Ref No:

SRI KRISHNA INSTITUTE OF TECHNOLOGY

Academic Year 2019-20

Program:	B E – Mechanical Engineering
Semester :	6
Course Code:	17MEL68
Course Title:	Modeling And analysis
Credit / L-T-P:	2 / 0-0-2
Total Contact Hours:	32
Course Plan Author:	SAGAR H N

Academic Evaluation and Monitoring Cell

#29, Hesaraghatta Main road, Chimney Hills, Chikkabanavara P.O., Bengaluru – 560090, Karnataka, INDIA Phone / Fax :+91 80 23721477 -STD- 080 23721315 Web:www.skit.org.in E-mail:skit1princi@gmail.com/principal@skit.org.in

INSTRUCTIONS TO TEACHERS

- Classroom / Lab activity shall be started after taking attendance.
- Attendance shall only be signed in the classroom by students.
- Three hours attendance should be given to each Lab.
- Use only Blue or Black Pen to fill the attendance.
- Attendance shall be updated on-line & status discussed in DUGC.
- No attendance should be added to late comers.
- Modification of any attendance, over writings, etc is strictly prohibited.
- Updated register is to be brought to every academic review meeting as per the COE.

Table of Contents

A. LABORATORY INFORMATION	4
1. Laboratory Overview	4
2. Laboratory Content	4
3. Laboratory Material	
4. Laboratory Prerequisites:	5
5. Content for Placement, Profession, HE and GATE	
B. Laboratory Instructions	
1. General Instructions	
2. Laboratory Specific Instructions	
C. OBE PARAMETERS	
1. Laboratory Outcomes	
2. Laboratory Applications	
3. Mapping And Justification	
4. Articulation Matrix	
5. Curricular Gap and Experiments	-
6. Experiments Beyond Syllabus	-
D. COURSE ASSESSMENT	
1. Laboratory Coverage	
2. Continuous Internal Assessment (CIA)	
E. EXPERIMENTS	
Experiment 01 : Structure of C program	
Experiment 02 : Keywords and identifiers	
Experiment 03 :	13
Experiment 04 :	
F. Content to Experiment Outcomes	
1. TLPA Parameters	-
2. Concepts and Outcomes:	

Note : Remove "Table of Content" before including in CP Book

Each Laboratory Plan shall be printed and made into a book with cover page Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

A. LABORATORY INFORMATION

1. Laboratory Overview

Degree:	B.E	Program:	ME
Year / Semester :	3/ 6	Academic Year:	2019-20
CourseTitle:	Modeling and Analysis Lab	Course Code:	17MEL68
Credit / L-T-P:	2 / 1-0-2	SEE Duration:	180 Minutes
Total Contact Hours:	36Hrs	SEE Marks:	60Marks
CIA Marks:	40	Assignment	-
Lab. Plan Author:	Mr. S N SUNIL	Sign	Dt :
Checked By:	Mr. K L RAHULr	Sign	Dt :

2. Laboratory Content

Expt.	Title of the Experiments	Lab	Concept	Blooms
		Hours		Level
1	Modeling and stress analysis of: Bars of constant cross section	3		L4
	area, tapered cross section area and stepped bar			Analyze
2	Modeling and stress analysis of Trusses	3		L4
				Analyze
3	Modeling and stress analysis Beams – Simply supported,	3		L4
	cantilever, beams with point load , UDL, beams with varying load			Analyze
4	Stress analysis of a rectangular plate with a circular hole	3		L4
				Analyze
5	Thermal Analysis – 1D & 2D problem with conduction and	3		L4
	convection boundary conditions			Analyze
6	Dynamic Analysis to find	3		L3
	a) Fixed – fixed beam for natural frequency determination			Apply
	b) Bar subjected to forcing function			
	c) Fixed – fixed beam subjected to forcing function			

3. Laboratory Material

Books & other material as recommended by university (A, B) and additional resources used by Laboratory teacher (C).

Expt.	Details	Expt. in	Availability
Expt.	Dotato	book	/ Waltability
Α	Text books (Title, Authors, Edition, Publisher, Year.)	-	_
1-5	A first course in the Finite element method, Daryl L Logan, Thomason,	3, 4	In Lib / In Dept
1-2	Third Edition	3, 4	
1-6	Fundaments of FEM, Hutton – McGraw Hill, 2004	2, 4	In Lib/ In dept
В	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
		?	In Lib
1-6	Finite Element Analysis, George R. Buchanan, Schaum Series	?	Not Available
С	Concept Videos or Simulation for Understanding	-	-
1	· · · · ·		
	https://www.youtube.com/watch?v=nA_tglygvNo		
D	Software Tools for Design	-	-
	Ansys. Hyper Mesh , Nastran , Abquas		
E	Recent Developments for Research	-	-
		?	In lib
F	Others (Web, Video, Simulation, Notes etc.)	-	-

1		
	https://www.youtube.com/watch?v=nA_tglygvNo	
?		

4. Laboratory Prerequisites:

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Students must have learnt the following Courses / Topics with described Content

Expt.	Lab.	Lab. Name	Topic / Description	Sem	Remarks	Blooms
	Code					Level
1	17MEL56	Energy	Heat Transfer	5		L2
		Conversion lab				

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Expt.	Topic / Description	Area	Remarks	Blooms
				Level
1	Transient Anlysis			L2
-				

B. Laboratory Instructions

1. General Instructions

SNo	Instructions	Remarks
1	Observation book and Lab record are compulsory.	
2	Students should report to the concerned lab as per the time table.	
3	After completion of the program, certification of the concerned staff in- charge in the observation book is necessary.	
4	Student should bring a notebook of 100 pages and should enter the readings /observations into the notebook while performing the experiment.	
5	The record of observations along with the detailed experimental procedure of the experiment in the Immediate last session should be submitted and certified staff member in-charge.	
6	Should attempt all problems / assignments given in the list session wise.	
7	It is responsibility to create a separate directory to store all the programs, so that nobody else can read or copy.	
8	When the experiment is completed, should disconnect the setup made by them, and should return all the components/instruments taken for the purpose.	
9	Any damage of the equipment or burn-out components will be viewed seriously either by putting penalty or by dismissing the total group of students from the lab for the semester/year	
10	Completed lab assignments should be submitted in the form of a Lab Record in which you have to write the algorithm, program code along with comments and output for various inputs given	

2. Laboratory Specific Instructions

SNo	Specific Instructions	Remarks
1	Start computer	
2	Open the text editor	
3	Select new file.	

4	Open the ansys software	
5	Create a model	
6	Apply the boundary condition	
7	Note down the result	

C. OBE PARAMETERS

1. Laboratory Outcomes

Expt.	Lab Code #	COs / Experiment Outcome	Teach.	Concept	Instr	Assessment	Blooms'
			Hours		Method	Method	Level
-	-	At the end of the experiment, the	-	-	-	-	-
		student should be able to					
1		Analyze the stress and strain generated in bars under different loading condition		Bars	Demons trate	Slip Test	L2
2		Analyze d the stress and strain generated in trusses under different loading condition	-	Trusses	Demons trate	Assignment	L2
3	-	Analyze the stress and Deflection generated in beams under different loading condition	-	Beams	Demons trate	Assignment and Slip Test	L2
4		Analyze stress concentration and strain in plate with hole	9	Plate with hole	Simulati on	Assignment	L3
5		Understand the heat generation in composite wall structure	9	Thermal analysis	Tutorial	Slip test	L2
6		Analyze the dynamic analysis of beams	9	Dynamic analysis	Tutorial	Assignment	L2
-		Total	36	-	-	-	-

Note: Identify a max of 2 Concepts per unit. Write 1 CO per concept.

2. Laboratory Applications

Expt.	Application Area	CO	Level
1	Stress analysis in complex structure like aircraft structure		
2	Thermal analysis in composite wall structure like furnace , pressure vessels		
3	Structure analysis of bridges and building		

Note: Write 1 or 2 applications per CO.

3. Mapping And Justification

CO – PO Mapping with mapping Level along with justification for each CO-PO pair. To attain competency required (as defined in POs) in a specified area and the knowledge & ability required to accomplish it.

Expt	ot Mapping Mapping		Mapping	Justification for each CO-PO pair	Lev
1.1	. Level		Level		el
-	CO	PO	-	'Area': 'Competency' and 'Knowledge' for specified 'Accomplishment'	-
1	CO1	PO1	3	'Engineering Knowledge:' - <u>Acquisition of Engineering Knowledge</u> of Bars_	L2
				is essential to accomplish <u>solutions to complex engineering problems</u> in	
				Mechanical Engineering.	
1	CO1	PO2		'Problem Analysis': <u>Analyzing problems</u> require knowledge /	L3
				understanding of <u>Structural analysis</u> to accomplish <u>solutions to complex</u>	
				engineering problems in Mechanical engineering.	
1	CO1	PO3	1	'Design / Development of Solutions': <u>Design & development of solutions</u>	L4
				require knowledge / understanding & analysis of Bars accomplish	
				solutions to complex engineering problems in Mechanical engineering.	
2	CO2	PO1	3	'Engineering Knowledge:' - <u>Acquisition of Engineering Knowledge</u> of	L2
				trusses is essential to accomplish solutions to complex engineering	
				problems in Mechanical Engineering.	
2	CO2	PO2		'Problem Analysis': <u>Analyzing problems</u> require knowledge /	L3

				understanding of <u>Structural analysis</u> to accomplish <u>solutions to complex</u>	
				engineering problems in Mechanical engineering.	
2	CO2	PO3	1	'Design / Development of Solutions': <u>Design & development of solutions</u> require knowledge / understanding & analysis of Trusses accomplish <u>solutions to complex engineering problems</u> in Mechanical engineering.	L4
3	CO3	PO1	3	'Engineering Knowledge:' - <u>Acquisition of Engineering Knowledge</u> of Beams is essential to accomplish <u>solutions to complex engineering</u> <u>problems</u> in Mechanical Engineering.	L2
3	CO3	PO2		'Problem Analysis': <u>Analyzing problems</u> require knowledge / understanding of <u>Structural analysis</u> to accomplish <u>solutions to complex</u> <u>engineering problems</u> in Mechanical engineering.	L3
3	CO3	PO3	1	'Design / Development of Solutions': <u>Design & development of solutions</u> require knowledge / understanding & analysis of Beams accomplish <u>solutions to complex engineering problems</u> in Mechanical engineering.	L4
4	CO4	PO1	3	'Engineering Knowledge:' - <u>Acquisition of Engineering Knowledge</u> of Plate is essential to accomplish <u>solutions to complex engineering problems</u> in Mechanical Engineering.	L2
4	CO4	PO2		'Problem Analysis': <u>Analyzing problems</u> require knowledge / understanding of <u>Structural analysis</u> to accomplish <u>solutions to complex</u> <u>engineering problems</u> in Mechanical engineering.	L3
4	CO4	PO3	1	'Design / Development of Solutions': <u>Design & development of solutions</u> require knowledge / understanding & analysis of Plates accomplish <u>solutions to complex engineering problems</u> in Mechanical engineering.	L4
5	CO5	PO1	3	'Engineering Knowledge:' - <u>Acquisition of Engineering Knowledge</u> of Heat transfer in composite wall is essential to accomplish <u>solutions to complex</u> <u>engineering problems</u> in Mechanical Engineering.	
5	CO5	PO2		'Problem Analysis': <u>Analyzing problems</u> require knowledge / understanding of Thermal <u>analysis</u> to accomplish <u>solutions to complex</u> <u>engineering problems</u> in Mechanical engineering.	L3
5	CO5	PO3	1	'Design / Development of Solutions': <u>Design & development of solutions</u> require knowledge / understanding & analysis of Heat transfer in composite wall accomplish <u>solutions to complex engineering problems</u> in Mechanical engineering.	
6	CO6	PO1	3	'Engineering Knowledge:' - <u>Acquisition of Engineering Knowledge</u> of bars and Beams is essential to accomplish <u>solutions to complex engineering</u> <u>problems</u> in Mechanical Engineering.	
6	CO6			'Problem Analysis': <u>Analyzing problems</u> require knowledge / understanding of dynamic <u>analysis</u> to accomplish <u>solutions to complex</u> <u>engineering problems</u> in Mechanical engineering.	
6	CO6	PO3	1	'Design / Development of Solutions': <u>Design & development of solutions</u> require knowledge / understanding & analysis of bars and Beams accomplish <u>solutions to complex engineering problems</u> in Mechanical engineering.	

4. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	-	Experiment Outcomes	Program Outcomes									-					
Expt.	CO.#	At the end of the experiment	PO	PO	PO	PO	POPC	PO	PO	PO	PO	PO	PO	PS	PS	PS	Lev
		student should be able to	1	2	3	4	5 6	7	8	9	10	11	12	O1	02	03	el
1	CO1	Analyze the stress and strain	√	√	√												L2
		generated in bars under															
		different loading condition															
1	CO2	Analyze d the stress and strain	√	√	√												L2
		generated in trusses under															
		different loading condition															
2		Analyze the stress and		√	√												L2
		Deflection generated in beams															
		under different loading condition															

2		Analyze stress concentration and strain in plate with hole	√	√	√												L3
3	-	Understand the heat generation in composite wall structure	√	√	√												L2
3	CO6	Analyze the dynamic analysis of	\checkmark	\checkmark	√												L2
		beams															
-	CS501PC	Average attainment (1, 2, or 3)															-
-	PO, PSO	1.Engineering Knowledge; 2.Proble	ет	Ar	naly	sis;	3.D	esigr	1/	De	velo	pm	ent	of	So	luti	ons;
		4.Conduct Investigations of Comple	ex F	Prol	bler	ns; ;	5.Mc	odern	Тос	l Us	sage	e; 6.	The	e En	gine	eer (and
		Society; 7.Environment and Su	ista	ina	bilit	y;	8.Et	hics;	9.1	ndiv	vidu	al	an	d	Teal	mw	ork;
		10.Communication; 11.Project M	1an	age	eme	nt	and	d F	inan	ce;	12	Life	e-lo	ng	Le	earn	ing;
		S1.Software Engineering; S2.Data B	ase	e Mo	ana	gen	nent	; S3.V	Veb	Des	ign						

5. Curricular Gap and Experiments

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Expt	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping					
1										

Note: Write Gap topics from A.4 and add others also.

6. Experiments Beyond Syllabus

Topics & contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Expt	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					

D. COURSE ASSESSMENT

1. Laboratory Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Unit	Title	Teachi			o. of qu			am		CO	Levels
		ng	CIA-1					Asg-3	SEE		
		Hours			Ŭ						
1	Modeling and stress analysis of:		1	-	-	-	-	-	1	CO1	L4
	Bars of constant cross section										
	area, tapered cross section area										
	and stepped bar										
2	Modeling and stress analysis of	9	1	-	-	-	-	-	1	CO2	L4
	Trusses									00.	
3	Modeling and stress analysis	9	1	-	-	-	-	-	1	CO3	L4
	Beams – Simply supported, cantilever, beams with point load ,										
	UDL, beams with varying load										
4	Stress analysis of a rectangular	9	1	_	_	_	_	_	1	CO4	L4
-	plate with a circular hole	3	-						-	004	
5	Thermal Analysis – 1D & 2D	9	1	-	-	-	-	-	1	CO5	L4
	problem with conduction and										
	convection boundary conditions										
6	Dynamic Analysis to find	9	1	-	-	-	-	-	1	CO6	L4
	a) Fixed – fixed beam for natural										
	frequency determination										
	b) Bar subjected to forcing function										
	c) Fixed – fixed beam subjected to										
	forcing function Total	36	7	8	F	F	F	F	20		
_	iolal	30		0	5	5	5	5	20	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Evaluation	Weightage in Marks	СО	Levels
CIA Exam – 1	30	CO1 , CO2	L4
CIA Exam – 2	30	CO3, CO4	L4
CIA Exam – 3	30	CO5 , CO6	L4
Assignment - 1	05	CO1 , CO2	L4
Assignment - 2	05	CO3, CO4	L4
Assignment - 3	05	CO5 , CO6	L4
Seminar - 1	05		
Seminar - 2	05		
Seminar - 3	05		
Other Activities – define –			
Slip test			
Final CIA Marks	40	-	-

SNo	Description	Marks
1	Observation and Weekly Laboratory Activities	05 Marks
2	Record Writing	10 Marks for each Expt
3	Internal Exam Assessment	25 Marks
4	Internal Assessment	60 Marks
5	SEE	100 Marks
-	Total	100 Marks

_