Ref No:		

SRI KRISHNA INSTITUTE OF TECHNOLOGY, BENGALURU

Academic Year 2019-20

Program:	B E – Mechanical Engineering		
Semester:	6		
Course Code:	17ME64		
Course Title:	Design of Machine Elements - 2		
Credit / L-T-P:	4 / 3-2-0		
Total Contact Hours:	65		
Course Plan Author:	Prof. Sreenivasan .A		

Academic Evaluation and Monitoring Cell

#29, Hesaraghatta Main road, Chimney Hills, Chikkabanavara P.O.,
Bengaluru – 560090, Karnataka, INDIA
Phone / Fax :+91 80 23721477 -STD- 080 23721315
Web:www.skit.org.in
E-mail: skit1princi@gmail.com / principal@skit.org.in

Table of Contents

A.17ME64 Design of Machine Elements-2	3
1. Course Overview	3
2. Course Content	3
3. Course Material	4
4. Course Prerequisites	
5. Content for Placement, Profession, HE and GATE	5
B. OBE PARAMETERS	5
1. Course Outcomes	5
2. Course Applications	6
3. Mapping And Justification	6
4. Articulation Matrix	7
5. Curricular Gap and Content	8
6. Content Beyond Syllabus	
C. COURSE ASSESSMENT	8
1. Course Coverage	
2. Continuous Internal Assessment (CIA)	
D1. TEACHING PLAN - 1	g
Module - 3	
Module - 4	11
E1. CIA EXAM – 1	13
a. Model Question Paper -1	13
b. Assignment -1	
D2. TEACHING PLAN - 2	
Module - 5	15
Module - 1	16
E2. CIA EXAM – 2	18
a. Model Question Paper - 2	
b. Assignment – 2	
D3. TEACHING PLAN - 3	19
Module - 3	_
E3. CIA EXAM – 3	21
a. Model Question Paper - 3	21
b. Assignment – 3	
F. EXAM PREPARATION	23
1. University Model Question Paper	
2. SEE Important Questions	
G. Content to Course Outcomes	26
1. TLPA Parameters	
2. Concepts and Outcomes:	27

Note: Remove "Table of Content" before including in CP Book

Each Course Plan shall be printed and made into a book with cover page

Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

A.17ME64 Design of Machine Elements-2

1. Course Overview

Degree:	BE	Program:	ME
Semester:	6	Academic Year:	2019-20
Course Title:	Design of Machine Elements - 2	Course Code:	17ME64
Credit / L-T-P:	04 /3-2-0	SEE Duration:	180 minutes
Total Contact Hours:	65	SEE Marks:	100Marks
CIA Marks:	40	Assignment	2 / Module
Course Plan Author:	Prof. Sreenivasan .A	Sign	Dt::23-01-2020
Checked By:		Sign	Dt:
CO Targets	CIA Target : %	SEE Target:	%

Note: Define CIA and SEE % targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute. Identify 2 concepts

per module as in G.

Mod	Content	Teachi	Identified Module	Blooms
ule	Content		Concepts	Learning
ute		ng Hours	Concepts	Levels
1	Curved Beams: Stresses in Curved Beams of standard cross sections used in crane hook, punching presses and clamps, Closed rings and Links. Cylinders & Cylinder Heads: Review of Lames equation, compound cylinders, stresses due to different types of fit on cylinders, cylinder heads and flats.	10	Stresses in Curved Beams Analysis of Cylinders	L4
2	Belts: Materials of construction of flat and V belts, power rating of belts, concept of slip and creep, initial tension, effect of centrifugal tension, maximum power condition. Selection of flat and V belts- length & cross section from manufacturers' catalogues. Construction and application of timing belts. Wire ropes: Construction of wire ropes, stresses in wire ropes, and selection of wire ropes. (Only theoretical treatment) Chain drive: Types of power transmission chains, modes of failure for chain, and lubrication of chains. (Only theoretical treatment) Springs: Types of springs, spring materials, stresses in helical coil springs of circular and non-circular cross sections. Tension and compression springs, concentric springs; springs under fluctuating loads. Leaf Springs: Stresses in leaf springs, equalized stresses, and nipping of leaf springs. Introduction to torsion and Belleville springs	14	Power Transmission Springs analysis	L4
	Gear drives: Classification of gears, materials for gears, standard systems of gear tooth, gear failure modes and lubrication of gears. Spur Gears: Definitions, stresses in gear tooth: Lewis equation and form factor, design for strength, dynamic load and wear. Helical Gears: Definitions, transverse and normal module, formative number of teeth, design based on strength, dynamic load and wear. Bevel Gears: Definitions, formative number of teeth, design based on strength, dynamic load and wear.	16	Gear Analysis	L4
4	Worm Gears: Definitions, types of worm and worm gears, and materials for worm and worm wheel. Design based on			

- Total	65		-
Lubrication and Bearings: Lubricants and their properties, bearing materials and properties; mechanisms of lubrication, hydrodynamic lubrication, pressure development in oil film, bearing modulus, coefficient of friction, minimum oil film thickness, heat generated, and heat dissipated. Numerical examples on hydrodynamic journal and thrust bearing design. Antifriction bearings: Types of rolling contact bearings and their applications, static and dynamic load carrying capacities, equivalent bearing load, load life relationship; selection of deep grove ball bearings from the manufacturers' catalogue; selection of bearings subjected to cyclic loads and speeds; probability of survival.	10	Hydrodynamic Lubrication Antifriction bearings	L4
strength, dynamic, wear loads and efficiency of worm gear drives. Design of Clutches: Types of clutches and their applications, single plate and multi-plate clutches. (Numerical examples only on single and multi-plate clutches) Design of Brakes: Types of Brakes, Block and Band brakes, self locking of brakes, and heat generation in brakes.	15	Analysis of Brakes & Clutches	L4

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C).

- 1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 30 minutes
- 2. Design: Simulation and design tools used software tools used; Free / open source

3. Research: Recent developments on the concepts - publications in journals; conferences etc.

5. 11030	aren. Recent developments on the concepts—publications in journats, eo	11101011003	CLC.
Modul es	Details	Chapters in book	Availability
A	Text books (Title, Authors, Edition, Publisher, Year.)	- III DOOK	_
	1. Richard G. Budynas, and J. Keith Nisbett, "Shigley's Mechanical		In Lib
_	Engineering Design", McGraw-Hill Education, 10 th Edition, 2015.		III LID
	2. Juvinall R.C, and Marshek K.M, "Fundamentals of Machine Component		In Lib
	Design", John Wiley & Sons, Third Edition, Wiley student edition, 2007.		III LID
	3. V. B. Bhandari, "Design of Machine Elements", 4th Ed., Tata Mcgraw Hill,		In Lib
_	2016.		=
1, 2			
В	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
1, 2, 3,	1. J.NRobert L. Norton "Machine Design- an integrated approach",		In Lib
4, 5	Pearson Education, 2 nd edition.		
1, 2, 3,	2.Spotts M.F., Shoup T.E "Design and Machine Elements", Pearson		In Lib
	Education, 8 th edition, 2006.		
1, 2, 3,	3. Orthwein W, "Machine Component Design", Jaico Publishing Co, 2003.		In Lib
4, 5			
_	4. Hall, Holowenko, Laughlin (Schaum's Outline Series), "Machine design"	I I	In Lib
4, 5	adapted by S.K.Somani, Tata McGraw Hill Publishing Company Ltd.,		
	Special Indian Edition, 2008.		
	5. G. M. Maithra and L.V.Prasad, "Hand book of Mechanical Design", Tata		In Lib
	McGraw Hill, 2nd edition,2004.		
С	Concept Videos or Simulation for Understanding	-	-
	http:s//youtu.be/xgiLe-gtObg		
	https://youtu.be/1P30w-I5Ttl, https://youtu.be/bAh1yRzrYjs		
	https://youtu.be/8bml2pK6Ra0		
	https://youtu.be/dl1q6WmXfLU		
C5	https://youtu.be/ohQZMCzeGmE, https://youtu.be/LxTV8CpgmQ		

D	Software Tools for Design	-	-
	Solid Edge		
E	Recent Developments for Research	-	-
F	Others (Web, Video, Simulation, Notes etc.)	-	-
1			
?			

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Students must have learnt the following Courses / Topics with described Content . . .

	de la composition de la compos						
Mod	Course	Course Name	Topic / Description	Sem	Remarks	Blooms	
ules	Code					Level	
1 to 5	17ME34	Mechanics of	Stresses, Bending moments, Thick	3		Understan	
		Materials	and Thin cylinders			d L2	
1 to 5	17ME54	Design of	Basics of Design	5		Understan	
		Machine	_			d L2	
		Elements - 1					

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course

Projects, e. New Software Tools, f. GATE Topics, q. NPTEL Videos, h. Swayam videos etc.

· · · · · · · · · · · · · · · · · · ·							
Mod		Area	Remarks	Blooms			
ules				Level			
1	Concepts of Stresses, types of stresses,	Higher Study,		Understan			
	Bending moment, Design of different	GATE & other		d L2			
	mechanical components	competetive					
		examinations					
3							
3							

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs. Identify a max of 2 Concepts per Module. Write 1 CO per Concept.

Mod	Course	Course	Outcome	Teach.	Concept	Instr	Assessme	Blooms'
ules	Code.#	At the end of the	e course, student	Hours		Method	nt	Level
		should be	e able to				Method	

1	17ME64.1	Apply design concepts to Analyse curved beams	10	Stresses in Curved Beams		CIA Assignme nt	Analyze L4
2		Design Machine elements involving springs, belts and pulleys.s	14	Power Transmissi on	Lecture/ Tutorial	CIA	Analyze L4
2		Design of different types of gears.	16	Power transmissio n between shafts	Lecture/ Tutorial	CIA Assignme nt	Analyze L4
4		Apply design concepts to design brakes and clutches.	15	Analysis of Brakes & Clutches		CIA Assignme nt	Analyze L4
5		Design of hydrodynamic bearings and slelection of antifriction bearing for diffeent applications.	10	Hydrodyna mic Lubrication		CIA Assignme nt	Analyze L4
-	-	Total	65	-	-	-	L4

2. Course Applications

Write 1 or 2 applications per CO.

Students should be able to employ / apply the course learnings to . . .

Mod	Application Area	CO	Level
ules	Compiled from Module Applications.		
1	Crane Hooks, C-Clamps, Punching Presses	CO1	L4
2	Automobiles, Machineries, Railway Wagons, Aircrafts	CO2	L4
3	Automobiles, Machine Tools	CO3	L4
4	Automobiles, Machine Tools	CO4	L4
5	Automobiles, Machineries	CO5	L4

3. Mapping And Justification

CO – PO Mapping with mapping Level along with justification for each CO-PO pair. To attain competency required (as defined in POs) in a specified area and the knowledge & ability

required to accomplish it.

	quired to accomplish it.						
Mod		ping	Mapping	Justification for each CO-PO pair	Lev		
ules			Level		el		
-	CO	РО	-	'Area': 'Competency' and 'Knowledge' for specified 'Accomplishment'	-		
1	CO1	PO1	-	'Engineering Knowledge:' - <u>Acquisition of Engineering Knowledge</u> of	L2		
				<u>Curved Beams</u> is essential to accomplish <u>solutions to complex</u>			
				engineering problems in Mechanical Engineering.			
1	CO1	PO2	-	'Problem Analysis': <u>Analyzing problems</u> require knowledge /	L4		
				understanding of stresses and distribution of stresses in curved beams to			
				accomplish solutions to complex engineering problems in Mechanical			
				Engineering.			
1	CO1	PO3	-	'Design / Development of Solutions': <u>Design & development of solutions</u>	L4		
				require knowledge / understanding & analysis of Curved Beams, stress,			
				and stress distribution to accomplish solutions to complex engineering			
				<u>problems</u> in Mechanical Engineering.			
2	CO2	PO1		'Engineering Knowledge:' - <u>Acquisition of Engineering Knowledge</u> of	L2		
				Power transmission is essential to accomplish solutions to complex			
				engineering problems in Mechanical Engineering.			
2	CO2	PO2		'Problem Analysis': <u>Analyzing problems</u> require knowledge /	L4		
				understanding of power transmission by Belt, Rope, Chain drives to			
				accomplish solutions to complex engineering problems in Mechanical			
				Engineering.			
2	CO2	PO3		Design / Development of Solutions': <u>Design & development of solutions</u>	L4		

			require knowledge / understanding & analysis of Helical & Leaf Springs to accomplish <u>solutions to complex engineering problems</u> in Mechanical Engineering.	
3	CO3	PO1	'Engineering Knowledge:' - <u>Acquisition of Engineering Knowledge</u> of <u>Gears</u> is essential to accomplish <u>solutions to complex engineering</u> <u>problems</u> in Mechanical Engineering.	L2
3	CO3	PO2	'Problem Analysis': <u>Analyzing problems</u> require knowledge / understanding of power transmission through Spur Gears to accomplish <u>solutions to complex engineering problems</u> in Mechanical Engineering.	L4
3	CO3	PO ₃	'Design / Development of Solutions': <u>Design & development of solutions</u> require knowledge / understanding & analysis of Spur & Helical Gears to accomplish <u>solutions</u> to complex engineering problems in Mechanical Engineering.	L4
4	CO ₄	PO1	'Engineering Knowledge:' - <u>Acquisition of Engineering Knowledge</u> of Clutches & Brakes_is essential to accomplish <u>solutions to complex engineering problems</u> in Mechanical Engineering.	L2
4	CO ₄	PO2	'Problem Analysis': <u>Analyzing problems</u> require knowledge / understanding of Clutches & Brakes to accomplish <u>solutions to complex engineering problems</u> in Mechanical Engineering.	L4
4	CO4	PO3	'Design / Development of Solutions': <u>Design & development of solutions</u> require knowledge / understanding & analysis of Clutches & Brakes to accomplish <u>solutions to complex engineering problems</u> in Mechanical Engineering.	L4
5	CO5	PO1	'Engineering Knowledge:' - <u>Acquisition of Engineering Knowledge</u> of Lubrication & Bearings is essential to accomplish <u>solutions to complex engineering problems</u> in Mechanical Engineering.	L2
5	CO ₅	PO2	'Problem Analysis': <u>Analyzing problems</u> require knowledge / understanding of Lubrication & Bearings to accomplish <u>solutions to complex engineering problems</u> in Mechanical Engineering.	L4
5	CO ₅	PO3	'Design / Development of Solutions': <u>Design & development of solutions</u> require knowledge / understanding & analysis of Ball & Roller Bearings to accomplish <u>solutions to complex engineering problems</u> in Mechanical Engineering.	L4

4. Articulation Matrix

CO - PO Mapping with mapping level for each CO-PO pair, with course average attainment.

<u>CO - I</u>	CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.																	
-	-	Course Outcomes					Pi	rog	ram	ι Οι	utcc	me	es					-
Mod	CO.#	At the end of the course	PO	PO	PO	PO	PO	РО	PO	РО	РО	РО	PO	РО	PS	PS	PS	Lev
ules		student should be able to	1	2	3	4	5	6	7	8	9	10	11	12	01	О2	О3	el
1	17ME64.1	Apply design concepts to	2	1	1	-	-	-	-	-	-	-	-	-	-	-	-	L4
		Analyse curved beams																
2	17ME64.2	Design Machine elements	1	1	1	-	-	-	-	-	-	-	-	-	-	-	-	L4
		involving springs, belts and																
		pulleys.s																
3	17ME64.3	Design of different types of	3	2	2	-	-	-	-	-	-	-	-	-	-	-	-	L4
		gears.																
4	17ME64.4	Apply design concepts to design	3	2	2	-	-	-	-	-	-	-	-	-	-	-	-	L4
		brakes and clutches.																
5	17ME64.5	Design of hydrodynamic	3	3	3	-	-	-	-	-	-	-	-	-	-	-	-	L4
		bearings and slelection of																
		antifriction bearing for diffeent																
		applications.																
-	17ME64	Average attainment (1, 2, or 3)	2.4	2.1	2.1													-
-																		
		· · · · · · · · · · · · · · · · · · ·																

5. Curricular Gap and Content

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Mod	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
ules					
1					
2					
3					
4					
5					

6. Content Beyond Syllabus

Topics & contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Mod ules	Gap Topic	Area	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1						
1						
2						
2						
3						
3						
4						
4						

C. COURSE ASSESSMENT

1. Course Coverage

5 5

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Mod								CO	Levels	
ules		Hours	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE		
							Asg			
3	Gear Drives, Design of Spur, Helical	16	2	-	-	1	1	2	CO3	L4
	& Bevel Gears									
4	Design of Worm Gears, Brakes &	15	2	-	-	1	1	2	CO4	L4
	Clutches									
5	Lubrication & Bearings, Antifriction	10	_	2	-	1	1	2	CO5	L4
	Bearings									
1	Curved Beams, Cylinder & Cylinder	10	-	2	-	1	1	2	CO1	L4
	Heads									
2	Belt Drives, Rope & Chain drives,	14	-	-	4	1	1	2	CO2	L4
	Springs									
-	Total	65	4	4	4	5	5	10	-	-

2. Continuous Internal Assessment (CIA)

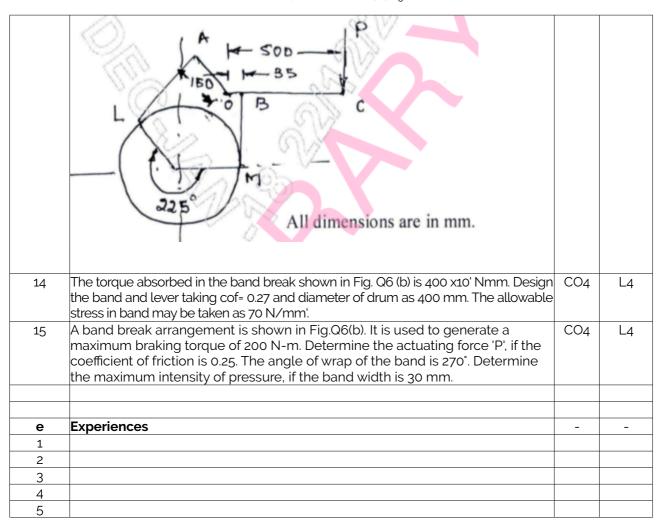
Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Mod	Evaluation	Weightage in	CO	Levels
ules		Marks		

COURSE PLAN - CAY 2018-19

1, 2	CIA Exam – 1	30	CO3, CO4	L4, L4
3, 4	CIA Exam – 2	30	CO5, CO1	L4, L4
5	CIA Exam – 3	30	CO2	L4
1, 2	Assignment - 1	10	CO3, CO4	L4, L4
3, 4	Assignment - 2	10	CO5, CO1	L4, L4
5	Assignment - 3	10	CO2	L4
1, 2	Seminar - 1			
3, 4	Seminar - 2			
5	Seminar - 3			
1, 2	Other Activities – define – Slip test			
3, 4	Final CIA Marks	40	-	-
5	Quiz - 3		-	-
1 - 5	Other Activities – Mini Project	-	-	-
	Final CIA Marks	40	-	-

D1. TEACHING PLAN - 1


Title:	Gear Drives, Design of Spur, Helical & Bevel Gears	Appr	14 Hrs
Title.	deal brives, besign of spar, frelical a bevel deals	Time:	141113
а	Course Outcomes	CO	Blooms
-	At the end of the topic the student should be able to	_	Level
1	Design of different types of gears.	CO3	L4
b	Course Schedule	-	-
Class No	Portion covered per hour	-	-
1	Gear Drives: Introduction to Subject, Module, course objectives and outcomes,	CO3	L2
2	Classification of gears, materials for gears, standard systems of gear tooth,	CO3	L2
3	Spur Gears: Definitions, stresses in gear tooth:	CO3	L2
4	Design for strength, dynamic load and wear load. Procedure for Gear design.		
5	Design of Spur Gears	CO3	L4
6	Design of Spur Gears	CO3	L4
7	Design of Spur Gears	CO3	L4
8	Design of Spur Gears	CO3	L4
9	Helical Gears: Definitions, transverse and normal module, formative number of	CO3	L2
	teeth, design based on strength, dynamic load and wear.		
10	Design of Helical Gears	CO3	L4
11	Design of Helical Gears	CO3	L4
12	Design of Helical Gears	CO3	L4
13	Bevel Gears: Definitions, formative number of teeth, design based on strength,	CO3	L2
	dynamic load and wear.		
14	Design of Bevel Gears	CO3	L4
15	Design of Bevel Gears	CO3	L4
16	Design of Bevel Gears		
С	Application Areas	-	-

COURSE PLAN - CAY 2018-19

-	Students should be able employ / apply the Module learnings to	_	_
1	Automobiles, Machine Tools	CO3	L4
			-
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	Derive an equation for Beram strength of a Spur Gear tooth.	CO3	L2
2	Discuss the used materials for gears	CO3	L2
3	Design a pair of spur gears to transmit 20 kW from a shaft rotating at 1000 rpm	CO3	L4
	to a parallel shaft which is to rotate at 310 rpm. Assume number of teeth on		
	pinion 31 and 20° full depth tooth form.		
4	A 12 kw motor running at 1170rpm drives a fan through a pair of spur gears	CO3	L4
	(Forged steel SAE 1030 pinion & CI gear) with a reduction ratio of 3.9:1. Design		
	the gear and check for dynamic & wear loads.		
5	It is required to transmit 15 KW power from a shaft running at 1200 rpm to a	CO3	L4
	parallel shaft with speed reduction of 3. The centre distance of shafts is to be		
	300 mm. The material used for pinion is steel (ad = 200 MPa) and for gear is CI		
	(ad =140 MPa) . Service factor is 1.25 and tooth profile is 20° full depth involute.		
	Design the spur gear and check the design for dynamic and wear.		
6	Design a pair of spur gear to transmit a power of 18 kW from a shaft running at	CO3	L4
	1000 rpm to a parallel shaft to be run at 250 rpm maintaining a distance of 160		
	mm between the shaft centres. Suggest suitable surface hardness for the gear		
	pair.		
7	Explain virtual number of teeth and derive the equation for virtual number of	CO3	L2
,	teeth for Helical gears.		
8	A pair of steel helical gear is to transmit 15 kW at 5000 rpm of the pinion both	CO3	L4
	the gears are made of the same material, hardened steel with allowable		·
	bending stress of 120 MPa. The gears are to be operated at a centre distance		
	of 200 mm, speed reduction ration is 4:1. The teeth are 20° FDI profile on		
	transverse plane (diameter plane), helix angle is 45°. The gears are		
	manufactured to class-3 accuracy (precision class). Face width can be taken as		
	16 times the normal module. The wear strength has to be more than the		
	dynamic load.		
9	Design a pair of helical gears to transmit power of 15 kW at 3200 rpm with	CO3	L4
Э	speed reduction 4:1 pinion is made of cast steel 0.4% C-untreated. Gear made		-4
	of high grade CI Helix angle is limited to 26° and not less than 20 teeth are to		
	be used on either gear. Check the gears for dynamic and		
	wear considerations.		
10	Design a pair of bevel gears to connect two shafts at 60 °. The power	CO3	L4
10	transmitted is 25 kW at 900 rpm of pinion. The reduction ratio desired is 5:1.		-4
	The teeth are 20° full depth involute and pinion has 24 teeth. Check the design		
	for dynamic and wear considerations.		
11	A Pair of straight bevel gears are used to transmit 15kw at 1500rpm input	CO3	L4
11	speed. The number of teeth on pinion is 20 and the speed ratio is 5. Design the		∟ 4
	gears for strength only assuming 14 i° full depth form.		
12	Design a pair of bevel gears to transmit a power of 25 kW from a shaft rotating	CO3	L4
	at 1200 rpm to a perpendicular shaft to be rotated at 400rpm.		
е	Experiences	-	-
1			
2			
3			

Title. Worm Gears, Clutches & Bakes Ap Course Outcomes At the end of the topic the student should be able to Apply design concepts to design brakes and clutches Class No Portion covered per hour 17 Introduction to Worm Gears, Terminology, procedure for design of Worm Gears 20 Design of Worm Gears 21 Design of Worm Gears 22 Design of Worm Gears 23 Design of Simple Band brakes 24 Design of Simple Band brakes 25 Design of Simple Band brakes 26 Design of Simple Band brakes 27 Introduction to Clutches, types of clutches, numericals on Single plate clutch 28 Design of Single plate clutches 29 Design of single plate clutches 29 Design of single plate clutches 29 Design of single plate clutches 30 Design of single plate clutches 31 Design of Multiplate clutches 4 Design of Single plate clutches 5 Capplication Areas - Students should be able employ / apply the Module learnings to 4 Automobiles, Machine Tools 4 Review Questions - The attainment of the module learning assessed through following questions 1 Design a worn gear reducer unit which consists of a hardened steel worm and a phosphor bronze gear having 20' stub involute teeth. The centre distance is to be 200 mm and the transmission ratio is 10 and the worm speed is 2000 rpm. Assume the temperature of gear and ambient temperature as 65' and 25' respectively. 2 A two teeth right hand worm transmits 2kW at 1500rpm to a 36 teeth wheel. The module of the wheel is 5mm and the pitch diameter of the worm is 60mm. The normal pressure angle is 14,5'. The coefficient of friction is found to be 0.06. I) Find the centre distance, the lead and lead angle. Ii) Determine the forces. Iii) Determine the efficiency of the drive. 3 Design a worm gear drive to transmit a power of 2kW at 1000 rpm. The speed ratio is 20 and centre distance, the lead and lead angle. Ii) Determine the forces. Iii) Determine the increase yor of the drive. 3 Design a worm gear drive to transmit a power of packed the worm is 60mm. The normal pressure angle is 14,5'. The		
a Course Outcomes At the end of the topic the student should be able to Apply design concepts to design brakes and clutches Cass No Portion covered per hour Introduction to Worm Gears, Terminology, procedure for design of Worm Gears Besign of Worm Gears Comesign of Worm Gears Design of Worm Gears Design of Worm Gears Comesign of Simple Bank brakes Comesign of Simple		7 Hrs
At the end of the topic the student should be able to Apply design concepts to design brakes and clutches Cass No Portion covered per hour Introduction to Worm Gears, Terminology, procedure for design of Worm Gears Besign of Worm Gears Cases and the pesign of Worm Gears Design of Worm Gears Design of Worm Gears Cases and the pesign of Worm Gears Lessing of Simple Bark brakes Lessing of Simple Bank brakes Lessing of Simple Bark brakes Lessing of Simple Bark brakes Lessing of Simple Bark brakes Lessing of		Blooms
Design of Simple Band brakes Cass no Posign of Worm Gears Design of Worm Gears Introduction to Brakes, Types of Brakes, Numericals on Simple Band brakes. Introduction to Brakes, Types of Brakes, Numericals on Simple Band brakes. Introduction to Brakes, Types of Brakes, Numericals on Simple Band brakes. Design of Simple Band brakes Design of Simple Band brakes Design of Differential band brakes Design of Differential band brakes Design of Single plate clutches Introduction to Clutches, types of clutches, numericals on Single plate clutch Design of single plate clutches Design of Multiplate clutches Lutches Application Areas Students should be able employ / apply the Module learnings to Automobiles, Machine Tools Cast Review Questions The attainment of the module learning assessed through following questions Design a worn gear reducer unit which consists of a hardened steel worm and a phosphor bronze gear having 20' stub involute teeth. The centre distance is to be 200 mm and the transmission ratio is 10 and the worm speed is 2000 rpm. Assume the temperature of gear and ambient temperature as 65' and 25' respectively. A two teeth right hand worm transmits 2kW at 1500rpm to a 36 teeth wheel. The module of the wheel is 5mm and the pitch diameter of the worm is 60mm. The normal pressure angle is 145'. The coefficient of friction is found to be 0.06. i) Find the centre distance, the lead and lead angle. ii) Determine the forces. iii) Determine the efficiency of the drive. Design a worm gear drive to transmit a power of 2kW at 1000 rpm. The speed ratio is 20 and centre distance is 200mm. Assume the number of teeth on worm wheel to be 40 and - number of starts on worm to be 2. Assume hardened steel worm and phosphor bronze wheel for which ac 55 N/mm 2. Check the gear from stand point of strength and wear if	<u></u>	Level
b Course Schedule Class No Portion covered per hour 17 Introduction to Worm Gears, Terminology, procedure for design of Worm Gears 18 Design of Worm Gears 20 Design of Worm Gears 21 Design of Worm Gears 22 Introduction to Brakes, Types of Brakes, Numericals on Simple Band brakes. 23 Design of Simple Bank brakes 24 Design of Simple Band brakes 25 Design of Differential band brakes 26 Design of Gimple Band brakes 27 Introduction to Clutches, types of clutches, numericals on Single plate clutch 28 Design of single plate clutches 29 Design of single plate clutches 20 Design of single plate clutches 30 Design of single plate clutches 31 Design of Multiplate clutches 4 Application Areas - Students should be able employ / apply the Module learnings to 4 Automobiles, Machine Tools 4 Review Questions - The attainment of the module learning assessed through following questions 1 Design a worn gear reducer unit which consists of a hardened steel worm and a phosphor bronze gear having 20' stub involute teeth. The centre distance is to be 200 mm and the transmission ratio is 10 and the worm speed is 2000 rpm. Assume the temperature of gear and ambient temperature as 65' and 25' respectively. 2 A two teeth right hand worm transmits 2kW at 1500rpm to a 36 teeth wheel. The module of the wheel is 5mm and the pitch diameter of the worm is 60mm. The normal pressure angle is 145'. The coefficient of friction is found to be 0.06. i) Find the centre distance, the lead and lead angle. ii) Determine the forces. iii) Determine the efficiency of the drive. 3 Design a worm gear drive to transmit a power of 2kW at 1000 rpm. The speed ratio is 20 and centre distance is 200mm. Assume the number of teeth on worm wheel to be 40 and - number of starts on worm to be 2. Assume hardened steel worm and phosphor bronze wheel for which ac. = 55 N/rmm 2. Check the gear from stand point of strength and wear if load stress factor. K = 0.69 MPa. If the amount of Heat generated is 1.7 kW. check whether artificial cooli)4	L4
Class No Portion covered per hour 17 Introduction to Worm Gears, Terminology, procedure for design of Worm Gears 18 Design of Worm Gears 20 Design of Worm Gears 21 Design of Worm Gears 22 Design of Worm Gears 22 Introduction to Brakes, Types of Brakes, Numericals on Simple Band brakes. 23 Design of Simple Bank brakes 24 Design of Simple Band brakes 25 Design of Offerential band brakes 26 Design of differential band brakes 27 Introduction to Clutches, types of clutches, numericals on Single plate clutch 28 Design of single plate clutches 29 Design of single plate clutches 30 Design of single plate clutches 31 Design of Multiplate clutches 32 Design of Single plate clutches 33 Design of Multiplate clutches 4 Application Areas 5 Students should be able employ / apply the Module learnings to 4 Automobiles, Machine Tools 4 Review Questions 5 The attainment of the module learning assessed through following questions 5 Design a worn gear reducer unit which consists of a hardened steel worm and a phosphor bronze gear having 20' stub involute teeth. The centre distance is to be 200 mm and the transmission ratio is 10 and the worm speed is 2000 rpm. Assume the temperature of gear and ambient temperature as 65' and 25' respectively. 2 A two teeth right hand worm transmits 2kW at 1500rpm to a 36 teeth wheel. The module of the wheel is 5mm and the pitch diameter of the worm is 60mm. The normal pressure angle is 14.5'. The coefficient of friction is found to be 0.06. i) Find the centre distance, the lead and lead angle. ii) Determine the forces, iii) Determine the efficiency of the drive. 3 Design a worn gear drive to transmit a power of 2kW at 1000 rpm. The speed ratio is 20 and centre distance, the lead and lead angle. ii) Determine the forces, iii) Determine the efficiency of the drive. 3 Design a worm gear drive to transmit a power of 2kW at 1000 rpm. The speed ratio is 20 and centre distance is 200mm. Assume the number of teeth on worm wheel to be 40 and - number of starts on worm to be 2.	"4	
Class No Portion covered per hour 17 Introduction to Worm Gears, Terminology, procedure for design of Worm Gears 18 Design of Worm Gears 20 Design of Worm Gears 21 Design of Worm Gears 22 Design of Worm Gears 22 Introduction to Brakes, Types of Brakes, Numericals on Simple Band brakes. 23 Design of Simple Bank brakes 24 Design of Simple Band brakes 25 Design of Offerential band brakes 26 Design of differential band brakes 27 Introduction to Clutches, types of clutches, numericals on Single plate clutch 28 Design of single plate clutches 29 Design of single plate clutches 30 Design of single plate clutches 31 Design of Multiplate clutches 32 Design of Single plate clutches 33 Design of Multiplate clutches 4 Application Areas 5 Students should be able employ / apply the Module learnings to 4 Automobiles, Machine Tools 4 Review Questions 5 The attainment of the module learning assessed through following questions 5 Design a worn gear reducer unit which consists of a hardened steel worm and a phosphor bronze gear having 20' stub involute teeth. The centre distance is to be 200 mm and the transmission ratio is 10 and the worm speed is 2000 rpm. Assume the temperature of gear and ambient temperature as 65' and 25' respectively. 2 A two teeth right hand worm transmits 2kW at 1500rpm to a 36 teeth wheel. The module of the wheel is 5mm and the pitch diameter of the worm is 60mm. The normal pressure angle is 14.5'. The coefficient of friction is found to be 0.06. i) Find the centre distance, the lead and lead angle. ii) Determine the forces, iii) Determine the efficiency of the drive. 3 Design a worn gear drive to transmit a power of 2kW at 1000 rpm. The speed ratio is 20 and centre distance, the lead and lead angle. ii) Determine the forces, iii) Determine the efficiency of the drive. 3 Design a worm gear drive to transmit a power of 2kW at 1000 rpm. The speed ratio is 20 and centre distance is 200mm. Assume the number of teeth on worm wheel to be 40 and - number of starts on worm to be 2.	_	_
Introduction to Worm Gears, Terminology, procedure for design of Worm Gears Design of Simple Bank brakes Design of Simple Bank brakes Design of Simple Band brakes Design of Differential band brakes Design of differential band brakes Introduction to Clutches, types of clutches, numericals on Single plate clutch Besign of single plate clutches Design of multiplate clutches Design of worm Gears CC Application Areas Students should be able employ / apply the Module learnings to Automobiles, Machine Tools CC Review Questions The attainment of the module learning assessed through following questions Design a worm gear reducer unit which consists of a hardened steel worm and a phosphor bronze gear having 20' stub involute teeth. The centre distance is to be 200 mm and the transmission ratio is 10 and the worm speed is 2000 rpm. Assume the temperature of gear and ambient temperature as 65' and 25' respectively. A two teeth right hand worm transmits 2kW at 1500rpm to a 36 teeth wheel. CC The module of the wheel is 5mm and the pitch diameter of the worm is 60mm. The normal pressure angle is 14,5'. The coefficient of friction is foom to be 0.06. i) Find the centre distance, the lead and lead angle. ii) Determine the forces. iii) Determine the efficiency of the drive. Design a worm gear drive to transmit a power of 2kW at 1000 rpm. The speed ratio is 20 and centre distance is 200mm. Assume the number of teeth on worm wheel to be 40 and - number of starts on worm to be 2. Assume hardened steel worm and phosphor bronze wheel for which ac, = 55 N/mm 2. Check th		_
Design of Worm Gears Design of Worm Gears Design of Worm Gears Design of Worm Gears Introduction to Brakes, Types of Brakes, Numericals on Simple Band brakes. Design of Simple Band brakes Design of Differential band brakes CC Design of differential band brakes CC Design of differential band brakes CC Design of single plate clutches, numericals on Single plate clutch Design of single plate clutches Design of single plate clutches Design of single plate clutches Design of Multiplate clutches Design of Multiplate clutches CC Application Areas Students should be able employ / apply the Module learnings to Automobiles, Machine Tools CC Review Questions The attainment of the module learning assessed through following questions Design a worn gear reducer unit which consists of a hardened steel worm and a phosphor bronze gear having 20° stub involute teeth. The centre distance is to be 200 mm and the transmission ratio is 10 and the worm speed is 200 rpm. Assume the temperature of gear and ambient temperature as 65° and 25° respectively. A two teeth right hand worm transmits 2kW at 1500rpm to a 36 teeth wheel. The module of the wheel is 5mm and the pitch diameter of the worm is 60mm. The normal pressure angle is 14,5°. The coefficient of friction is found to be 0.06. i) Find the centre distance, the lead and lead angle. ii) Determine the forces. iii) Determine the efficiency of the drive. Design a worm gear drive to transmit a power of 2kW at 1000 rpm. The speed ratio is 20 and centre distance, the lead and lead angle. ii) Determine the forces. iii) Determine the efficiency of the drive. Design a worm gear drive to transmit a power of 2kW at 1000 rpm. The speed ratio is 20 and centre distance is 200mm. Assume the number of teeth on worm wheel to be 40 and - number of starts on worm to be 2. Assume hardened steel worm and phosphor bronze wheel for which ac., * 55 N/mm 2. Check the		L2
Design of Worm Gears Design of Worm Gears Design of Worm Gears Design of Worm Gears Design of Simple Bank brakes Design of Simple Bank brakes Design of Differential band brakes Design of Differential band brakes Design of Single plate clutches Design of Multiplate clutches Design of Multiplate clutches CC Application Areas - Students should be able employ / apply the Module learnings to Automobiles, Machine Tools CC Review Questions - The attainment of the module learning assessed through following questions Design a worn gear reducer unit which consists of a hardened steel worn and a phosphor bronze gear having 20' stub involute teeth. The centre distance is to be 200 mm and the transmission ratio is 10 and the worm speed is 2000 rpm. Assume the temperature of gear and ambient temperature as 65' and 25' respectively. A two teeth right hand worm transmits 2kW at 1500rpm to a 36 teeth wheel. The module of the wheel is 5mm and the pitch diameter of the worm is 60mm. The normal pressure angle is 14.5'. The coefficient of friction is found to be 0.06. i) Find the centre distance, the lead and lead angle. ii) Determine the forces. iii) Determine the efficiency of the drive. Design a worn gear drive to transmit a power of 2kW at 1000 rpm. The speed ratio is 20 and centre distance, the lead and lead angle. ii) Determine the forces. iii) Determine the efficiency of the drive. Design a worm gear drive to transmit a power of 2kW at 1000 rpm. The speed ratio is 20 and centre distance is 200mm. Assume the number of teeth on worm wheel to be 40 and - number of starts on worm to be 2. Assume hardened steel worm and phosphor bronze wheel for which ac. * 55 N/mm 2. Check the gear from stand point of strength and wear if load stress factor, K = 0.69 MPa. If the amount of Heat generated is 1.7 kW, check whether artificial cooling arrangement is necessary or not for a temperature rise of 40' K	-	 L4
Design of Worm Gears 22 Design of Worm Gears 23 Design of Simple Bank brakes 24 Design of Simple Bank brakes 25 Design of Simple Band brakes 26 Design of Differential band brakes 27 Introduction to Clutches, types of clutches, numericals on Single plate clutch 28 Design of single plate clutches 29 Design of single plate clutches 29 Design of single plate clutches 30 Design of single plate clutches 31 Design of Multiplate clutches 4 Application Areas - Students should be able employ / apply the Module learnings to 4 Automobiles, Machine Tools 4 Review Questions - The attainment of the module learning assessed through following questions 1 Design a worn gear reducer unit which consists of a hardened steel worm and a phosphor bronze gear having 20' stub involute teeth. The centre distance is to be 200 mm and the transmission ratio is 10 and the worm speed is 2000 rpm. Assume the temperature of gear and ambient temperature as 65' and 25' respectively. 2 A two teeth right hand worm transmits 2kW at 1500rpm to a 36 teeth wheel. The module of the wheel is 5mm and the pitch diameter of the worm is 60mm. The normal pressure angle is 14.5'. The coefficient of friction is found to be 0.06. i) Find the centre distance, the lead and lead angle. ii) Determine the forces. iii) Determine the efficiency of the drive. 3 Design a worm gear drive to transmit a power of 2kW at 1000 rpm. The speed ratio is 20 and centre distance, the lead and lead angle. ii) Determine the forces. iii) Determine the efficiency of the drive. 3 Design a worm gear drive to transmit a power of 2kW at 1000 rpm. The speed ratio is 20 and centre distance is 200mm. Assume the number of teeth on worm wheel to be 40 and - number of starts on worm to be 2. Assume hardened steel worm and phosphor bronze wheel for which ac. = 55 N/mm 2. Check the gear from stand point of strength and wear if load stress factor, K = 0.69 MPa. If the amount of Heat generated is 1.7 kW, check whetter artificial cooling arrangement is necessary or not for a te		 L4
21 Design of Worm Gears 22 Introduction to Brakes, Types of Brakes, Numericals on Simple Band brakes. 23 Design of Simple Bank brakes 24 Design of Simple Band brakes 25 Design of Design of Differential band brakes 26 Design of differential band brakes 27 Introduction to Clutches, types of clutches, numericals on Single plate clutch 28 Design of single plate clutches 29 Design of single plate clutches 30 Design of Single plate clutches 31 Design of Multiplate clutches 32 Design of Multiplate clutches 33 Design of Multiplate clutches 4 Application Areas 5 Students should be able employ / apply the Module learnings to 4 Automobiles, Machine Tools 5 CCC 6 Review Questions 5 Design a worn gear reducer unit which consists of a hardened steel worm and a phosphor bronze gear having 20' stub involute teeth. The centre distance is to be 200 mm and the transmission ratio is 10 and the worm speed is 2000 rpm. Assume the temperature of gear and ambient temperature as 65' and 25' respectively. 2 A two teeth right hand worm transmits 2kW at 1500rpm to a 36 teeth wheel. The module of the wheel is 5mm and the pitch diameter of the worm is 60mm. The normal pressure angle is 14.5'. The coefficient of friction is found to be 0.06. i) Find the centre distance, the lead and lead angle. ii) Determine the forces. iii) Determine the efficiency of the drive. 3 Design a worm gear drive to transmit a power of 2kW at 1000 rpm. The speed ratio is 20 and centre distance is 200mm. Assume the number of teeth on worm wheel to be 40 and - number of starts on worm to be 2. Assume hardened steel worm and phosphor bronze wheel for which ac, = 55 N/rmm 2. Check the gear from stand point of strength and wear if load stress factor, K = 0.69 MPa. If the amount of Heat generated is 1.7 kW, check whether artificial cooling arrangement is necessary or not for a temperature rise of 40' K	_	<u>L4</u>
Introduction to Brakes, Types of Brakes, Numericals on Simple Band brakes. CC	-	<u>L4</u>
Design of Simple Bank brakes 24 Design of Simple Band brakes 25 Design of Differential band brakes 26 Design of differential band brakes 27 Introduction to Clutches, types of clutches, numericals on Single plate clutch 28 Design of single plate clutches 29 Design of single plate clutches 30 Design of single plate clutches 31 Design of Multiplate clutches 32 Design of Multiplate clutches 33 Design of Multiplate clutches 4 Application Areas 5 Students should be able employ / apply the Module learnings to	-	L2
Design of Simple Band brakes 25 Design of Differential band brakes 26 Design of differential band brakes 27 Introduction to Clutches, types of clutches, numericals on Single plate clutch 28 Design of single plate clutches 29 Design of single plate clutches 30 Design of single plate clutches 31 Design of Multiplate clutches 32 Design of Multiplate clutches 33 Design of Multiplate clutches 34 Design of Multiplate clutches 55 Design of Multiplate clutches 56 Application Areas 57 Students should be able employ / apply the Module learnings to	-	L2
25 Design of Differential band brakes 26 Design of differential band brakes 27 Introduction to Clutches, types of clutches, numericals on Single plate clutch 28 Design of single plate clutches 29 Design of single plate clutches 30 Design of single plate clutches 31 Design of Multiplate clutches 32 Design of Multiplate clutches 33 Design of Multiplate clutches 34 Design of Multiplate clutches 55 Students should be able employ / apply the Module learnings to 56 Application Areas 56 - Automobiles, Machine Tools 57 Design a worn gear reducer unit which consists of a hardened steel worm and a phosphor bronze gear having 20' stub involute teeth. The centre distance is to be 200 mm and the transmission ratio is 10 and the worm speed is 2000 rpm. Assume the temperature of gear and ambient temperature as 65' and 25' respectively. 58 A two teeth right hand worm transmits 2kW at 1500rpm to a 36 teeth wheel. The module of the wheel is 5pm and the pitch diameter of the worm is 60mm. The normal pressure angle is 14.5'. The coefficient of friction is found to be 0.06. i) Find the centre distance, the lead and lead angle. ii) Determine the forces. iii) Determine the efficiency of the drive. 59 Design a worm gear drive to transmit a power of 2kW at 1000 rpm. The speed ratio is 20 and centre distance is 200mm. Assume the number of teeth on worm wheel to be 40 and - number of starts on worm to be 2. Assume hardened steel worm and phosphor bronze wheel for which ac., = 55 N/mm 2. Check the gear from stand point of strength and wear if load stress factor, K = 0.69 MPa. If the amount of Heat generated is 1.7 kW, check whether artificial cooling arrangement is necessary or not for a temperature rise of 40' K	-	<u>L4</u>
26 Design of differential band brakes 27 Introduction to Clutches, types of clutches, numericals on Single plate clutch 28 Design of single plate clutches 29 Design of single plate clutches 30 Design of single plate clutches 31 Design of Multiplate clutches 32 Design of Multiplate clutches 33 Design of Multiplate clutches 34 Design of Multiplate clutches 55 Students should be able employ / apply the Module learnings to		L4
27 Introduction to Clutches, types of clutches, numericals on Single plate clutch 28 Design of single plate clutches 29 Design of single plate clutches 30 Design of single plate clutches 31 Design of Multiplate clutches 32 Design of Multiplate clutches 33 Design of Multiplate clutches 34 Design of Multiplate clutches 55 Students should be able employ / apply the Module learnings to		<u></u> L4
Design of single plate clutches Design of Multiplate clutches C Application Areas - Students should be able employ / apply the Module learnings to		L2
Design of single plate clutches Design of single plate clutches Design of Multiplate clutches C Application Areas Students should be able employ / apply the Module learnings to	_	L4
Design of single plate clutches C Application Areas Students should be able employ / apply the Module learnings to Automobiles, Machine Tools C Review Questions The attainment of the module learning assessed through following questions Design a worn gear reducer unit which consists of a hardened steel worm and a phosphor bronze gear having 20° stub involute teeth. The centre distance is to be 200 mm and the transmission ratio is 10 and the worm speed is 2000 rpm. Assume the temperature of gear and ambient temperature as 65° and 25° respectively. A two teeth right hand worm transmits 2kW at 1500rpm to a 36 teeth wheel. The module of the wheel is 5mm and the pitch diameter of the worm is 60mm. The normal pressure angle is 14.5°. The coefficient of friction is found to be 0.06. i) Find the centre distance, the lead and lead angle. ii) Determine the forces. iii) Determine the efficiency of the drive. Design a worm gear drive to transmit a power of 2kW at 1000 rpm. The speed ratio is 20 and centre distance is 200mm. Assume the number of teeth on worm wheel to be 40 and - number of starts on worm to be 2. Assume hardened steel worm and phosphor bronze wheel for which ac, = 55 N/mm 2. Check the gear from stand point of strength and wear if load stress factor, K = 0.69 MPa. If the amount of Heat generated is 1.7 kW, check whether artificial cooling arrangement is necessary or not for a temperature rise of 40° K		 L4
c Application Areas - Students should be able employ / apply the Module learnings to		
c Application Areas - Students should be able employ / apply the Module learnings to		
- Students should be able employ / apply the Module learnings to		
- Students should be able employ / apply the Module learnings to	,	-
d Review Questions The attainment of the module learning assessed through following questions Design a worn gear reducer unit which consists of a hardened steel worm and a phosphor bronze gear having 20° stub involute teeth. The centre distance is to be 200 mm and the transmission ratio is 10 and the worm speed is 2000 rpm. Assume the temperature of gear and ambient temperature as 65° and 25° respectively. A two teeth right hand worm transmits 2kW at 1500rpm to a 36 teeth wheel. The module of the wheel is 5mm and the pitch diameter of the worm is 60mm. The normal pressure angle is 14.5°. The coefficient of friction is found to be 0.06. i) Find the centre distance, the lead and lead angle. ii) Determine the forces. iii) Determine the efficiency of the drive. Design a worm gear drive to transmit a power of 2kW at 1000 rpm. The speed ratio is 20 and centre distance is 200mm. Assume the number of teeth on worm wheel to be 40 and - number of starts on worm to be 2. Assume hardened steel worm and phosphor bronze wheel for which ac, = 55 N/mm 2. Check the gear from stand point of strength and wear if load stress factor, K = 0.69 MPa. If the amount of Heat generated is 1.7 kW, check whether artificial cooling arrangement is necessary or not for a temperature rise of 40° K		_
The attainment of the module learning assessed through following questions Design a worn gear reducer unit which consists of a hardened steel worm and a phosphor bronze gear having 20° stub involute teeth. The centre distance is to be 200 mm and the transmission ratio is 10 and the worm speed is 2000 rpm. Assume the temperature of gear and ambient temperature as 65° and 25° respectively. A two teeth right hand worm transmits 2kW at 1500rpm to a 36 teeth wheel. The module of the wheel is 5mm and the pitch diameter of the worm is 60mm. The normal pressure angle is 14.5°. The coefficient of friction is found to be 0.06. i) Find the centre distance, the lead and lead angle. ii) Determine the forces. iii) Determine the efficiency of the drive. Design a worm gear drive to transmit a power of 2kW at 1000 rpm. The speed ratio is 20 and centre distance is 200mm. Assume the number of teeth on worm wheel to be 40 and - number of starts on worm to be 2. Assume hardened steel worm and phosphor bronze wheel for which ac, = 55 N/mm 2. Check the gear from stand point of strength and wear if load stress factor, K = 0.69 MPa. If the amount of Heat generated is 1.7 kW, check whether artificial cooling arrangement is necessary or not for a temperature rise of 40° K)4	L4
Design a worn gear reducer unit which consists of a hardened steel worm and a phosphor bronze gear having 20° stub involute teeth. The centre distance is to be 200 mm and the transmission ratio is 10 and the worm speed is 2000 rpm. Assume the temperature of gear and ambient temperature as 65° and 25° respectively. 2 A two teeth right hand worm transmits 2kW at 1500rpm to a 36 teeth wheel. The module of the wheel is 5mm and the pitch diameter of the worm is 60mm. The normal pressure angle is 14.5°. The coefficient of friction is found to be 0.06. i) Find the centre distance, the lead and lead angle. ii) Determine the forces. iii) Determine the efficiency of the drive. 3 Design a worm gear drive to transmit a power of 2kW at 1000 rpm. The speed ratio is 20 and centre distance is 200mm. Assume the number of teeth on worm wheel to be 40 and - number of starts on worm to be 2. Assume hardened steel worm and phosphor bronze wheel for which ac, = 55 N/mm 2. Check the gear from stand point of strength and wear if load stress factor, K = 0.69 MPa. If the amount of Heat generated is 1.7 kW, check whether artificial cooling arrangement is necessary or not for a temperature rise of 40° K	_	
Design a worn gear reducer unit which consists of a hardened steel worm and a phosphor bronze gear having 20° stub involute teeth. The centre distance is to be 200 mm and the transmission ratio is 10 and the worm speed is 2000 rpm. Assume the temperature of gear and ambient temperature as 65° and 25° respectively. 2 A two teeth right hand worm transmits 2kW at 1500rpm to a 36 teeth wheel. The module of the wheel is 5mm and the pitch diameter of the worm is 60mm. The normal pressure angle is 14.5°. The coefficient of friction is found to be 0.06. i) Find the centre distance, the lead and lead angle. ii) Determine the forces. iii) Determine the efficiency of the drive. 3 Design a worm gear drive to transmit a power of 2kW at 1000 rpm. The speed ratio is 20 and centre distance is 200mm. Assume the number of teeth on worm wheel to be 40 and - number of starts on worm to be 2. Assume hardened steel worm and phosphor bronze wheel for which ac, = 55 N/mm 2. Check the gear from stand point of strength and wear if load stress factor, K = 0.69 MPa. If the amount of Heat generated is 1.7 kW, check whether artificial cooling arrangement is necessary or not for a temperature rise of 40° K		
a phosphor bronze gear having 20° stub involute teeth. The centre distance is to be 200 mm and the transmission ratio is 10 and the worm speed is 2000 rpm. Assume the temperature of gear and ambient temperature as 65° and 25° respectively. 2 A two teeth right hand worm transmits 2kW at 1500rpm to a 36 teeth wheel. The module of the wheel is 5mm and the pitch diameter of the worm is 60mm. The normal pressure angle is 14.5°. The coefficient of friction is found to be 0.06. i) Find the centre distance, the lead and lead angle. ii) Determine the forces. iii) Determine the efficiency of the drive. 3 Design a worm gear drive to transmit a power of 2kW at 1000 rpm. The speed ratio is 20 and centre distance is 200mm. Assume the number of teeth on worm wheel to be 40 and - number of starts on worm to be 2. Assume hardened steel worm and phosphor bronze wheel for which ac, = 55 N/mm 2. Check the gear from stand point of strength and wear if load stress factor, K = 0.69 MPa. If the amount of Heat generated is 1.7 kW, check whether artificial cooling arrangement is necessary or not for a temperature rise of 40° K)4	L4
to be 200 mm and the transmission ratio is 10 and the worm speed is 2000 rpm. Assume the temperature of gear and ambient temperature as 65° and 25° respectively. 2 A two teeth right hand worm transmits 2kW at 1500rpm to a 36 teeth wheel. The module of the wheel is 5mm and the pitch diameter of the worm is 60mm. The normal pressure angle is 14.5°. The coefficient of friction is found to be 0.06. i) Find the centre distance, the lead and lead angle. ii) Determine the forces. iii) Determine the efficiency of the drive. 3 Design a worm gear drive to transmit a power of 2kW at 1000 rpm. The speed ratio is 20 and centre distance is 200mm. Assume the number of teeth on worm wheel to be 40 and - number of starts on worm to be 2. Assume hardened steel worm and phosphor bronze wheel for which ac, = 55 N/mm 2. Check the gear from stand point of strength and wear if load stress factor, K = 0.69 MPa. If the amount of Heat generated is 1.7 kW, check whether artificial cooling arrangement is necessary or not for a temperature rise of 40° K		
rpm. Assume the temperature of gear and ambient temperature as 65° and 25° respectively. 2 A two teeth right hand worm transmits 2kW at 1500rpm to a 36 teeth wheel. The module of the wheel is 5mm and the pitch diameter of the worm is 60mm. The normal pressure angle is 14.5°. The coefficient of friction is found to be 0.06. i) Find the centre distance, the lead and lead angle. ii) Determine the forces. iii) Determine the efficiency of the drive. 3 Design a worm gear drive to transmit a power of 2kW at 1000 rpm. The speed ratio is 20 and centre distance is 200mm. Assume the number of teeth on worm wheel to be 40 and - number of starts on worm to be 2. Assume hardened steel worm and phosphor bronze wheel for which ac, = 55 N/mm 2. Check the gear from stand point of strength and wear if load stress factor, K = 0.69 MPa. If the amount of Heat generated is 1.7 kW, check whether artificial cooling arrangement is necessary or not for a temperature rise of 40° K		
respectively. 2 A two teeth right hand worm transmits 2kW at 1500rpm to a 36 teeth wheel. CCC The module of the wheel is 5mm and the pitch diameter of the worm is 60mm. The normal pressure angle is 14.5°. The coefficient of friction is found to be 0.06. i) Find the centre distance, the lead and lead angle. ii) Determine the forces. iii) Determine the efficiency of the drive. 3 Design a worm gear drive to transmit a power of 2kW at 1000 rpm. The speed ratio is 20 and centre distance is 200mm. Assume the number of teeth on worm wheel to be 40 and - number of starts on worm to be 2. Assume hardened steel worm and phosphor bronze wheel for which ac, = 55 N/mm 2. Check the gear from stand point of strength and wear if load stress factor, K = 0.69 MPa. If the amount of Heat generated is 1.7 kW, check whether artificial cooling arrangement is necessary or not for a temperature rise of 40° K		
A two teeth right hand worm transmits 2kW at 1500rpm to a 36 teeth wheel. The module of the wheel is 5mm and the pitch diameter of the worm is 60mm. The normal pressure angle is 14.5°. The coefficient of friction is found to be 0.06. i) Find the centre distance, the lead and lead angle. ii) Determine the forces. iii) Determine the efficiency of the drive. 3 Design a worm gear drive to transmit a power of 2kW at 1000 rpm. The speed ratio is 20 and centre distance is 200mm. Assume the number of teeth on worm wheel to be 40 and - number of starts on worm to be 2. Assume hardened steel worm and phosphor bronze wheel for which ac, = 55 N/mm 2. Check the gear from stand point of strength and wear if load stress factor, K = 0.69 MPa. If the amount of Heat generated is 1.7 kW, check whether artificial cooling arrangement is necessary or not for a temperature rise of 40° K		
The module of the wheel is 5mm and the pitch diameter of the worm is 60mm. The normal pressure angle is 14.5°. The coefficient of friction is found to be 0.06. i) Find the centre distance, the lead and lead angle. ii) Determine the forces. iii) Determine the efficiency of the drive. 3 Design a worm gear drive to transmit a power of 2kW at 1000 rpm. The speed ratio is 20 and centre distance is 200mm. Assume the number of teeth on worm wheel to be 40 and - number of starts on worm to be 2. Assume hardened steel worm and phosphor bronze wheel for which ac, = 55 N/mm 2. Check the gear from stand point of strength and wear if load stress factor, K = 0.69 MPa. If the amount of Heat generated is 1.7 kW, check whether artificial cooling arrangement is necessary or not for a temperature rise of 40° K)/	L4
The normal pressure angle is 14.5°. The coefficient of friction is found to be 0.06. i) Find the centre distance, the lead and lead angle. ii) Determine the forces. iii) Determine the efficiency of the drive. 3 Design a worm gear drive to transmit a power of 2kW at 1000 rpm. The speed ratio is 20 and centre distance is 200mm. Assume the number of teeth on worm wheel to be 40 and - number of starts on worm to be 2. Assume hardened steel worm and phosphor bronze wheel for which ac, = 55 N/mm 2. Check the gear from stand point of strength and wear if load stress factor, K = 0.69 MPa. If the amount of Heat generated is 1.7 kW, check whether artificial cooling arrangement is necessary or not for a temperature rise of 40° K	~	
 0.06. i) Find the centre distance, the lead and lead angle. ii) Determine the forces. iii) Determine the efficiency of the drive. 3 Design a worm gear drive to transmit a power of 2kW at 1000 rpm. The speed ratio is 20 and centre distance is 200mm. Assume the number of teeth on worm wheel to be 40 and - number of starts on worm to be 2. Assume hardened steel worm and phosphor bronze wheel for which ac, = 55 N/mm 2. Check the gear from stand point of strength and wear if load stress factor, K = 0.69 MPa. If the amount of Heat generated is 1.7 kW, check whether artificial cooling arrangement is necessary or not for a temperature rise of 40° K 		
forces. iii) Determine the efficiency of the drive. Design a worm gear drive to transmit a power of 2kW at 1000 rpm. The speed cratio is 20 and centre distance is 200mm. Assume the number of teeth on worm wheel to be 40 and - number of starts on worm to be 2. Assume hardened steel worm and phosphor bronze wheel for which ac, = 55 N/mm 2. Check the gear from stand point of strength and wear if load stress factor, K = 0.69 MPa. If the amount of Heat generated is 1.7 kW, check whether artificial cooling arrangement is necessary or not for a temperature rise of 40° K		
Design a worm gear drive to transmit a power of 2kW at 1000 rpm. The speed ratio is 20 and centre distance is 200mm. Assume the number of teeth on worm wheel to be 40 and - number of starts on worm to be 2. Assume hardened steel worm and phosphor bronze wheel for which ac, = 55 N/mm 2. Check the gear from stand point of strength and wear if load stress factor, K = 0.69 MPa. If the amount of Heat generated is 1.7 kW, check whether artificial cooling arrangement is necessary or not for a temperature rise of 40° K		
ratio is 20 and centre distance is 200mm. Assume the number of teeth on worm wheel to be 40 and - number of starts on worm to be 2. Assume hardened steel worm and phosphor bronze wheel for which ac, = 55 N/mm 2. Check the gear from stand point of strength and wear if load stress factor, K = 0.69 MPa. If the amount of Heat generated is 1.7 kW, check whether artificial cooling arrangement is necessary or not for a temperature rise of 40° K	14	L4
worm wheel to be 40 and - number of starts on worm to be 2. Assume hardened steel worm and phosphor bronze wheel for which ac, = 55 N/mm 2. Check the gear from stand point of strength and wear if load stress factor, K = 0.69 MPa. If the amount of Heat generated is 1.7 kW, check whether artificial cooling arrangement is necessary or not for a temperature rise of 40° K	74	L4
hardened steel worm and phosphor bronze wheel for which ac, = 55 N/mm 2. Check the gear from stand point of strength and wear if load stress factor, K = 0.69 MPa. If the amount of Heat generated is 1.7 kW, check whether artificial cooling arrangement is necessary or not for a temperature rise of 40° K		
Check the gear from stand point of strength and wear if load stress factor, K = 0.69 MPa. If the amount of Heat generated is 1.7 kW, check whether artificial cooling arrangement is necessary or not for a temperature rise of 40° K		
0.69 MPa. If the amount of Heat generated is 1.7 kW, check whether artificial cooling arrangement is necessary or not for a temperature rise of 40° K		
cooling arrangement is necessary or not for a temperature rise of 40° K		
4 A two teeth right hand worm transmits 2 kW at 1500 rpm to a 36 teeth wheel. CC		
)4	L4
The module of the wheel is 5 mm and the pitch diameter of the worm is 60		
mm. The pressure angle is 14.5°. The co-efficient of friction is found to be 0.06.		
I) Find the centre distance, the lead and the lead angle.		
ii) Determine the forces.		
5 The following data refer to a worm and worm gear drive: CC)4	L4

	i) centre distance = 200 mm ii) pitch circle diameter of the worm = 80 mm iii) Number of start = 4 iv) Axial module = 8 mm v) transmission ratio = 20 vi) the worm gear is made of phosphor bronze with an allowable bending stress = 55 MPa vii) the worm is made of hardened and ground steel viii) tooth form is 20° full depth involute. Determine i) Number of teeth on the worm gear ii) lead angle iii) face width of worm gear to 15 kW of power at 1750 rpm of the worm based on beam strength of the worm gear.		
6	Complete the design and determine the input capacity of worm gear speed reducer unit which consists of hardened steel worm and phosphor bronze gear having 20° stub involute teeth. The centre distance is to be 200 mm and transmission ratio is 10, speed of the worm is 2000 rpm.		L5
7	A multiplate clutch consists of 5 steel and 4 bronze plates. The inner and outer diameters of friction discs are 75mm and 150mm respectively. The coefficient of friction is 0.1 and allowable pressure is to be limited to 0.3 MPa. Assuming uniform pressure. Calculate: i) The required axial force. ii) Power that can be transmitted at 750 rpm.		L4
8	A multiple clutch with steel and bronze is to transmit 8kW at 1440rpm. The inner diameter of the contact is 80mm and the outer diameter of contact is 140mm. The clutch plate operates in oil with expected coefficient of friction of 0.1 and allowable pressure of 0.35MPa. Assume uniform wear theory. Determine the number of steel and bronze plates, axial force required, average pressure, actual maximum pressure.		L4
9	A simple band broke of drum diameter 600mm has a band passing over it with an angle of contact of 225°, while one end is connected to the fulcrum, the other end is connected to the brake lever at a distance of 400mm from the fulcrum. The brake lever is 1 m long. The brake is to absorb a power of 15 KW at 720rpm. Design the brake lever of rectangular cross-section, assuming depth to the thrice the width. Take allowable stress 80 MPa.		L4
10	A simple band brake of drum diameter 600 mm has a band passing over it with an angle of contact of 225°, while one end is connected to the fulcrum, the other end is connected to the brake lever at a distance of 400 mm from the fulcrum. The brake lever is 1 m long. The brake is to absorb a power of 15 kW at 720 rpm. Design the brake lever of rectangular cross section assuming depth to be thrice the width. Take allowable stress 80 MPa.		L4
11	A plate clutch with a maximum diameter of 600 mm has maximum lining pressure of 0.35 MPa. The power to be transmitted at 400 rpm is 135 kW and 0.3. Find inside diameter and spring force required to engage the clutch, if the spring with spring index 6 and material of spring the wire diameter if 6 springs are used.	CO4	L4
12	In a multiple disc clutch the radial width of the friction material is to be 0.2 of maximum radius. The co-efficient of friction is 0.25. The clutch is to transmit 60 KW at 3000 rpm. Its maximum diameter is 250 mm and the axial force is limited to 600 N. Determine i) number of driving and driven discs ii) mean unit pressure on each contact surface. Assume uniform wear.		L4
13	A differential band brake as shown in Fig.Q6(b), has an angle of contact of 225°. The band has a compressed woven lining and bears against a CI drum of 350 mm diameter. The brake is to sustain a torque of 350 N-m and the coefficient of friction between the band and the drum is 0.3. Find: (i) The necessary force, F for the clockwise and anticlockwise rotation of the drum and (ii) The value of "OA" for the brake to be self locking, when the drum rotates clockwise.		L4

E1. CIA EXAM - 1

a. Model Question Paper -1

Crs C	Crs Code: 17ME64 Sem: VI Marks: 30 Time: 75 mi								nuto		
	Course: Design of Machine Elements - 2							/5 !!!!	iute	3	
							1			00	
-				tions, each o					ırks	СО	Level
1		8 to 10 hi 1000rpm to number of profile. Th =206.81N/r σ_o =137 C=522.464 N	rs/day sus o a paralle teeth on pare material nm² and for 34 N/mm² N/mm and	Gears to transtaining med shaft which cinion to be for pinion or the gear also for wealth be for wealth be for the salso for wealth be for the salso for wealth be for the the for the salso for wealth be for the the the for the the the for the the the for the the the for the the for the the the the for the the for the the for the the for the the	dium shock n is to rotat e 31 and 20 is C40 ste is Cast stee design for I r load taking	from a she at 310rpm ofull depthel, untreated, o.2%C, ur Dynamic loa	naft rotating n. Assume involute to d whose ^C ntreated who d if load fac	at the oth ose tor,	.5	CO3	L4
					OR						
2		rotating at profile with SAE1030 w steel 0.20% condition	1000rpm to a pressure σ_o C untreated of medium	ar pair to tradition another shade angle of 20° $_{\pm}$ 172.375M with σ_{o} $_{\pm}$ shocks for actor C=580N	aft to run at The mate Pa and the 137.34 Mpa. A period	: 160rpm. As rial for pinior material for t The gears of of 10hrs/da	ssume invol n is forged st the gear is c operate unde ay. Check	ute eel ast er a	.5	CO3	L4
3		with an an	igle of cor	of drum diam Stact of 225° d is connect	, while one	end is cor	nected to	the	8	CO4	L4

	300mm from the fulcrum. The brake lever is 1 m long. absorb a power of 15 KW at 720rpm. Design the brake lever cross-section, assuming depth to the thrice the width. stress 80 MPa.	er of rectangular		
	b A multiplate clutch consists of 5 steel and 4 bronze plates outer diameters of friction discs are 75mm and 150mm recoefficient of friction is 0.1 and allowable pressure is to be MPa. Assuming uniform wear, Calculate: i) The required Power that can be transmitted at 750 rpm.	espectively. The be limited to 0.3	CO4	L4
	OR			
4	A differential band brake as shown in Fig.Q.2(a), has an anguate 225. The band has a compressed woven lining and bears iron drum of 350mm diameter. The brake is to sustain a tor and the co-efficient of friction between the band and the ci). The necessary force, P for the clockwise and anticlock the drum and ii). The value of 'OA' for the brake to be sell the drum rotates clockwise.	s against a cast rque of 350 N.m. drum is 0.3. Find: wise rotation of If locking, when Fig.Q.2(a)	CO4	L4
	A Single plate friction clutch of both sides effective he diameter and 0.16 m inside diameter. The co-efficient of frit runs at 1000 rpm. Find the power transmitted for un uniform pressure distribution cases if the allowable maxim 0.08 MPa.	riction is 0.2 and iform wear and	CO4	L4

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

				Model	Assignment	Questions				
Crs C	ode:	17ME64	Sem:	VI	Marks:	10	Time:	90 - 120	minute:	5
Cours	se:	DESIGN (OF MACHINE	ELEMENTS	S -2	Module : 3,	2			
Note:	Each	student t	o answer 2-3	assignmen	ıts. Each assi	gnment car	ries equal ma	ark.		
SNo		USN		Assig	nment Desc	cription		Marks	СО	Level
1			A 12 kw moto	or running a	at 1170rpm c	drives a fan	through a pa	air 10	CO3	L4
			of spur gears	s (Forged st	teel SAE 103	o pinion & (CI gear) with	a		
			reduction rati	io of 3.9:1. D	esign the ge	ear and ched	ck for dynam	ic		
			& wear loads							
2			It is required	to transmit	15 KW pow	er from a sh	naft running a	at 10	CO3	L4
			1200 rpm to	a parallel	shaft with s	peed reduc	ction of 3. Th	ne		
			centre distan	ice of shaft	s is to be 30	o mm. The	material use	ed		
			for pinion is	steel (ad =	200 MPa) a	nd for gear	is CI (ad =14	ļO		
			MPa) . Servic	e factor is	1.25 and too	th profile is	20° full dept	th		
						•	ne design fo			
			dynamic and	•	9		J			
3					gears to tra	ansmit powe	er of 15 kW	at 10	CO3	L4
					-	-	made of ca		_	
			•	•		•	rade CI Hel			
							eth are to b			
			used on eithe							

Design a pair of bevel gears to connect two shafts at 60°. The power transmitted is 25 kW at 900 rpm of prinion. The reduction ratio desired is 51. The teeth are 20° full depth involute and pinion has 24 teeth. Check the design for dynamic and wear considerations. Design a worn gear reducer unit which consists of a hardened steel worm and a phosphor bronze gear having 20° stub involute teeth. The centre distance is to be 200 mm and the transmission ratio is 10° and the worm speed is 2000 rpm. Assume the temperature of gear and ambient temperature as 65° and 25° respectively. A two teeth right hand worm transmits 2kW at 1500rpm to a 36° teeth wheel. The module of the wheel is 5mm and the pitch diameter of the worm is 60mm. The normal pressure angle is 14.5°. The coefficient of friction is found to be 0.06. I) Find the centre distance, the lead and lead angle. Ii) Determine the forces: Ii) Determine the efficiency of the drive. A simple band broke of drum diameter 600mm has a band passing over it with an angle of contact of 225°, while one end is connected to the fulcrum, the other end is connected to the brake lever at a distance of 400mm from the fulcrum. The brake lever is 1 m long. The brake is to absorb a power of 15° KW at 720rpm. Design the brake lever of rectangular cross-section, assuming depth to the thrice the width. Take allowable stress 80 MPa. A simple band brake of drum diameter 600 mm has a band passing over it with an angle of contact of 225°, while one end is connected to the fulcrum, the other end is connected to the brake lever is 1 m long. The brake is to absorb a power of 15° kW at 720 rpm. Design the brake lever of rectangular cross-section assuming depth to be thrice the width. Take allowable stress 80 MPa. A multiplate clutch consists of 5 steel and 4 bronze plates. The inner and outer diameters of friction discs are 75mm and 150 cm		wear considerations.			
power transmitted is 25 kW at 900 rpm of pinion. The reduction ratio desired is 51. The teeth are 20 * full depth involute and pinion has 24 teeth. Check the design for dynamic and wear considerations. Design a worn gear reducer unit which consists of a hardened steet worm and a phosphor bronze gear having 20 * stub involute teeth. The centre distance is to be 200 mm and the transmission ratio is 30 and the worm speed is 2000 rpm. Assume the temperature of gear and ambient temperature as 65° and 25° respectively. A two teeth right hand worm transmits 2kW at 1500rpm to a 36 teeth wheel. The module of the wheel is 5mm and the pitch diameter of the worm is 60mm. The normal pressure angle is 14.5°. The coefficient of friction is found to be 0.06. i) Find the centre distance, the lead and lead angle. ii) Determine the forces: iii) Determine the efficiency of the drive. A simple band broke of drum diameter 600mm has a band passing over it with an angle of contact of 225′, while one end is connected to the fulcrum, the other end is connected to the brake lever at a distance of 400mm from the fulcrum. The brake lever is 1 m long. The brake lever of rectangular cross-section, assuming depth to the thrice the width. Take allowable stress 80 MPa. A simple band brake of drum diameter 600 mm has a band passing over it with an angle of contact of 225′, while one end is connected to the fulcrum, the other end is connected to the brake lever at a distance of 400 mm from the fulcrum. The brake lever at a distance of 400 mm from the fulcrum. The brake lever at a distance of 400 mm from the fulcrum. The brake lever at a distance of 400 mm from the fulcrum. The brake lever at a distance of 400 mm from the fulcrum. The brake lever at a distance of 400 mm from the fulcrum. The brake lever is 1 m long. The brake is to absorb a power of 15 kW at 720 rpm. Design the brake lever of 225′, while one end is connected to the fulcrum, the other end is connected to the brake lever of 50 mm has a maximum diameter of 600 mm has maximum diam			10	CO3	
reduction ratio desired is 5:1. The teeth are 20 'full depth involute and pinion has 24 teeth. Check the design for dynamic and wear considerations. Design a worn gear reducer unit which consists of a hardened steet worm and a phosphor bronze gear having 20' stub involute teeth. The centre distance is to be 200 mm and the transmission ratio is 10 and the worm speed is 2000 rpm. Assume the temperature of gear and ambient temperature as 65' and 25' respectively. A two teeth right hand worm transmits 2kW at 1500rpm to a 36 teeth wheel. The module of the wheel is 5mm and the pitch diameter of the worm is 60mm. The normal pressure angle is 14.5'. The coefficient of friction is found to be 0.06. I) Find the centre distance, the lead and lead angle. Ii) Determine the forces iii) Determine the efficiency of the drive. A simple band broke of drum diameter 600mm has a band passing over it with an angle of contact of 25', while one end is connected to the fulcrum, the other end is connected to the brake lever at a distance of 400mm from the fulcrum. The brake lever is 1 m long. The brake is to absorb a power of 15 kW at 720rpm. Design the brake lever of rectangular cross-section, assuming depth to the thrice the width. Take allowable stress 80 MPa. A simple band brake of drum diameter 600 mm has a band passing over it with an angle of contact of 225', while one end is connected to the fulcrum, the other end is connected to the brake lever is 1 m long. The brake is to absorb a power of 15 kW at 720 rpm. Design the brake lever of rectangular cross-section assuming depth to be thrice the width. Take allowable stress 80 MPa. A multiplate clutch consists of 5 steel and 4 bronze plates. The inner and outer diameters of friction discs are 75mm and 150mm respectively. The coefficient of friction is 0.1 and allowable pressure is to be limited to 0.3 MPa. Assuming uniform pressure. Calculate i) The required axial force. A plate clutch with a maximum diameter of 600 mm has maximum lining pressure of 0.35 MPa. The power to be t	-		-0		-7
involute and pinion has 24 teeth. Check the design for dynamic and wear considerations. Design a worn gear reducer unit which consists of a hardened steet worm and a phosphor bronze gear having 20° stub involute teeth. The centre distance is to be 200 mm and the transmission ratio is 10 and the worm speed is 2000 rpm. Assume the temperature of gear and ambient temperature as 65° and 25° respectively. A two teeth right hand worm transmits 2kW at 1500rpm to a 36 teeth wheel. The module of the wheel is 5mm and the pitch diameter of the worm is 60mm. The normal pressure angle is 145°. The coefficient of friction is found to be 0.06. i) Find the centre distance, the lead and lead angle, ii) Determine the forces, iii) Determine the efficiency of the drive. A simple band broke of drum diameter 600mm has a band passing over it with an angle of contact of 225°, while one end is connected to the fulcrum, the other end is connected to the brake lever at a distance of 400mm from the fulcrum. The brake lever is 1 m long. The brake lever of rectangular cross-section, assuming depth to the thrice the width. Take allowable stress 80 MPa. A simple band brake of drum diameter 600 mm has a band passing over it with an angle of contact of 225°, while one end is connected to the fulcrum, the other end is connected to the brake lever at a distance of 400 mm from the fulcrum. The brake lever at a distance of 400 mm from the fulcrum. The brake lever at a distance of 400 mm from the fulcrum. The brake lever at a distance of 400 mm from the fulcrum. The brake lever at a distance of 400 mm from the fulcrum. The brake lever at a line long. The brake is to absorb a power of 15 kW at 720 rpm. Design the brake lever of rectangular cross-section assuming depth to be thrice the width. Take allowable stress 80 MPa. A multiplate clutch consists of 5 steel and 4 bronze plates. The inner and outer diameters of friction discs are 75mm and 150mm respectively. The coefficient of friction is 0.1 and allowable pressure is to be limited to 0.3 MPa		· · · · · · · · · · · · · · · · · · ·			
dynamic and wear considerations. Design a worn gear reducer unit which consists of a hardened steel worm and a phosphor bronze gear having 20' stub involute teeth. The centre distance is to be 200 mm and the transmission ratio is 10 and the worm speed is 2000 rpm. Assume the temperature of gear and ambient temperature as 65' and 25' respectively. A two teeth right hand worm transmits 2kW at 1500rpm to a 36 teeth wheel. The module of the wheel is 5mm and the pitch diameter of the worm is 60mm. The normal pressure angle is 14.5'. The coefficient of friction is found to be 0.06. i) Find the centre distance, the lead and lead angle, ii) Determine the forces, iii) Determine the efficiency of the drive. A simple band broke of drum diameter 600mm has a band passing over it with an angle of contact of 225', while one end is connected to the fulcrum, the other end is connected to the brake lever at a distance of 400mm from the fulcrum. The brake lever is 1 m long. The brake lever of rectangular cross-section, assuming depth to the thrice the width. Take allowable stress 80 MPa. A simple band brake of drum diameter 600 mm has a band passing over it with an angle of contact of 225', while one end is connected to the fulcrum, the other end is connected to the brake lever at a distance of 400 mm from the fulcrum. The brake lever at a distance of 400 mm from the fulcrum. The brake lever at a distance of 400 mm from the fulcrum. The brake lever at a distance of 400 mm from the fulcrum. The brake lever and altowable stress 80 MPa. A multiplate clutch consists of 5 steel and 4 bronze plates. The inner and outer diameters of friction discs are 75mm and 150mm respectively. The coefficient of friction is 0.1 and allowable pressure is to be limited to 0.3 MPa. Assuming uniform pressure. Calculate: i) The required axial force. ii) Power that can be transmitted at 400 rpm is 135 kW and 0.3 Find inside diameter and spring force required to engage the clutch, if the spring with spring index 6 and material of spring the wire diamet		•			
Design a worn gear reducer unit which consists of a hardened steel worm and a phosphor bronze gear having 20' stub involute teeth. The centre distance is to be 200 mm and the transmission ratio is 10 and the worm speed is 2000 rpm. Assume the temperature of gear and ambient temperature as 65' and 25' respectively. A two teeth right hand worm transmits 2kW at 1500 rpm to a 36 teeth wheel. The module of the wheel is 5mm and the pitch diameter of the worm is 60 mm. The normal pressure angle is 145'. The coefficient of friction is found to be 0.06. i) Find the centre distance, the lead and lead angle. ii) Determine the forces iii) Determine the efficiency of the drive. A simple band broke of drum diameter 600 mm has a band passing over it with an angle of contact of 225', while one end is connected to the fulcrum, the other end is connected to the brake lever at a distance of 400 mm from the fulcrum. The brake lever is 1 m long. The brake is to absorb a power of 15 kW at 720 rpm. Design the brake lever of rectangular cross-section, assuming depth to the thrice the width. Take allowable stress 80 MPa. A simple band brake of drum diameter 600 mm has a band passing over it with an angle of contact of 225', while one end is connected to the fulcrum, the other end is connected to the brake lever at a distance of 400 mm from the fulcrum. The brake lever at a distance of 400 mm from the fulcrum. The brake lever at a distance of 400 mm from the fulcrum. The brake lever at a distance of 400 mm from the fulcrum. A simple band brake of drum diameter 600 mm has a band 10 connected to the brake lever at a distance of 400 mm from the fulcrum. The brake lever at a distance of 400 mm from the fulcrum. The brake lever at a distance of 400 mm from the fulcrum. A multiplate clutch consists of 5 steel and 4 bronze plates. The inner and outer diameters of friction discs are 75mm and 150 mm respectively. The coefficient of friction is 0.1 and allowable pressure is to be limited to 0.3 MPa. Assuming uniform pressure. Calculate i) Th		-			
steel worm and a phosphor bronze gear having 20° stub involute teeth. The centre distance is to be 200 mm and the transmission ratio is 10 and the worm speed is 2000 rpm. Assume the temperature of gear and ambient temperature as 65° and 25° respectively. A two teeth right hand worm transmits 2kW at 1500 rpm to a 36 10 CO4 L4 teeth wheel. The module of the wheel is 5mm and the pitch diameter of the worm is 60mm. The normal pressure angle is 14.5°. The coefficient of friction is found to be 0.06. i) Find the centre distance, the lead and lead angle, ii) Determine the forces, iii) Determine the efficiency of the drive. A simple band broke of drum diameter 600mm has a band passing over it with an angle of contact of 225°, while one end is connected to the fulcrum, the other end is connected to the brake lever at a distance of 400mm from the fulcrum. The brake lever is 1 m long. The brake is to absorb a power of 15 kW at 720 rpm. Design the brake lever of rectangular cross-section, assuming depth to the thrice the width. Take allowable stress 80 MPa. 8 A simple band brake of drum diameter 600 mm has a band passing over it with an angle of contact of 225°, while one end is connected to the brake lever at a distance of 400 mm from the fulcrum. The brake lever is 1 m long. The brake is to absorb a power of 15 kW at 720 rpm. Design the brake lever of rectangular cross-section assuming depth to be thrice the width. Take allowable stress 80 MPa. 9 A multiplate clutch consists of 5 steel and 4 bronze plates. The inner and outer diameters of friction discs are 75mm and 150 mm respectively. The coefficient of friction is 0.1 and allowable pressure is to be limited to 0.3 MPa. Assuming uniform pressure. Calculate: i) The required axial force. ii) Power that can be transmitted at 750 rpm. A plate clutch with a maximum diameter of 600 mm has no could be transmitted at 400 rpm is 135 kW and 0.3 Find inside diameter and spring force required to engage the clutch, if the spring with spring index 6 and material of spring the	5	·	10	CO ₄	L4
involute teeth. The centre distance is to be 200 mm and the transmission ratio is 10 and the worm speed is 2000 rpm. Assume the temperature of gear and ambient temperature as 85° and 25° respectively. A two teeth right hand worm transmits zkW at 1500rpm to a 36° 10° CO4° L4° teeth wheel. The module of the wheel is 5mm and the pitch diameter of the worm is 60mm. The normal pressure angle is 14.5°. The coefficient of friction is found to be 0.06. i) Find the centre distance, the lead and lead angle. ii) Determine the forces. iii) Determine the efficiency of the drive. A simple band broke of drum diameter 600mm has a band passing over it with an angle of contact of 225°, while one end is connected to the brake lever at a distance of 400mm from the fulcrum. The brake lever is 1 m long. The brake is to absorb a power of 15 kW at 720rpm. Design the brake lever of rectangular cross-section, assuming depth to the thrice the width. Take allowable stress 80 MPa. A simple band brake of drum diameter 600 mm has a band passing over it with an angle of contact of 225°, while one end is connected to the fulcrum, the other end is connected to the brake lever at a distance of 400 mm from the fulcrum. The brake lever is 1 m long. The brake is to absorb a power of 15 kW at 720 rpm. Design the brake lever of rectangular cross-section assuming depth to be thrice the width. Take allowable stress 80 MPa. A multiplate clutch consists of 5 steel and 4 bronze plates. The inner and outer diameters of friction discs are 75mm and 150mm respectively. The coefficient of friction is 0.1 and allowable pressure is to be limited to 0.3 MPa. Assuming uniform pressure. Calculate: i) The required axial force. ii) Power that can be transmitted at 750 rpm. A plate clutch with a maximum diameter of 600 mm has no could be transmitted at 400 rpm is 136 kW and 0.3. Find inside diameter and spring force required to engage the clutch, if the spring with spring index 6 and material of spring the wire diameter if 6 springs are used.					·
Assume the temperature of gear and ambient temperature as 65° and 25° respectively. A two teeth right hand worm transmits 2kW at 1500rpm to a 36 10 CO4 L4 teeth wheel. The module of the wheel is 5mm and the pitch diameter of the worm is 60mm. The normal pressure angle is 14.5°. The coefficient of friction is found to be 0.06°. I) Find the centre distance, the lead and lead angle. ii) Determine the forces. iii) Determine the efficiency of the drive. A simple band broke of drum diameter 600mm has a band passing over it with an angle of contact of 225°, while one end is connected to the fulcrum, the other end is connected to the brake lever at a distance of 400mm from the fulcrum. The brake lever is 1 m long. The brake is to absorb a power of 15 KW at 720rpm. Design the brake lever of rectangular cross-section, assuming depth to the thrice the width. Take allowable stress 80 MPa. A simple band brake of drum diameter 600 mm has a band passing over it with an angle of contact of 225°, while one end is connected to the fulcrum, the other end is connected to the brake lever at a distance of 400 mm from the fulcrum. The brake lever is 1 m long. The brake is to absorb a power of 15 kW at 720 rpm. Design the brake lever of rectangular cross section assuming depth to be thrice the width. Take allowable stress 80 MPa. A multiplate clutch consists of 5 steel and 4 bronze plates. The inner and outer diameters of friction discs are 75mm and 150mm respectively. The coefficient of friction is 0.1 and allowable pressure is to be limited to 0.3 MPa. Assuming uniform pressure. Calculate: 0 The required axial force. Description of the course of 55 kW and 0.3 Find inside diameter and spring force required to engage the clutch, if the spring with spring index 6 and material of spring the wire diameter if 6 springs are used.		·			
Assume the temperature of gear and ambient temperature as 65° and 25° respectively. A two teeth right hand worm transmits 2kW at 1500rpm to a 36 10 CO4 L4 teeth wheel. The module of the wheel is 5mm and the pitch diameter of the worm is 60mm. The normal pressure angle is 14.5°. The coefficient of friction is found to be 0.06°. I) Find the centre distance, the lead and lead angle. ii) Determine the forces. iii) Determine the efficiency of the drive. A simple band broke of drum diameter 600mm has a band passing over it with an angle of contact of 225°, while one end is connected to the fulcrum, the other end is connected to the brake lever at a distance of 400mm from the fulcrum. The brake lever is 1 m long. The brake is to absorb a power of 15 KW at 720rpm. Design the brake lever of rectangular cross-section, assuming depth to the thrice the width. Take allowable stress 80 MPa. A simple band brake of drum diameter 600 mm has a band passing over it with an angle of contact of 225°, while one end is connected to the fulcrum, the other end is connected to the brake lever at a distance of 400 mm from the fulcrum. The brake lever is 1 m long. The brake is to absorb a power of 15 kW at 720 rpm. Design the brake lever of rectangular cross section assuming depth to be thrice the width. Take allowable stress 80 MPa. A multiplate clutch consists of 5 steel and 4 bronze plates. The inner and outer diameters of friction discs are 75mm and 150mm respectively. The coefficient of friction is 0.1 and allowable pressure is to be limited to 0.3 MPa. Assuming uniform pressure. Calculate: 0 The required axial force. Description of the course of 55 kW and 0.3 Find inside diameter and spring force required to engage the clutch, if the spring with spring index 6 and material of spring the wire diameter if 6 springs are used.		transmission ratio is 10 and the worm speed is 2000 rpm.			
65° and 25° respectively. A two teeth right hand worm transmits 2kW at 150orpm to a 36 teeth wheel. The module of the wheel is 5mm and the pitch diameter of the worm is 60mm. The normal pressure angle is 14.5°. The coefficient of friction is found to be 0.06. i) Find the centre distance, the lead and lead angle. ii) Determine the forces. iii) Determine the efficiency of the drive. A simple band broke of drum diameter 600mm has a band passing over it with an angle of contact of 225°, while one end is connected to the fulcrum, the other end is connected to the brake lever at a distance of 400mm from the fulcrum. The brake lever is 1 m long. The brake is to absorb a power of 15 KW at 720rpm. Design the brake lever of rectangular cross-section, assuming depth to the thrice the width. Take allowable stress 80 MPa. A simple band brake of drum diameter 600 mm has a band passing over it with an angle of contact of 225°, while one end is connected to the fulcrum, the other end is connected to the brake lever at a distance of 400 mm from the fulcrum. The brake lever at a distance of 400 mm from the fulcrum. The brake lever is 1 m long. The brake is to absorb a power of 15 kW at 720 rpm. Design the brake lever of rectangular cross section assuming depth to be thrice the width. Take allowable stress 80 MPa. A multiplate clutch consists of 5 steel and 4 bronze plates. The inner and outer diameters of friction discs are 75mm and 150mm respectively. The coefficient of friction is 0.1 and allowable pressure is to be limited to 0.3 MPa. Assuming uniform pressure. Calculate: i) The required axial force. ii) Power that can be transmitted at 750 rpm. A plate clutch with a maximum diameter of 600 mm has maximum lining pressure of 0.35 MPa. The power to be transmitted at 400 rpm is 135 kW and 0.3. Find inside diameter and spring force required to engage the clutch, if the spring with spring index 6 and material of spring the wire diameter if 6 springs are used.					
A two teeth right hand worm transmits 2kW at 1500rpm to a 36 teeth wheel. The module of the wheel is 5mm and the pitch diameter of the worm is 60mm. The normal pressure angle is 14.5°. The coefficient of friction is found to be 0.06°. I) Find the centre distance, the lead and lead angle. ii) Determine the forces. iii) Determine the efficiency of the drive. A simple band broke of drum diameter 600mm has a band passing over it with an angle of contact of 225°, while one end is connected to the fulcrum, the other end is connected to the brake lever at a distance of 400mm from the fulcrum. The brake lever is 1 m long. The brake is to absorb a power of 15 kW at 720rpm. Design the brake lever of rectangular cross-section, assuming depth to the thrice the width. Take allowable stress 80 MPa. A simple band brake of drum diameter 600 mm has a band passing over it with an angle of contact of 225°, while one end is connected to the fulcrum, the other end is connected to the brake lever at a distance of 400 mm from the fulcrum. The brake lever is 1 m long. The brake is to absorb a power of 15 kW at 720 rpm. Design the brake lever of rectangular cross section assuming depth to be thrice the width. Take allowable stress 80 MPa. A multiplate clutch consists of 5 steel and 4 bronze plates. The inner and outer diameters of friction discs are 75mm and 150mm respectively. The coefficient of friction is 0.1 and allowable pressure is to be limited to 0.3 MPa. Assuming uniform pressure. Calculate: i) The required axial force. ii) Power that can be transmitted at 750 rpm. A plate clutch with a maximum diameter of 600 mm has maximum lining pressure of 0.35 MPa. The power to be transmitted at 400 rpm is 135 kW and 0.3. Find inside diameter and spring force required to engage the clutch, if the spring with spring index 6 and material of spring the wire diameter if 6 springs are used.		·			
diameter of the worm is 60mm. The normal pressure angle is 14,5'. The coefficient of friction is found to be 0.06. i) Find the centre distance, the lead and lead angle. ii) Determine the forces. iii) Determine the efficiency of the drive. 7	6		10	CO4	L4
14.5°. The coefficient of friction is found to be 0.06. i) Find the centre distance, the lead and lead angle. ii) Determine the forces. iii) Determine the efficiency of the drive. 7 A simple band broke of drum diameter 600mm has a band passing over it with an angle of contact of 225°, while one end is connected to the fulcrum, the other end is connected to the brake lever at a distance of 400mm from the fulcrum. The brake lever is 1 m long. The brake is to absorb a power of 15 KW at 720rpm. Design the brake lever of rectangular cross-section, assuming depth to the thrice the width. Take allowable stress 80 MPa. 8 A simple band brake of drum diameter 600 mm has a band passing over it with an angle of contact of 225°, while one end is connected to the fulcrum, the other end is connected to the brake lever at a distance of 400 mm from the fulcrum. The brake lever is 1 m long. The brake is to absorb a power of 15 kW at 720 rpm. Design the brake lever of rectangular cross section assuming depth to be thrice the width. Take allowable stress 80 MPa. 9 A multiplate clutch consists of 5 steel and 4 bronze plates. The inner and outer diameters of friction discs are 75mm and 150mm respectively. The coefficient of friction is 0.1 and allowable pressure is to be limited to 0.3 MPa. Assuming uniform pressure. Calculate: i) The required axial force. ii) Power that can be transmitted at 750 rpm. 10 A plate clutch with a maximum diameter of 600 mm has maximum lining pressure of 0.35 MPa. The power to be transmitted at 400 rpm is 135 kW and 0.3. Find inside diameter and spring force required to engage the clutch, if the spring with spring index 6 and material of spring the wire diameter if 6 springs are used.		teeth wheel. The module of the wheel is 5mm and the pitch			
centre distance, the lead and lead angle. ii) Determine the forces. iii) Determine the efficiency of the drive. A simple band broke of drum diameter 600mm has a band passing over it with an angle of contact of 225°, while one end is connected to the fulcrum, the other end is connected to the brake lever at a distance of 400mm from the fulcrum. The brake lever is 1 m long. The brake is to absorb a power of 15 KW at 720rpm. Design the brake lever of rectangular cross-section, assuming depth to the thrice the width. Take allowable stress 80 MPa. A simple band brake of drum diameter 600 mm has a band passing over it with an angle of contact of 225°, while one end is connected to the fulcrum, the other end is connected to the brake lever at a distance of 400 mm from the fulcrum. The brake lever is 1 m long. The brake is to absorb a power of 15 kW at 720 rpm. Design the brake lever of rectangular cross section assuming depth to be thrice the width. Take allowable stress 80 MPa. A multiplate clutch consists of 5 steel and 4 bronze plates. The inner and outer diameters of friction discs are 75mm and 150mm respectively. The coefficient of friction is 0.1 and allowable pressure is to be limited to 0.3 MPa. Assuming uniform pressure. Calculate: i) The required axial force. Power that can be transmitted at 750 rpm. A plate clutch with a maximum diameter of 600 mm has maximum lining pressure of 0.35 MPa. The power to be transmitted at 400 rpm is 135 kW and 0.3 Find inside diameter and spring force required to engage the clutch, if the spring with spring index 6 and material of spring the wire diameter if 6 springs are used.		diameter of the worm is 60mm. The normal pressure angle is			
centre distance, the lead and lead angle. ii) Determine the forces. iii) Determine the efficiency of the drive. A simple band broke of drum diameter 600mm has a band passing over it with an angle of contact of 225°, while one end is connected to the fulcrum, the other end is connected to the brake lever at a distance of 400mm from the fulcrum. The brake lever is 1 m long. The brake is to absorb a power of 15 KW at 720rpm. Design the brake lever of rectangular cross-section, assuming depth to the thrice the width. Take allowable stress 80 MPa. A simple band brake of drum diameter 600 mm has a band passing over it with an angle of contact of 225°, while one end is connected to the fulcrum, the other end is connected to the brake lever at a distance of 400 mm from the fulcrum. The brake lever is 1 m long. The brake is to absorb a power of 15 kW at 720 rpm. Design the brake lever of rectangular cross section assuming depth to be thrice the width. Take allowable stress 80 MPa. A multiplate clutch consists of 5 steel and 4 bronze plates. The inner and outer diameters of friction discs are 75mm and 150mm respectively. The coefficient of friction is 0.1 and allowable pressure is to be limited to 0.3 MPa. Assuming uniform pressure. Calculate: i) The required axial force. Power that can be transmitted at 750 rpm. A plate clutch with a maximum diameter of 600 mm has maximum lining pressure of 0.35 MPa. The power to be transmitted at 400 rpm is 135 kW and 0.3 Find inside diameter and spring force required to engage the clutch, if the spring with spring index 6 and material of spring the wire diameter if 6 springs are used.		14.5°. The coefficient of friction is found to be 0.06. i) Find the			
A simple band broke of drum diameter 600mm has a band passing over it with an angle of contact of 225°, while one end is connected to the fulcrum, the other end is connected to the brake lever at a distance of 400mm from the fulcrum. The brake lever is 1 m long. The brake is to absorb a power of 15 KW at 720rpm. Design the brake lever of rectangular cross-section, assuming depth to the thrice the width. Take allowable stress 80 MPa. 8 A simple band brake of drum diameter 600 mm has a band passing over it with an angle of contact of 225°, while one end is connected to the fulcrum, the other end is connected to the brake lever at a distance of 400 mm from the fulcrum. The brake lever is 1 m long. The brake is to absorb a power of 15 kW at 720 rpm. Design the brake lever of rectangular cross section assuming depth to be thrice the width. Take allowable stress 80 MPa. 9 A multiplate clutch consists of 5 steel and 4 bronze plates. The inner and outer diameters of friction discs are 75mm and 150mm respectively. The coefficient of friction is 0.1 and allowable pressure is to be limited to 0.3 MPa. Assuming uniform pressure. Calculate: i) The required axial force. ii) Power that can be transmitted at 750 rpm. 10 A plate clutch with a maximum diameter of 600 mm has maximum lining pressure of 0.35 MPa. The power to be transmitted at 400 rpm is 135 kW and 0.3. Find inside diameter and spring force required to engage the clutch, if the spring with spring index 6 and material of spring the wire diameter if 6 springs are used.					
passing over it with an angle of contact of 225°, while one end is connected to the fulcrum, the other end is connected to the brake lever at a distance of 400mm from the fulcrum. The brake lever is 1 m long. The brake is to absorb a power of 15 KW at 720rpm. Design the brake lever of rectangular cross-section, assuming depth to the thrice the width. Take allowable stress 80 MPa. 8 A simple band brake of drum diameter 600 mm has a band passing over it with an angle of contact of 225°, while one end is connected to the brake lever at a distance of 400 mm from the fulcrum. The brake lever is 1 m long. The brake is to absorb a power of 15 kW at 720 rpm. Design the brake lever of rectangular cross section assuming depth to be thrice the width. Take allowable stress 80 MPa. 9 A multiplate clutch consists of 5 steel and 4 bronze plates. The inner and outer diameters of friction discs are 75mm and 150mm respectively. The coefficient of friction is 0.1 and allowable pressure is to be limited to 0.3 MPa. Assuming uniform pressure. Calculate: i) The required axial force. ii) Power that can be transmitted at 750 rpm. 10 A plate clutch with a maximum diameter of 600 mm has maximum lining pressure of 0.35 MPa. The power to be transmitted at 400 rpm is 135 kW and 0.3. Find inside diameter and spring force required to engage the clutch, if the spring with spring index 6 and material of spring the wire diameter if 6 springs are used.		forces. iii) Determine the efficiency of the drive.			
is connected to the fulcrum, the other end is connected to the brake lever at a distance of 400mm from the fulcrum. The brake lever is 1 m long. The brake is to absorb a power of 15 KW at 720rpm. Design the brake lever of rectangular cross-section, assuming depth to the thrice the width. Take allowable stress 80 MPa. 8	7		10	CO ₄	L4
brake lever at a distance of 400mm from the fulcrum. The brake lever is 1 m long. The brake is to absorb a power of 15 KW at 720rpm. Design the brake lever of rectangular cross-section, assuming depth to the thrice the width. Take allowable stress 80 MPa. 8 A simple band brake of drum diameter 600 mm has a band passing over it with an angle of contact of 225°, while one end is connected to the fulcrum, the other end is connected to the brake lever at a distance of 400 mm from the fulcrum. The brake lever is 1 m long. The brake is to absorb a power of 15 kW at 720 rpm. Design the brake lever of rectangular cross section assuming depth to be thrice the width. Take allowable stress 80 MPa. 9 A multiplate clutch consists of 5 steel and 4 bronze plates. The inner and outer diameters of friction discs are 75mm and 150mm respectively. The coefficient of friction is 0.1 and allowable pressure is to be limited to 0.3 MPa. Assuming uniform pressure. Calculate: i) The required axial force. ii) Power that can be transmitted at 750 rpm. 10 A plate clutch with a maximum diameter of 600 mm has uniform pressure of 0.35 MPa. The power to be transmitted at 400 rpm is 135 kW and 0.3. Find inside diameter and spring force required to engage the clutch, if the spring with spring index 6 and material of spring the wire diameter if 6 springs are used.					
brake lever is 1 m long. The brake is to absorb a power of 15 KW at 720rpm. Design the brake lever of rectangular cross-section, assuming depth to the thrice the width. Take allowable stress 80 MPa. 8 A simple band brake of drum diameter 600 mm has a band passing over it with an angle of contact of 225°, while one end is connected to the fulcrum, the other end is connected to the brake lever at a distance of 400 mm from the fulcrum. The brake lever is 1 m long. The brake is to absorb a power of 15 kW at 720 rpm. Design the brake lever of rectangular cross section assuming depth to be thrice the width. Take allowable stress 80 MPa. 9 A multiplate clutch consists of 5 steel and 4 bronze plates. The inner and outer diameters of friction discs are 75mm and 150mm respectively. The coefficient of friction is 0.1 and allowable pressure is to be limited to 0.3 MPa. Assuming uniform pressure. Calculate: i) The required axial force. ii) Power that can be transmitted at 750 rpm. 10 A plate clutch with a maximum diameter of 600 mm has naximum lining pressure of 0.35 MPa. The power to be transmitted at 400 rpm is 135 kW and 0.3. Find inside diameter and spring force required to engage the clutch, if the spring with spring index 6 and material of spring the wire diameter if 6 springs are used.					
KW at 720rpm. Design the brake lever of rectangular cross-section, assuming depth to the thrice the width. Take allowable stress 80 MPa. 8 A simple band brake of drum diameter 600 mm has a band passing over it with an angle of contact of 225°, while one end is connected to the fulcrum, the other end is connected to the brake lever at a distance of 400 mm from the fulcrum. The brake lever is 1 m long. The brake is to absorb a power of 15 kW at 720 rpm. Design the brake lever of rectangular cross section assuming depth to be thrice the width. Take allowable stress 80 MPa. 9 A multiplate clutch consists of 5 steel and 4 bronze plates. The inner and outer diameters of friction discs are 75mm and 150mm respectively. The coefficient of friction is 0.1 and allowable pressure is to be limited to 0.3 MPa. Assuming uniform pressure. Calculate: i) The required axial force. ii) Power that can be transmitted at 750 rpm. 10 A plate clutch with a maximum diameter of 600 mm has maximum lining pressure of 0.35 MPa. The power to be transmitted at 400 rpm is 135 kW and 0.3. Find inside diameter and spring force required to engage the clutch, if the spring with spring index 6 and material of spring the wire diameter if 6 springs are used.		brake lever at a distance of 400mm from the fulcrum. The			
cross-section, assuming depth to the thrice the width. Take allowable stress 80 MPa. A simple band brake of drum diameter 600 mm has a band passing over it with an angle of contact of 225°, while one end is connected to the fulcrum, the other end is connected to the brake lever at a distance of 400 mm from the fulcrum. The brake lever is 1 m long. The brake is to absorb a power of 15 kW at 720 rpm. Design the brake lever of rectangular cross section assuming depth to be thrice the width. Take allowable stress 80 MPa. A multiplate clutch consists of 5 steel and 4 bronze plates. The inner and outer diameters of friction discs are 75mm and 150mm respectively. The coefficient of friction is 0.1 and allowable pressure is to be limited to 0.3 MPa. Assuming uniform pressure. Calculate: i) The required axial force. ii) Power that can be transmitted at 750 rpm. A plate clutch with a maximum diameter of 600 mm has maximum lining pressure of 0.35 MPa. The power to be transmitted at 400 rpm is 135 kW and 0.3. Find inside diameter and spring force required to engage the clutch, if the spring with spring index 6 and material of spring the wire diameter if 6 springs are used.		brake lever is 1 m long. The brake is to absorb a power of 15			
allowable stress 80 MPa. A simple band brake of drum diameter 600 mm has a band passing over it with an angle of contact of 225°, while one end is connected to the fulcrum, the other end is connected to the brake lever at a distance of 400 mm from the fulcrum. The brake lever is 1 m long. The brake is to absorb a power of 15 kW at 720 rpm. Design the brake lever of rectangular cross section assuming depth to be thrice the width. Take allowable stress 80 MPa. 9 A multiplate clutch consists of 5 steel and 4 bronze plates. The inner and outer diameters of friction discs are 75mm and 150mm respectively. The coefficient of friction is 0.1 and allowable pressure is to be limited to 0.3 MPa. Assuming uniform pressure. Calculate: i) The required axial force. ii) Power that can be transmitted at 750 rpm. 10 A plate clutch with a maximum diameter of 600 mm has naximum lining pressure of 0.35 MPa. The power to be transmitted at 400 rpm is 135 kW and 0.3. Find inside diameter and spring force required to engage the clutch, if the spring with spring index 6 and material of spring the wire diameter if 6 springs are used.		KW at 720rpm. Design the brake lever of rectangular			
A simple band brake of drum diameter 600 mm has a band passing over it with an angle of contact of 225°, while one end is connected to the fulcrum, the other end is connected to the brake lever at a distance of 400 mm from the fulcrum. The brake lever is 1 m long. The brake is to absorb a power of 15 kW at 720 rpm. Design the brake lever of rectangular cross section assuming depth to be thrice the width. Take allowable stress 80 MPa. 9 A multiplate clutch consists of 5 steel and 4 bronze plates. The inner and outer diameters of friction discs are 75mm and 150mm respectively. The coefficient of friction is 0.1 and allowable pressure is to be limited to 0.3 MPa. Assuming uniform pressure. Calculate: i) The required axial force. ii) Power that can be transmitted at 750 rpm. 10 A plate clutch with a maximum diameter of 600 mm has maximum lining pressure of 0.35 MPa. The power to be transmitted at 400 rpm is 135 kW and 0.3. Find inside diameter and spring force required to engage the clutch, if the spring with spring index 6 and material of spring the wire diameter if 6 springs are used.		cross-section, assuming depth to the thrice the width. Take			
passing over it with an angle of contact of 225°, while one end is connected to the fulcrum, the other end is connected to the brake lever at a distance of 400 mm from the fulcrum. The brake lever is 1 m long. The brake is to absorb a power of 15 kW at 720 rpm. Design the brake lever of rectangular cross section assuming depth to be thrice the width. Take allowable stress 80 MPa. 9 A multiplate clutch consists of 5 steel and 4 bronze plates. The inner and outer diameters of friction discs are 75mm and 150mm respectively. The coefficient of friction is 0.1 and allowable pressure is to be limited to 0.3 MPa. Assuming uniform pressure. Calculate: i) The required axial force. ii) Power that can be transmitted at 750 rpm. 10 A plate clutch with a maximum diameter of 600 mm has maximum lining pressure of 0.35 MPa. The power to be transmitted at 400 rpm is 135 kW and 0.3. Find inside diameter and spring force required to engage the clutch, if the spring with spring index 6 and material of spring the wire diameter if 6 springs are used.					
is connected to the fulcrum, the other end is connected to the brake lever at a distance of 400 mm from the fulcrum. The brake lever is 1 m long. The brake is to absorb a power of 15 kW at 720 rpm. Design the brake lever of rectangular cross section assuming depth to be thrice the width. Take allowable stress 80 MPa. 9 A multiplate clutch consists of 5 steel and 4 bronze plates. The inner and outer diameters of friction discs are 75mm and 150mm respectively. The coefficient of friction is 0.1 and allowable pressure is to be limited to 0.3 MPa. Assuming uniform pressure. Calculate: i) The required axial force. ii) Power that can be transmitted at 750 rpm. 10 A plate clutch with a maximum diameter of 600 mm has maximum lining pressure of 0.35 MPa. The power to be transmitted at 400 rpm is 135 kW and 0.3. Find inside diameter and spring force required to engage the clutch, if the spring with spring index 6 and material of spring the wire diameter if 6 springs are used.	8		10	CO ₄	L4
brake lever at a distance of 400 mm from the fulcrum. The brake lever is 1 m long. The brake is to absorb a power of 15 kW at 720 rpm. Design the brake lever of rectangular cross section assuming depth to be thrice the width. Take allowable stress 80 MPa. 9 A multiplate clutch consists of 5 steel and 4 bronze plates. The inner and outer diameters of friction discs are 75mm and 150mm respectively. The coefficient of friction is 0.1 and allowable pressure is to be limited to 0.3 MPa. Assuming uniform pressure. Calculate: i) The required axial force. ii) Power that can be transmitted at 750 rpm. 10 A plate clutch with a maximum diameter of 600 mm has maximum lining pressure of 0.35 MPa. The power to be transmitted at 400 rpm is 135 kW and 0.3. Find inside diameter and spring force required to engage the clutch, if the spring with spring index 6 and material of spring the wire diameter if 6 springs are used.		, ,			
brake lever is 1 m long. The brake is to absorb a power of 15 kW at 720 rpm. Design the brake lever of rectangular cross section assuming depth to be thrice the width. Take allowable stress 80 MPa. 9 A multiplate clutch consists of 5 steel and 4 bronze plates. The inner and outer diameters of friction discs are 75mm and 150mm respectively. The coefficient of friction is 0.1 and allowable pressure is to be limited to 0.3 MPa. Assuming uniform pressure. Calculate: i) The required axial force. ii) Power that can be transmitted at 750 rpm. A plate clutch with a maximum diameter of 600 mm has maximum lining pressure of 0.35 MPa. The power to be transmitted at 400 rpm is 135 kW and 0.3. Find inside diameter and spring force required to engage the clutch, if the spring with spring index 6 and material of spring the wire diameter if 6 springs are used.					
kW at 720 rpm. Design the brake lever of rectangular cross section assuming depth to be thrice the width. Take allowable stress 80 MPa. 9 A multiplate clutch consists of 5 steel and 4 bronze plates. The inner and outer diameters of friction discs are 75mm and 150mm respectively. The coefficient of friction is 0.1 and allowable pressure is to be limited to 0.3 MPa. Assuming uniform pressure. Calculate: i) The required axial force. ii) Power that can be transmitted at 750 rpm. 10 A plate clutch with a maximum diameter of 600 mm has 10 CO4 L4 maximum lining pressure of 0.35 MPa. The power to be transmitted at 400 rpm is 135 kW and 0.3. Find inside diameter and spring force required to engage the clutch, if the spring with spring index 6 and material of spring the wire diameter if 6 springs are used.		·			
section assuming depth to be thrice the width. Take allowable stress 80 MPa. A multiplate clutch consists of 5 steel and 4 bronze plates. The inner and outer diameters of friction discs are 75mm and 150mm respectively. The coefficient of friction is 0.1 and allowable pressure is to be limited to 0.3 MPa. Assuming uniform pressure. Calculate: i) The required axial force. ii) Power that can be transmitted at 750 rpm. A plate clutch with a maximum diameter of 600 mm has maximum lining pressure of 0.35 MPa. The power to be transmitted at 400 rpm is 135 kW and 0.3. Find inside diameter and spring force required to engage the clutch, if the spring with spring index 6 and material of spring the wire diameter if 6 springs are used.					
stress 80 MPa. A multiplate clutch consists of 5 steel and 4 bronze plates. The inner and outer diameters of friction discs are 75mm and 150mm respectively. The coefficient of friction is 0.1 and allowable pressure is to be limited to 0.3 MPa. Assuming uniform pressure. Calculate: i) The required axial force. ii) Power that can be transmitted at 750 rpm. A plate clutch with a maximum diameter of 600 mm has maximum lining pressure of 0.35 MPa. The power to be transmitted at 400 rpm is 135 kW and 0.3. Find inside diameter and spring force required to engage the clutch, if the spring with spring index 6 and material of spring the wire diameter if 6 springs are used.					
A multiplate clutch consists of 5 steel and 4 bronze plates. The inner and outer diameters of friction discs are 75mm and 150mm respectively. The coefficient of friction is 0.1 and allowable pressure is to be limited to 0.3 MPa. Assuming uniform pressure. Calculate: i) The required axial force. ii) Power that can be transmitted at 750 rpm. A plate clutch with a maximum diameter of 600 mm has maximum lining pressure of 0.35 MPa. The power to be transmitted at 400 rpm is 135 kW and 0.3. Find inside diameter and spring force required to engage the clutch, if the spring with spring index 6 and material of spring the wire diameter if 6 springs are used.					
inner and outer diameters of friction discs are 75mm and 150mm respectively. The coefficient of friction is 0.1 and allowable pressure is to be limited to 0.3 MPa. Assuming uniform pressure. Calculate: i) The required axial force. ii) Power that can be transmitted at 750 rpm. 10 A plate clutch with a maximum diameter of 600 mm has maximum lining pressure of 0.35 MPa. The power to be transmitted at 400 rpm is 135 kW and 0.3. Find inside diameter and spring force required to engage the clutch, if the spring with spring index 6 and material of spring the wire diameter if 6 springs are used.				00	1 .
150mm respectively. The coefficient of friction is 0.1 and allowable pressure is to be limited to 0.3 MPa. Assuming uniform pressure. Calculate: i) The required axial force. ii) Power that can be transmitted at 750 rpm. A plate clutch with a maximum diameter of 600 mm has maximum lining pressure of 0.35 MPa. The power to be transmitted at 400 rpm is 135 kW and 0.3. Find inside diameter and spring force required to engage the clutch, if the spring with spring index 6 and material of spring the wire diameter if 6 springs are used.	9		10	CO4	L4
allowable pressure is to be limited to 0.3 MPa. Assuming uniform pressure. Calculate: i) The required axial force. ii) Power that can be transmitted at 750 rpm. A plate clutch with a maximum diameter of 600 mm has maximum lining pressure of 0.35 MPa. The power to be transmitted at 400 rpm is 135 kW and 0.3. Find inside diameter and spring force required to engage the clutch, if the spring with spring index 6 and material of spring the wire diameter if 6 springs are used.					
uniform pressure. Calculate: i) The required axial force. ii) Power that can be transmitted at 750 rpm. A plate clutch with a maximum diameter of 600 mm has maximum lining pressure of 0.35 MPa. The power to be transmitted at 400 rpm is 135 kW and 0.3. Find inside diameter and spring force required to engage the clutch, if the spring with spring index 6 and material of spring the wire diameter if 6 springs are used.		-			
ii) Power that can be transmitted at 750 rpm. A plate clutch with a maximum diameter of 600 mm has maximum lining pressure of 0.35 MPa. The power to be transmitted at 400 rpm is 135 kW and 0.3. Find inside diameter and spring force required to engage the clutch, if the spring with spring index 6 and material of spring the wire diameter if 6 springs are used.		,			
A plate clutch with a maximum diameter of 600 mm has maximum lining pressure of 0.35 MPa. The power to be transmitted at 400 rpm is 135 kW and 0.3. Find inside diameter and spring force required to engage the clutch, if the spring with spring index 6 and material of spring the wire diameter if 6 springs are used.		· · · · · · · · · · · · · · · · · · ·			
maximum lining pressure of 0.35 MPa. The power to be transmitted at 400 rpm is 135 kW and 0.3. Find inside diameter and spring force required to engage the clutch, if the spring with spring index 6 and material of spring the wire diameter if 6 springs are used.	10		10	CO4	
transmitted at 400 rpm is 135 kW and 0.3. Find inside diameter and spring force required to engage the clutch, if the spring with spring index 6 and material of spring the wire diameter if 6 springs are used.	10		TO	CO4	∟4
and spring force required to engage the clutch, if the spring with spring index 6 and material of spring the wire diameter if 6 springs are used.					
with spring index 6 and material of spring the wire diameter if 6 springs are used.		·			
6 springs are used.					
11					
	11	o spinigs are useu.			
	12				
13					
14					
15					

D2. TEACHING PLAN - 2

Title:	Lubrication & Bearings	Appr Time:	12 Hrs
а	Course Outcomes	СО	Blooms
_	At the end of the topic the student should be able to	-	Level
1	Design of hydrodynamic bearings and slelection of antifriction bearing for diffeent applications	CO5	L4
b	Course Schedule		
Class No	Portion covered per hour	-	-
32	Introduction to Bearings, Types of bearing, Antifriction bearings, Advantagees and disadvantages of antifriction bearing over sliding contact bearings.	CO5	L2
33	Static loading capacity, Dynamic loading capacity, Equivalent load, Procedure for selection of ball bearing, Numericals on selection of ball bearings.	CO5	L4
34	Numericals on selection of ball bearings.	CO5	L4
35	Numericals on selection of ball bearings.	CO5	L4
36	Introduction to lubrication, lubricants, types of lubricants, properties of a good lubricant, types of bearings. Hydrodynamic and hydrostatic journal bearings.	CO5	L2
37	Introduction to lightly loaded bearings, mechanism of pressure in an hydrodynamic lubricated bearing, Petroffs equation.	CO5	L2
38	Numericals on lightly loaded bearings.	CO5	L4
39	Bearing modulus, coeficient of friction, summerfelds number, heat generated and heat dissipatated in journal bearings.	CO5	L4
40	Numericals on hydrodynamic journal bearings.	CO5	L4
41	Numericals on hydrodynamic journal bearings.	CO5	L4
С	Application Areas	CO ₅	_
	Students should be able employ / apply the Module learnings to	CO5	_
1	Engines, Machineries	CO5	L4
2	Automobiles.	CO5	L4
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
2	Explain I) Static load capacity ii) Dynamic load capacity and iii) Life of ball bearing.		L2
3	Enumerate the advantages and disadvantages of rolling contact bearing over sliding contact bearings.	CO5	L2
4	Select a deep groove ball bearing required for a shaft of diameter 50mm to withstand a radial load of 5kN and a thrust load of 2 kN at a speed of 900rpm. The bearing works for 40hrs per week for 2.5 years.	CO5	L4
5	A single row deep groove ball bearing is subjected to a radial force of 7kN and thrust force of 2.2kN. The shaft rotates at 1200rpm. The expected life of the bearing is 2000ohrs. The diameter of the shaft is 75mm. Select a suitable ball bearing for this application. Take X=0.56 and Y=1.8.	CO ₅	L4
6	Select a deep groove ball bearing required for a shaft diamete of 45mm to withstand a radial load of 6kN and a thrust load of 3kN at a speed of 300rpm. The beaing works for 8hrs a day for 3 years.		L4
7	Select a suitable ball bearing to carry a radial load of 3.5kN and a thrust load of 3kN at 1750rpm. The bearing will be used for 8hrs a day, 6days a week for 5 years.		L4
8	Definr hydrodynamic lubrication. Explain the principle of hydrodnamic lubrication.		L4
9	Derive Petroffs equation for coefficient of friction in lightly loaded journal bearing.		L4
10	A lightly loaded journal bearing is to support a radial load of 1kN. The diameter	COE	L4

	of the shaft is 50mm and length of the bearing is 60mm. The oil used as the lubricant is SAE 30 at 70oC. Determine the coefficient of friction and power loss in the bearing if the speed is 750rpm and the diametral clearance is 0,001.		
11	A lightly loaded journal bearing has the following specifications. Journal dia = 70mm, Bearing length = 55mm, Diametral clearance = 0.01mm, Speed = 22000rpm, Radial load = 1kN. The power loss in the bearing is found to be 3.5KW. Determine I) Voscosity of oil ii) Coefficient of friction at operating conditions.	CO5	L4
12	A lightly loaded full journal bearing has the following specifications. Bearing doa = 80mm, Bearing Length =60mm, Diametral clearance = 0.12mm, Jolurnal speed = 24000rpm, Voscosity of the lubricating oil = 4CP, Radial load = 900rpm. Determine Frictional force, Torque, Power loss, Coefficient of friction.		L4
13	Design the main bearing of a steam turbine running at 1800rpm. The diameter of journal is 40mm. The load on the journal is 3kN. Operating temperature of oil film is 60oC		L4
14	A 75mm long full journal bearing of diameter 75mm supports a load of 12kN on a journal rotating at 1800rpm. Assuming ratio of 1000 and an oil having viscosity 0.01N-s/m2 at the operating te,petrature, detemine the coeficient of friction by using I) Mckee equation ii) Raimondi and Boyd curve iii) also determine the amount of heat generated using the c o f as calculated by Mckee equation.		L4
15	A 75mm long full journal bearing of diameter 75mm supportgs a radial load of 12kN at a shaft speed of 1800rpm. The diametral clearance ratio is 0.001. The viscosity of oil is 0.01PaS. Detemine Sommerfelds number, Coefficient of friction, Amount of heat generated, minimum oil film thickness and quantity of oil flow through the bearing.		L4
е	Experiences	_	_
1	LAPETICIOCO		
2			
3			

Title:	Curved Beams, Cylinder & cylinder heads	Appr	13 Hrs
		Time:	
a	Course Outcomes	CO	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Apply design concepts to Analyse curved beams	CO1	L4
b	Course Schedule		
Class No	Portion covered per hour	-	-
42	Introduction to Curved beams, Applications, stress in curved beams, difference between straight and curved beams	CO1	L3
43	Numericals on curved beams	CO1	L4
44	Numericals on curved beams	CO1	L4
45	Numericals on curved beams	CO1	L4
46	Numericals on curved beams	CO1	L4
47	Introduction to Cylinders and Cylinder heads, Lames equation.	CO1	L2
48	Numericals on Cylinders and compound cylinders	CO1	L4
49	Numericals on Cylinders and compound cylinders	CO1	L4
50	Streses due to different types of fits on cylinders, Numericals	CO1	L4
51	Numericals on different types of fits on cylinders	CO1	L4
С	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	C Clamps, Machines, Crane hooks	CO1	L4
d	Review Questions	_	-

-	The attainment of the module learning assessed through following questions	-	-
1	Give the differences between a straight and curved beams.	CO1	L2
2	Compute the combined stresses at the inner and outer fibres in the critical	CO1	L4
	cross section of a crane hook which is required to lift load upto 25 kN. The		
	hook has trapezoidal cross section with parallel sides 60mm and 30mm, the		
	distance between them being 90mm. The inner radius of the hook is 100mm.		
	The load line is nearer to the inner surface of the hook by 25mm than the		
	centre of curvature at the critical section. What will be the stresses at inner and		
	outer fibre, if the beam is treated as straight beam for the given load?		
3	A Crane hook of trapezoidal cross-section with an inner side of 120mm and	CO1	L4
	outer side of 60mm. The depth of the section is 90mm. The centre of curvature		
	is at a distance of 120mm from the inner edge of the section and the line of		
	action of load is at a distance of 135mm from the inner edge. Determine the		
	safe load that the hook can carry if it is made of steel having an allowable		
	stress of 90 MPa.		
4	Determine the value of 't' in the cross section of a curved machine member	CO1	L4
	shown in Fig. Q 1(a), so that the normal stresses due to bending at extreme		
	fibers are numerically equal. Also determine the normal stresses so induced at		
	extreme fibers due to a bending moment of 10 KN — m.		
5	The cross section of a steel crane hook is a trapezium with an inner side of 50	CO1	L4
	mm and outer side of 25 mm. The depth of the section is 64 mm. The centre of		
	curvature of the section is at a distance of 64 mm from the inner edge of the		
	section and the line of action of load is 50 mm from the same edge. Determine		
	the maximum load hook can carry if the allowable strength is limited to 60 MPa.		
6	A cast iron cylinder of internal diameter 200 mm and thickness 50 mm is	CO1	L4
	subjected to a pressure of 5 N/mm'. Calculate the tangential and radial		
	stresses at the inner, middle and outer surface.		
7	A cast iron cylindrical pipe of outside diameter — 300 mm and inside diameter	CO1	L4
	200 mm is subjected to an internal pressure of 20 N/mm2 and external fluid		
	pressure of 5 N/inm2. Determine the tangential and radial stresses at the inner,		
	middle and outer surface. Sketch the tangential and radial distribution across		
	its thickness.		
8	A cylinder is provided with a heat of flat circular steel plate of 500 mm	CO1	L4
	diameter and is supported around the edge. It is subjected to a uniform		
	pressure of 5 N/mm2. The allowable working stress for the material is 70		
	N/mm2 and Poisson's ratio is 0.3. Determine the i) Thickness of thick cylinder		
9	wall and ii) Thickness of the circular flat cylinder head. A circular plate made of steel and of diameter 200 mm with thickness 10 mm is	CO1	L4
9	subjected to a load inducing a pressure of 4 MPa. Taking E = 201 kN /mm2,	COI	∟ 4
	Poisson's ratio = 0.3, determine :		
	i) The maximum stress, its location and maximum deflection when the edges		
	of the plate are supported		
	ii) The maximum stress, its location and maximum deflection when the edge of		
	the plate is fi ed.	00:	1
10	A tube, with 50mm and 75mm inner and outer diameters respectively is	CO1	L4
	reinforced by shrinking a jacket of outer diameter 100mm. The compound tube has to withstand an internal pressure of 35Mpa. Calculate the shrinkage		
	allowance such that the maximum tangential stress in each tube has same		
	magnitude. Also calculate the shrinkage pressure and show the distribution of		
	tangential stresses. Assume E = 207 kN/mm 2.		
е	Experiences	-	-
1			
2			

E2. CIA EXAM - 2

a. Model Question Paper - 2

Crs (Code	15ME64 Sem: VII Marks: 30 Time: 75	minute	S	
Cour	rse:	DESIGN OF MACHINE ELEMENTS-2			
-	-	Note: Answer all questions, each carry equal marks. Module : 3, 4	Marks	CO	Level
1	a	Derive Petroff's equation for coefficient of friction for a lightly loaded bearing.	5	CO5	L2
	b	Select a deep groove ball bearing required for a shaft diameter of 50mm to withstand a radial load of 5kN and a thrust load of 2kN at a speed of 900rpm. The bearing works for 40hrs/ week and for 2.5 years.		CO5	L4
		OR			
2		A lightly loaded journal bearing is to support a radial load of 1kN. The diameter of the shaft is 50mm and length of the bearing is 60mm. The oil used as the lubricant is SAE 30 at 70oC. Determine the coefficient of friction and power loss in the bearing if the speed is 750rpm and the diametral clearance is 0,001.		CO ₅	L4
	b	A 75mm long full journal bearing of diameter 75mm supports a load of 12kN on a journal rotating at 1800rpm. Assuming ratio of 1000 and an oil having viscosity 0.01N-s/m2 at the operating te,petrature, detemine the coeficient of friction by using I) Mckee equation ii) Raimondi and Boyd curve iii) also determine the amount of heat generated using the c o f as calculated by Mckee equation.	7	CO5	L4
		Difference of the least war as a characteristic because and a constant because	4	CO1	1.0
3	a	Differenciate between a straight beam and curved beam.	4	CO1	L2
	b	Determine the value of stem thickness 't' in the T — cross section of a curved beam shown in Fig.Q.1(b) such that the normal stresses due to bending at the extreme inner and outer fibres are numerically equal.		CO1	L4
		OR			
		Compute the combined stresses at the inner and outer fibres in the critical cross section of a crane hook which is required to lift loads upto 25 kN. The hook has trapezoidal cross section with parallel sides 60 mm and 30 min, the distance between them being 90 mm. The inner radius of the hook is 100 mm. The load line is nearer to the inner surface of the hook by 25 mm than the centre of curvature at the critical section.		CO1	L4

b. Assignment – 2

Note: A distinct assignment to be assigned to each student.

note.	Note. A distinct assignment to be assigned to each student.										
	Model Assignment Questions										
Crs C	Crs Code: 17ME64 Sem: VI Marks: 5 Time: 90 – 120 minutes									5	
Cours	se:	DESIGN (OF MACHINE	ELEMENTS	-2	Module :5, 1	Ĺ				
Note:	Each	student t	o answer 2-3	assignment	s. Each assi	gnment carr	ies equal mar	k.			
SNo	l	USN		Assigı	nment Desc	ription		Marks CO Level			
1			A single row	deep groov	e ball bearir	ng is subject	ted to a radia	10	CO5	L4	

	force of 7kN and thrust force of 2.2kN. The shaft rotates at			
	1200rpm. The expected life of the bearing is 20000hrs. The			
	diameter of the shaft is 75mm. Select a suitable ball bearing			
	for this application. Take X=0.56 and Y=1.8.			
2	A lightly loaded full journal bearing has the following specifications. Bearing doa = 80mm, Bearing Length =60mm,	10	CO5	L4
	Diametral clearance = 0.12mm, Jolurnal speed = 24000rpm,			
	Voscosity of the lubricating oil = 4CP, Radial load = 900rpm.			
	Determine Frictional force, Torque, Power loss, Coefficient of			
	friction.			
3	Design the main bearing of a steam turbine running at	10	CO5	L4
	1800rpm. The diameter of journal is 40mm. The load on the			
	journal is 3kN. Operating temperature of oil film is 600C	10	CO-	1 4
4	A 75mm long full journal bearing of diameter 75mm supports a load of 12kN on a journal rotating at 1800rpm. Assuming	10	CO5	L4
	ratio of 1000 and an oil having viscosity 0.01N-s/m2 at the			
	operating te,petrature, determine the coeficient of friction by			
	using I) Mckee equation ii) Raimondi and Boyd curve iii) also			
	determine the amount of heat generated using the c o f as			
	calculated by Mckee equation.			
5	Crane hook of trapezoidal cross-section with an inner side of	10	CO1	L4
	120mm and outer side of 60mm. The depth of the section is			
	90mm. The centre of curvature is at a distance of 120mm from			
	the inner edge of the section and the line of action of load is at			
	a distance of 135mm from the inner edge. Determine the safe			
	load that the hook can carry if it is made of steel having an			
	allowable stress of 90 MPa.			
6	A cast iron cylindrical pipe of outside diameter — 300 mm and	10	CO1	L4
	inside diameter 200 mm is subjected to an internal pressure of			
	20 N/mm2 and external fluid pressure of 5 N/inm2. Determine			
	the tangential and radial stresses at the inner, middle and			
	outer surface. Sketch the tangential and radial distribution			
	across its thickness.			
7				
8				
9				
10				

D₃. TEACHING PLAN - 3

Title:	Belt Drives, Rope & Chain drives, Springs	Appr	10 Hrs
		Time:	
a	Course Outcomes	СО	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Design Machine elements involving springs, belts and pulleys.	CO2	L4
b	Course Schedule	-	-
Class No	Portion covered per hour	-	-

COURSE PLAN - CAY 2018-19

52	Introduction to springs, Types of springs, Spring materials, stresses & deflection in helical springs of circular section.	CO2	L2
53	Numericals on circular Helical springs	CO2	L4
54	Numericals on circular Helical springs	CO2	L4
55	Introduction to noncircular helical springs, numericals	CO2	L4
56	Numericals on non circular helical springs	CO ₂	 L4
57	Numericlas on concentric helical springs.	CO ₂	 L4
58	Introduction to lea springs, Stresses and deflection in leaf springs	CO2	_ L4
59	Construction of Semielliptical leaf springs, numericals	CO2	 L4
60	Numericals n semiellipctical leaf springs.	CO2	 L4
61	Introduction to belt drives, flat belt drives	CO2	L4
62	Numericals on flat belt drives	CO2	L4
63	Numericals on flat belt drives	CO2	 L4
64	Introduction to v belt drives, procedure for design	CO ₂	 L4
65	Numericals on design of v belt drives	CO2	 L4
С	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	Floor Mills, Machineries, Automobiles	CO2	L4
d	Review Questions	-	ı
-		-	-
1	Derive an expression for stress and deflection induced in an helical spring.	CO2	L2
2	Design a helical compression spring for a service load ranging from 2250N to	CO2	L4
	2750N. The axial deflection of the spring for the load range is 6mm. Assume a		
	spring index of 5, permissible shear stress of 420 MPa and modulus of rigidity of		
	84N/mm.		
3	Helical compression spring i s subjected to 1960 N force, as to deflect by 50	CO2	L4
	mm. Under this load the outside diameter is not to exceed 70 mm and inside		
	diameter not less than 20 mm. Take allowable shear stress is 430 MPa, spring		
	index is 6. Design the spring.		
4	A multi leaf spring with camber is fitted to the chassis of an automobile over a	CO2	L4
	span of 1.2m to absorb shocks due to a max load of 20 kN. The spring material		
	can sustain a max. Stress of 0.4 GPa. All the leaves of the spring were to receive		
	the same stress. The spring is required at least 2 full length leaves out of 8		
	leaves. The leaves were assembled with bolts over a span of 150mm width at		
	the middle. Design the spring for a max. deflection of 50mm		
5	Design a valve spring of a petrol engine for the following operating conditions.	CO2	L4
	Spring load when the valve is open — 400N	002	-4
	Spring load when the valve is closed — 250N		
	Maximum inside dia of spring — 25mm		
	Length of spring when the valve is pleased. 50 mm		
	Length of spring when the valve is closed — 50rrun		
	Maximum permissible stress = 400MPa	000	1.
6	A truck spring has 12 leaves, two of which are full length leaves. The spring		L4
	supports are 1.05m apart and the central band is 85mm wide. The central load		
	is 5.4 kN and the permissible stress in spring material is 280 MPa. If the ratio of		
	total depth to width of the spring is 3, determine the thickness & width of the		
	spring leaves and also the deflection of the spring.		
7	Two shafts I meter apart are connected by a v-belt to transmit 90 KW at 1200		L4
	rpm of a driver pulley of 300mm effective diameter. The driven pulley rotates at		
	400 rpm. The angle of groove is 40° and the coefficient of friction between the		
	belt and the pulley rim 0.25. The area of the belt section is 400mm2 and the		
	permissible stress is 2.1 MPa. Density of the belt material is 1100 kg/m3.		
8	Calculate the number of belts required and the length of the belt. Select a v-belt drive to transmit 9 kW from a shaft rotating at 1200rpm to a	CO2	L2
0	pelect a v-pell unive to transmit 9 km morn a shall rotating at 1200/pm to a	UU2	LZ

9	parallel shaft to run at 300rpm. The diameter of smaller pulley is 120mm. The centre distance between shafts is 1.2m. A nylon core flat belt 200 mm wide weighing 20 N/m, connecting a 300mm diameter pulley to a 900 mm diameter driven pulley at a shaft spacing of 6 m, transmits 55.2 kW at a belt speed of 25 m/sec i) calculate the belt length and the angles of wrap ii) compute the belt tensions based on a co-efficient of		L4
10	friction 0.38. Two shafts one metre apart are connected by a V — belt to transmit 90 kW at 1200 rpm of a driver pulley of 300 mm effective diameter. The driven pulley rotates at 400 rpm. The angle of groove is 40° and the co-efficient of friction between the belt and the pulley rim is 0.25. The area of the belt section is 400 mm2 and the permissible stress is 2.1 MPa. Density of belt material is 1100 kg/m3. Calculate the number of belts required and the length of the belt.		L4
е	Experiences	-	_
1			
2			
3			
4			
5			

E3. CIA EXAM – 3

a. Model Question Paper - 3

Crs Code:15ME64 Sem: VI Marks: 30 Time: 75 n							75 minute	S		
Cour	se:	DESIGN OF	MACHINE	ELEMENTS	-2					
-	-	Note: Answ	Note: Answer all questions, each carry equal marks. Module:1							Level
1	а	Derive an e	xpression	for stress and	d deflection	induced	in an helical sprir	ng. 5	CO2	L2
	b	Design a h	nelical cor	mpression sp	oring for a	service	load ranging fro	m 10	CO2	L4
		2250N to 2	750N. The	axial deflec	tion of the	spring fo	or the load range	is		
		6mm. Assu	me a spri	ng index of	5, permissib	ole shear	stress of 420 M	Pa		
		and moduli	us of rigidi	ty of 84N/mr	n.					
2	а	Derive an e	xpressions	s for stress ar	nd deflection	nin leaf s	prings	5	CO2	L2
	b	Two shafts I meter apart are connected by a v-belt to transmit 90 KW at 1200 rpm of a driver pulley of 300mm effective diameter. The driver pulley rotates at 400 rpm. The angle of groove is 40° and the coefficient of friction between the belt and the pulley rim 0.25. The area of the belt section is 400mm2 and the permissible stress is 2.1 MPa. Density of the belt material is 1100 kg/m3. Calculate the number of belts required and the length of the belt.							CO2	L4
3	а	km/hour l	has to be	e stopped l	by four bu	ffer spri	rith a speed of ings in which t nd the number	he	CO4	L4

		turns in each spring of mean diameter 150 mm. The diameter of spring wire is 25 mm. Take G = 82.7Gpa.			
	b	Select a V-belt drive to transmit 9 kW from a shaft rotating at 1200rpm to a parallel shaft to run at 300rpm. The diameter of smaller pulley is 120mm. The centre distance between shafts is 1.2m.		CO3	L4
		OR			
4	а	Select a V-belt drive to transmit 18 KW at 1500 rpm to another pulley to run at 750 rpm.	8	CO3	L4
	b	A multi leaf spring with camber is fitted to the chassis of an automobile over a span of 1.2m to absorb shocks due to a max load of 20 kN. The spring material can sustain a max. Stress of 0.4 GPa. All the leaves of the spring were to receive the same stress. The spring is required at least 2 full length leaves out of 8 leaves. The leaves were assembled with bolts over a span of 150mm width at the middle. Design the spring for a max. deflection of 50mm.		CO4	L4

b. Assignment – 3

Note: A distinct assignment to be assigned to each student.

Model Assignment Questions

			Mo	del Assignme	ent Questic	ns			
Crs C	17ME64	Sem:	VI	Marks:	5	Time:	90 – 120	minute	S
Cours		OF MACHII			Module				
		to answer 2				carries equal m			
SNo	USN			ssignment De			Marks	СО	Level
1		•			•	rvice load rangi	O	CO2	L4
						f the spring for t	I		
					O	of 5, permissik	I		
						lity of 84N/mm.			
2		Helical cor	npression	spring is sub	jected to 1	.960 N force, as	to 10	CO2	L4
		deflect by	50 mm. U	nder this load	d the outsi	de diameter is r	not		
		to exceed	70 mm a	nd inside dia	meter not	less than 20 m	m.		
		Take allow	able shea	ar stress is z	130 MPa, s	spring index is	6.		
		Design the							
3		A multi lea	af spring v	vith camber i	is fitted to	the chassis of	an 10	CO2	L4
		automobile	e over a sp	an of 1.2m to	absorb sh	ocks due to a m	ax		
		load of 20	kN. The sp	oring material	. can susta	in a max. Stress	of		
		0.4 GPa. Al	l the leave	es of the sprir	ng were to	receive the sar	ne		
		stress. The	spring is r	equired at lea	ast 2 full le	ngth leaves out	of		
		8 leaves. T	he leaves	were assemb	led with b	olts over a span	of		
		150mm wi	dth at the	e middle. De	esign the	spring for a ma	ax.		
		deflection	of 50mm						
4		Select a v-	belt drive	to transmit g	kW from	a shaft rotating	at 10	CO2	L4
						n. The diameter			
			lley is 120	mm. The cer	itre distand	ce between sha	fts		
		is 1.2m.							
5		A pylon o	ora flat l	nelt 200 mr	n wide w	eighing 20 N/	m. 10	CO2	L4
5						900 mm diame		002	L4
						smits 55.2 kW a			
						elt length and t			
					elt tension	is based on a c	:0-		
		efficient of	friction 0.3	38.					
6									
7									
8									
9									

F. EXAM PREPARATION

1. University Model Question Paper

Cours	e:	DESIGN OF MACHINE ELEMENTS-2 Month	/ Year	July /	2020
		17ME64 Sem: VI Marks: 100 Time:		180 mi	
Mod	Note	Answer all FIVE full questions. All questions carry equal marks.	Marks	СО	Level
ule					
1		Differenciate between a straight beam and curved beam.	5	CO1	L2
	b	Compute the combined stresses at the inner and outer fibres in th		CO1	L4
		critical cross section of a crane hook which is required to lift load upto 2	5		
		kN. The hook has trapezoidal cross section with parallel sides 60mm an	b		
		30mm, the distance between them being 90mm. The inner radius of th	Э		
		hook is 100mm. The load line is nearer to the inner surface of the hook b	У		
		25mm than the centre of curvature at the critical section. What will be th	Э		
		stresses at inner and outer fibre, if the beam is treated as straight bear	า		
		for the given load?			
		OR			
2	a	Determine the value of stem thickness 't' in the $T-$ cross section of	f 12	CO1	L4
		a curved beam shown in Fig.Q.1(b) such that the normal stresse	S		
		due to bending at the extreme inner and outer fibres ar	Э		
		numerically equal.			
		equal. Centre line of			
		curvature			
		T 7////////////////////////////////////			
		1 1//////			
		<u> </u>			
		150			
		į.			
		A gast iron outlinder of internal diameter 200 mm and thickness 50 mm	6 0	CO1	1.4
		A cast iron cylinder of internal diameter 200 mm and thickness 50 mm is subjected to a pressure of 5 N/mm'. Calculate the tangential and radia		COI	L4
		stresses at the inner, middle and outer surface.	11		
		stresses at the inner, middle and outer surface.			
3	a	Derive an expression for stress and deflection induced in an helical spring	g. 5	CO2	L2
	b	wo shafts I meter apart are connected by a v-belt to transmit 90 KW a	t 15	CO2	L4
		1200 rpm of a driver pulley of 300mm effective diameter. The drive			
		pulley rotates at 400 rpm. The angle of groove is 40° and the coefficient of			
		friction between the belt and the pulley rim 0.25. The area of the be			
		section is 400mm2 and the permissible stress is 2.1 MPa. Density of the belt material is 1100 kg/m3 . Calculate the number of belts required an			
		the length of the belt.	٦		
		OR			
4	а	Select a V-belt drive to transmit 18 KW at 1500 rpm to anothe	r 10	CO3	L4
		pulley to run at 750 rpm.			
	b	A multi leaf spring with camber is fitted to the chassis of a	า 10	CO ₄	L4
		automobile over a span of 1.2m to absorb shocks due to a ma	×		
		load of 20 kN. The spring material can sustain a max. Stress of 0.	4		
		GPa. All the leaves of the spring were to receive the same stress			
		The spring is required at least 2 full length leaves out of 8 leaves			
		The leaves were assembled with bolts over a span of 150mm widt	า		
		at the middle. Design the spring for a max. deflection of 50mm.	1		
			1	00	\vdash
5		Design a pair of Spur Gears to transmit 20kW of power while	9 15	CO3	L4

		operating for 8 to 10 hrs/day sustaining medium shock, from a shaft rotating at 1000rpm to a parallel shaft which is to rotate at 310rpm. Assume the number of teeth on pinion to be 31 and 20° full depth involute tooth profile. The material for pinion is C40 steel, untreated whose σ_o =206.81N/mm² and for the gear is Cast steel, 0.2%C, untreated whose σ_o =137.34 N/mm². Check the design for Dynamic load if load factor, C=522.464 N/mm and also for wear load taking load stress factor, K=0.279 N/mm². Suggest suitable hardness.			
6		OR	4-	CO-	
6		Design a Helical gear pair to transmit a power of 15kW from a shaft rotating at 1000rpm to another shaft to run at 160rpm. Assume involute profile with a pressure angle of 20°. The material for pinion is forged steel SAE1030 whose σ_o = 172.375MPa and the material for the gear is cast steel 0.20%C untreated with σ_o =137.34 Mpa. The gears operate under a condition of medium shocks for a period of 10hrs/day. Check for dynamic load, if load factor C=580N/mm. and also for wear load.	15	CO3	L4
7		Design a worm gear drive to transmit a power of 2kW at 1000 rpm. The speed ratio is 20 and centre distance is 200mm. Assume the number of teeth on worm wheel to be 40 and - number of starts on worm to be 2. Assume hardened steel worm and phosphor bronze wheel for which ac, = 55 N/mm 2. Check the gear from stand point of strength and wear if load stress factor, K = 0.69 MPa. If the amount of Heat generated is 1.7 kW, check whether artificial cooling arrangement is necessary or not for a temperature rise of 40° K	20	CO4	L4
		OR			
8	а	A simple band brake of drum diameter 600mm has a band passing over it with an angle of contact of 225°, while one end is connected to the fulcrum, the other end is connected to the brake lever at a distance of 300mm from the fulcrum. The brake lever is 1 m long. The brake is to absorb a power of 15 KW at 720rpm. Design the brake lever of rectangular cross-section, assuming depth to the thrice the width. Take allowable stress 80 MPa.	10	CO4	L4
	b	A multiplate clutch consists of 5 steel and 4 bronze plates. The inner and outer diameters of friction discs are 75mm and 150mm respectively. The coefficient of friction is 0.1 and allowable pressure is to be limited to 0.3 MPa. Assuming uniform wear, Calculate: i) The required axial force. ii) Power that can be transmitted at 750 rpm.	10	CO4	L4
0	2	Derive Petroff's equation for coefficient of friction for a lightly	5	CO ₅	
9	a	Derive Petroff's equation for coefficient of friction for a lightly loaded bearing.			
	b	Select a deep groove ball bearing required for a shaft diameter of 50mm to withstand a radial load of 5kN and a thrust load of 2kN at a speed of 900rpm. The bearing works for 40hrs/ week and for 2.5 years. OR	10	CO5	L4
10	а	A lightly loaded journal bearing is to support a radial load of 1kN. The	8	CO ₅	L4
		diameter of the shaft is 50mm and length of the bearing is 60mm. The oil used as the lubricant is SAE 30 at 70oC. Determine the coefficient of friction and power loss in the bearing if the speed is 750rpm and the diametral clearance is 0,001.			·

	A 75mm long full journal bearing of diameter 75mm supports a load of				
	12kN on a journal rotating at 1800rpm. Assuming ratio of 1000 and an oil				
	having viscosity 0.01N-s/m2 at the operating te,petrature, detemine the	7	CO ₅	L4	
	coeficient of friction by using I) Mckee equation ii) Raimondi and Boyd				
	curve iii) also determine the amount of heat generated using the c o f as				
	calculated by Mckee equation.				

2. SEE Important Questions

Cours		DESIGN OF MACHINE ELEMENTS-2 Month	/ Voor	May /	2020
Crs Co		17ME64 Sem: 6 Marks: 100 Time: Answer all FIVE full questions. All questions carry equal marks.		180 mi	Tutes
		Important Question	Marks	СО	Year
1		Compute the combined stresses at the inner and outer fibres in the critical cross section of a crane hook which is required to lift load upto 25 kN. The hook has trapezoidal cross section with parallel sides 60mm and 30mm, the distance between them being 90mm. The inner radius of the hook is 100mm. The load line is nearer to the inner surface of the hook by 25mm than the centre of curvature at the critical section. What will be the stresses at inner and outer fibre. OR		CO1	2017
2	a	Differenciate between a straight beam and curved beam.	06	CO1	2017
		A cast iron cylindrical pipe of outside diameter 300 mm and inside diameter 200 mm is subjected to an internal fluid pressure of 20 N/mm2 and external fluid pressure of 5 N/mm2. Determine the tangential and radial stresses at the inner, middle and outer surface. Sketch the tangential and radial stress distribution across its thickness		CO1	2015
3	a	Two shafts I meter apart are connected by a v-belt to transmit 90 KW at 1200 rpm of a driver pulley of 300mm effective diameter. The driven pulley rotates at 400 rpm. The angle of groove is 40° and the coefficient of friction between the belt and the pulley rim 0.25. The area of the belt section is 400mm2 and the permissible stress is 2.1 MPa. Density of the belt material is 1100 kg/m3. Calculate the number of belts required and the length of the belt		CO2	2012
		A Railway Wsagon weighing 50kN and moving with a speed of 8 km/hr has to be stopped by four buffer springs in which the maximum compression allowed is 220 mm. Find the number of turns or coils in each spring of mean diameter 150mm. The diameter of spring wire is 25 mm. Take G = 84 GPa. Also find the shear stress.		CO2	2015
4		OR	10	CO2	2015
4		A multi leaf spring with camber is fitted to the chassis of an automobile over a span of 1.2 m to absorb shocks due to a maximum load of 20 kN. The spring material can sustain a maximum stress of 0.4 GPa. All the leaves of the spring were to receive the same stress. The spring is required at least 2 full length leaves out of 8 leaves. The leaves are assembled with bolts over a span of 150 mm width at the middle. Design the spring for a maximum deflection of 50 mm.	10	CO2	2015
		Select a v-belt drive to transmit 9 kW from a shaft rotating at 1200rpm to a parallel shaft to run at 300rpm. The diameter of smaller pulley is 120mm The centre distance between shafts is 1.2m.	10	CO4	2012
5		Design a pair of spur gears to transmit a power of 18 kW from a shaft running at 1000rpm to a parallel shaft to be run at 250 rpm maintaining a distance of 160mm between the shaft centers. Suggest suitable surface hardness for the gear pair.	20	CO3	2017
		OR			

7	a b	Design a pair of bevel gears to connect two shafts at 60°. The power transmitted is 25 kW at 900 rpm of pinion. The reduction ratio desired is 5:1. The teeth are 20° full depth involute and pinion has 24 teeth. Check the design for dynamic and wear considerations. Under what circumstances the bevel gears are used. Give a detailed classification of Bevel gears. Design a worn gear reducer unit which consists of a hardened steel worn and a phosphor bronze gear having 20° stub involute teeth. The centre distance is to be 200 mm and the transmission ratio is 10 and the worn speed is 2000 rpm. Assuming the temperature of gear and ambient	05	CO ₃ CO ₄ CO ₄	2018
		temperature as 65° and 25° respectively.			
		OR		00:	
8	а	A simple band broke of drum diameter 600mm has a band passing over it with an angle of contact of 225°, while one end is connected to the fulcrum, the other end is connected to the brake lever at a distance of 400mm from the fulcrum. The brake lever is 1 m long. The brake is to absorb a power of 15 KW at 720rpm. Design the brake lever of rectangular cross-section, assuming depth to the thrice the width. Take allowable stress 80 MPa.	10	CO4	
	b	In a multiple disc clutch, the radial width of the friction material is to be 0.2 of the maximum radius. The coefficient of friction is 0.250. The clutch is to transmit 60 kW at 3000 rpm. Its maximum diameter is 250 mm and the axial force is limited to 600 N. Determine i) Number of driving and driven discs ii) Mean unit pressure on each contact surface. Assume uniform wear.	10	CO4	2013
9	a	Derive the Petroffs equation for a lightly loaded journal bearing	05	CO ₅	2018
	b	A bearing for an axial flow compressor is to carry a radial load of 4905 N and thrust load of 2452 N. The service imposes light shock and the bearing is used for 40 hr/week for 5 years. The speed of shaft is 300 rpm and diameter of shaft is 60 mm. Select a suitable bearing	15	CO5	2018
10	2	OR A lightly loaded full journal bearing has the following specifications	10	COF	2012
10	a	A lightly loaded full journal bearing has the following specifications. Bearing doa = 80mm, Bearing Length =60mm, Diametral clearance = 0.12mm, Jolurnal speed = 24000rpm, Voscosity of the lubricating oil = 4CP, Radial load = 900rpm. Determine Frictional force, Torque, Power loss, Coefficient of friction.	10	CO ₅	2012
	b	single row deep groove ball bearing is subjected to a radial force of 7kN and thrust force of 2.2kN. The shaft rotates at 1200rpm. The expected life of the bearing is 20000hrs. The diameter of the shaft is 75mm. Select a suitable ball bearing for this application. Take X=0.56 and Y=1.8.	10	CO5	

G. Content to Course Outcomes

1. TLPA Parameters

Table 1: TLPA - Example Course

Мо	Course Content or Syllabus	Content	Blooms'	Final	Identified	Instructi	Assessment
dul	(Split module content into 2 parts which have	Teachin	Learning	Bloo	Action	on	Methods to
e-	similar concepts)	g Hours	Levels	ms'	Verbs for	Methods	Measure
#			for	Level	Learning	for	Learning
			Content			Learning	
Α	В	С	D	Ε	F	G	Н
1	Curved Beams: Stresses in Curved Beams of	10					
	standard cross sections used in crane hook,		- L2	L4	Compute	-	_
	punching presses and clamps, Closed rings		- L4			Lecture	Assignment
	and Links.					- Tutorial	_
	Cylinders & Cylinder Heads: Review of					_	_

	Lames equation, compound cylinders,						
	stresses due to different types of fit on						
	cylinders, cylinder heads and flats.						
2	Belts: Materials of construction of flat and V	14	- L2	L4	Compute	_	_
	belts, power rating of belts, concept of slip	- '	- L4	_'			Assignment
	and creep, initial tension, effect of centrifugal		'			_	-
	tension, maximum power condition. Selection						
	of flat and V belts- length & cross section						
	from manufacturers' catalogues. Construction						
	and application of timing belts.						
	Wire ropes: Construction of wire ropes,						
	stresses in wire ropes, and selection of wire						
	ropes. (Only theoretical treatment)						
	Chain drive: Types of power transmission						
	chains, modes of failure for chain, and						
	lubrication of chains. (Only theoretical						
	treatment)						
	Springs: Types of springs, spring materials,						
	stresses in helical coil springs of circular and						
	non-circular cross sections. Tension and						
	compression springs, concentric springs;						
	springs under fluctuating loads.						
	Leaf Springs : Stresses in leaf springs,						
	equalized stresses, and nipping of leaf springs. Introduction to torsion and Belleville						
	springs. Introduction to torsion and bettevitte						
2	Gear drives: Classification of gears, materials for	16	- L2	Ιa	Compute	_	_
٥	gears, standard systems of gear tooth, gear failure	10	- L2 - L4	∟ 4			Assignment
	modes and lubrication of gears.		-4			-	, tooligi ii rierie
	Spur Gears: Definitions, stresses in gear tooth:						
	Lewis equation and form factor, design for strength,						
	dynamic load and wear.						
	Helical Gears: Definitions, transverse and normal						
	module, formative number of teeth, design based on						
	strength, dynamic load and wear.						
	Paval Capra Definitions formative number of						
	Bevel Gears: Definitions, formative number of teeth, design based on strength, dynamic load and						
	wear.						
	Worm Gears: Definitions, types of worm and	15	- L2	lα	Design	_	_
-	worm gears, and materials for worm and	-5	- L5			Lecture	Assignment
	worm wheel. Design based on strength,					- Tutorial	
	dynamic, wear loads and efficiency of worm					_	_
	gear drives.						
	Design of Clutches : Types of clutches and						
	their applications, single plate and multi-plate						
	clutches. (Numerical examples only on single						
	and multi-plate clutches)						
	Design of Brakes: Types of Brakes, Block and Band brakes, solf locking of brakes, and boat						
	Band brakes, self locking of brakes, and heat generation in brakes.						
_	Lubrication and Bearings: Lubricants and	10	- L2		Compute	_	
)	their properties, bearing materials and	10	- L2 - L4	-4			- Assignment
	properties; mechanisms of lubrication,					-	-
	hydrodynamic lubrication, pressure					_	-
	development in oil film,						
	bearing modulus, coefficient of friction,						
	minimum oil film thickness, heat generated,						
	and heat dissipated. Numerical examples on						
	hydrodynamic journal and thrust bearing						

design.			
Antifriction bearings: Types of rolling contact			
bearings and their applications, static and			
dynamic load carrying capacities, equivalent			
bearing load, load life relationship, selection			
of			
deep grove ball bearings from the			
manufacturers' catalogue; selection of			
bearings subjected to cyclic loads and			
speeds; probability of survival.			

2. Concepts and Outcomes:

Table 2: Concept to Outcome - Example Course

	Outcome from	Concepts	Final Concept	Justification	CO Components (1.Action Verb,	Course Outcome
e- #	study of the Content or Syllabus	from Content		(What all Learning Happened from the study of Content / Syllabus. A short word for learning or outcome)	2.Knowledge, 3.Condition / Methodology, 4.Benchmark)	Student Should be able to
Α	1	J	K	L	М	N
	Curved Beams: Cylinders & Cylinder Heads:	_	analysis in	Analysying the stresses induced in curved beams	- Understand - stresses at inner & outer fibres - - -	Understand the stresses induced in curved beams due to eccentric loads A
	Belts:. Wire ropes: Chain drive: Springs: Leaf Springs:	-	Machine elements involving	Implement proper type of power transmission Understand the concepts of springs	- Analyze - forces on power drives Understand - types of springs and stresses in springs	Analyze the forces on power drives and select them. Understand the applications of springs and select them.
	Gear drives: Spur Gears Helical Gears: Bevel Gears:	-	different types of gears.	transmission in inclined shafts	- Types of Gear drives - Apply - Design Bevel geasrs - -	Understand parallel and inclined teeth on gears and their applications Selection of Bevel Gears
	Worm Gear: Design of Clutches: Design of Brakes:	- - -	concepts to design brakes and clutches.	between	gear in power transmission - Analyze types of	Describe the use of Worm gear drives Analyze clutches & brake in power transmission
	Lubrication and Bearings: Antifriction bearings:	_	hydrodynami c bearings	Explain the theory of lubrication Compare the advantages and	- Understand - analyse of bearings - Understand	Explain the working of bearings in different applications

COURSE PLAN - CAY 2018-19

	slelection of	disadvantages of	- and use antifriction	Compare and
	antifriction	using antifriction	bearing for specific	selection of
	bearing for	bearings	applications	antifriction bearings.
	diffeent			
	applications.			