SRI KRISHNA INSTITUTE OF TECHNOLOGY

COURSE PLAN
Academic Year 2018-19

Program:	B E - Mechanical Engineering
Semester:	6
Course Code:	17ME61
Course Title:	Finite element Analysis
Credit / L-T-P:	$4 / 4-0-0$
Total Contact Hours:	50
Course Plan Author:	Sagar H N

Academic Evaluation and Monitoring Cell
\#29, Hesaraghatta Main road, Chimney Hills, Chikkabanavara P.O.,
Bengaluru - 560090, Karnataka, INDIA
Phone / Fax :+91 8023721477 -STD- 08023721315
Web:www.skit.org.in
E-mail:skit1princi@gmail.com/principal@skit.org.in

Table of Contents

A. COURSE INFORMATION 4

1. Course Overview 4
2. Course Content. 4
3. Course Material 5
4. Course Prerequisites 6
5. Content for Placement, Profession, HE and GATE 6
B. OBE PARAMETERS 7
6. Course Outcomes. 7
7. Course Applications 7
8. Mapping And Justification 7
9. Articulation Matrix 8
10. Curricular Gap and Content. 9
11. Content Beyond Syllabus 9
C. COURSE ASSESSMENT. 9
12. Course Coverage 9
13. Continuous Internal Assessment (CIA) 9
D1. TEACHING PLAN - 1 10
Module - 1 10
Module - 2 11
E1. CIA EXAM - 1 12
a. Model Question Paper - 1 12
b. Assignment -1 12
D2. TEACHING PLAN - 2 15
Module - 3 15
Module-4 15
E2. CIA EXAM - 2 16
a. Model Question Paper - 2 16
b. Assignment -2 17
D3. TEACHING PLAN - 3 19
Module - 5 19
E3. CIA EXAM - 3 20
a. Model Question Paper - 3 20
b. Assignment - 3 21
F. EXAM PREPARATION 22
14. University Model Question Paper 22
15. SEE Important Questions 23
G. Content to Course Outcomes 24
16. TLPA Parameters 24
17. Concepts and Outcomes: 26
Note : Remove "Table of Content" before including in CP Book Each Course Plan shall be printed and made into a book with cover page Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher

levels

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	ME
Year / Semester:	3/VI	Academic Year:	2019-20
Course Title:	Finite element Analysis	Course Code:	17ME61
Credit / L-T-P:	04/-0-0	SEE Duration:	180 minutes
Total Contact Hours:	50	SEE Marks:	60 Marks
CIA Marks:	40	Assignment	1 / Module
Course Plan Author:	Sagar H N	Sign	Dt:
Checked By:		Sign	Dt:
CO Targets	CIA Target : ...\%	SEE Target:	...\%

Note: Define CIA and SEE \% targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute. Identify 2 concepts per module as in G.

| Mod |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ule |

using direct stiffness method with concentrated and uniformly distributed load.
Torsion of Shafts: Finite element formulation of shafts, determination of stress and twists in circular shafts.
4 Heat Transfer: Basic equations of heat transfer: Energy balance equation, Rate equation: conduction, convection, radiation, energy
generated in solid, energy stored insolid, 1D finite element formulation using vibrational method, Problems with temperature gradient
and heat fluxes, heat transfer in composite sections, straight fins.
Fluid Flow: Flow through a porous medium, Flow through pipes of uniform and stepped sections, Flow through hydraulic net works.
5 Axi-symmetric Solid Elements: Derivation of stiffness matrix of axisymmetric bodies with triangular elements, Numerical solution of axisymmetric triangular element(s) subjected to surface forces, point loads, angular velocity, pressure vessels.
Dynamic Considerations: Formulation for point mass and distributed masses, Consistent element mass matrix of one dimensional bar element, truss element, axisymmetric triangular element, quadrilateral element, beam element. Lumped mass matrix of bar element, truss element, Evaluation of eigen values and eigen vectors, Applications to bars, stepped bars, and beams.

3. Course Material

Books \& other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15-30 minutes
2. Design: Simulation and design tools used - software tools used ; Free / open source
3. Research: Recent developments on the concepts - publications in journals; conferences etc.

Modul es	Details	$\begin{gathered} \text { Chapter } \\ \text { s in } \\ \text { book } \end{gathered}$	Availability
A	r.)		
1, 2, Logan, D. L., A first course in the Finite element Analysis, 6 th 3, 4, 5 Edition, Cengage Learning, 2016. Rao, S. S., Finite element Analysis in engineering, 5 th Edition, Pergaman Int. Library of Science, 2010. 3. Chandrupatla T. R., Finite Elements in engineering, 2nd Edition, PHI, 2013		3, 4	In Lib / In Dept
		2,4	In Lib/ In dept
B	Reference books (Title, Authors, Edition, Publisher, Year.)		
1, 2	J.N.Reddy, "Finite element Analysis"- McGraw -Hill International Edition. Bathe K. J. Finite Elements Procedures, PHI.	?	In Lib
1, 2	Cook R. D., et al. "Conceptsand Application of Finite Elements Analysis"- 4 th Edition, Wiley \& Sons, 2003.	?	Not Available
$3,4,5$	Haleesh "Finite element Analysis"- McGraw -Hill International Edition	?	In lib
C	Concept Videos or Simulation for Understanding	-	-
C1	Numerical method https://www.youtube.com/watch?v=Fvud81pYGOg - 15 Mins		

COURSE PLAN - CAY 2019-20

	https://www.youtube.com/watch?v=TsBTI3t05-8-5 Mins		
C2	Formation of stiffness matrices for bars ,beams ,trusses https://www.youtube.com/watch?v=Fvud91pYGOg - 10 Mins https://www.youtube.com/watch?v=TsBTI453tO5-8 - 15 Mins		
C3	Static and Dynamic analysis for bars and beams https://www.youtube.com/watch?v=Fvud8145pYGOg - 5 Mins https://www.youtube.com/watch?v=TsBTI34662tO5-8-5 Mins		
	Lab : https://www.youtube.com/watch?v=P9e7hUNPGVs -		
D	Software Tools for Design	-	-
	Klystron Oscillator - Vsim - https://www.txcorp.com/ -		
	Stripline - http://www.atlantarf.com/Stripline.php		
E	Recent Developments for Research	-	-
	Improve efficiency - https://ieeexplore.ieee.org/abstract/document/6891996		
F	Others (Web, Video, Simulation, Notes etc.)	-	-
1	How Electron / Vacuum Tubes work ? https://www.youtube.com/watch?v=nA tglygvNo		
?			

4. Course Prerequisites

Refer to GLO1. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.
Students must have learnt the following Courses / Topics with described Content . . .

Mod ules	Course Code	Course Name	Topic / Description	Sem	Remarks	Blooms Level
3	$15 M E 34$	Mechanics of materials		3	Understa nd L2	
3	$15 M E 53$	Heat transfer		5	Understa nd L2	

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry \& profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.
Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Mod ules	Topic / Description	Area	Remarks	Blooms Level
1	Numerical methods	Higher Study	Gap A seminar on Finite element Analysis	Understa nd L2

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs. Identify a max of 2 Concepts per Module. Write 1 CO per Concept.

Mod ules	Course Code.\#	Course Outcome At the end of the course, student should be able to ...	Teach. Hours	Concept	Instr Method	Assessm ent Method	Blooms' Level
1	17 ME61.1Understand the concept of elements and boundary conditions	10	Elements and nodes	Lecture	Slip Test	Understan d L2	
2	17ME61.2 Analysis of bars and trusses	10	Bars and	Lecture	Assignm	L4	

COURSE PLAN - CAY 2019-20

	ad			trusses	/ PPT	ent	Analyze
3	17ME61.3	Analysis of beams and Shaft under different kind of loading.	10	Beams and Shafts	Lecture	Slip test	$\begin{gathered} \text { L4 } \\ \text { Analyze } \\ \hline \end{gathered}$
4	17ME61.4	Analysis of heat transfer in composite sections	10	Heat transfer in Composite wall	Lecture	Assignm ent and Slip Test	Analyze
5	17ME61.5	Understand the stiffness matrix, eigen values and eigen vectors a xi-symmetric body	10	stiffness matrix solid element	Lecture	Assignm ent	Understan d L2
	-	Total	50	-	-	-	

2. Course Applications

Write 1 or 2 applications per CO.
Students should be able to employ / apply the course learnings to . . .

Mod ules	Application Area Compiled from Module Applications.	CO	Level
1	Radial load fatigue analysis and Bending fatigue analysis	CO 1	L 2
2	Mechanical engineering discipline (such as aeronautical, biomechanical, and automotive industries.	CO 1	L 2
3	Analysis of temperature gradient in fins ,boilers	CO	L 2
4	Dynamic analysis of bars and beam	CO 2	L 2
5	Analysis of temperature gradient in fins ,boilers	CO 3	L 3
6	Heat conduction through composite wall and pipes in industries	CO	L 3
7	Heat conduction through composite wall and pipes in industries	CO 4	L 2
8	Analysis of temperature gradient in fins ,boilers	CO 4	L 2
9	Dynamic analysis of bars and beam	CO	L 2
10	Formulation for point mass and distributed masses in different element	CO	L 2

3. Mapping And Justification

CO - PO Mapping with mapping Level along with justification for each CO-PO pair.
To attain competency required (as defined in POs) in a specified area and the knowledge \& ability required to accomplish it.

Mod ules	Mapping		Mapping Level	Justification for each CO-PO pair	Lev el
-	CO	PO		‘Area’: ‘Competency’ and ‘Knowledge’ for specified 'Accomplishment'	
	CO1	PO1	3	‘Engineering Knowledge:' - Acquisition of Engineering Knowledge of element and nodes is essential to accomplish solutions to complex engineering problems in Mechanical Engineering.	L2
1	CO1	PO2	2	'Problem Analysis': Analyzing problems require knowledge / understanding of Numerical methods and element and nodes is essential to accomplish solutions to complex engineering problems in Mechanical engineering.	L3
	CO2	PO1	3	'Engineering Knowledge:' - Acquisition of Engineering Knowledge of cubic and Quad element is essential to accomplish solutions to complex engineering problems in Mechanical Engineering.	
2	CO2	PO2	2	'Problem Analysis': Analyzing problems require knowledge / understanding of bars and Trusses and boundary condition is essential to solutions to complex engineering problems in Mechanical engineering.	
	CO3	PO1	3	‘Engineering Knowledge:' - Acquisition of Engineering Knowledge of Beams is essential to accomplish solutions to complex engineering problems in Mechanical Engineering.	
3	CO3	PO2	2	‘Problem Analysis’: Analyzing problems require knowledge / understanding of Beams, Shaft and boundary condition is essential to solutions to complex engineering problems in	

				Mechanical engineering.	
	CO4	PO1	3	'Engineering Knowledge:' - Acquisition of Engineering Knowledge of Modes of heat Transfer is essential to accomplish solutions to complex engineering problems in Mechanical Engineering.	
4	CO4	PO2	2	'Problem Analysis': Analyzing problems require knowledge / understanding of conduction and convection and boundary condition is essential to solutions to complex engineering problems in Mechanical engineering.	
	CO5	PO1	3	'Engineering Knowledge:' - Acquisition of Engineering Knowledge of solid element_is essential to accomplish solutions to complex engineering problems in Mechanical Engineering.	
5	CO5	PO2	2	'Problem Analysis': Analyzing problems require knowledge / understanding of formulation of stiffness matrix for solid element is essential to solutions to complex engineering problems in Mechanical engineering.	

4. Articulation Matrix

CO - PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	-	Course Outcomes	Program Outcomes															-
Mod ules	CO.\#	At the end of the course student should be able to .		2	PO	10	PO	PO	PS	PS	PS	$\begin{gathered} \text { Lev } \\ \text { el } \end{gathered}$						
1	17ME61.1	Understandthe concept of elements and conditions		\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	L2
2	17ME61.2	Analysis of bars and trusses under different kind of loading.		\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	L3
3	17ME61.3	Analysis of beams and Shaft under different kind of loading.		\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	L3
4	17ME61.4	Analysis of heat transfer in composite sections		\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	L3
5	17ME61.5	Understand the stiffness matrix, eigen values and eigen vectors a xi-symmetric body		\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	L2
-	CS501PC	Average attainment (1, 2, or 3)			-	-	-	-	-	-	-	-	-	-	-	-	-	-

> PO, PSO 1.Engineering Knowledge; 2.Problem Analysis; 3.Design / Development of Solutions; 4.Conduct Investigations of Complex Problems; 5.Modern Tool Usage; 6.The Engineer and Society; 7.Environment and Sustainability; 8.Ethics; 9.Individual and Teamwork; 10.Communication; 11.Project Management and Finance; 12.Life-long Learning; S1.Software Engineering; S2.Data Base Management; S3.Web Design

5. Curricular Gap and Content

Topics \& contents not covered (from A.4), but essential for the course to address POs and PSOs.

Mod ules	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1	Numerical Methods	Seminar	$2^{\text {nd }}$ week / date	Dr XYZ, Inst	List from B4 above

6. Content Beyond Syllabus

Topics \& contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

COURSE PLAN - CAY 2019-20

Mod ules	Gap Topic	Area	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1	ANSYS HFSS - High Frequency Software Simulation Tool	Placement , GATE, Higher Study, Entrepren eurship.	Presentation by students \& Mini Project	$3{ }^{\text {rd }}$ week / date	Dr ABC, Inst. Self	List from B4 above

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Mod ules	Title	$\begin{gathered} \text { Teach } \\ \text { Hours } \end{gathered}$	No. of question in Exam						CO	Levels
			CIA-1	CIA-2	CIA-3	Asg	$\begin{array}{\|c\|} \hline \text { Extra } \\ \text { Asg } \end{array}$	SEE		
1	Introduction to Finite Element	10	2	-	-	1	1	2	CO1	L2
2	One-Dimensional Elementsanalysis of bar and trusses	102	2	-	-	1	1	2	CO2	L3
3	Beams and Shafts and Torsion of Shafts	8	-	2	-	1	1	2	CO3	L3
4	Heat Transfer and Fluid Flow	10	-	2	-	1	1	2	CO4	L3
5	Axi-symmetric Solid Elements: Dynamic Considerations	12	-	-	4	1	,	2	Co5	L2
-	Total	50	4	4	4	5	5	10	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A. 2 .

$\begin{aligned} & \text { Mod } \\ & \text { ules } \end{aligned}$	Evaluation	Weightage in Marks	CO	Levels
1,2	CIA Exam-1	30	CO1, CO2	L2,L3
3,4	CIA Exam-2	30	CO3, CO4	L3,L3
5	CIA Exam-3	30	Co5	L2
1,2	Assignment - 1	10	CO1, CO2	L2,L3
3,4	Assignment - 2	10	CO3, CO4	L3,L3
5	Assignment - 3	10	Co5	L2
	Seminar - 1	00		
	Seminar-2	00		
	Seminar - 3	00		
	```Other Activities - define - Slip test```			
	Final CIA Marks	40	-	-

## D1. TEACHING PLAN - 1

## Module - 1

Title:	Introduction to Finite Element	Appr Time:	10Hrs
a	Course Outcomes	-	Blooms
-	Student should able to		Level
1	Understand the concept of elements and boundary conditions	CO1	L2
b	Course Schedule	-	-
Class No	Module Content Covered	CO	Level
1	General description of the Finite element Analysis. Engineering applications of Finite element Analysis. Boundary conditions: homogeneous and non homogeneous for structural, heat transfer and fluid flow problems.	C01	L2
2	Potential energy method, Rayleigh Ritz method, Galerkin's method, Displacement method of finite element formulation. Convergence criteria, Discretization process	CO1	L2
3	Types of elements: 1D, 2D and 3D, Node numbering, Location of nodes.	CO1	L2
4	Strain displacement relations, Stress strain relations, Plain stress and Plain strain conditions, temperature effects.	CO1	L2
5	Simplex, complex and multiplex elements, Linear interpolation polynomials in terms of global coordinates 1D, 2D, 3D Simplex Elements.	CO2	L2
c	Application Areas	CO	Level
1	Radial load fatigue analysis and Bending fatigue analysis	CO1	L2
2	Mechanical engineering discipline (such as aeronautical, biomechanical, and automotive industries.	CO1	L2
d	Review Questions		-
1	Explain plane stress and plain strain problems with suitable examples.	CO1	L2
2	Define FEM, explain basic steps involved in FEM.	CO1	L2
3	With an example, Explain node numbering scheme.	CO1	L2
4	Explain principle of minimum potential energy and principle of virtual work.	CO1	L2
5	Explain convergence requirement of a polynomial displacement model.	CO1	L2
6	Explain simplex, Complex and multiplex elements.	CO1	L2
7	what is geometric isotropy? Sketch and explain pascal triangle for 2D polynomials.	CO1	L2
8	Determine the maximum deflection of the beam as shown in fig 1.8 Take $\mathrm{E}=200 \mathrm{GPa} \& \mathrm{I}=2 \times 10^{-9} \mathrm{~m}^{4}$. Use Rayleigh ritz method.	CO1	L2
9	Determine the displacement of the bar as shown in Fig. 1.9. use Rayleigh ritz method for the solution. Take $\mathrm{E}=70 \mathrm{GPa}$.	CO1	L2
10	Explain steps involved in Galerkin's method.	CO1	L2
11	using Galerkin's method, obtain an approximate solution of the differential equation. $\frac{d^{2} u}{d x^{2}}-10 x^{2}=5,0 \leq x \leq 1, a t u(0)=0, u(1)=0$	CO1	L2
e	Experiences		-
1			L2

## Module - 2

Title:	One-Dimensional Elements-analysis of bar and trusses	Appr Time:	10 Hrs
a	Course Outcomes		Blooms
-	Student should able to	-	Level
1	Analysis of bars and trusses under different kind of loading.	CO2	L3
b	Course Schedule		-
$\begin{gathered} \text { Class } \\ \text { No } \end{gathered}$	Module Content Covered	CO	Level
1	Linear interpolation polynomials in terms of local coordinate's for1D, 2Delements.	CO2	L3
2	Higher order interpolation functions for 1D quadratic and cubic elements in natural coordinates.	CO2	L3
3	Constant strain triangle, Four-Nodded Tetrahedral Element (TET 4), Eight-Nodded Hexahedral Element (HEXA28).	CO2	L3
4	2D isoparametric element, Lagrange interpolation functions, Numerical integration: Gaussian quadrature one point, two point formulae, 2D integrals. Fore terms: Body force, traction force and point loads.	CO2	L3
5	Solution for displacement, stress and strain in 1D straight bars, stepped bars and tapered bars using elimination approach and penalty approach.	CO2	L3
6	Analysis of trusses.	CO2	L3
		CO2	
c	Experiences	CO	Level
1			L3
d	Review Questions	-	-
1	What is an interpolation function?	CO2	L3
2	Derive the shape function of the bar element in local co-ordinate system.	CO2	L3
3	Derive the interpolation function of quadratic bar element in natural co-ordinate system.	CO2	L3
4	Derive the stiffness matrix for CST element.	CO2	L3
5	Explain the concepts of iso, sub and super parametric elements.	CO2	L3
6	Derive the shape function for the nine - noded quadrilateral element.	CO2	L3
7	Using lagrangian method, derive the shape functions of quadrilateral element.	CO2	L3
8	Evaluate the values of $\omega_{1}, \omega_{2}, \xi_{1}, \wedge \xi_{2}$ used in gauss quadrature two point method.	CO2	L3
9	Describe the general algorithm of Gaussian elimination method for the solution of linear algebraic equations.	CO2	L3
10	Explain in brief the penalty method of imposing boundary conditions.	CO2	L3
11	For the bar shown in Fig. 2.11 determine (i) nodal displacement \& (ii) Stresses in each element Take $\mathrm{E}=200 \mathrm{GPa} \& A=300 \mathrm{~mm}^{2}$.	CO2	L3
12	For a stepped bar loaded as shown in Fig. 2.12 determine (i) Nodal displacements. (ii) elemental stresses (iii) support reactions. Take $\mathrm{E}=200 \mathrm{GPa}$.	CO2	L3
13	For a plane truss shown in Fig.2.13 determine the horizontal and vertical displacement, stresses in each element take $\mathrm{E}=20 \mathrm{GPa}$ and $A=200 \mathrm{~mm}^{2}$.	CO2	L3


14	write down the general guidelines for selecting the interpolation   polynomial.	CO2	L3
15	derive stiffness matrix for a 1-D bar element under axial loading.	CO2	L3
16	Derive strain-displacement matrix [B] for a isoparametric linear   triangular element.	CO2	L3
$\mathbf{e}$	Experiences	-	-
1			

E1. CIA EXAM - 1
a. Model Question Paper - 1

| Crs <br> Code: | 17ME61 | Sem: | VI | Marks: | 30 | Time: | 75 minutes |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Course: | Finite elements analysis |  |  |  |  |  |  |
| - | - | Note: Answer any $\mathbf{2}$ questions, each carry equal marks. | Mark <br> $\mathbf{s}$ | CO | Level |  |  |
| 1 | a | Define FEM, explain basic steps involved in FEM. | 7 | CO1 | L2 |  |  |
|  | b | using Galerkin's method, obtain an approximate solution of the <br> differential equation. | 8 | CO1 | L2 |  |  |
|  |  |  |  |  |  |  |  |



## b. Assignment -1

Note: A distinct assignment to be assigned to each student.


triangle for 2D polynomials.				
8 1KT15ME	Determine the maximum deflection of the beam as shown in fig 1.8 Take $\mathrm{E}=200 \mathrm{GPa} \& \mathrm{I}=2 \times 10^{-9} \mathrm{~m}^{4}$. Use Rayleigh ritz method.	8	CO1	L2
9 1KT15ME	Determine the displacement of the bar as shown in Fig. 1.9. use Rayleigh ritz method for the solution. Take $\mathrm{E}=$ 70 GPa .	8	CO1	L2
10 1KT15ME	Explain steps involved in Galerkin's method.	8	CO1	L2
11 1KT15ME	using Galerkin's method, obtain an approximate solution of the differential equation. $\frac{d^{2} u}{d x^{2}}-10 x^{2}=5,0 \leq x \leq 1, \text { at } u(0)=0, u(1)=0$	8	CO1	L2
12 1KT15ME	What is an interpolation function?	7	CO1	L2
13 1KT15ME	Derive the shape function of the bar element in local coordinate system.	7	CO1	L2
14 1KT15ME	Derive the interpolation function of quadratic bar element in natural co-ordinate system.	8	CO1	L2
15 1KT15ME	Derive the stiffness matrix for CST element.	8	CO1	L2
16 1KT15ME	Explain the concepts of iso, sub and super parametric elements.	8	CO1	L2
17 1KT15ME	Derive the shape function for the nine - noded quadrilateral element.	8	CO1	L2
18 1KT15ME	Using lagrangian method, derive the shape functions of quadrilateral element.	8		
19 1KT15ME	Evaluate the values of $\omega_{1}, \omega_{2}, \xi_{1}, \wedge \xi_{2}$ used in gauss quadrature two point method.	8	CO1	L2
20 1KT15ME	Describe the general algorithm of Gaussian elimination method for the solution of linear algebraic equations.	8	CO1	L2
21 1KT15ME	Explain in brief the penalty method of imposing boundary conditions.	8	CO1	L2
22 1KT15ME	For the bar shown in Fig. 2.11 determine (i) nodal displacement \& (ii) Stresses in each element Take $\mathrm{E}=$ $200 G P a \& A=300 \mathrm{~mm}^{2}$.	8	CO 2	L2
23 1KT15ME	For a stepped bar loaded as shown in Fig. 2.12 determine (i) Nodal displacements. (ii) elemental stresses (iii) support reactions. Take $\mathrm{E}=200 \mathrm{GPa}$.	7	CO 2	L2
24 1KT15ME	For a plane truss shown in Fig.2.13 determine the horizontal and vertical displacement, stresses in each element take $\mathrm{E}=20 \mathrm{GPa}$ and $\mathrm{A}=200 \mathrm{~mm}^{2}$.	7	CO 2	L2
25 1KT15ME	write down the general guidelines for selecting the interpolation polynomial.	8	CO 2	L2
26 1KT15ME	derive stiffness matrix for a 1-D bar element under axial loading.	8	CO1	L2
27 1KT15ME	Derive strain-displacement matrix [B] for a isoparametric linear triangular element.	8	CO1	L2
28 1KT15ME	Explain principle of minimum potential energy and principle of virtual work.	8	CO 2	L2
29 1KT15ME	Explain convergence requirement of a polynomial displacement model.	8	CO2	L2
30 1KT15ME	Explain simplex, Complex and multiplex elements.	8	CO 2	L2
31 1KT15ME	what is geometric isotropy? Sketch and explain pascal triangle for 2D polynomials.	8	CO2	L2
32 1KT15ME	Determine the maximum deflection of the beam as shown in fig 1.8 Take $\mathrm{E}=200 \mathrm{GPa} \& \mathrm{I}=2 \times 10^{-9} \mathrm{~m}^{4}$. Use Rayleigh ritz method.	8	CO2	L2


33 1KT15ME	Determine the displacement of the bar as shown in Fig. 1.9. use Rayleigh ritz method for the solution. Take $\mathrm{E}=$ 70 GPa .	8	CO2	L2
34 1KT15ME	Explain steps involved in Galerkin's method.	8	CO2	L2
35 1KT15ME	using Galerkin's method, obtain an approximate solution of the differential equation. $\frac{d^{2} u}{d x^{2}}-10 x^{2}=5,0 \leq x \leq 1, a t u(0)=0, u(1)=0$	8	CO2	L2
36 1KT15ME	What is an interpolation function?		CO2	L2
37 1KT15ME	Derive the shape function of the bar element in local coordinate system.	8	CO2	L2
38 1KT15ME	Derive the interpolation function of quadratic bar element in natural co-ordinate system.	8	CO2	L2
39 1KT15ME	Derive the stiffness matrix for CST element.	8	CO2	L2
40 1KT15ME	Explain the concepts of iso, sub and super parametric elements.		CO2	L2
41 1KT15ME	Derive the shape function for the nine - noded quadrilateral element.	8	CO2	L2
42 1KT15ME	Using lagrangian method, derive the shape functions of quadrilateral element.	8	CO2	L2
43 1KT15ME	Evaluate the values of $\omega_{1}, \omega_{2}, \xi_{1}, \wedge \xi_{2}$ used in gauss quadrature two point method.	8	CO2	L2
44 1KT15ME	Describe the general algorithm of Gaussian elimination method for the solution of linear algebraic equations.	8	CO2	L2
45 1KT15ME	Explain in brief the penalty method of imposing boundary conditions.		CO2	L2
46 1KT15ME	For the bar shown in Fig. 2.11 determine (i) nodal displacement \& (ii) Stresses in each element Take $\mathrm{E}=$ $200 G P a \& A=300 \mathrm{~mm}^{2}$.	8	CO2	L2
47 1KT15ME	For a stepped bar loaded as shown in Fig. 2.12 determine (i) Nodal displacements. (ii) elemental stresses (iii) support reactions. Take $\mathrm{E}=200 \mathrm{GPa}$.	8	CO2	L2
48 1KT15ME	For a plane truss shown in Fig.2.13 determine the horizontal and vertical displacement, stresses in each element take $\mathrm{E}=20 \mathrm{GPa}$ and $\mathrm{A}=200 \mathrm{~mm}^{2}$.	8	CO2	L2
49 1KT15ME	write down the general guidelines for selecting the interpolation polynomial.	8	CO2	L2
50 1KT15ME	derive stiffness matrix for a 1-D bar element under axial loading.	8	CO2	L3
51 1KT15ME	Derive strain-displacement matrix [B] for a isoparametric linear triangular element.		CO2	L3
52 1KT15ME	Using lagrangian method, derive the shape functions of quadrilateral element.	8	CO2	L3
53 1KT15ME	Evaluate the values of $\omega_{1}, \omega_{2}, \xi_{1}, \wedge \xi_{2}$ used in gauss quadrature two point method.	8	CO2	L3
54 1KT15ME	Describe the general algorithm of Gaussian elimination method for the solution of linear algebraic equations.		CO2	L3
55 1KT15ME	Explain in brief the penalty method of imposing boundary conditions.	8	CO2	L3
56 1KT15ME	For the bar shown in Fig. 2.11 determine (i) nodal displacement \& (ii) Stresses in each element Take E = $200 \mathrm{GPa} \& \mathrm{~A}=300 \mathrm{~mm}^{2}$.	8	CO2	L3

## D2. TEACHING PLAN - 2

Module - 3

Title:	Beams and Torsion of Shafts	Appr Time:	8Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Analysis of beams and Shaft under different kind of loading.	CO3	L4
b	Course Schedule	-	-
$\begin{gathered} \text { Class } \\ \text { No } \end{gathered}$	Module Content Covered	CO	Level
1	Boundary conditions, Load vector, Hermite shape functions, Beam stiffness matrix based on Euler-Bernoulli beam theory.	CO3	L2
2	Examples on cantilever beams, propped cantilever beams	CO3	L2
3	Numerical problems on simply supported, fixed straight and stepped beams using direct stiffness method with concentrated and uniformly distributed load.	CO3	L2
4	Finite element formulation of shafts, determination of stress and twists in circular shafts.		
C	Application Areas	CO	Level
1	Analysis of shaft parts	CO3	
2	Structural analysis of bars and beams	CO3	
d	Review Questions	-	-
1	Derive the stiffness matrix for a beam element.		
2	Derive Hermite shape functions of a beam element and show the variation of the shape function over the element.	CO3	
3	Determine the maximum deflection in the uniform $\mathrm{c} / \mathrm{s}$ of cantilever beam Shown in Fig 3.3 by assuming a beam as a single element. Take $\mathrm{E}=7 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2} \& \mathrm{I}=4 \times 10^{-4} \mathrm{~m}^{4}$.	CO3	
4	Derive the stiffness matrix for a circular shaft subjected to pure torsion.	CO3	
e	Experiences	-	-
1			

## Module - 4

Title:	Heat Transfer and Fluid Flow	Appr Time:	10 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to	-	Level
1	Analysis of heat transfer in composite sections	CO4	L4
b	Course Schedule	-	-
$\begin{gathered} \text { Class } \\ \text { No } \end{gathered}$	Module Content Covered	CO	Level
1	Basic equations of heat transfer: Energy balance equation, Rate equation: conduction, convection, radiation, energy generated in solid, energy stored insolid.	CO4	L2
2	1D finite element formulation using vibrational method, Problems with temperature gradient and heat fluxes	CO4	L3
3	heat transfer in composite sections, straight fins.	CO4	L2


4	Flow through a porous medium, Flow through pipes of uniform and stepped sections, Flow through hydraulic net works.	CO4	L3
5			
c	Application Areas	CO	Level
1	Analysis of temperature gradient in fins ,boilers		
2	Heat conduction through composite wall and pipes in industries		
d	Review Questions	-	-
1	Explain types of boundary conditions in heat transfer problems.	CO4	L2
2	Derive the element conductivity matrix for one dimensional heat flow element.	CO4	L2
3	Derive the element matrix, using Galerkin's approach for heat conduction in one dimensional element.	CO4	L2
4	Discuss the various steps involved in the finite element analysis of one dimensional heat transfer problem with reference to a straight uniform fin.	CO4	L2
5	Derive the stiffness matrix for one dimensional fluid element.	CO4	L2
6	Determine the temperature distribution in the rectangular fin as shown in Fig.4.6. Assume steady and only conduction process. Take heat generated inside the fin as $400 \mathrm{w} / \mathrm{m}^{\circ} \mathrm{C}$.	CO4	L2
7	Determine the temperature distribution in the composite wall using 1D heat elements use penalty approach of handling boundary conditions as shown in Fig.4.7 Given $\mathrm{K}_{1}=25 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}, \mathrm{K}_{2}=35$ $\mathrm{W} / \mathrm{m}^{\circ} \mathrm{C}, \mathrm{k}_{3}=55 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}, \mathrm{h}=30 \mathrm{~W} / \mathrm{m}^{2} \mathrm{C}, \mathrm{T}_{\infty}=900^{\circ} \mathrm{C}, \mathrm{A}=$ unit area.	CO4	L3
8	For the smooth pipe of variable cross section shown in Fig. 4.8 determine the fluid heads at the junctions, the velocities in each pipe and the volumetric flow rate. The fluid heads at the junctions, the velocities in each pipe and the volumetric flow rate. The fluid heads at the junctions.	CO4	L3
e	Experiences	-	-
1			

E2. CIA EXAM - 2
a. Model Question Paper - 2

Crs   Code:	17 ME61	Sem:	VI	Marks:	30	Time:	75 minutes
Course:	Finite element analysis						

Course: Finite element analysis

-	-	Note: Answer any 2 questions, each carry equal marks.	$\begin{gathered} \text { Mark } \\ \mathrm{s} \end{gathered}$	CO	Level
1	a	Derive the stiffness matrix for a beam element.	7	CO3	L2
	b	Determine the maximum deflection in the uniform $\mathrm{c} / \mathrm{s}$ of cantilever beam Shown in Fig 3.3 by assuming a beam as a single element. Take $\mathrm{E}=7 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2} \& \mathrm{I}=4 \times 10^{-4} \mathrm{~m}^{4}$.	8	CO3	L2
		OR		CO3	
2	a	Derive the stiffness matrix for a circular shaft subjected to pure torsion.	7	CO3	L2
	b	Derive Hermite shape functions of a beam element and show the variation of the shape function over the element.	8	CO3	L2
3	a	ment conductivity	7	CO	


	flow element.		8	CO4	L2
	b	Determine the temperature distribution in the composite wall using 1D heat elements use penalty approach of handling boundary conditions as shown in Fig.4.7 Given $\mathrm{K}_{1}=25 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}, \mathrm{k}_{2}=35$ $\mathrm{W} / \mathrm{m}^{\circ} \mathrm{C}, \mathrm{k}_{3}=55 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}, \mathrm{h}=30 \mathrm{~W} / \mathrm{m}^{2} \mathrm{C}, \mathrm{T}_{\infty}=900^{\circ} \mathrm{C}, \mathrm{A}=$ unit area.			
		OR		CO4	
4	a	Derive the stiffness matrix for one dimensional fluid element.	7	CO4	L2
	b	Determine the temperature distribution in the rectangular fin as shown in Fig.4.6. Assume steady and only conduction process. Take heat generated inside the fin as $400 \mathrm{w} / \mathrm{m}^{\circ} \mathrm{C}$.	8	CO4	L2

## b. Assignment -2

Note: A distinct assignment to be assigned to each student.

Model Assignment Questions									
Crs Code: 17ME61 Sem:			VI Marks:	5 / 10	Time:	90-120 minutes			
Course: Finite element analysis									
Note: Each student to answer 2-3 assignments. Each assignment carries equal mark.									
SNo	USN		Assignment D		criptio		$\begin{gathered} \text { Mark } \\ \mathrm{s} \\ \hline \end{gathered}$	CO	Level
1	1KT15ME	Derive	iffness matrix for	am	nt.	7	CO4	L2	
2	1KT15ME		ite shape function variation of the	of a bean ape fu	eleme on ov	d ${ }^{8}$	CO4	L2	
3	1KT15ME	Determ cantile as a si $\mathrm{m}^{4}$.	the maximum defle eam Shown in Fig element. Take E =	on in t 3 by a $\times 10^{9} \mathrm{~N}$	niform ming a \& I =	of 7   $0^{-4}$   	CO4	L2	
4	1KT15ME	Derive to pure	tiffness matrix for on.	circula	aft subj	d 8	CO4	L2	
5	1KT15ME	Explain proble	s of boundary c	itions	heat tra	- 7	CO4	L2	
6	1KT15ME	Derive dimens	element condu heat flow element	vity	ix for	ne 8	CO4	L2	
7	1KT15ME	Derive heat con	ement matrix, usi ion in one dimens	Galerk nal elem	approa	or 7	CO4	L2	
8	1KT15ME	Discus analys referen	various steps invol one dimensional a straight uniform	ed in th trans .	nite elem problem	ith 8  	CO4	L2	
9	1KT15ME	Derive elemen	stiffness matrix	one	nsional	uid 7	CO4	L2	
10	1KT15ME	Determ fin as conduc 400 w/	he temperature distribu wn in Fig.4.6. Ass process. Take heat g	tion in ne ste erated	rectang and the fin	8	CO4	L2	
11	1KT15ME	Determ wall us handling $\mathrm{K}_{1}=25$ $\mathrm{W} / \mathrm{m}^{2} \mathrm{C}$	he temperature dis 1D heat elements undary conditions $\mathrm{m}^{\circ} \mathrm{C}, \mathrm{k}_{2}=35 \mathrm{~W} / \mathrm{m}^{\circ}$ $=900^{\circ} \mathrm{C}, \mathrm{A}=$ unit	bution pena shown $k_{3}=55$	he com approa Fig.4.7 $/ m^{\circ} \mathrm{C}, \mathrm{h}$	ite 7   of    en    30	CO4	L2	


12	1KT15ME	For the smooth pipe of variable cross section shown in Fig. 4.8 determine the fluid heads at the junctions, the velocities in each pipe and the volumetric flow rate. The fluid heads at the junctions, the velocities in each pipe and the volumetric flow rate. The fluid heads at the junctions.	8	CO4	L2
13	1KT15ME	Derive the stiffness matrix for a beam element.	7	CO4	L2
14	1KT15ME	Derive Hermite shape functions of a beam element and show the variation of the shape function over the element.	8	CO4	L2
15	1KT15ME	Determine the maximum deflection in the uniform $\mathrm{c} / \mathrm{s}$ of cantilever beam Shown in Fig 3.3 by assuming a beam as a single element. Take $\mathrm{E}=7 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2} \& \mathrm{I}=4 \times 10^{-4}$ $\mathrm{m}^{4}$.	7	CO4	L2
16	1KT15ME	Derive the stiffness matrix for a circular shaft subjected to pure torsion.	8	CO4	L2
17	1KT15ME	Explain types of boundary conditions in heat transfer problems.	7	CO4	L2
18	1KT15ME	Derive the element conductivity matrix for one dimensional heat flow element.	8	CO4	L2
19	1KT15ME	Derive the element matrix, using Galerkin's approach for heat conduction in one dimensional element.	7	CO4	L2
20	1KT15ME	Discuss the various steps involved in the finite element analysis of one dimensional heat transfer problem with reference to a straight uniform fin.	8	CO4	L2
21	1KT15ME	Derive the stiffness matrix for one dimensional fluid element.	7	CO4	L2
22	1KT15ME	Determine the temperature distribution in the rectangular fin as shown in Fig.4.6. Assume steady and only conduction process. Take heat generated inside the fin as $400 \mathrm{w} / \mathrm{m}^{\circ} \mathrm{C}$.	8	CO4	L2
23	1KT15ME	Determine the temperature distribution in the composite wall using 1D heat elements use penalty approach of handling boundary conditions as shown in Fig.4.7 Given $\mathrm{K}_{1}=25 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}, \mathrm{k}_{2}=35 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}, \mathrm{K}_{3}=55 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}, \mathrm{h}=30$ $\mathrm{W} / \mathrm{m}^{2} \mathrm{C}, \mathrm{T}_{\infty}=900^{\circ} \mathrm{C}, \mathrm{A}=$ unit area.	7	CO4	L2
24	1KT15ME	For the smooth pipe of variable cross section shown in Fig. 4.8 determine the fluid heads at the junctions, the velocities in each pipe and the volumetric flow rate. The fluid heads at the junctions, the velocities in each pipe and the volumetric flow rate. The fluid heads at the junctions.	8	CO4	L2
25	1KT15ME	Derive Hermite shape functions of a beam element and show the variation of the shape function over the element.	7	CO4	L2
26	1KT15ME	Determine the maximum deflection in the uniform $\mathrm{c} / \mathrm{s}$ of cantilever beam Shown in Fig 3.3 by assuming a beam as a single element. Take $\mathrm{E}=7 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2} \& \mathrm{I}=4 \times 10^{-4}$ $\mathrm{m}^{4}$.	8	CO4	L2
27	1KT15ME	Derive the stiffness matrix for a circular shaft subjected to pure torsion.	7	CO4	L2
28	1KT15ME	Explain types of boundary conditions in heat transfer problems.	8	CO4	L2
29	1KT15ME	Derive the element conductivity matrix for one	7	CO4	L2


		dimensional heat flow element.			
30	1KT15ME	Derive the element matrix, using Galerkin's approach for heat conduction in one dimensional element.	8	CO4	L2
31	1KT15ME	Discuss the various steps involved in the finite element analysis of one dimensional heat transfer problem with reference to a straight uniform fin.	7	CO4	L2
32	1KT15ME	Derive the stiffness matrix for one dimensional fluid element.	7	CO4	L2
33	1KT15ME	Determine the temperature distribution in the rectangular fin as shown in Fig.4.6. Assume steady and only conduction process. Take heat generated inside the fin as $400 \mathrm{w} / \mathrm{m}^{\circ} \mathrm{C}$.	8	CO4	L3
34	1KT15ME	Determine the temperature distribution in the composite wall using 1D heat elements use penalty approach of handling boundary conditions as shown in Fig.4.7 Given $\mathrm{K}_{1}=25 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}, \mathrm{k}_{2}=35 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}, \mathrm{K}_{3}=55 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}, \mathrm{h}=30$ $\mathrm{W} / \mathrm{m}^{2} \mathrm{C}, \mathrm{T}_{\infty}=900^{\circ} \mathrm{C}, \mathrm{A}=$ unit area.	7	CO4	L3
35	1KT15ME	For the smooth pipe of variable cross section shown in Fig. 4.8 determine the fluid heads at the junctions, the velocities in each pipe and the volumetric flow rate. The fluid heads at the junctions, the velocities in each pipe and the volumetric flow rate. The fluid heads at the junctions.	8	CO4	L3

## D3. TEACHING PLAN - 3

## Module - 5

Title:	Axi-symmetric Solid Elements	Appr Time:	8 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Understand the stiffness matrix, eigen values and eigen vectors a xi-symmetric body	CO5	L2
b	Course Schedule	-	-
Class No	Module Content Covered	CO	Level
1	Derivation of stiffness matrix of axisymmetric bodies with triangular elements.CO5	CO5	L2
2	Numerical solution of axisymmetric triangular element(s) subjected to surface forces, point loads, angular velocity, pressure vessels.	CO5	L2
3	Formulation for point mass and distributed masses, Consistent element mass matrix of one dimensional bar element, truss element, axisymmetric triangular element.	CO5	L2
4	quadrilateral element, beam element. Lumped mass matrix of bar element, truss element, Evaluation of eigen values and eigen vectors, Applications to bars, stepped bars, and beams.	CO5	L2
		CO5	L2
C	Application Areas	CO	Level
1	Dynamic analysis of bars and beam	CO5	L2
2	Formulation for point mass and distributed masses in different element	CO5	L2
d	Review Questions	-	-
1	What is an axi-symmetric element? Mention its characteristics.	CO5	L2
2	Derive the stiffness matrix of an axi-symmetric element using	CO5	L2


	potential energy approach.		
3	Explain the evaluation of eigen values and eigen vectors using   characteristic polynomial technique.	CO 5	L 2
4	Derive the Consistent mass matrix for bar element	CO	L 2
5	Derive the Consistent mass matrix for bar element	CO 5	L 2
6	Derive the consistent mass matrix for truss element	CO 5	L 2
7	what are the properties of eigen vectors	CO	L 2
8	Differentiate between Consistent mass matrix and lumped mass   matrix.	CO 5	L 2
9	Determine the eigen value of the stepped bar as shown in Fig. 5.8   Take E $=200$ GPa, weight density $7850 \mathrm{~kg} / \mathrm{m}^{3}$	CO 5	L 2
$\mathbf{e}$	Experiences		
1			-

## E3. CIA EXAM - 3

a. Model Question Paper - 3

Crs   Code:	$17 M E 61$	Sem:	VI	Marks:	30	Time:	75 minutes
Course:	Finite element analysis						


-	-	Note: Answer any 2 questions, each carry equal marks.	$\begin{gathered} \text { Mark } \\ s \end{gathered}$	CO	Level
1	a	What is an axi-symmetric element? Mention its characteristics.	7	CO5	L2
	b	Derive the Consistent mass matrix for bar element	8	CO5	L2
					L2
2	a	Derive the stiffness matrix of an axi-symmetric element using potential energy approach.	8	CO5	L2
	b	Differentiate between Consistent mass matrix and lumped mass matrix.	7	CO5	L2
					L2
3	a	Explain the evaluation of eigen values and eigen vectors using characteristic polynomial technique.	7	CO5	L2
	b	Derive the consistent mass matrix for truss element	8	CO5	L2
					L2
4	a	Determine the eigen value of the stepped bar as shown in Fig. 5.8 Take E = 200 GPa , weight density $7850 \mathrm{~kg} / \mathrm{m}^{3}$	7	CO5	L2
	b	what are the properties of eigen vectors	8	CO5	L2

## b. Assignment - 3

Note: A distinct assignment to be assigned to each student.

Model Assignment Questions											
Crs Code: 17 ME 61 Sem:			VI	Marks:	$5 / 10$	Time:	90-120 minutes				
Course: Finite element analysis											
Note: Each student to answer 2-3 assignments. Each assignment carries equal mark.											
SNo	USN			ment D		criptio			Mark   s	CO	Level
1	1KT15ME	What charac	ics.	mmetric	lement	Mention		7	CO5	L2	
2	1KT15ME	Derive using	$\begin{aligned} & \text { stiffn } \\ & \text { tial e } \end{aligned}$	atrix of approac	axi-sy	tric elem		8	CO5	L2	
3	1KT15ME	Explain using	$\begin{aligned} & \text { eval } \\ & \text { cteri } \end{aligned}$	of eigen lynomia	alues chniq	igen ve		7	CO5	L2	
4	1KT15ME	Derive	onsi	mass ma	$x$ for b	ement		8	CO5	L2	

COURSE PLAN - CAY 2019-20

5	1KT15ME	Derive the Consistent mass matrix for bar element	7	CO5	L2
6	1KT15ME	Derive the consistent mass matrix for truss element	8	CO5	L2
7	1KT15	what are the properties of eigen vectors	7	CO	L2
8	1KT15ME	Differentiate between Consistent mass matrix and lumped mass matrix.	8	CO5	L2
9	1KT15ME	Determine the eigen value of the stepped bar as shown in Fig. 5.8 Take E $=200 \mathrm{GPa}$, weight density $7850 \mathrm{~kg} / \mathrm{m}^{3}$	7	CO5	L2
10	1K	What is an axi-symmetric element? Mention its characteristics.	8	CO	L2
11	1KT15ME	Derive the stiffness matrix of an axi-symmetric element using potential energy approach.	7	CO5	L2
12	1KT15ME	Explain the evaluation of eigen values and eigen vectors using characteristic polynomial technique.	8	CO	L2
13	1KT15ME	Derive the Consistent mass matrix for bar element	7	CO5	2
14	1KT15ME	Derive the Consistent mass matrix for bar ele	8	CO5	2
15	1KT15ME	Derive the consistent mass matrix for truss	7	CO5	L2
16	1KT15ME	what are the properties of eigen vectors	8	CO5	2
17	1KT15ME	Differentiate between Consistent mass matrix and lumped mass matrix.	7	CO5	L2
18	1KT15ME	Determine the eigen value of the stepped bar as shown in Fig. 5.8 Take E $=200 \mathrm{GPa}$, weight density $7850 \mathrm{~kg} / \mathrm{m}^{3}$	8	CO5	L2
19	1KT15ME	What is an axi-symmetric element? Mention its characteristics.	7	CO	2
20	1KT15ME	Derive the stiffness matrix of an axi-symmetric element using potential energy approach.	8	CO5	L2
21	1KT15ME	Explain the evaluation of eigen values and eigen vectors using characteristic polynomial technique.	7	CO5	L2
22	1KT15ME	Derive the Consistent mass matrix for bar element	8	CO5	2
23	1KT15M	Derive the Consistent mass matrix for bar elem	7	CO5	L2
24	1KT15	Derive the consistent mass matrix for truss	8	C05	L2
25	1KT15ME	what are the properties of eigen vectors	7	CO5	2
26	1KT15ME	Differentiate between Consistent mass matrix and lumped mass matrix.	8	CO5	L2
27	1KT15ME	Determine the eigen value of the stepped bar as shown in Fig. 5.8 Take $\mathrm{E}=200 \mathrm{GPa}$, weight density $7850 \mathrm{~kg} / \mathrm{m}^{3}$	7	CO5	2
28	1KT15ME	What is an axi-symmetric element? Mention its characteristics.	8	CO5	L2
29	1KT15ME	Derive the stiffness matrix of an axi-symmetric element using potential energy approach.	7	CO5	L2
30	1KT15ME	Explain the evaluation of eigen values and eigen vectors using characteristic polynomial technique.	8	CO5	L2
31	1KT15ME	Derive the Consistent mass matrix for bar element	7	CO5	L2
32	1KT15M	Derive the Consistent mass matrix for bar element	8	CO5	L2
33	1KT15ME	Derive the consistent mass matrix for truss element	7	CO5	L2
34	1KT15ME	what are the properties of eigen vectors	8	CO5	L2
35	1KT15ME	Differentiate between Consistent mass matrix and lumped mass matrix.	7	CO5	L2
36	1KT15ME	Determine the eigen value of the stepped bar as shown in Fig. 5.8 Take $\mathrm{E}=200 \mathrm{GPa}$, weight density $7850 \mathrm{~kg} / \mathrm{m}^{3}$	8	CO5	L2

## F. EXAM PREPARATION

1. University Model Question Paper

Course:	Finite element analysis							Month / Year	DEC /2019		
Crs Code:	$17 M E 61$	Sem:	VI	Marks:	100	Time:					180
:---											
minutes											



## 2. SEE Important Questions

Course: Finite element analysis


$\mathbf{2}$	Explain the evaluation of eigen values and eigen vectors using   characteristic polynomial technique.	$\mathbf{8}$	CO5		
	3	Derive the Consistent mass matrix for bar element	7	CO5	
4	Derive the Consistent mass matrix for bar element	8	CO5		
5	Derive the consistent mass matrix for truss element	7	CO5		
6	what are the properties of eigen vectors	8	CO5		
7	Differentiate between Consistent mass matrix and lumped mass   matrix.	7	CO5		
8	Determine the eigen value of the stepped bar as shown in Fig. 5.8   Take $E=200 \mathrm{GPa}$, weight density $7850 \mathrm{~kg} / \mathrm{m}^{3}$	$\mathrm{CO5}$			

## G. Content to Course Outcomes

1. TLPA Parameters

Table 1: TLPA - Example Course

Mo   dul   e-   \#	Course Content or Syllabus (Split module content into 2 parts which have similar concepts)	Conten t Teachin g Hours	Blooms' Learnin g Levels for Content	Final Bloo ms' Leve I	Identifie d Action Verbs for Learning	Instruct on Method s for Learnin g	iAssessmen t Methods to Measure Learning
A	$B$	C	D	$E$	$F$	G	H
1	Introduction to Finite element Analysis : General description of the Finite element Analysis. Engineering applications of Finite element Analysis. Boundary conditions: homogeneous and non-homogeneous for structural, heat transfer and fluid flow problems. Potential energy method, Rayleigh Ritz method, Galerkin's method, Displacement method of finite element formulation. Convergence criteria, Discretization process, Types of elements: 1D, 2D and 3D, Node numbering, Location of nodes. Strain displacement relations, Stress strain relations, Plain stress and Plain strain conditions, temperature effects.	5	- L2	L2	Underst Element $s$ and nodes	Lecture	- Slip Test
	Interpolation models: Simplex, complex and multiplex elements, Linear interpolation polynomials in terms of global coordinates 1D, 2D, 3D Simplex Elements.	5	-L2		Underst simplex element S   complex element S -Pascale triangle		
	One-Dimensional Elements-Analysis of Bars and Trusses,	5	- L2	L2	Underst	Lecture	Assignmen


	Linear interpolation polynomials in terms of local coordinate's for1D, 2Delements. Higher order interpolation functions for 1D quadratic and cubic elements in natural coordinates, Constant strain triangle, Four-Nodded Tetrahedral Element (TET 4), Eight-Nodded Hexahedral Element (HEXA8), 2D isoparametric element, Lagrange interpolation functions, Numerical integration: Gaussian quadrature one point, two point formulae, 2D integrals. Fore terms: Body force, traction force and point loads,				and   - Cubic   and quadrati c element S	Tutorial	$\begin{aligned} & \mathrm{t} \\ & - \\ & \hline \end{aligned}$
2	Numerical Problems: Solution for displacement, stress and strain in 1D straight bars, stepped bars and tapered bars using elimination approach and penalty approach, Analysis of trusses.	5	$\begin{aligned} & -L 2 \\ & -L 3 \end{aligned}$	-L3	```- Apply stiffness matrix for bars boundar y conditio n```		
3	Beams and Shafts:Boundary conditions, Load vector, Hermite shape functions, Beam stiffness matrix based on EulerBernoulli beam theory, Examples on cantilever beams, propped cantilever beams, Numerical problems on simply supported, fixed straight and stepped beams using direct stiffness method with concentrated and uniformly distributed load.	6	$\begin{aligned} & -\mathrm{L} 2 \\ & -\mathrm{L} 3 \end{aligned}$		```- Apply stiffness matrix for beams boundar y conditio n```	Lecture	Assignmen   t
3	Torsion of Shafts: Finite element formulation of shafts, determination of stress and twists in circular shafts.	6	$\begin{aligned} & \text { - L2 } \\ & -\mathrm{L} 3 \end{aligned}$		- Apply stiffness matrix for Shaft		
4	Heat Transfer: Basic equations of heat transfer: Energy balance equation, Rate equation: conduction, convection, radiation, energy generated in solid, energy stored insolid, 1D finite element formulation using vibrational method, Problems with temperature gradient and heat fluxes, heat transfer in composite sections, straight fins.	5	- L2	L2	- Apply   stiffness   matrix for conducti on , convect ion and heat generati on	Lecture	- Slip Test
4	Fluid Flow: Flow through a porous medium, Flow through pipes of uniform and stepped sections, Flow through hydraulic net works.	5	- L2		Underst and properti es of fluid		


				-fluid flow		
	4	- L2	L2	Underst and - Axi symmet ry solid element s	Lecture	- Slip Test
5 Dynamic Considerations: Formulation for point mass and distributed masses, Consistent element mass matrix of one dimensional bar element, truss element, axisymmetric triangular element, quadrilateral element, beam element. Lumped mass matrix of bar element, truss element, Evaluation of eigen values and eigen vectors, Applications to bars, stepped bars, and beams.	4	- L2	L2	Underst and Dynamic respons e of beam element s		

## 2. Concepts and Outcomes:

Table 2: Concept to Outcome - Example Course

$\begin{array}{\|c\|} \hline \mathrm{Mo} \\ \mathrm{dul} \\ \mathrm{e}- \\ \# \end{array}$	Learning or Outcome from study of the Content or Syllabus	Identified Concepts from Content	Final Concept	Concept Justification   (What all Learning Happened from the study of Content / Syllabus. A short word for learning or outcome)	CO Components (1.Action Verb, 2.Knowledge, 3.Condition / Methodology, 4.Benchmark)	Course Outcome   Student Should be able to ...
A	I	J	K	L	M	N
	- Study of Numerical Method - Study of elements and nodes	elements - nodes boundary condition	Elements and nodes	Understand the-   concept of-   elements and   boundary    conditions   	Understand Elements and nodes	Understand the   concept of   elements and   boundary    conditions
1	- Study of Boundary condition -Study of Simplex and complex elements - Study of pascal triangle	-simplex elements -complex elements -Pascale triangle	Complex and simple elements	Under the-   concept of   complex and   multiplex    elements	Understand simplex elements complex elements Pascale triangle	Under the concept of complex and multiplex elements
	-Study of tet 4 and quad element - Study of interpolation model	-tet 4 element -Quad elements Interpola	Cubic and quadratic elements	Understand thehexa and tet 4elements	Understand Cubic and quadratic elements	Understand the hexa and tet 4 elements

COURSE PLAN - CAY 2019-20

2	-Study of bars	tion model				
	- study of stiffness matrix for bars	-Bars -stiffness matrix for bars boundary condition	Analysis of bars and trusses	Apply eliminationand penalty approach for barsfor and trusses	- Apply   --stiffness matrix   for bars   - boundary   condition	Apply elimination and penalty approach for bars and trusses
3	-Study of Beam   - study of stiffness matrix for beams -Study of shaft - study of stiffness matrix for torsion of shaft	-Beams -stiffness matrix for beams boundary condition	loading conditions on beams	Apply the suitableloading conditionon beams	Apply -stiffness matrix for beams - boundary condition	Apply the suitable loading condition on beams
		-torsion of shaft -stiffness matrix for shaft boundary condition	Stiffness matrix for beams and shaft	Apply the suitableboundary condition of shaft	- Apply -stiffness matrix for Shaft	Apply the suitable boundary condition of shaft
	-Study of mode of heat transfer - study of stiffness matrix for conduction, convection and heat generation -Study fluid flow	-Modes of heat transfer -stiffness matrix for conducti on, convecti on.	Heat transfer through 1 D	Understand   heat transfer the- Apply   in-stiffness matrix    composite    sections $\quad$for conduction   , convection and   heat generation		Understand the heat transfer in composite sections
		propertie   $s$ of fluid   -fluid   flow	Analysis of flow	Understand flow- Understand through pipes Of-properties of fluid sections -fluid flow		Understand flow through pipes Of sections
5	-Study of axi symmetry solid element -Study of	i-axi   symmetr y solid elements	stiffness matrix solid element	Understand the- Understand stiffness matrix of- Axi symmetry axi-symmetric solid elements body		Understand the stiffness matrix of axi-symmetric body
	dynamic response of beam elements	-dynamic response of beam elements	Dynamic consideratio	Understand the-Understand eigen values and- Dynamic eigen vectors ofresponse of beam bars and beam elements		Understand the eigen values and eigen vectors of bars and beam

