude volta	ge gain at half power	frequencies of an RC	coupled amplifier is
			times maximum	n voltage gain.	1	· · · · · · · · · · · · · · · · · · ·
			A) 0.707	B) 7.07	C) 10	D) 17.06
	b	Draw	v the frequency resp	onse of an RC-count	ed amplifier and over	Jain it Montion ito
		adva	ntages and disadvanta	ges.	ee ampiriter and esp	an at wrendon as (AS Alarke)
	c.	Expl	ain with the help of c	ircuit diagram the wor	rking of an RC phase	shift oscillator using
		trans	istor.	<i>G</i> cc	e think	(06 Marks)
	.1	In a	transistor adhitty of	villaton having tank		

d. In a transistor colpitts oscillator having tank circuit parameters as $c_1 = 0.001 \ \mu\text{F}$ and $c_2 = 0.01 \ \mu\text{F}$ if $L = 5\mu\text{H}$, calculate the frequency of oscillations. (02 Marks)

10ELN15/25

6	a.	Cho	ose the correct answer	rs for the following :		(04 Marks)
		1)	A) zero	age to hower is	-	\mathbf{D}) units
		ii)	- A) Zeru - Ideally onen koon ge	b) infinite	C) negative	D) unity
		11)				D) positivo
		iii)	The CMRR is given	by	() (D) positive
		· 、	A) $A_d \times A_c$	B) A_c/A_d	C) A_d/A_c	D) none of these
		\mathbf{IV})	Maximum rate of ch	ange of output voltage	e with time is called	
			A) UMRR	B) slew rate	C) over rate	D) none of these
	b.	List	the characteristics of	an ideal-op-amp and d	raw the three input invo	erting summer circuit
	0	using	g an op-amp and deriv	e an expression for ou	tput voltage.	(08 Marks)
	Ċ.	Dray	v the basic block diag	ram of a cathode ray tu	ube and explain its work	king. (08 Marks)
						•
7	a.	Cho	ose the correct answe	rs for the following :		(04 Marks)
		i)	Two's compliant of	$(1001)_2$ is		
		••、	A) 1001	B) 0010	C) 0111	D) 1010
		11)	10 represent 35 in b	omary, number of bits r	required is	D> 22
		:::)	A) 6 Decimal number 27	B) 5	C) 4	D) 33
		1(1)	A) 100111	B) 00111011	C) 00110111	D) 111100
		iv)	Over modulation ex	ists when modulation i	index is	D) 11100
		1.,	A)]	B) 0	()>1	D) < 1
			/ -		<i>C, 1</i>	
	b.	Expl	lain the need for modu	ilation.		(06 Marks)
	c.	Con	vert $(A3B)_{16} = ()_{16}$	$_{0}$, and (247.75) ₁₀ = ()2.	(04 Marks)
	d.	1)	Perform (FC02A) ₁₆ –	$(D052)_{16}$ using 16's co	omplement.	
		11)	Subtract $(4317.64)_8$ fr	om (42.345) ₈ using 8*s	s complement.	(06 Marks)
8	a.	Cho	ose the correct answe	rs for the following :		(04 Marks)
		i)	The expression for I	half adder carry with in	put A and B is given b	у
			A) A + B	B) AB	C) $\overline{A} \overline{B}$	D) none of these
		ii)	The complement of	A + B + 1 is		
			A) 0	B) $A + 1$	C) AB + 1	D) 1
		iii)	ABCD + ABD is eq	ual to		
			A) ABC	B) ABC	C) ABD	D) ABD
		iv)	$\mathbf{A} + (\mathbf{B} + \mathbf{C}) = (\mathbf{A} + \mathbf{C})$	(B) + C is law	Ν.	
			A) associative	B) commutative	C) distributive	D) none of these
	b.	Desi	gn a full adder circuit	and realize, using two	half adders.	(08 Marks)
	c.	Sim	plify the following exp	pressions and impleme	ent using only NAND g	ates :
		i) Y	V = ABC + ABC + AB	$\overline{C} + \overline{ABC}$		
		ii) N	$V = \overline{\overline{AB} + \overline{AC}}$			
			$7 = \Lambda \pm \Lambda P$			
		111) 1	$- \alpha \pm \alpha D$.			(08 Marks)
				* * * * *		

CONSTITUTION OF INDIA AND PROFESSIONAL ETHICS (COMMON TO ALL BRANCHES) mrs.] [Max. Marks: 50

Time: 2 hrs.]

USN

INSTRUCTIONS TO THE CANDIDATES

- 1. Answer all the fifty questions, each question carries one mark.
- 2. Use only **Black ball point pen** for writing / darkening the circles.
- 3. For each question, after selecting your answer, darken the appropriate circle corresponding to the same question number on the OMR sheet.
- 4. Darkening two circles for the same question makes the answer invalid.
- 5. Damaging/overwriting, using whiteners on the OMR sheets are strictly prohibited.

1.	There is no provision for impeachmer a) Judges of Supreme court and high o c) President	nt of court b) Vice President d) Governor
2.	Who is the President of India a) Mrs. Pratibha Patil c) Dr. A.P.J Abdul Kalam	b) Mr. Pranab Mukharjeed) Mr. S.M. Krishna
3.	Fear isresponsibility a) a way to shift b) an impedim	nent c) Both a and b d) a way to corrupt
4.	If one considers engineering profession a) accepting the risk b) imagination	on as a building, then the following is its foundation c) Honesty d) Creativity
5.	A fault tree is used to :a) To improve safetyc) Assess the risk involved	b) To claim compensationd) Take free consent
6.	A person arrested has to be produced a) 24 hours b) 48 hours	before the magistrate c) 72 hours d) 96 hours
7.	The owner of the patent right retains i a) 100 years b) 20 years	it for c) 50 years d) 75 years
8.	This is not the dishonesty in Engineer a) Forging b) Trimming	ring c) Blending d) Cooking
9.	The constitution empowers State Gov a) unemployed youth b) formen	/ernment to make special law for c) workers d) women and children

-C1-

Question Paper Version : C

10CIP18/28

10.	Which state among the following has two houses a) Tamilnadu b) Andhra Pradesh c) West Bengal d) Karnataka
11.	 The total number of ministers in the council of ministers of the Union shall not exceed a) 21 % of the total members of Lok sabha b) 12 % of the total members of Lok sabha c) 15 % of the total members of Lok sabha d) 15 % of the total members of both Lok sabha and Rajya sabha
12.	 Right against exploitation seeks to protect the weaker sections of the society by a) giving equal pay for equal work for both men and women b) proving compulsory education for children below the age of 14 years c) prohibiting human traffeking and Begar d) None of these
13.	One third of the members of Rajya Sabha retire a) every year b) every two years c) every three years d) every four years
14.	 The directive principles of the state policy do not direct the state to endeavour to protect a) Environment b) the objects of artistic interest of National importance c) Forest d) the interest of minorities
15.	The Chief Justice and other Judges of the State High Court hold office until they attainthe age ofa) 58 yearsb) 60 yearsc) 65 yearsd) 62 years
16.	Passing criminal law with retrospective effect is called asa) Expost facto lawsb) post facto lawsc) Post Export lawsd) None of these
17.	Which of the following writ is issued by the court in case of illegal detention of a persona) Certiorarib) Mandamusc) Habeas corpusd) Quo - warrants
18.	The sole channel of communication between President and his council of ministers isa) Speaker of Lok Sabhab) Prime Ministerc) Vice Presidentd) Opposition leader
19.	Article 19 provides a) Seven freedoms b) Five freedoms c) Two freedoms d) Six freedoms
20.	 'Respite' means a) Awarding lesser punishment in place of originally awarded b) Temporary suspension of death sentence c) Reducing the length of the punishment without changing the character of the punishment d) substituting one form of punishment for another of a lighter character.
21.	Directive principles come underof the constitutiona) Part - IIb) Part - IIIc) Part - IVd) Part 1
22.	 The ground for the impeachment of the President a) Failure to follow the advice given by the Prime Minister b) Unable to discharge his duties due to old age c) Violation of constitution d) Misbchaviour with Foreign dignitaries.

10CIP18/28

23.	The speaker of Loka) Appointed by thc) Appointed by the	sabha is ne President e vice President	b) Elected by membd) Elected by the mem	ers of parliament bers of Lok sabha
24.	The Number of mer a) 12	nbers nominated by b) 10	the President to Rajya S c) 14	Sahba is d) 8
25.	Revealing confident a) violation of pate c) breach of contract	tial information amo nt ct	ounts to b) misuse of truth d) criminal breach of t	rust.
26.	Financial emergenc a) 256	y can be proclaimed b) 356	under the article c) 360	d) 352
27.	According to Indian a) Parliament of Ind c) People of India	constitution, the po lia	ower of amending the co b) President of India d) The Prime Minister	nstitution are vested with of India
28	In the Indian constit a) were added by th c) were added by th	ution, the fundamen e first amendment e 42nd amendment	ntal rights b) formed part of the d) were added by the	original constitution 24th amendment
29.	The Chief Election a) Chief Justice	Commissioner is app b) President	pointed by the c) Prime Minister	d) Governor
30.	To declare National a) Rajya Sabha d) Both by the Lok	Emergency a decisi b) Lok Sabha Sabha and Rajya Sal	ion must be taken by the c) Union Cabinet bha.	
31.	Legislature council a) dissolved after 6 c) after 5 years	is years	b) after 3 yearsd) not dissolved	
32.	What is the minimu a) 25 and 18	m age for becoming b) 25 and 30	MP at Lok sabha and R c) 18 and 25	ajya sabha d) 30 and 25
33.	Lying is a) dishonesty c) cheating		b) one of the ways ofd) None of these	misusing the truth
34.	One of the salient for a) It is partly rigid c) Fully rigid	eatures of our constin partly flexible	tution is b) It is fully flexible d) None of these	
35.	Right to religion is a a) public order	not subject to b) public morality	c) public welfare	d) public health
36.	Which amendment system a) 74th	deals with establish b) 76th	e) 86th	as a part of constitutional d) 44th
37.	To become a judge a period of at least a) 20	of the High Court, o years b) 10	one must be practicing a	advocate of High court for d) 5

	10CIP18/28
38.	Creamy layer means a) upper caste people b) highly endured people c) persons holding high post and having higher income of backward class of people d) Educated people.
39.	Voting age of citizen is reduced from 21 to 18 years by constitutional amendmenta) 42ndb) 61stc) 7thd) 55th
40.	Under the Indian constitution, the subject of administration have been divided into a) three lists b) two lists c) four lists d) five lists
41.	The Vice President of India is ex – officio chairman ofa) Rajya Sabhab) Law commissionc) Planning commissiond) Finance commission
42.	Cooking means a) Boiling under pressure b) Retaining result which fit the theory c) Making deceptive statements d) Misleading the public about the quality of product
43.	Egocentric tendencies meana) Superiority complexb) Interpreting situation from limited viewc) Arrogant and irresponsible behaviord) Habit of condemning views of others
44.	 This is not a fundamental duty a) Respect to National Flag and National Anthem b) Safeguard public property c) Respect to elders and teachers d) Renounce the practices insulting the dignity of women
45.	Total number of Articles in Indian Constitutiona) 445b) 420c) 400d) 395
46.	 Equality before law permits a) Legislation based on race, religion, caste sex and place of birth b) Legislation classification and prohibits class legislation c) Class legislation and prohibits legislature classification d) Legislative classification based on caste but prohibits class legislation based on religion.
47.	Legally permissible age for boy and girl isa) 25 and 23b) 21 and 18c) 16 and 18d) 20 and 18
48.	This is not the function of Election commission a) selection of the candidates b) preparation of electoral rules c) determine code of conduct to candidates d) allotment of symbols
49.	The Ministers hold office during the pleasure of President which infact means during the pleasure of a) the Parliament b) the Lok sabha c) the Prime Minister d) None of these
50.	Magna Carta is a written document of 13th century assuring liberities awarded toa) Indian citizenb) French citizensb) British citizensd) Citizen of the world by U.N.O.
	* * * *

	ļ				Ouestion Paper	Version · A
ISI	N					
	F	irst/Se	econd	Semester B.E Deg	gree Examination, Jur	ne/July 2014
				Environme	ental Studies	
				(COMMON TO	ALL BRANCHES)	
in	ne: 2	nrs.]			[N	Aax. Marks: 50
				INSTRUCTIONS	S TO THE CANDIDAT	ES
	1. <i>A</i>	Inswer	all the	fifty questions, each q	uestion carries ONE mark	
	2. l	Jse only	y Black	k ball point pen for w	riting / darkening the circle	S.
	3. F	for eac	h ques	tion, after selecting	your answer, darken the	appropriate circle
	С	orrespo	onding [.]	to the same question n	umber on the OMR sheet.	
	4 . [Darkeni	ng two	circles for the same q	uestion makes the answer in	nvalid.
	5 I	Jamau	ing/ove	rwriting using wh	iteners on the OMP of	hoots are strictly
	. 1	amagi	ing/ove	a writing, using wr	iteners ou the Owik s	neets are strictly
	r	rohibit	ed.			
	-					
					Θ	
,	Antl	ropoge	nic activ	vities means.		
•	Antl a) N	nropoge atural n	nic activ nade	vities means. b) Biological	c) Manmade	d) Animal made
.	Antl a) N Whi	nropoge atural n ch of th	nic activ nade e follow	vities means. b) Biological ving energy source is les	c) Manmade	d) Animal made
•	Antl a) N Whi a) W	nropoge atural n ch of th /ind	nic activ nade e follow	vities means. b) Biological ving energy source is les b) Water	c) Manmade ss eco-friendly? c) Solar	d) Animal made d) Thermal
	Antł a) N Whi a) W	nropoge atural n ch of th /ind ch of th	nic activ nade e follow e follow	vities means. b) Biological ving energy source is les b) Water ving is a biotic compone	c) Manmade ss eco-friendly? c) Solar	d) Animal made d) Thermal
•	Anth a) N Whi a) W Whi a) S	nropoge atural n ch of th /ind ch of th unlight	nic activ nade e follow e follow	vities means. b) Biological ving energy source is les b) Water ving is a biotic compone b) Fungi	c) Manmade ss eco-friendly? c) Solar ent of an ecosystem? c) Temperature	d) Animal made d) Thermal d) Water
1. 2. 3.	Antl a) N Whi a) W Whi a) S Gen	nropoge atural n ch of th /ind ch of th unlight eration	nic activ nade e follow e follow	vities means. b) Biological ving energy source is les b) Water ving is a biotic compone b) Fungi energy is mainly based	c) Manmade s eco-friendly? c) Solar ant of an ecosystem? c) Temperature	d) Animal made d) Thermal d) Water
· · · · · · · · · · · · · · · · · · ·	Antl a) N Whi a) W Whi a) S Gen a) D	nropoge atural n ch of th /ind ch of th unlight eration irection	nic activ nade e follow e follow of wind of wind	vities means. b) Biological ving energy source is les b) Water ving is a biotic compone b) Fungi energy is mainly based d b) Storms	c) Manmade s eco-friendly? c) Solar ant of an ecosystem? c) Temperature on which factor c) Velocity of wind	 d) Animal made d) Thermal d) Water d) Wind pressure
1. 2. 3.	Antl a) N Whi a) W Whi a) S Gen a) D	nropoge atural n ch of th /ind ch of th unlight eration irection	nic activ nade e follow e follow of wind of wind	vities means. b) Biological ving energy source is les b) Water ving is a biotic compone b) Fungi energy is mainly based d b) Storms	c) Manmade s eco-friendly? c) Solar nt of an ecosystem? c) Temperature on which factor c) Velocity of wind	 d) Animal made d) Thermal d) Water d) Wind pressure
••••••••••••••••••••••••••••••••••••••	Antl a) N Whi a) W Whi a) S Gen a) D Exar a) P	nropoge atural n ch of th /ind ch of th unlight eration irection mple for lants	nic activ nade e follow e follow of wind of wind r abiotic	vities means. b) Biological ving energy source is les b) Water ving is a biotic compone b) Fungi energy is mainly based d b) Storms component of eco-syste b) Food	c) Manmade c) Manmade c) Solar on t of an ecosystem? c) Temperature on which factor c) Velocity of wind em	 d) Animal made d) Thermal d) Water d) Wind pressure d) Live stock
1. 2. 3.	Antl a) N Whi a) W Whi a) S Gen a) D Exau a) P	nropoge atural n ch of th /ind ch of th unlight eration irection mple for lants	nic activ nade e follow e follow of wind of wind r abiotic	vities means. b) Biological ving energy source is les b) Water ving is a biotic compone b) Fungi energy is mainly based d b) Storms component of eco-syste b) Food	c) Manmade c) Manmade c) Solar ont of an ecosystem? c) Temperature on which factor c) Velocity of wind em c) Water	 d) Animal made d) Thermal d) Water d) Wind pressure d) Live stock
1. 3. 5.	Anth a) N Whi a) W Whi a) S Gen a) D Exat a) P Amo a) 2	nropoge atural n ch of th /ind ch of th unlight eration irection mple for lants	nic activ nade e follow e follow of wind of wind r abiotic carbon c	vities means. b) Biological ving energy source is les b) Water ving is a biotic compone b) Fungi energy is mainly based d b) Storms component of eco-syste b) Food dioxide present in atmos b) 0.383%	c) Manmade s eco-friendly? c) Solar ent of an ecosystem? c) Temperature on which factor c) Velocity of wind em c) Water pheric air is () 78%	 d) Animal made d) Thermal d) Water d) Wind pressure d) Live stock d) 0.318%
1. 2. 3. 4. 5.	Anth a) N Whi a) W Whi a) S Gen a) D Exat a) D Exat a) P Amo a) 2	nropoge atural n ch of th /ind ch of th unlight eration irection mple for lants	nic activ nade e follow e follow of wind of wind r abiotic	vities means. b) Biological ving energy source is les b) Water ving is a biotic compone b) Fungi energy is mainly based d b) Storms component of eco-syste b) Food dioxide present in atmos b) 0.383%	c) Manmade s eco-friendly? c) Solar ent of an ecosystem? c) Temperature on which factor c) Velocity of wind em c) Water pheric air is c) 78%	 d) Animal made d) Thermal d) Water d) Wind pressure d) Live stock d) 0.318%
1. 2. 3. 4. 5.	Antl a) N Whi a) W Whi a) S Gen a) D Exat a) P Amo a) 2 Estu	nropoge atural n ch of th /ind ch of th unlight eration of irection mple for lants ount of o 1% ary mea	nic activ nade e follow e follow of wind of wind r abiotic carbon c	vities means. b) Biological ving energy source is les b) Water ving is a biotic compone b) Fungi energy is mainly based d b) Storms component of eco-syste b) Food dioxide present in atmos b) 0.383%	c) Manmade s eco-friendly? c) Solar ent of an ecosystem? c) Temperature on which factor c) Velocity of wind em c) Water pheric air is c) 78%	 d) Animal made d) Thermal d) Water d) Wind pressure d) Live stock d) 0.318%

8. Physical pollution of water is due to a) Chlorides b) Turbidity c) PH d) All of these

10CIV18/28

9.	Control of water Born a) Defluoridation	e diseases can be achieved b) Disinfection	l effectively in a commun c) Sterilization	ity by d) Vaccination	
10.	Ozone layer thickness a) PPM	is measured in which unit b) PPB	s c) Db	d) DU	
11.	Eutrophication means a) Quality of water in c) Water purification t	lakes technique	b) Enrichment of plant nutrients in waterd) Meeting point of river and sea.		
12.	Earth's body temperat a) 16.4°C	ture is approximately equa b) 16.6°C	1 to? c) 36°C	d) 21.6°C.	
13.	Presence of BOD in d a) Rich content of oxy c) Turbidity	rinking water indicates /gen	b) Organic matterd) Physical impurities		
14.	Which of the followin a) Acid rain	g is a natural source of Air b) Precipitation	r pollution? c) Storms	d) Volcanic eruption	
15.	Effect of carbon mono a) H ₂ CO ₃	oxide on blood, causing b) COHb	c) CO ₂ Hb	d) HbCO ₂	
16.	Demography means a) Study on forest c) Study on earthquak	e	b) Study on Human activitiesd) Study on population growth		
17.	Freon's are called a) Hydrocarbons	b) Ozone	c) Methane	d) Solvents	
18.	Which of the followin a) DDT	g is a biodegradable pollut b) Sewage	c) CFC	d) Freon's	
19.	Percentage of ground a) 0.02	water available on Earth's b) 0.5	environment is c) 1.5	d) 0.2	
20.	 During green house effect, carbondioxide and water vapours absorbs. a) Short wave radiations b) Long wave radiations c) Solar radiation d) UV radiations 				
21.	Ozone is present in wh a) Ozonosphere	nich layer of the atmospher b) Stratosphere	re c) Troposphere	d) lonosphere	
22.	What is the maximum a) 1.0 mg/l	allowable concentration o b) 1.25 mg//	f fluorides in drinking wa c) 1.50 mg/l	ter? d) 1.60 mg//	
23.	Which of the followin a) CO_2	g gas is not concern to gre b) CH ₄	en house effect? c) SO ₂	d) H ₂ O vapour	

10CIV18/28 24. Which of the following is not a renewable source of energy? a) Solar b) Wind c) Nuclear d) Geo-Thermal **25.** Optimum growth of bacteria in favorable PH value of a) 6.5 - 8.5b) 7.0 c) 6.5 - 7.5d) 7.0 – 14.0 26. Bhopal gas tragedy was caused due to leakage of a) CH₄ b) MIC d) Pesticides c) SO_2 27. Karnataka state pollution control board was established in the year a) 1984 b) 1976 c) 1974 d) 1983 28. Among all oxides of nitrogen which one is responsible for the formation of acid rain a) Nitrous oxide b) Nitric oxide c) Nitrogen Trioxide d) Nitrogen pentoxide 29. The liquid waste generated from municipal solid waste disposal pits is called a) Solid waste water b) Sewage c) Leachate d) Compost waste water **30.** Minimum allowable limit of noise pollution for Human persistence is a) 40dB b) 90dB c) 45dB d) 55dB **31.** HIV can be transmitted to humans through which media? a) Air b) Blood d) Hereditary c) Virus **32.** Mineral resources are a) Renewable b) Fossil fuels c) Non-renewable d) Sedimentary rocks **33.** World Ozone day is being celebrating on every year a) 15th Sept. b) 16th Oct. c) 16th Sept. d) 22nd April 34. Contribution of carbon dioxide to global warming from industries a) 50% b) 24% c) 25%d) 75% **35.** Which atmospheric layer is closest to the Earth's surface? a) Mesosphere b) Troposphere c) Stratosphere d) Thermosphere **36.** Example for tertiary consumers a) Plants b) Cattle c) Snake d) Elephant **37.** As per BIS, the minimum allowable limit of iron content in drinking water is a) 1.0 mg/lb) 0.2 mg// c) 0.3 mg//d) 0.5 mg/l**38.** In Hydro-power plants, power is generated by a) Solar b) Thermal c) Water d) Coal **39.** The PH value of acid rain was recorded in early days a) 2.5 b) 7.5 d) 5.7 c) 4.7

10CIV18/28

40.	First international ea a) USA	rth summit was held at b) Russia	c) Rio de-Janeiro	d) Johannesburg
41.	The air prevention an a) 1987	nd control of pollution Ac b) 1974	t was enacted in the year c) 1981	- d) 1986
42.	Smog is formed by the a) Smoke and Mist.	he reaction of which air p b) Smoke and Fog	ollutants c) Smoke and Bio-Gas	d) Smoke and Dust
43.	Which of the following is not a solution for Global Warming?a) Reducing use of Fossil fuelsb) Planting more treesc) Deforestationd) Reducing vehicular transportation			ransportation
44.	Methemoglobinemia a) Mercury	is caused by the contami b) Nitrate	nation of water due to c) Arsenic	d) Nitrates
45.	Earth's Day is celebr a) June 22 nd	rated on every year b) Sept.22 nd	c) April 22 nd	d) June 5 th
46.	Expansion of the term WWF is a) World wide life force c) World wide life forest		b) World wide forestd) World wild life fund	
47.	Maximum allowable a) 600 mg/l	concentration of total har b) 300 mg/l	rdness as per BIS in drinkin c) 1000 mg/l	g water d) 250 mg//
48.	Water pollution preva a) 1986	ention and control Act wa b) 1974	as enacted in the year c) 1981	d) 1987
49.	Stone cancer is an ef a) Climatic change	fect of b) Hard water	c) Acid rain	d) Excess of calcium
50.	Most stable Eco-syst a) Mountain	em is b) Ocean	c) Population	d) Fossil fuels
	6	**	* * * *	

2. Any revealing of identification, appeal to evaluator and /or equations written eg. 42-8-50, will be treated as malpractice. Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

a. Choose the correct answer : (04 Marks) i) The general solution of the equation $x^2p^2 + 3xyp + 2y^2 = 0$ is (A) $(y^2x - c)(xy - c) = 0$ (B) $(x-y-c)(x^2 + y^2 - c) = 0$ (C) $(xy - c)(x^2y-c) = 0$ (D) $(y-x-c)(x^2 + y^2 + c) = 0$ (D) $(y-x-c)(x^2 + y^2 + c) = 0$ ii) The given differential equation is solvable for y, if it is possible to express y in terms of (A) y and p (B) x and p (C) x and y (D) y and xiii) The singular solution of Clairaut's equation is (A) y = xg(x) + f[g(x)](B) y = cx + f(c)(D) $y g^{2}(x) + f[g(x)]$ (C) cy + f(c)iv) The singular solution of the equation $y = px - \log p$ is _____ (A) $y^2 = 4ax$ (B) $x = 1 - \log x$ (C) $y = 1 - \log \left(\frac{1}{x}\right)$ (D) $x^2 = y \log x$ b. Solve $p^2 - 2p \sin h x - 1 = 0$. (04 Marks) c. Solve $y = 2px + tan^{-1} (xp^2)$. (06 Marks) d. Obtain the general solution and singular solution of Clairaut's equation is (y - px)(p-1) = p. (06 Marks) a. Choose the correct answer : (04 Marks) i) The complementary function of $[D^4 + 4] x = 0$ is (A) $x = e^{t} [c_1 \cos t + c_2 \sin t] + e^{t} [c_3 \cos t + c_4 \sin t]$ (B) $x = [c_1 \cos t + c_2 \sin t] + [c_3 \cos t + c_4 \sin t]$ (C) $x = [c_1 + c_2 t] e^{-t}$ (D) $x = [c_1 + c_2 t] e^t$. ii) Find the particular integral of $(D^3 - 3D^2 + 4) y = e^{2x}$ is _____ (A) $\frac{x^2 e^{2x}}{6}$ (B) $\frac{x^2 e^{3x}}{6}$ (C) $\frac{x^2 e^x}{6}$ (D) $\frac{x^2 e^{4x}}{6}$ iii) Roots of $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 5y = 0$ are _____ (C) $2 \pm 2i$ (D) $-2 \pm i$ (A) $2 \pm i$ (B) $3 \pm i$ (C) $2 \pm 2i$ iv) Find the particular integral of $(D^3 + 4D) y = \sin 2x$ is ______ (A) $\frac{x \sin x}{8}$ (B) $\frac{-x \sin x}{8}$ (C) $\frac{-x \sin 2x}{8}$ (D) $\frac{x \sin 2x}{8}$ b. Solve $\frac{d^3y}{dx^3} + 6\frac{d^2y}{dx^2} + 11\frac{dy}{dx} + 6y = e^x + 1$. (04 Marks) c. Solve $\frac{d^2y}{dx^2} - 4y = \cos h (2x - 1) + 3^x$.

Second Semester B.E. Degree Examination, June / July 2014 **Engineering Mathematics - II**

Time: 3 hrs.

USN

1

2

Note: 1. Answer FIVE full questions choosing at least two from each part. 2. Answer all objective type questions only in OMR sheet page 5 of the Answer Booklet. 3. Answers to objective type questions on sheets other than OMR will not be valued.

PART - A

1 of 4

10MAT21

(06 Marks)

Max. Marks:100

d. Solve
$$\frac{dy}{dx} + y = ze^{x}$$
, $\frac{dz}{dx} + z^{-}y + e^{x}$. (06 Marks)
3 a. Choose the correct answer : (04 Marks)
i) The Wronskian of x and x e² is ...
(A) e^x (B) e^{2x} (C) e^{2x} (D) e^x.
(A) c, cos (0g x) + c₂ sin (log x) (B) c₁ x² - xy² - 3y - x² log x is ...
(A) c, cos (0g x) + c₂ sin (log x) (B) c₁ x² + c₂ x².
(C) c₁ x + c₂ x² (D) c₁ cos x + c₂ sin x.
(ii) To transform (1+x)²y⁴ + (1 + x)y⁴ + y = 2 sin log (1 + x) into a linear differential equation with constant coefficient
(A) (1+x) = e¹ (B) (1+x) = e¹ (C) (1+x)² = c¹ (D) (1-x)² = e¹.
(A) Simultaneous equation (B) Cauchy's linear equation
(C) Legendre linear equation (B) Cauchy's linear equation
(C) Legendre linear equation (D) Luler's equation.
b. Using the variation of parameters method to solve the equation y⁴ + 2y⁴ + y - e^x log x.
(04 Marks)
c. Solve x² d² y² (2m - 1)x d⁴ + (m² + n²) y = n² xⁿ log x.
(06 Marks)
d. Obtain the Frobenius method solve the equation
 $x \frac{d^{2y}}{dx^{2}} + \frac{dx}{dx} - y = 0$.
(06 Marks)
i) Partial differential equation by eliminating a and b from the relation
 $Z = (xa)^{2^{2}} (y - b^{-1})^{2^{2}}$ (B) $pq - 4z$ (C) $r - 4z$ (D) $1 - 4$
ii) The Lagranges's linear partial differential equation Pp + Qq = R the subsidiary equation
is
(A) $\frac{dx}{dx} = \frac{dy}{p} - \frac{dz}{Q}$ (B) $\frac{dx}{p} + \frac{dy}{Q} = \frac{dx}{R}$ (C) $\frac{dx}{Q} = \frac{dy}{R} = \frac{dz}{P}$ (D) $\frac{dx}{x} - \frac{dy}{Q} + \frac{dx}{R}$
iii) By the method of separation of variable we seek a solution in the form is
(A) $x = x + y$ (B) $z = x^{2} + y^{2}$ (C) $x = z + y$ (D) $x = x(x) y(y)$
iv) The solution of $\frac{z^{2}}{x} = \sin(xy)$ is
(A) $z = -x \sin(xy) + y f(x) + \phi(x)$ (B) $-\frac{\sin(xy)}{y^{2}} + x f(y) + \phi(y)$
(f) $z = -\frac{\sin xy}{x} + y f(x) + \phi(x)$ (D) None of these.
b. Form the partial differential equation of all sphere of radius 3 units having their centre in the $xy - plane$. (06 Marks)
c. Solve x (y² + z) p² x (x² - z) q = z (x² y²). (06 Marks)
d. Use the method of

Choose the correct answer : i) The value of $\int_{0}^{1} \int_{0}^{x^{2}} e^{\frac{y}{x}} dy dx$ is _____ (A) 0 (B) 1 (C) 3 (D) $\frac{1}{2}$.

ii) The value of
$$\Gamma(\frac{1}{2})$$
 is ______ (C) $\sqrt{\pi}$ (D) $\sqrt{2\pi}$.
iii) The integral $\int_{0}^{1} \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{x}{x^{2}+y^{2}} dxdy$ after changing the order of integration is _______
(A) $\int_{0}^{1} \int_{0}^{1} \frac{x}{x^{2}+y^{2}} dxdy$ (B) $\int_{0}^{1} \int_{0}^{1} \frac{x}{x^{2}+y^{2}} dxdy$
(C) $\int_{0}^{1} \int_{0}^{1} \frac{x}{x^{2}+y^{2}} dxdy$ (D) $\int_{0}^{1} \int_{0}^{1} \frac{x}{x^{2}+y^{2}} dxdy$
iv) The value of $\beta(3, \frac{1}{2})$ is _______
(A) $\frac{15}{16}$ (B) $\frac{16}{15}$ (C) $\frac{16}{5}$ (D) $\frac{16}{3}$
b. Change the order of integration in $\int_{0}^{15} \int_{\frac{1}{2}}^{\frac{1}{2}} dydx$ and hence evaluate the same. (04 Marks)
c. Evaluate $\int_{0}^{1} \int_{0}^{1} \frac{x^{2}}{\sqrt{1-x^{4}}} dx \times \int_{0}^{1} \frac{1}{\sqrt{1+x^{2}}} dx = \frac{\pi}{4\sqrt{2}}$. (66 Marks)
d. Prove that $\int_{0}^{1} \frac{x^{2}}{\sqrt{1-x^{4}}} dx \times \int_{0}^{1} \frac{1}{\sqrt{1+x^{2}}} dx = \frac{\pi}{4\sqrt{2}}$. (66 Marks)
i) Let S be the closed boundary surface of a region of volume V then for a vector field Γ
defined in V and in S $\int_{0}^{1} f_{0} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{1-x^{4}}} dx = \frac{\pi}{4\sqrt{2}}$. (D) $\int_{0}^{1} f_{0} \frac{x}{\sqrt{2}} \frac{x^{2}}{\sqrt{1-x^{4}}} fx$ (B) $\frac{1}{\sqrt{2}} \frac{f_{0}}{\sqrt{1-x^{4}}} (x)$ (D) None of these
ii) If $\int_{0}^{1} f_{0} \frac{x^{2}}{\sqrt{1-x^{4}}} dx = \frac{\pi}{\sqrt{2}}$. (C) $\frac{3x + 3y}{\sqrt{2}}$ (D) -35
iii) In the Green's theorem in the plane $\int_{0}^{1} Mdx + Ndy = \frac{\pi}{\sqrt{2}}$.
(A) $\iint_{0}^{1} \frac{(M-M)}{\sqrt{2}} dxdy$ (D) $\iint_{0}^{1} \frac{(M-M)}{\sqrt{2}} dxdy$
iv) A necessary and sufficient condition that the line integral $\int_{0}^{1} \frac{f_{0}}{\sqrt{2}} \frac{x^{2}}{\sqrt{2}} \int_{0}^{1} dx^{2}}$
(A) $\frac{1}{\sqrt{2}} \frac{(M-M)}{\sqrt{2}} dxdy$ (D) $\iint_{0}^{1} \frac{(M-M)}{\sqrt{2}} dxdy$
iv) A necessary and sufficient condition that the line integral $\int_{0}^{1} \frac{f_{0}}{\sqrt{2}} \frac{x^{2}}{\sqrt{2}} \int_{0}^{1} dx + \sqrt{2} \int_{0}^{1} dx^{2}$
(A) $\frac{1}{\sqrt{2}} \frac{(M-M)}{\sqrt{2}} dxdy$ (D) $\frac{1}{\sqrt{2}} \frac{(X+M)}{\sqrt{2}} dxdy$ (E) $\frac{1}{\sqrt{2}} \frac{(M-M)}{\sqrt{2}} dxdy$
iv) A necessary and sufficient condition that the line integral $\frac{1}{\sqrt{2}} \frac{f_{0}}{\sqrt{2}} dxdy$
iv) A necessary and sufficient condition that the line integral $\frac{1}{\sqrt{1}} \frac{f_{0}}{\sqrt{2}} \frac{1}{\sqrt{2}} \int$

6

3 of 4

7 a. Choose the correct answer : (a) Marksy
i)
$$L_{sinh at}^{s} = \frac{1}{(A) \frac{s}{s^{2} - a^{2}}}$$
 (B) $\frac{s}{s^{2} - a^{2}}$ (C) $\frac{a}{s^{2} - a^{2}}$ (D) $\frac{a}{s^{2} + a^{2}}$.
ii) If $L_{1}^{f}(1) = F(s)$ then $L_{1}^{e^{s}}f(1)$ is $\frac{1}{(A)} F(s + a)$ (D) then $L_{1}^{e^{s}}f(1)$ is $\frac{1}{(A)} F(s + a)$ (D) $R^{s}(a)$ (D) None of these
iii) $L_{1}^{\frac{1}{2} + \tan^{-1}(s - 1)}$ (B) $\frac{\pi}{2} + \tan^{-1}s$ (C) $\frac{\pi}{2} - \cot^{-1}s$ (D) $\cot^{-1}(s - 1)$
iv) Transform of unit step function $L_{1}^{(u+1)}$ is, $\frac{1}{(A)} \frac{e^{-s}}{s}$ (D) $\frac{e^{-s}}{s}$
b. Evaluate $L_{1}^{\frac{1}{2}s} + \frac{\cos 2t - \cos 3t}{s} + t \sin t$]. (04 Marks)
c. Find the Laplace transform of the triangular wave, given by,
 $f(1) = \begin{cases} 1 & 0 < 1 < C \\ 2C - 1 & C < 1 < 2C \end{cases}$ if $a < t < 2\pi$ in terms of unit step function and hence find $L_{1}^{\frac{1}{2}}(1)$.
(B) $\frac{\sin 4}{s}$ (C) $\frac{\sin 4t}{s}$ (D) $\frac{\sin 4t}{s}$ (D) $\frac{\sinh 4t}{s}$
d. Express $f_{1}(1) = \begin{cases} 0.8 & i = 0 < t < \pi \\ \cos 21 & i = \pi < t < 2\pi \end{cases}$ in terms of unit step function and hence find $L_{1}^{\frac{1}{2}}(1)$.
(A) $\frac{\sin 1}{s}$ (B) $\frac{\sin 4t}{s}$ (C) $\frac{\sinh 4t}{s}$ (D) $\frac{\sinh 4t}{s}$
i) $L^{-1} \left\{ \frac{1}{4s^{2} - 3s} \right\} = \frac{1}{(A) - \frac{1}{s^{2}}(A)} = \frac{1}{a^{2}}$
(A) $\frac{\sinh 4t}{s^{2}}(B) \frac{1 + \cos 4t}{a^{2}}}$ (C) $\frac{1 - \sin 4t}{s}$ (D) $\frac{\sinh 4t}{a^{2}}$
(A) $\frac{1 - \cos 4t}{s^{2}}(B) \frac{1 + \cos 4t}{a^{2}}}$ (C) $\frac{1 - \sin 4t}{s}$ (D) $\frac{\sinh 4t}{a^{2}}}{1}$
(A) $\frac{1 - \cos 4t}{s^{2}}(B) \frac{1 + \cos 4t}{a^{2}}}$ (C) $\frac{1 - \sin 4t}{s^{2}}(D) \frac{1 + \sin 4t}{a^{2}}}{1}$
(A) $\frac{1 - \cos 4t}{s^{2}}(B) \frac{1 + \cos 4t}{a^{2}}(C) \frac{1 - \sin 4t}{s^{2}}(D) \frac{1 - \frac{3}{2}t^{2} + \frac{2}{3}t^{2}}{1}$
(A) $1 - 3t + 2t^{2}$ (B) $1 + \frac{t^{2}}{s}$ (C) $1 + \frac{3}{2}t^{2} + 1$ (D) $t - \frac{3}{2}t^{2} + \frac{2}{3}t^{2}$
(A) $1 - 3t + 2t^{3}$ (B) $1 + \frac{t^{2}}{s}$ (C) $t + \frac{3}{2}t^{2} + 1$ (D) $t - \frac{3}{2}t^{2} + \frac{2}{3}t^{2}$
(A) $1 - 3t + 2t^{3}$ (B) $1 + \frac{t^{2}}{s}$ (C) $t + \frac{3}{2}t^{2} + 1$ (D) $t - \frac{3}{2}t^{2} + \frac{2}{3}t^{2}$
(A) $1 - 3t + 2t^{3}$ (B) $1 + \frac{t^{2}}{s}$ (C) $t + \frac{3}{2}t^{2} + 1$ (D) $t - \frac{3}{2}t^{2} + \frac{2}{3}t^{3}$
(A) $1 - 3t + 2t^{3}$ (B) $1 +$