Ref No:

Sri Krishna Institute of Technology, Bangalore

COURSE PLAN

Academic Year 2019-20

Program:	B E – MECHANICAL
Semester :	VI
Course Code:	17ME62
Course Title:	COMPUTER INTEGRATED MANUFACTURING
Credit / L-T-P:	4 / 3-2-0
Total Contact Hours:	50
Course Plan Author:	PRAMOD S N

Academic Evaluation and Monitoring Cell

 #29, Hesaraghatta Main road, Chimney Hills, Chikkabanavara P.O., Bengaluru – 560090, Karnataka, INDIA
Phone / Fax :+91 80 23721477 -STD- 080 23721315
Web:www.skit.org.in
E-mail:skit1princi@gmail.com/principal@skit.org.in

Table of Contents

A. COURSE INFORMATION	3
1. Course Overview	3
2. Course Content	3
3. Course Material	4
4. Course Prerequisites	5
5. Content for Placement, Profession, HE and GATE	5
B. OBE PARAMETERS	5
1. Course Outcomes	5
2. Course Applications	6
3. Mapping And Justification	6
4. Articulation Matrix	
5. Curricular Gap and Content	7
6. Content Beyond Syllabus	7
C. COURSE ASSESSMENT	8
1. Course Coverage	8
2. Continuous Internal Assessment (CIA)	8
D1. TEACHING PLAN - 1	9
Module - 1	9
Module – 2	10
E1. CIA EXAM – 1	11
a. Model Question Paper - 1	11
b. Assignment -1	11
E2.E2. CIA EXAM – 2	13
a. Model Question Paper - 2	13
b. Assignment – 2	13
D3. TEACHING PLAN - 3	15
Module – 5	15
E3. CIA EXAM – 3	16
a. Model Question Paper - 3	16
D3. TEACHING PLAN - 3	16
Module – 5	
F. EXAM PREPARATION	17
1. University Model Question Paper	17
2. SEE Important Questions	
G. Content to Course Outcomes	
1. TLPA Parameters	
2. Concepts and Outcomes:	22

Note : Remove "Table of Content" before including in CP Book

Each Course Plan shall be printed and made into a book with cover page Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	ME
Year / Semester :	3/VI	Academic Year:	2019-2020
Course Title:	COMPUTER INTEGRATED MANUFACTURING	Course Code:	17ME62
Credit / L-T-P:	4/3-2-0	SEE Duration:	180 Minutes
Total Contact Hours:	50	SEE Marks:	60Marks
CIA Marks:	40	Assignment	1 / Module
Course Plan Author:	PRAMOD SN	Sign	Dt:
Checked By:	SHANKARE GOWDA K C	Sign	Dt:
CO Targets	CIA Target:%	SEE Target:	%

Note: Define CIA and SEE % targets based on previous performance.

2. Course Content

Mod	Module Content	Teaching	Module	Blooms
ule		Hours	Concepts	Level
1	Introduction to CIM and Automation: Automation in Production	10	CIM and	L1,L2,
	Systems, automated manufacturing systems- types of		Automation	L3
	automation, reasons for automating, Computer Integrated			
	Manufacturing, computerized elements of a CIM system,			
	CAD/CAM and CIM. Mathematical models and matrices:			
	production rate, production capacity, utilization and availability,			
	manufacturing lead time, work-in- process, numerical problems.			
	Automated Production Lines and Assembly Systems:			
	Fundamentals, system configurations, applications, automated			
	flow lines, buffer storage, control of production line, analysis of			
	transfer lines, analysis of flow lines without storage, partial			
	automation, analysis of automated flow lines with storage buffer,			
	fundamentals of automated assembly systems, numerical			
	problems.			
2	CAD and Computer Graphics Software: The design process,	10	CAD and	L1,L2,
	applications of computers in design, software configuration,		Process	L3
	functions of graphics package, constructing the geometry.		Planning	
	Transformations: 2D transformations, translation, rotation and			
	scaling, homogeneous transformation matrix, concatenation,			
	numerical problems on transformations.			
	Computerized Manufacture Planning and Control System:			
	Computer Aided Process Planning, Retrieval and Generative			
	Systems, benefits of CAPP, Production Planning and Control			

r ii C	Systems, typical activities of PPC System, computer integrated production management system, Material Requirement Planning, nputs to MRP system, working of MRP, outputs and benefits, Capacity Planning, Computer Aided Quality Control, Shop floor control.			
ך ק ק ק ג ג ג	Flexible Manufacturing Systems: Fundamentals of Group Technology and Flexible Manufacturing Systems, types of FMS, FMS components, Material handling and storage system, applications, benefits, computer control systems, FMS planning and design issues, Automated Storage and Retrieval Systems, AS/RS and Automatic parts identification systems and data capture. Line Balancing: Line balancing algorithms, methods of line balancing, numerical problems on largest candidate rule, Kilbridge and Wester method, and Ranked Positional Weights method, Mixed Model line balancing, computerized line balancing methods.		FMS	L1,L2, L3
C C C F F F F F ii	Computer Numerical Control: Introduction, components of CNC, CNC programming, manual part programming, G Codes, M Codes, programming of simple components in turning, drilling and milling systems, programming with canned cycles. Cutter radius compensations. Robot Technology: Robot anatomy, joints and links, common robot configurations, robot control systems, accuracy and repeatability, end effectors, sensors in robotics. Robot programming methods: on-line and off-line methods. Robot ndustrial applications: material handling, processing and assembly and inspection.	10	CNC and Robot	L1,L2, L3
5 4 r li F c c t F (((C c c c c	Additive Manufacturing Systems: Basic principles of additive manufacturing, slicing CAD models for AM, advantages and imitations of AM technologies, Additive manufacturing processes: Photo polymerization, material jetting, binder jetting, material extrusion, Powder bed sintering techniques, sheet lamination, direct energy deposition techniques, applications of AM. Recent rends in manufacturing, Hybrid manufacturing. Future of Automated Factory: Industry 4.0, functions, applications and benefits. Components of Industry 4.0, Internet of Things (IOT), IOT applications in manufacturing, Big-Data and Cloud Computing for IOT, IOT for smart manufacturing, influence of IOT on predictive maintenance, industrial automation, supply chain optimization, supply-chain & logistics, cyber-physical manufacturing systems.		Additive Manufacturing and Hybrid communication	L1,L2

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 - 30 minutes

2. Design: Simulation and design tools used – software tools used ; Free / open source

Module	Details	Chapters	Availability
S		in book	
Α	Text books (Title, Authors, Edition, Publisher, Year.)		-
1,2	Dr.P Radhakrishnan		
1-5	Bharath Vinjamuri	1-8	In Lib/ In dept
1-5	Kestoor praveen	1-8	In Lib / In Dept
В	Reference books (Title, Authors, Edition, Publisher, Year.)		-
1-5	Mikell P Groover		In Lib
С	Concept Videos or Simulation for Understanding		-
C1			
C2			
D	Software Tools for Design	-	-
E	Recent Developments for Research	-	-
F	Others (Web, Video, Simulation, Notes etc.)	-	-
1	https://www.youtube.com/watch?v=Fd7wjZDoh7g		
2	https://www.youtube.com/watch?v=4FdEz5aqwII		
3	https://www.youtube.com/channel/UCpGClw1P0tC6LH4iLK9XOFA		
4	https://www.youtube.com/watch?v=TXID6w2UV6s		

3. Research: Recent developments on the concepts – publications in journals; conferences etc.

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Students must have learnt the following Courses / Topics with described Content . . .

Mod	Course	Course Name	Topic / Description	Sem	Remarks	Blooms
ules	Code					Level
1	17ME14	EME	Module 3	1/2		L2

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

	(0, 0, 0) = 0	, g 		
Mod	Topic / Description	Area	Remarks	Blooms
ules				Level

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs. Identify a max of 2 Concepts per Module. Write 1 CO per Concept.

15ME62 reserved.

Mod	Course	Course Outcome	Teach.	Concept	Instr	Assessme	Blooms'
ules	Code.#	At the end of the course, student should be able to	Hours		Method	nt Method	Level
1	15ME62.1	Understand the knowledge of CIM and Automation	10	CIM and Automation	Chalk and board	Assignme nt ,Unit test and CIA	L1,L2.
2		Understand the CAD and design applications by computer graphics and different process planning		CAD	Chalk and board	Assignme nt ,Unit test and CIA	L1,L2.
3	15ME62.3	Understand the fundamentals of FMS, line balancing and assembly lines		FMS	Chalk and board	Assignme nt ,Unit test and CIA	L1,L2
4	15ME62.4	Understand the CNC programming and robot configuration		CNC programmin g	Chalk and board	Assignme nt ,Unit test and CIA	L1,L2
5	15ME62.5	Understand the additive manufacturing techniques and hybrid communication		Additive manufacturi ng	Chalk and board	Assignme nt ,Unit test and CIA	L1,L2
-	-	Total	50	-	-	-	L1-L2

2. Course Applications

Write 1 or 2 applications per CO.

Students should be able to employ / apply the course learnings to . . .

Mod	Application Area	CO	Level
ules	Compiled from Module Applications.		
1	Manufacturing and production	CO1	L2
2	Software and Planning department		
3	FMS and Shop Floor	CO3	L2
4	CNC Tooling and Automtion	CO4	L2
5	Special Purpose Machine and communication	CO5	L2

3. Mapping And Justification

CO – PO Mapping with mapping Level along with justification for each CO-PO pair.

To attain competency required (as defined in POs) in a specified area and the knowledge & ability required to accomplish it.

Mod	Mapping Mapping		Mapping	Justification for each CO-PO pair	Lev
ules	es Level		Level		el
-	CO	PO	-	'Area': 'Competency' and 'Knowledge' for specified 'Accomplishment'	-
	CO1	PO1	L2	Understand the concepts of CIM	L2
	CO1	PO2	L2	Analyze bottle-neck in production	L2
	CO2	PO1	L2	Understand the concepts of automation	L2
	CO2	PO3	L3	To analyze the manufacturing problems	L2
	CO3	P01	L3	Understand the concepts of automation	L2
	CO4	P01	L2	To Learn a developing of new product	L2

Copyright ©2017. cAAS. All rights

	CO4	PO5	L2	To use modern tool usage	
	CO5	P01	L2	Understand Structural data of new product development	L2
	CO5	PO2	L2	Analysis modern building technology	L2

4. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	-	Course Outcomes					Р	rog	ram	n Oi	utco	me	s					-
Mod	CO.#	At the end of the course student	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	Lev
ules		should be able to	1	2	3	4	5	6	7	8	9	10	11	12	O 1	02	O3	el
1	15ME62.1	Understand the knowledge of CIM	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	L2
		,flow lines and Automation																
2	15ME62.3	Understand the CAD and design	\checkmark	-	√	-	-	-	-	-	-	-	-	-	-	-	-	L2
		applications by computer																
		graphics, planning and control by																
		computerized system																
3		Understand the fundamentals of		-	-	-	-	-	-	-	-	-	-	-	-	-	-	L2
		FMS, line balancing and assembly																
		lines																
4		Understand the CNC		-	-	-	\checkmark	-	-	-	-	-	-	-	-	-	-	L2
		programming, robot configurations																
5		Understand the additive	\checkmark	-	√	-	-	-	-	-	-	-	-	-	-	-	-	L2
		manufacturing techniques and																
		hybrid communication.																
-		Average attainment (1, 2, or 3)	\checkmark		-	-	-	-	-	-	-	-	-	-	-	-	-	L3
-		1.Engineering Knowledge; 2.Prol																
		4.Conduct Investigations of Comp and Society; 7.Environment and																
		10.Communication; 11.Project																
		S1.Software Engineering; S2.Data		-										0 10	9	_,		

5. Curricular Gap and Content

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Mod	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
ules					
1					
2					
3					

6. Content Beyond Syllabus

Topics & contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Mod	Gap Topic	Area	Actions Planned	Schedule	Resources	PO Mapping
ules				Planned	Person	
1						
1						
2						

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Mod	Title	Teach.		No. o	f quest	ion in	Exam		CO	Levels
ules		Hours	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE		
							Asg			
1	Introduction to CIM and	10	2	-	-	1	1	2	CO1	L2
	Automation, Automated Production									
	Lines and Assembly Systems									
2	CAD and Computer Graphics	10	2	-	-	1	1	2	CO2	L2
	Software Computerized,									
	manufacturing Planning and									
	Control System									
3	Flexible Manufacturing Systems,	10	-	2	-	1	1	2	CO3	L2
	Line Balancing									
4	Computer Numerical, Control Robot	10	-	2	-	1	1	2	C04	L2
	Technology									
5	Additive Manufacturing Systems,	10	-	-	4	1	1	2	CO5	L2
	Future of Automated Factory									
-	Total	50	4	4	4	5	5	10	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Mod	Evaluation	Weightage in	CO	Levels
ules		Marks		
1, 2	CIA Exam – 1	40	CO1, CO2	L2
3, 4	CIA Exam – 2	40	CO3, CO4	L2
5	CIA Exam – 3	40	CO5, CO6	L2
1, 2	Assignment - 1	_	_	-
3, 4	Assignment - 2	_	-	-
5	Assignment - 3	_	-	-
1, 2	Seminar - 1	_	_	-
3, 4	Seminar - 2	_	_	-
5	Seminar - 3	_	-	-
1, 2	Other Activities			
3, 4	CIA Exam – 1			
5	CIA Exam – 2			
	CIA Exam – 3			
1 - 5				
	Final CIA Marks	40	-	-

D1. TEACHING PLAN - 1

Module - 1

Fitle:	Introduction to CIM and Automation:	Appr	10 Hrs
	Automated Production Lines and Assembly Systems:	Time:	
а	Course Outcomes	-	Blooms
-		-	Level
1	Understand the knowledge of CIM, Automation and manufacturing flow lines	CO1	L2
b	Course Schedule	-	-
ass No	Module Content Covered	CO	Level
1	Automation in Production Systems, automated manufacturing systems-	C01	L2
2	types of automation	C01	L2
Ζ	Computer Integrated Manufacturing reasons for automating	CUI	LZ
•	computerized elements of a CIM system	004	
3	CAD/CAM and CIM. Mathematical models and matrices	C01	L2
4	production rate, production capacity, utilization and availability	C01	L2
5	manufacturing lead time, work-in- process, numerical problems.	C01	L2
6	Fundamentals, system configurations, applications	C01	L2
7	automated flow lines, buffer storage	C01	L2
8	control of production line, analysis of transfer lines, analysis of flow lines without storage, partial automation	C01	L2
9	analysis of automated flow lines with storage buffer	C01	L2
10	fundamentals of automated assembly systems, numerical problems.	C01	L2
C	Application Areas	со	Level
1	Manufacturing	CO1	L2
2	Production	CO1	L2
d	Review Questions	-	_
1	What is automation? Explain different types of automation	CO1	L2
2			
	Explain the following terms; i) Manufacturing lead time ii) Production rate iii)	CO1	12
2	Explain the following terms: i) Manufacturing lead time ii) Production rate iii) Production capacity	CO1	L2
3	Production capacity	CO1 CO1	L2
	Production capacity In a manufacturing plant a part is produced in a batch size of 60 units. The		
	Production capacity In a manufacturing plant a part is produced in a batch size of 60 units. The batch must be routed through 8 operations to complete it. Average set up		
	Production capacity In a manufacturing plant a part is produced in a batch size of 60 units. The batch must be routed through 8 operations to complete it. Average set up time 5 hr/operation. Average operation time is 10 min. Average non-operation		
3	Production capacity In a manufacturing plant a part is produced in a batch size of 60 units. The batch must be routed through 8 operations to complete it. Average set up time 5 hr/operation. Average operation time is 10 min. Average non-operation time is 7 hrs/operation. Determine: i) Manufacturing lead time in number of days of the plant runs 8 hrs shift/day. ii) Production rate of the plant. Explain the various methods of work part transport in an automated flow line.		L2 L2
3	Production capacity In a manufacturing plant a part is produced in a batch size of 60 units. The batch must be routed through 8 operations to complete it. Average set up time 5 hr/operation. Average operation time is 10 min. Average non-operation time is 7 hrs/operation. Determine: i) Manufacturing lead time in number of days of the plant runs 8 hrs shift/day. ii) Production rate of the plant. Explain the various methods of work part transport in an automated flow line. What are the symbols used in an automated flow line?	CO1 CO1 CO1	L2
3 4 5 6	Production capacity In a manufacturing plant a part is produced in a batch size of 60 units. The batch must be routed through 8 operations to complete it. Average set up time 5 hr/operation. Average operation time is 10 min. Average non-operation time is 7 hrs/operation. Determine: i) Manufacturing lead time in number of days of the plant runs 8 hrs shift/day. ii) Production rate of the plant. Explain the various methods of work part transport in an automated flow line. What are the symbols used in an automated flow line? Sketch and explain the linear walking beam mechanism.	CO1 CO1 C01 C01	L2 L2 L2 L2 L2
3 4 5	Production capacity In a manufacturing plant a part is produced in a batch size of 60 units. The batch must be routed through 8 operations to complete it. Average set up time 5 hr/operation. Average operation time is 10 min. Average non-operation time is 7 hrs/operation. Determine: i) Manufacturing lead time in number of days of the plant runs 8 hrs shift/day. ii) Production rate of the plant. Explain the various methods of work part transport in an automated flow line. What are the symbols used in an automated flow line? Sketch and explain the linear walking beam mechanism. Explain the upper bound approach and lower hound approach in analyzing	CO1 CO1 CO1	L2 L2 L2
3 4 5 6 7	Production capacity In a manufacturing plant a part is produced in a batch size of 60 units. The batch must be routed through 8 operations to complete it. Average set up time 5 hr/operation. Average operation time is 10 min. Average non-operation time is 7 hrs/operation. Determine: i) Manufacturing lead time in number of days of the plant runs 8 hrs shift/day. ii) Production rate of the plant. Explain the various methods of work part transport in an automated flow line. What are the symbols used in an automated flow line? Sketch and explain the linear walking beam mechanism. Explain the upper bound approach and lower hound approach in analyzing transfer lines without storage buffer.	CO1 CO1 CO1 CO1 CO1 CO1	L2 L2 L2 L2 L2 L2
3 4 5 6	Production capacity In a manufacturing plant a part is produced in a batch size of 60 units. The batch must be routed through 8 operations to complete it. Average set up time 5 hr/operation. Average operation time is 10 min. Average non-operation time is 7 hrs/operation. Determine: i) Manufacturing lead time in number of days of the plant runs 8 hrs shift/day. ii) Production rate of the plant. Explain the various methods of work part transport in an automated flow line. What are the symbols used in an automated flow line? Sketch and explain the linear walking beam mechanism. Explain the upper bound approach and lower hound approach in analyzing transfer lines without storage buffer. Define automation and CIM with the aid of conceptual model of	CO1 CO1 C01 C01	L2 L2 L2 L2 L2
3 4 5 6 7 8	Production capacity In a manufacturing plant a part is produced in a batch size of 60 units. The batch must be routed through 8 operations to complete it. Average set up time 5 hr/operation. Average operation time is 10 min. Average non-operation time is 7 hrs/operation. Determine: i) Manufacturing lead time in number of days of the plant runs 8 hrs shift/day. ii) Production rate of the plant. Explain the various methods of work part transport in an automated flow line. What are the symbols used in an automated flow line? Sketch and explain the linear walking beam mechanism. Explain the upper bound approach and lower hound approach in analyzing transfer lines without storage buffer. Define automation and CIM with the aid of conceptual model of manufacturing.	CO1 CO1 CO1 CO1 CO1 CO1	L2 L2 L2 L2 L2 L2 L2
3 4 5 6 7 8 9	Production capacity In a manufacturing plant a part is produced in a batch size of 60 units. The batch must be routed through 8 operations to complete it. Average set up time 5 hr/operation. Average operation time is 10 min. Average non-operation time is 7 hrs/operation. Determine: i) Manufacturing lead time in number of days of the plant runs 8 hrs shift/day. ii) Production rate of the plant. Explain the various methods of work part transport in an automated flow line. What are the symbols used in an automated flow line? Sketch and explain the linear walking beam mechanism. Explain the upper bound approach and lower hound approach in analyzing transfer lines without storage buffer. Define automation and CIM with the aid of conceptual model of manufacturing. Define the term plant capacity with a mathematical relation.	CO1 CO1 CO1 CO1 CO1 CO1 CO1	L2 L2 L2 L2 L2 L2 L2 L2 L2
3 4 5 6 7 8	Production capacity In a manufacturing plant a part is produced in a batch size of 60 units. The batch must be routed through 8 operations to complete it. Average set up time 5 hr/operation. Average operation time is 10 min. Average non-operation time is 7 hrs/operation. Determine: i) Manufacturing lead time in number of days of the plant runs 8 hrs shift/day. ii) Production rate of the plant. Explain the various methods of work part transport in an automated flow line. What are the symbols used in an automated flow line? Sketch and explain the linear walking beam mechanism. Explain the upper bound approach and lower hound approach in analyzing transfer lines without storage buffer. Define automation and CIM with the aid of conceptual model of manufacturing.	CO1 CO1 CO1 CO1 CO1 CO1	L2 L2 L2 L2 L2 L2 L2 L2

	hrs/week. Determine (i) MLT (ii) Rp (iii) PC (iv) U (v) WIP(vi) WIP ratio (vii) TIP ratio.		
e	Experiences	-	-
1			

Module – 2

Title:	CAD and Computer Graphics Software:	Appr	10 Hrs
	Computerized Manufacture Planning and Control System:	Time:	
а	Course Outcomes	-	Blooms
-		-	Level
1	To Understand the CAD and design applications by computer graphics and	CO2	L2
	to expose students to process planning and control by computerized system		
b	Course Schedule	-	-
lass No	Module Content Covered	со	Level
1	The design process, applications of computers in design,,,	CO2	L2
2	software configuration, functions of graphics package	CO2	L2
3	constructing the geometry. Transformations: 2D transformations, translation	CO2	L2
4	rotation and scaling, homogeneous transformation matrix,	CO2	L2
5	concatenation, numerical problems on transformations.	CO2	L2
6	Computer Aided Process Planning, Retrieval and Generative Systems,	CO2	L2
7	benefits of CAPP, Production Planning and Control Systems, typical	CO2	L2
	activities of PPC System,		
8	computer integrated production management system, Material Requirement	CO2	L2
	Planning,		
9	inputs to MRP system, working of MRP, outputs and benefits,	CO2	L2
10	Capacity Planning, Computer Aided Quality Control, Shop floor control.	CO2	L2
c	Application Areas	CO	Level
1	Software	CO2	L2
2	Planning department	CO2	L2
d	Review Questions	-	-
1	Explain with a neat sketch the software configuration of a graphics system.	CO2	L2
2	Explain the Computer aided design process with a ne	CO2	L2
	at block diagram.		
3	Explain Retrieval type CAPP system with the help of a block diagram.	CO2	L2
4	Describe the inputs to the MRP system.	CO2	L2
5	Explain the functions of a graphics package.	CO2	L2
6	A square with an edge length of 10 units is located on the origin with one of	CO2	L4
	the edge at an angle of 30° with positive x-axis. Calculate the new position of the square if it is rotated about z-axis by an angle of 30° in clockwise		
	direction.		
7	Explain Generative type CAPP system with the help of a block diagram.	CO2	L2
8	What is Material requirement planning? Explain the structure of MRP system.	CO2	L2
9	Explain the following I) Capacity Planning ii) Computer Aided Quality Control	CO2	L2

10	What is homogeneous transformation matrix and explain briefly.	CO2	L2
е	Experiences	-	-
1			

E1. CIA EXAM – 1

a. Model Question Paper - 1

Crs Code	<u>.</u>	17ME62	Sem:	VI	Marks:	40	Time:	75 minute	s	
Cour		Computer la	ntegrated Ma	anufacturing						
	3C.		•	stions, each	carry equal	marks.		Marks	co	Level
1	а			plain differer				5	CO1	L2
	b			•			duction rate ii		CO1	L2
		Production	•		acturning load				001	
	C	batch must time 5 hr/op operation tir	be routed th peration. Ave me is 7 hrs/o	rough 8 oper rage operatio	ations to cor on time is 10 termine: i) N	nplete it. Ave min. Averag lanufacturing	ge non- I lead time in	10	CO1	L4
2	а	Explain the	ne. 5	CO1	L2					
	b	What are the symbols used in an automated flow line?							CO1	L2
	с	Sketch and explain the linear walking beam mechanism.							CO1	L2
3	а	Explain with a neat sketch the software configuration of a graphics system.							CO2	L2
	b	Explain the	Computer a	ided design p	process with	a neatblock	diagram.	5	CO2	L2
	с	Explain Ret	rieval type C	APP system	with the hel	p of a block o	diagram.	10	CO2	L2
4	а	A square withe edge at the square direction.	of	CO2	L2					
	b	Explain Ger	nerative type	CAPP syste	m with the h	elp of a bloc	k diagram.	5	CO2	L2
	с						ucture of MF		CO2	L2

b. Assignment -1

			Model	Assignment	Questions		
Crs Code:	17ME62	Sem:	VI	Marks:	10	Time:	90 – 120 minutes

C.N.		It to answer 2-3 assignments. Each assignment carries equal mark.	Maria	~~	
SNo	USN	Assignment Description	Marks	CO 1	Level
1		What is automation? Explain different types of automation	10	CO1	L2
2		Explain the following terms: i) Manufacturing lead time ii)	10	CO1	L2
•		Production rate iii) Production capacity	10	004	10
3		In a manufacturing plant a part is produced in a batch size of 60	10	CO1	L2
		units. The batch must be routed through 8 operations to			
		complete it. Average set up time 5 hr/operation. Average			
		operation time is 10 min. Average non-operation time is 7			
		hrs/operation. Determine: i) Manufacturing lead time in number			
		of days of the plant runs 8 hrs shift/day. ii) Production rate of the			
4		plant.	10	CO1	L2
4		Explain the various methods of work part transport in an automated flow line.	10	CO1	
5			10	CO1	L2
5 6		What are the symbols used in an automated flow line?Sketch and explain the linear walking beam mechanism.	10 10	C01	L2 L2
-					
7		Explain the upper bound approach and lower hound approach in	10	CO1	L2
0		analyzing transfer lines without storage buffer.	10	001	10
8		Define automation and CIM with the aid of conceptual model of	10	CO1	L2
9		manufacturing.	10	CO1	1.2
		Define the term plant capacity with a mathematical relation.		CO1	L2
10		The average part produced in a certain batch manufacturing	10	CO1	L2
		plant must be processed through of 8 machines. 20 new batches			
		at. launched each week. Operating time is 8 min, average setup			
		time is 8 hrs, batch size is 30 units, average non-operation time			
		is 15 hr/machine. Number of machines available in the plant is			
		20. The plant operates on an average of 80 production hrs/week.			
		Determine (i) MLT (ii) Rp (iii) PC (iv) U (v) WIP(vi) WIP ratio (vii) TIP ratio.			
11			10	<u> </u>	L2
11		Explain with a neat sketch the software configuration of a	10	CO2	
10		graphics system.	10	<u> </u>	10
12		Explain the Computer aided design process with a neat block	10	CO2	L2
10		diagram.	10	<u> </u>	10
13		Explain Retrieval type CAPP system with the help of a block diagram.	10	CO2	L2
14		Describe the inputs to the MRP system.	10	CO2	L2
15		Explain the functions of a graphics package.	10	CO2	L2
16		A square with an edge length of 10 units is located on the origin	10	CO2	L2
		with one of the edge at an angle of 30° with positive x-axis.			
		Calculate the new position of the square if it is rotated about z- axis by an angle of 30° in clockwise direction.			
17			10	<u> </u>	10
17		Explain Generative type CAPP system with the help of a block	10	CO2	L2
10		diagram.	10	<u> </u>	10
18		What is Material requirement planning? Explain the structure of	10	CO2	L2
10		MRP system.	40	000	10
19		Explain the following I) Capacity Planning ii) Computer Aided	10	CO2	L2
00		Quality Control	40	000	
20		What is homogeneous transformation matrix and explain briefly.	10	CO2	L2

E2.E2. CIA EXAM – 2

a. Model Question Paper - 2

Crs Code	ə:	17ME62	Sem: VI			Mar	ks:	2	10		Tir	ne: 7	5 minute	S	
Cour	se:	Computer Int	tegrated Manut	actu	ring										
-	-	Note: Answe	r any 2 questio	ns, e	ach e	carry	y equ	ıal m	arks	5.			Marks	CO	Level
1	а	Define FMS.	Explain the typ	bes o	f FM	S.							5	CO3	L2
	b	Enumerate th	he advantages	of gr	oup	tech	nolog	gy.					5	CO3	L2
	с	Explain vario	us component	s of F	MS	with	a ne	at b	ock	diag	ram		10	CO3	L2
			•											CO3	
2	а	What is Auto	mated Storage	and	Retr	ieva	l Sys	stem	s				5	CO3	L2
	b		following term							nim	um ra	ational Wo	rk 5	CO3	L2
			recedence diag					-					_		
	с	· · · · · ·	t is to be assemble	d in a	plant	, the	data g	ives t	he pr	ecede	nce rel	ationship and	10	CO3	L2
			Element	1	2	3	4	5	6	7	8	-			
			Time 'T _e '(min)	1.0	0.5	0.8	0.3	1.2	0.2	0.5	1.5				
			Immediate	-	-	1,2	2	3	3,4	4	5,6,7	-			
			predecessor			1,2	-		5,1		0,0,7				
		i) Construct the	e precedence diag	ram fo	or this	job									
3	а	Explain the further for milling and turning.	undamental ste	eps in	volv	ed ir	ı dev	elop	men	t of I	oart p	rogrammin	g 5	CO4	L2
	b	-	/antages ,disad	dvant	ages	s and	l app	olicat	ions	of C	NC m	nachine	5	CO4	L2
	С	Write the P	art program to					of the second se		i		wn in fig	¹ 10	CO4	L2
4	а	Explain with	a neat sketch t	he T-	-R-L	ANE) T-F	R-R r	obot	S.			5	CO4	L2
	b	Explain the d	lifferent configu	iratio	ns o	f rob	ot wi	th ne	eat s	ketc	hes		5	CO4	L2
	с		ollowing with re solution ii) Accu			•			robo	ot			10	CO4	L2
			,					-							

b. Assignment – 2

			Model /	Assignment (Questions		
Crs Code:	17ME62	Sem:	VI	Marks:	10	Time:	90 – 120 minutes

	Each stu	dent to	o a	nswe	r 2-3	assic	nme	nts.	Ea	ch a	issic	nme	ent ca	arrie	s equ	al mark.			
SNo	USN						, ssign										Marks	CO	Leve
1	C	efine l	-M	S. Ex	plain		_				-						10	CO3	L2
2	E	numei	ate	e the	advai	ntage	es of	grou	ıp t	echi	nolo	gy.					10	CO3	L2
3	E	xplain	va	rious	com	one	nts o	fFN	۱S ۱	with	a ne	eat b	lock	diag	ram		10	CO3	L2
4	E	numei	ate	e the	advai	ntage	es of	line	tec	hno	logy						10	CO3	L2
5	V	/hat is	Aι	utoma	ated S	Storag	ge ar	nd R	etri	eva	Sys	stem	s				10	CO3	L2
6	E	xplain	th	e foll	owing	, tern	ns in	line	ba	alan	cing	. i) N	/inin	num	ratior	al Work	< 10	CO3	L2
	е	emen	t ii)	Prec	eden	ce di	agrai	m iii) C	ycle	time	e iv)	Bala	nce	delay				
7		A new p	rod	luct is	to be a	issemł	oled in	ı a pl	ant,	the c	lata g	ives	the pr	ecede	ence rel	lationship	and 8	CO3	L4
		element	al ti	mes												7			
						nent	1	2		3	4	5	6	7	8	-			
					Tim	e (min)	1.	0 0).5	0.8	0.3	1.2	0.2	0.5	1.5				
						nediate	e -	-		1,2	2	3	3,4	4	5,6,7	-			
						lecess	-			1,2	-		.,.	.	0,0,7				
		Jsing la			didate	rule n	nethod									-			
	i) Const	ruct	t the p	receder	nce di	agram	for t	his	job									
8	E	xplain	the	e obje	ective	s of I	ine b	alar	ncin	g.							10	CO3	L2
9	Use Ki	bridge	and	Weste	rs met	hod to	o assig	n the	e wo	rksta	tion t	o eac	h eler				10	CO4	L4
	the bal Work	ince del	ay a	and ba	ance e	tticier	ncy. 5	6	7	•	8	9	10	11	(10 M a	irks)			
	eleme	-		2	5	-	5		'		0	,	10		12				
	T _e (mi	/	25	0.45		0.4	0.32	0.2	_		0.7	0.6	0.38		0.43				
	Prece	led -		1	1	1	2	2,3	4		4	5	6,7	8	9,10	,11			
	by																		
10		vnalin	Ν.	ivad	Mode			lanc	ina	200	4 00	mni	itoria	od I	ina h	alancing	10	CO4	L2
10		xpaiiri	IVI	ixeu	woue		e Da	anc	ing	an	u cc	mpu	itenz	eu i	ine b	alancing	y 10	004	LZ
			c																
11	n	ethod		≏ fund	lame	ntal s	tens	invo	hlve	d in	. dev	velor	mer	t of	nart		10	C.O4	12
11	n E	ethod xplain	the				steps	invo	olve	ed in	ı dev	elop	mer	it of	part		10	CO4	L2
11	n E p	iethod xplain rogran	the าm	ing fo			steps	invo	olve	ed in	dev	velop	mer	it of	part		10	CO4	L2
	n E p a	ethod xplain rogran nd turr	the nm ning	ing fo g.	or mill	ing										nachine			
11 12	n E p a S	ethod xplain rogran nd turr tate th	the nm ning	ing fo g.	or mill	ing										nachine	10	CO4 CO4	L2 L2
12	n E p a S	nethod xplain rogran nd turr tate th pols.	the nm ning e a	ing fo g. advar	or mill Itages	ing s ,dis	adva	ntag	ges	and	l app	olicat	tions	of C	NC m		10	CO4	L2
	n E p a S to	nethod xplain rogran nd turr tate th pols.	the nm ning e a	ing fo g. advar	or mill Itages	ing s ,dis	adva	ntag	ges	and	l app	plicat	tions as sl	of C	NC m				
12	n E p a S to	nethod xplain rogran nd turr tate th pols.	the nm ning e a	ing fo g. advar	or mill Itages	ing s ,dis	adva	ntag	ges	and	l app	plicat	tions	of C	NC m		10	CO4	L2
12	n E p a S to	nethod xplain rogran nd turr tate th pols.	the nm ning e a	ing fo g. advar	or mill itages	ing s ,dis	adva	ntag	ges	and	l app	plicat	tions as sl	of C	NC m		10	CO4	L2
12	n E p a S to	nethod xplain rogran nd turr tate th pols.	the nm ning e a	ing fo g. advar	or mill itages	ing s ,dis	adva	ntag	ges	and	l app	plicat	tions as sl	of C	NC m		10	CO4	L2
12	n E p a S to	nethod xplain rogran nd turr tate th pols.	the nm ning e a	ing fo g. advar	or mill itages	ing s ,dis	adva	ntag	ges		the j	plicat	tions as sl	of C	NC m		10	CO4	L2
12	n E p a S to	nethod xplain rogran nd turr tate th pols.	the nm ning e a	ing fo g. advar	or mill itages	ing s ,dis	adva	ntag	ges		l app	plicat	tions as sl	of C	NC m		10	CO4	L2
12	n E p a S to Write	nethod xplain rogran nd turr tate th pols.	the nm ning e a	ing fc g. advar	an t	ing s ,dis		pro [©]	ges offile	and of O	the j	part	as sl	of C	CNC m	g 1	10	CO4 CO4	L2 L3
12	n E p a S to Write	nethod xplain rogran nd turn tate th pols. the Pa	the nm ning e a	ing fc g. advar	an t	ing s ,dis		pro [©]	ges offile	and of O	the j	part	as sl	of C	CNC m	g 1	10	CO4	L2
12	n E p a S to Write	ite the	the nm e a urt	ing fc g. advar	am t	ing s ,dis		pro e pro	ges offile	and of O	the g.1	part	as sl -+0mm		CNC m	g 1	10	CO4 CO4	L2 L3
12	n E p a S to Write	ite the	the nm ning e a	ing fc g. advar	am t	ing s ,dis		pro [©]	ges offile	and of O	the j	part	as sl -+0mm	of C	CNC m	g 1	10	CO4 CO4	L2 L3
12	n E p a S to Write	ite the	the nm e a urt	ing fc g. advar	am t	ing s ,dis		pro e pro	ges offile	and of O	the g.1	part	as sl -+0mm		CNC m	g 1	10	CO4 CO4	L2 L3
12	n E p a S to Write	ite the	the nm e a urt	ing fc g. advar	am t	ing s ,dis		pro e pro	ges offile	and of O	ig.1	part	as sl -+0mm		CNC m	g 1	10	CO4 CO4	L2 L3
12	n E p a S to Write	ite the	the nm e a urt	ing fc g. advar	am t	ing s ,dis		pro e pro	ges offile	and of O	ig.1	part	as sl -+0mm		CNC m	g 1	10	CO4 CO4	L2 L3
12	n E p a S to Write	ite the	The nm ning e a	ing fc g. advar	or mill ntages	ing s ,dis o mill		e pro	ges offile	and of fi	ig.1	part	as sl -+0mm		CNC m	g 1	10	CO4 CO4	L2 L3

17	Explain the different configurations of robot with neat sketches	8	CO4	L2
18	Explain the following with reference to precision of robot	8	CO4	L2
	a) Spatial resolution ii) Accuracy iii) Repeatability			

D3. TEACHING PLAN - 3

Module – 5

Title:	Additive Manufacturing Systems:	Appr	10 Hrs
	Future of Automated Factory:	Time:	
а	Course Outcomes	-	Blooms
-		-	Level
1	Understand the additive manufacturing techniques and hybrid communication	CO8	L2
b	Course Schedule		
Class No	Module Content Covered	СО	Level
1	Basic principles of additive manufacturing	CO5	L2
2	slicing CAD models for AM, advantages and limitations of AM technologies, Additive manufacturing processes	CO5	L2
3	Photo polymerization, material jetting, binder jetting, material extrusion, Powder bed sintering techniques, sheet lamination	CO5	L2
4	direct energy deposition techniques, applications of AM.	CO5	L2
5	Recent trends in manufacturing, Hybrid manufacturing	CO5	L2
6	Industry 4.0, functions, applications and benefits.	CO5	L2
7	Components of Industry 4.0, Internet of Things (IOT), IOT applications in manufacturing,	CO5	L2
8	Big-Data and Cloud Computing for IOT, IOT for smart manufacturing	CO5	L2
9	influence of IOT on predictive maintenance, industrial automation, supply chain optimization	CO5	L2
10	supply-chain & logistics, cyber-physical manufacturing systems.	CO5	L2
C	Application Areas		
1	Special Purpose Machine	CO5	L2
2	Communication	CO5	L2
d	Review Questions		
1	Explain with a neat sketch the Sheet lamination process.	CO5	L2
2	Explain with a neat sketch the Direct energy deposition technique.	CO5	L2
3	Explain the different stages involved in additive manufacturing process.	CO5	L2
4	Explain with a neat sketch the Selective laser sintering process	CO5	L2
5	Explain how big data and cloud computing can support IOT.	CO5	L2
6	Explain the application and benefits of Industry 4.0	CO5	L2
7	Define IOT. Explain the applications of IOT in manufacturing.	CO5	L2
8	What are the components of Industry 4.0? Explain.	CO5	L2

9	Explain Big-Data and Cloud Computing for IOT, IOT for smart manufacturing	CO5	L2
10	Briefly explain influence of IOT on predictive maintenance.	CO5	L2
11	What is supply-chain & logistics.	CO5	L2
12	Explain cyber-physical manufacturing systems.	CO5	L2
e	Experiences	-	-
1			
2			

E3. CIA EXAM – 3

a. Model Question Paper - 3

Crs Cod	۵.	15EC71	Sem:	VII	Marks:	40	Time: 7	5 minute	S	
Cou		MICROWA								
-	-				a carry equal n	narks. Mo	dule : 5	Marks	CO	Level
1	а		_	-	n predictive m			5	CO9	L2
	b	What is su	pply-chain	& logistics.				5	CO9	L2
	С	Explain cy	ber-physica	al manufact	uring systems	•		10	CO9	L2
					OR					
1	а	Define IOT	Г. Explain th	5	CO9	L2				
	b	What are t	he compon	ents of Indu	ustry 4.0? Exp	lain.		5	CO9	L2
	С	Explain Bi	g-Data and	Cloud Corr	puting for IOT	, IOT for	smart manufacturing	g 10	CO9	L2
2	а	Explain the	e Basic prin	ciples of ac	lditive manufa	cturing		5	CO10	L2
	b	What is s technologi	-	models f	or AM, advar	ntages ar	nd limitations of AN	И 5	CO10	L2
	с	List and ex	xplain Addit	ive manufa	cturing proces	ses		10	CO10	L2
					OR					
2	а	Explain wi	th a neat sk	etch the Sh	neet laminatio	n process	•	5	CO10	L2
	b	Explain wi	th a neat sk	etch the Di	rect energy de	eposition	technique.	5	CO10	L2
	с	Explain the	e different s	tages invol	ved in additive	e manufac	cturing process.	10	CO10	L2

D3. TEACHING PLAN - 3

Module – 5

Title:	Additive Manufacturing Systems:	Appr	10 Hrs
	Future of Automated Factory:	Time:	
а	Course Outcomes	-	Blooms
-		-	Level
1	Understand the additive manufacturing techniques and Hybrid communication	CO5	L2
b	Course Schedule		
Class No	Module Content Covered	СО	Level

1	Basic principles of additive manufacturing	CO5	L2
2	slicing CAD models for AM, advantages and limitations of AM technologies,	CO5	L2
	Additive manufacturing processes		
3	Photo polymerization, material jetting, binder jetting, material extrusion,	CO5	L2
	Powder bed sintering techniques, sheet lamination		
4	direct energy deposition techniques, applications of AM.	CO5	L2
5	Recent trends in manufacturing, Hybrid manufacturing	CO5	L2
6	Industry 4.0, functions, applications and benefits.	CO5	L2
7	Components of Industry 4.0, Internet of Things (IOT), IOT applications in manufacturing,	CO5	L2
8	Big-Data and Cloud Computing for IOT, IOT for smart manufacturing	CO5	L2
9	influence of IOT on predictive maintenance, industrial automation, supply	CO5	L2
	chain optimization		
10	supply-chain & logistics, cyber-physical manufacturing systems.	CO5	L2
C	Application Areas		
1	Special Purpose Machine	CO5	L2
2	Communication	CO5	L2
d	Review Questions		
1	Explain with a neat sketch the Sheet lamination process.	CO5	L2
2	Explain with a neat sketch the Direct energy deposition technique.	CO5	L2
3	Explain the different stages involved in additive manufacturing process.	CO5	L2
4	Explain with a neat sketch the Selective laser sintering process	CO5	L2
5	Explain how big data and cloud computing can support IOT.	CO5	L2
6	Explain the application and benefits of Industry 4.0	CO5	L2
7	Define IOT. Explain the applications of IOT in manufacturing.	CO5	L2
8	What are the components of Industry 4.0? Explain.	CO5	L2
9	Explain Big-Data and Cloud Computing for IOT, IOT for smart manufacturing	CO5	L2
10	Briefly explain influence of IOT on predictive maintenance.	CO5	L2
11	What is supply-chain & logistics.	CO5	L2
12	Explain cyber-physical manufacturing systems.	CO5	L2
е	Experiences	-	
1			
2			

F. EXAM PREPARATION

1. University Model Question Paper

Cou	Course: Computer Integrated Manufacturing Month						Month /	Year	May /2018	
Crs	Crs Code: 17ME62 Sem: VI Marks: Time					Time:		180 mi	nutes	
	Note	Answer all FIVE	E full questions	s. All question	is carry equal	marks.		Marks	CO	Level
1	а	Define Manufac	cturing lead tin	ne Production	rate, Utilizatio	on &		8	CO1	L2
		availability ,Work inprocess with mathematical expressions								

b	An average of 10 new orders is started through a certain factory each month. An order consists of an average 75 parts to be processed through 8 machines in the factory .The operation tome is 25 min.The non operation time is 10 hours and the setup time is 5hrs.The plant operates 175 hrs/month and there are 20 machines in the plant. Determine i)Manufacturing lead time ii) Plant capacity iii) Utilization iv) Work in process v) TIP ratio.	8	CO1	L4
	OR			
а	Differentiate between upper bound and lower bound approach to analyse automated flow lines without storage buffers.	8	CO1	L2
b	A transfer line has ten station with an ideal cycle time of 30 sec. The frequency of the line stop occurrence is 0.06stop/cycle on an average. When a stop occurs, it takes an average of 5 min to make repairs. Determine i) Average production time ii) Average production rate iii) Line efficiency iv) Proportion of down time	8	CO1	L4
-				
2 a	Explain the functions of a graphics package.	8	CO2	L2
b	A square with an edge length of 10 units is located on the origin with one of the edge at an angle of 30° with positive x-axis. Calculate the new position of the square if it is rotated about z-axis by an angle of 30° in clockwise direction.	8	CO2	L4
	OR			
а	Explain Generative type CAPP system with the help of a block diagram.	8	CO2	L2
b	What is Material requirement planning? Explain the structure of MRP system.	8	CO2	L2
3 a	Explain various components of FMS with a neat block diagram.	8	CO3	L2
b b	Explain applications and benefits of FMS.	8	CO3	L2
U		0	003	LZ
	OR	_	0.00	
a	Explain the objectives of line balancing. Write the Part program to turn the profile of the part as shown in fig.1 (0	8	CO3	L2
b		8	CO3	L3
			-	
4 a	State the advantages ,disadvantages and applications of CNC machine	8	CO4	L2
	tools.			
4 a		8	CO4 CO4	L2 L3
	tools. Write the Part program to mill the profile of the part as shown in fig 1			
b	tools. Write the Part program to mill the profile of the part as shown in fig 1	8	CO4	L3
	tools. Write the Part program to mill the profile of the part as shown in fig 1			

5	а	Explain the different stages involved in additive manufacturing process.	8	CO5	L2
	b	Explain with a neat sketch the Selective laser sintering process	8	CO5	L2
	а	Explain how big data and cloud computing can support IOT.	8	CO5	L2
	b	Explain the application and benefits of Industry 4.0.	8	CO5	L2

2. SEE Important Questions

Course:		Computer In	tegrated M	anufacturir	ng		1	Month	n / Year	May /2	2018
Crs Code:		17ME62	Sem:	VI	Ma	rks:		Time:		180 m	inutes
	Note	Answer all F	IVE full que	estions. All	questions	carry equ	al marks.		-	-	
Modul e	Qno.	Important Q	uestion						Marks	СО	Year
1	1	Define Manı availability ,\	8	CO1	2018						
	2	An average of 10 new orders is started through a certain factory each month. An order consists of an average 75 parts to be processed through 8 machines in the factory .The operation tome is 25 min.The non operation time is 10 hours and the setup time is 5 hrs.The plant operates 175 hrs/month and there are 20 machines in the plant. Determine I) Manufacturing lead time ii) Plant capacity iii) Utilization iv) Work in process v) TIP ratio.									2018
	3	Explain with automations		hes the fixe	ed, flexible	and progr	rammable		8	CO1	2018
	4	The parts produced in a batch manufacturing plant must be processed through an average of six machines. There are 20 new batches of parts launched each week. Other data are as follows. Average operation time: 6 minutes ,Average set up tome:5 hours, Average non-operation time:600 minutes, Average batch size:50 parts. There are 24 machines in the plant and the plant operates 70 hours per week. Determine)Manufacturing lead time ii) Plantcapacity iii)Workinprocess iv)Plant utilization.						8	CO1	2018	
2	1	Explain gen	eral configu	ration of a	utomated f	low lines y	with a neat sk	otch	8	CO2	2018
2	2	Explain general configuration of automated flow lines with a neat sketch. A 22 station in line transfer machine has an ideal cycle time of 0.55 min.The probability of station break down is p=0.01.Average downtime =8 min per line stop. use the upper bound approach and determine: i) Ideal production rate ii) Frequency of line stops iii) Average actual production rate iv) Line efficiencyCO2						8	CO2	2018	
	3	Explain with system .	n a neat s	ketch the	software	configurat	tion of a gra	aphics	8	CO2	2018
	4	-	Computer a	aided desig	n process	with a nea	at block diagr	am .	8	CO2	2018
3	1	Explain Retr	ieval type (CAPP syste	em with the	help of a	block diagra	m.	8	CO3	2018
	2	Describe the				-	-		8	CO3	2018
	3	Define FMS	. Explain th	e types of I	FMS.				8	CO3	2018

	4	Enumerate the advantages of group technology.	8	CO3	2018
4	1	Explain the fundamental steps involved in development of part programming for milling and turning.	8	CO4	2018
	2	Explain the different configurations of robot with neat sketches	8	CO4	2018
	3	Explain the following with reference to precision of robot a) Spatial resolution ii) Accuracy iii) Repeatability	8	CO4	2018
	4	Explain applications and benefits of FMS.	8	CO4	2018
5	1	Explain with a neat sketch the Sheet lamination process.	8	CO5	2018
	2	Explain with a neat sketch the Direct energy deposition technique.	8	CO5	2018
	3	Define IOT. Explain the applications of IOT in manufacturing.	8	CO5	2018
	4	What are the components of Industry 4.0? Explain.	8	CO5	2018

G. Content to Course Outcomes

1. TLPA Parameters

Мо Content Blooms' Final Identified Instructio Assessment Course Content or Syllabus dul Methods to Teachin Learning Bloo Action n Verbs for Methods Measure eg Hours Levels ms' # for Level Learning for Learning Content Learning Α В С D Е F G Н 1 Introduction CIM and L2 L2 Chalk to 10 CIA and and Assignment Automation: Automation in Production board Systems, automated manufacturing systemstypes of automation, reasons for automating, Computer Integrated Manufacturing, computerized elements of a CIM CAD/CAM CIM. system. and Mathematical models and matrices: production rate, production capacity, utilization and availability, manufacturing lead time, work-in-process, numerical problems. Automated Production Lines and Assembly Fundamentals, Systems: system configurations, applications, automated flow lines, buffer storage, control of production line, analysis of transfer lines, analysis of flow lines without storage, partial automation, analysis of automated flow lines with storage buffer, fundamentals of automated assembly systems, numerical problems. 10 12 12 Chalk CIA and 2 **CAD and Computer Graphics Software:** The and Assignment design process, applications of computers in board design, software configuration, functions of graphics package, constructing the geometry.

Table 1: TLPA

	Transformations: 2D transformations,					
	translation, rotation and scaling,					
	nomogeneous transformation matrix,					
	concatenation, numerical problems on					
1	ransformations.					
	Computerized Manufacture Planning and					
	Control System: Computer Aided Process					
	Planning, Retrieval and Generative Systems,					
	penefits of CAPP, Production Planning and					
	Control Systems, typical activities of PPC					
	System, computer integrated production					
	management system, Material Requirement					
	Planning, inputs to MRP system, working of					
1 1	MRP, outputs and benefits, Capacity					
	Planning, Computer Aided Quality Control,					
1 1	Shop floor control.					
	Flexible Manufacturing Systems:	10	L2	L2	Chalk	CIA and
-	Fundamentals of Group Technology and				and	Assignment
	Flexible Manufacturing Systems, types of FMS,				board	
	FMS components, Material handling and					
	storage system, applications, benefits,					
	computer control systems, FMS planning and					
1 1	design issues, Automated Storage and					
1 1	Retrieval Systems, AS/RS and Automatic parts					
1 1	dentification systems and data capture.					
1 1	Line Balancing: Line balancing algorithms,					
1 1	methods of line balancing, numerical problems on largest candidate rule, Kilbridge and Wester					
1 1	method, and Ranked Positional Weights					
1 1	method, Mixed Model line balancing,					
1 1	computerized line balancing methods.					
	Computer Numerical Control: Introduction,	10	L2	L2	Chalk	CIA and
1 1	components of CNC, CNC programming,	-			and	Assignment
1 1	manual part programming, G Codes, M Codes,				board	
1 1	programming of simple components in turning,					
1 1	drilling and milling systems, programming with					
1 1	canned cycles. Cutter radius compensations.					
1 1	Robot Technology: Robot anatomy, joints and					
1 1	inks, common robot configurations, robot					
1 1	control systems, accuracy and repeatability,					
1 1	end effectors, sensors in robotics. Robot					
1 1	programming methods: on-line and off-line					
1 1	methods. Robot industrial applications: material					
1 1	nandling, processing and assembly and					
1 1	nspection.					
	Additive Manufacturing Systems: Basic	10	L2	L2	Chalk	CIA and
	principles of additive manufacturing, slicing				and	Assignment
1	CAD models for AM, advantages and				board	-
	imitations of AM technologies, Additive					
Ľ			1			1

manufacturing processes: Photo	
polymerization, material jetting, binder jetting	,
material extrusion, Powder bed sintering	
techniques, sheet lamination, direct energy	
deposition techniques, applications of AM	
Recent trends in manufacturing, Hybrid	
manufacturing.	
Future of Automated Factory: Industry 4.0	,
functions, applications and benefits	
Components of Industry 4.0, Internet of Things	S
(IOT), IOT applications in manufacturing, Big	
Data and Cloud Computing for IOT, IOT fo	r
smart manufacturing, influence of IOT or	
predictive maintenance, industrial automation	,
supply chain optimization, supply-chain &	
logistics, cyber-physical manufacturing	
systems.	

2. Concepts and Outcomes:

	Table 2: Concept to Outcome										
Мо	Learning or	Identified	Final Concept	Concept Justification	CO Components	Course Outcome					
dul	Outcome from	Concepts		(What all Learning	(1.Action Verb,						
e-	study of the	from		Happened from the	2.Knowledge,						
#	Content or	Content		study of Content /	3.Condition /	Student Should be					
	Syllabus			Syllabus. A short	Methodology,	able to					
				word for learning or	4.Benchmark)						
				outcome)							
Α	1	J	K	L	М	N					
1	Students will	CIM	CIM and	Scenerio of	Understand	Understand the					
	be able to		Automation	manufacturing	integration of	knowledge of CIM					
	understand				computers	and Automation					
	integration os										
	systems										
	Students will	CAD and	CAPP	Outline of planning	Understand Process	Understand the CAD					
	be able to	Process			planning	and design					
	understand	Planning				applications by					
1	concept of					computer graphics					
	planning					and different process					
		5140	= 140	v /····		planning					
-	Students will	FMS	FMS	Vision in many	Understand Higher	Understand the					
	be able to				mode of	fundamentals of					
	understand			cell.	manufacturing	FMS, line balancing					
	new manufacturing					and assembly lines					
	systems										
-	Students will	CNC and	Automation	Integration of	Understand	Understand the CNC					
	be able to	Robot	Automation	systems	automation						
	understand	RUDUL		Systems	automation	programming and robot configuration					
	understand					iobol configuration					

Table 2: Concept to Outcome

automation						
Students will be able to	Additive Manufactu	New age technology	3D printing and advanced	Understand JIT technology	Understand additive	the
understand new	ring and	0,	communication.		manufacturing techniques	and
technology	Hybrid communic				hybrid communication	
	ation					