Ref No:

SRI KRISHNA INSTITUTE OF TECHNOLOGY, BANGALORE

Academic Year 2019-20

Program:	BE – MECHANICAL ENGINEERING
Semester :	4
Course Code:	18MEL48B
Course Title:	FOUNDRY FORGING and WELDING LAB
Credit / L-T-P:	2 / 0-2-2
Total Contact Hours:	36
Course Plan Author:	Dinesh P/CHANDRAIAH M T

Academic Evaluation and Monitoring Cell

No. 29, Chimney hills, Hesaraghatta Road, Chikkabanavara BANGALORE-560090, KARNATAKA , INDIA Phone / Fax :+91-08023721315/23721477, Web: www.skit.org.in

Table of Contents

FOUNDRY FORGING and WELDING LAB	1
18MEL48B : FOUNDRY FORGING and WELDING LAB	4
A. LABORATORY INFORMATION	4
1. Lab Overview	4
2. Lab Content	4
3. Lab Material	4
4. Lab Prerequisites:	4
5. General Instructions	5
6. Lab Specific Instructions	5
B. OBE PARAMETERS	5
1. Lab / Course Outcomes	5
2. Lab Applications	6
3. Articulation Matrix	6
4. Mapping Justification	6
5. Curricular Gap and Content	7
6. Content Beyond Syllabus	8
C. COURSE ASSESSMENT	8
1. Course Coverage	8
2. Continuous Internal Assessment (CIA)	8
D. EXPERIMENTS	9
Experiment 01 : Compression strength test for molding sand	9
Experiment 02 : shear strength test for molding sand	11
Experiment 03 : tensile strength test for molding sand	13
Experiment 04 : Permeability test	
Experiment 05: Clay content determination test for molding sand	1/
Experiment 00. Sieve analysis lest	10
Experiment 00.1 00NDRT FRACTICE	20
Experiment 07 FOUNDRY PRACTICE	20
Foundry practice of split pattern pattern	21
Experiment 08: FOUNDRY PRACTICE	22
Foundry practice of solid pattern	
Experiment 09:FOUNDRY MODELS	23
Preparation of forging models	23
Experiment 10:FOUNDRY MODELS	24
Preparation of forging models	24

Note : Remove "Table of Content" before including in CP Book Each Laboratory Plan shall be printed and made into a book with cover page Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

18MEL48B : FOUNDRY FORGING and WELDING LAB

A. LABORATORY INFORMATION

1. Lab Overview

Degree:	B.Tech	Program:	ME
Year / Semester :	4TH sem	Academic Year:	2018-19
Course Title:	Foundry Forging and Welding Lab	Course Code:	18MEL48B
Credit / L-T-P:	2 / 0-2-2	SEE Duration:	180 Minutes
Total Contact Hours:	Hrs	SEE Marks:	60Marks
CIA Marks:	40	Assignment	1 / Module
Course Plan Author:	Mr. Dinesh P	Sign	Dt :
Checked By:		Sign	Dt :

2. Lab Content

Unit	Title of the Experiments	Lab	Concept	Blooms
		Hours		Level
1	Testing of molding sand and core sand compression, shear , and	06	Sand	L3
	tensile test on universal sand testing machine		properties	
2	Permeability test, sieve analysis to find grain fineness	06	casting	L3
	number(GFN) clay content determination in base sand			
3	Foundry practice	12	Metal	L2
	use of foundry tools and equipment ,preparation of molding sand		forming	
	mixture,preparation of green sand mold ,preparation of casting			
4	Forging operation	12	Metal	L3
	preparing minimum three forged models involving		forming	
	upsetting,drawing,bending.			

3. Lab Material

Unit	Details	Available
1	Text books	
	Foundry technology by peter beeley	In Lib
2	Reference books	
		In dept
3	Others (Web, Video, Simulation, Notes etc.)	
		Not Available

4. Lab Prerequisites:

-	-	Base Course:		-	-
SNo	Course	Course Name	Topic / Description	Sem	Remarks
	Code				
1	18ME15/2	EME	Welding	1/2	
	5				

Note: If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

5. General Instructions

SNo	Instructions	Remarks
1	Observation book and Lab record are compulsory.	
2	Students should report to the concerned lab as per the time table.	
3	After completion of the program, certification of the concerned staff in-	
	charge in the observation book is necessary.	
4	Student should bring a notebook of 100 pages and should enter the readings /observations into the notebook while performing the experiment.	
5	The record of observations along with the detailed experimental procedure	
	of the experiment in the Immediate last session should be submitted and certified staff member in-charge.	
6	Should attempt all problems / assignments given in the list session wise.	
7	It is responsibility to create a separate directory to store all the programs, so	
	that hobody else can read or copy.	
8	When the experiment is completed, should disconnect the setup made by	
	them, and should return all the components/instruments taken for the	
	purpose.	
9	Any damage of the equipment or burn-out components will be viewed	
	seriously either by putting penalty or by dismissing the total group of	
	students from the lab for the semester/year	
10	Completed lab assignments should be submitted in the form of a Lab	
	Record in which you have to write the algorithm, program code along with	
	comments and output for various inputs given	

6. Lab Specific Instructions

SNo	Specific Instructions	Remarks
1		
2		
3		
4		
5		
6		
7		

B. OBE PARAMETERS

1. Lab / Course Outcomes

#	COs	Teach.	Concept	Instr	Assessment	Blooms
		Hours		Method	Method	Level
1	Students should be able to Conduct	09	Properties	Demonstra	Pratical	L3
	various test on sand & determine sand		of sand	te	record ,IA test	
	strength					
2	Students should be able to Demonstrate	03	Sand	Demonstra	Pratical	L2
	various skills of sand preparation and		strength	te	record ,IA test	
	molding					
3	Students should be able to prepare the	06	foundry	Demonstra	Pratical	L2
	casting using with pattern			te	record ,IA test	
4	Students should be able to prepare the	06	Metal	Demonstra	Pratical	L2
	casting without pattern		forming	te	record ,IA test	
5	Students should be able to understand	12	foundry	Demonstra	Pratical	L3

	and apply forging operations			te	record ,IA test	
-	Total	36	-	-	-	-

Note: Identify a max of 2 Concepts per unit. Write 1 CO per concept.

2. Lab Applications

SNo	Application Area	CO	Level
1	Inspection methods of Moulding sand	CO1	L3
2	Different moulding sands	CO2	L2
3	Manufacturing industries	CO3	L2
4	Different casting process	CO4	L2
5	Heat treatment processes	CO5	L3

Note: Write 1 or 2 applications per CO.

3. Articulation Matrix

(CO – PO MAPPING)

-	Course Outcomes				Ρ	rogr	am (Outc	ome	s				
#	COs	PO1	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	Level
			2	3	4	5	6	7	8	9	0	1	2	
CO1	Students should be able to	2	2	-	-	-	-	-	-	2	-	-	-	L3
	Conduct various test on sand & determine sand strength													
CO2	Students should be able to	2	-	-	-	-	-	-	-	2	-	-	-	L3
	Demonstrate various skills of sand preparation and molding													
CO3	Students should be able to	2	-	-	-	-	-	-	-	2	-	-	-	L3
	prepare the casting using with pattern													
CO4	Students should be able to	2	-	-	-	-	-	-	-	2	-	-	-	L3
	prepare the casting without pattern													
CO5	Students should be able to	2	2	-	-	-	-	-	-	2	-	-	-	L3
	understand and apply forging													
	operations													
	Average													

Note: Mention the mapping strength as 1, 2, or 3

4. Mapping Justification

Mapping		Mapping	Justification				
		Level					
CO PO -		-	-				
CO1	PO1	L3	Knowledge of sand preparation and pattern for making mould				
CO1	PO9	L3	Individual and team work, mapping				
CO2	PO1	L2	Knowledge on various test on sand				
CO3	PO1	L2	Knowledge on preparation of casting using pattern				
CO4	PO1	L2	Knowledge on applying forging operation				
CO5 PO1 L3		L3	Knowledge to prepare casting without pattern				

Note: Write justification for each CO-PO mapping.

5. Curricular Gap and Content

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					

Note: Write Gap topics from A.4 and add others also.

6. Content Beyond Syllabus

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					

Note: Anything not covered above is included here.

C. COURSE ASSESSMENT

1. Course Coverage

Unit	Title	Teachi		Nc	o. of qu	lestior	n in Exa	am		CO	Levels
		ng	CIA-1	CIA-2	CIA-3	Asg-1	Asg-2	Asg-3	SEE		
		Hours									
1	Students should be able to	09	1	-	-	5	-	-	1	CO1	L3
	Conduct various test on sand &										
	determine sand strength										
2	Students should be able to	03	1	-	-	5	-	-	1	CO2	L2
	Demonstrate various skills of sand										
	preparation and molding										
3	Students should be able to	06	-	1	-	-	5	-	1	CO3	L2
	prepare the casting using with										
	pattern										
4	Students should be able to	06	-	1	-	-	5	-	1	CO4	L2
	prepare the casting without										
	pattern										
5	Students should be able to	12	-	-	1	-	-	5	1	CO5	L3
	understand and apply forging										
	operations										
-	Total	36	2	2	1	2	2	1	5	-	-

Note: Write CO based on the theory course.

2. Continuous Internal Assessment (CIA)

Evaluation	Weightage in Marks	СО	Levels
CIA Exam – 1	30	CO1, CO2	L3,L3
CIA Exam – 2	30	CO3, CO4	L2,L2
CIA Exam – 3	30	CO5	L3
Assignment - 1	05	CO1, CO2	L3,L3
Assignment - 2	05	CO3, CO4	L2,L2
Assignment - 3	05	CO5	L3
Seminar - 1	05	CO1, CO2	L3,L3
Seminar - 2	05	CO3, CO4	L2,L2
Seminar - 3	05	CO5	L3
Other Activities – define –	-	-	-
Slip test			
Final CIA Marks	40	CO1 to Co5	L2,L3

_

SNo	Description	Marks
1	Observation and Weekly Laboratory Activities	05 Marks
2	Record Writing	10 Marks for each Expt
3	Internal Exam Assessment	25 Marks
4	Internal Assessment	40 Marks
5	SEE	60 Marks
-	Total	100 Marks

D. EXPERIMENTS

Experiment 01 : Compression strength test for molding sand

-	Experiment No.:	1	Marks		Date		Date			
					Planned		Conducted			
1	Title	Со	mpression st	rength test						
2	Course Outcomes	Th	e test detern	nines the ma	ximum Comp	pression stre	ngth test of s	and mixture		
3	Aim	To an	find the greed d moisture	en Compres	sion strength	test for diff	erent percen	itage of clay		
4	Material Equipmen Required	tun	iversal sand	testing mac	hine					
5	Theory, Formula Principle, Concept	1.1 co 2. ⁻ otl 3.(vh 4.(va 5. ⁻ co m(Periodic tests are necessary to check the quality of foundry sand and compression strength test is one among them. 2. The constituents of moulding sand are silica sand, clay, water and other special additives. 3. Clay imparts the necessary bonding strength to the moulding sand when it is mixed with water etc. bentonite. 4. Compression test determines the bonding or adhesiveness power of various bonding materials in green sand. 5. The green compressive strength of foundry sand is the maximum compression strength a mixture is capable of developing when it is in most condition							
 6 Procedure, Program, 1. Conduct the experiment in two parts: Activity, Algorithm, a) Vary the clay content keeping the water content constant Pseudo Code b) Vary the water content keeping the clay content constant 2. Take weighed proportions of sand and clay and dry mix them togeth Muller for 3minutes. 3. Adjust the weight of the sand to get standard specimen 4. Remove the standard specimen by the stripper and place it be shackles which are fixed in the sand testing machine. 5. Rotate the handle of the testing machine to actuate the ram. Thus, hyperessure is applied continuously till the specimen raptures. 6. Read the compression strength from the gauge and record the same 7. Conduct the experiment for the above said two cases and tabulat result 							ogether in a it between us, hydraulic same. tabulate the			

	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	Press Plug Mova Compre Pad	me Gauge) `~ Wheel Threaded Shaft Funnel
8	Observation Table,	VARYING T	HE % OF CLAY			
	Look-up Table, Output	Sl.	No. Percentage of sand	Percentage of clay	Percentage of water	Compression Strength gm/cm 2
		VARYING TH	HE % OF WATER			
		Sl.	No. Percentage of sand	Percentage of clay	Percentage of water	Compression Strength gm/cm 2
9	Sample Calculations			<u> </u>		
10	Graphs, Outputs	Plot clav	the graphs with on X-axis and th	Compression s le other comp	trength on Y-ax ression strenatł	n on Y-axis and
		perc	centage water on X	-axis		
11	Results & Analysis	Disc	to find compression	n respect to the	graphs plotted	
12	Application Areas Remarks	Use	to find compressio	in strength for s	anu mixture	
14	Faculty Signature with Date					

Experiment 02 : shear strength test for molding sand

-	Experiment No.:	2	Marks		Date Planned		Date Conducted			
1	Title	sheai	strength tes	t for molding	y sand					
3	Aim	To fin	d shear strer	ngth test for r	molding sanc	l				
4	Material /	unive	rsal sand te	esting machir	ne					
	Equipment									
	Required	1.01								
5	Theory, Formula, Principle, Concept	1.5he and 1 2.Ins moul also 3.The moul after cavit 4.In s	Shear strength is the ability of sand particles to resist the shear stress nd to stick together. Insufficient Shear strength may lead to the collapsing of sand in the nould or its partial destruction during handling. The mould and core may so be damaged during flow of molten metal in the mould cavity. The moulding sand must possess sufficient strength to permit the nould to be formed to the desired shape and to retain the shape even fter the hot metal is poured into the mould avity. In shearing, the rupture occurs parallel to the axis of the specimen.							
6	Procedure, Program, Activity, Algorithm, Pseudo Code	Proce 1. Cor a) Vai b) Vai 2. Tal speci 3. Tra ramn 4. Fix 5. Rei the unive 6. Ap testir conti 7. Rea	rocedure: Conduct the experiment in two parts:) Vary the clay content keeping the water content constant) Vary the water content keeping the clay content constant . Take weighed amount of foundry sand (mixture of sand, clay & water as pecified). . Transfer the sand mixture into the tube and ram it with the help of a sand ammer thrice. . Fix the shackles to the universal sand testing machine. . Remove the specimen from the tube with the help of a stripper and load it into ne niversal sand testing machine. . Apply the hydraulic pressure by rotating the handle of the universal sand esting machine ontinuously until the specimen ruptures. . Read the shear strength directly from the scale and tabulate the readings.							
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph									
8	Observation Table, Look-up Table, Output		Shear p	nds	Unive	rsal Strength Ma	ichine			

		VARYING THE S	RYING THE % OF CLAY									
		SL.	No. Percentage of sand	Percentage of clay	Percentage of water	Compression Strength gm/cm 2						
		VARYING THE %	6 OF WATER									
		SL.	No. Percentage of sand	Percentage of clay	Percentage of water	Compression Strength gm/cm 2						
9	Sample Calculations											
10	Graphs, Outputs	Plot the graphs with shear strength on Y-axis & percentage clay on X- axis and the other compression strength on Y-axis and percentage water on X-axis										
11	Results & Analysis	Discuss the results with respect to the graphs plotted										
12	Application Areas	Use to f	ind shear streng	th for sand mixt	ure							
13	Remarks											
14	Faculty Signature with Date											

Experiment 03: tensile strength test for molding sand

-	Experiment No.:	3	Marks	Date		Date				
				Planned		Conducted				
1	Title	Tensile strength test for molding sand								
3	Aim	To fi	To find tensile strength test for molding sand							
4	Material Equipmentuniversal sand testing machine									

	Required	
5	Theory, Formula,	
	Principle, Concept	1.A core is compacted sand mass of a known shape. 2.When a hallow casting (to have a hole through or bind) is required, a core is used in the mould or when a complex contour is required a mould is created out of cores. This core has to be properly seated in the mould on formed impressions in the sand. To form these impressions extra projections called core points are added on the pattern surface at proper places.
		 in two parts. Their classification is generally according to the shape of the core or the method of making the core. 4.Split core box is very widely used and is made in two parts, which can be joined together by means of dowels to form the complete cavity for making the core. 5.The purpose of adding binder to the moulding sand is to impart strength and cohesiveness to the sand to enable it to retain its shape after the core has been rammed. 6.binders used can be a) organic: ex. Dextrin, core oil b) Inorganic: ex. Sodium silicate, Bentonite 7. Classification of binders: a. Baking type: Binding action is realized in the sand after baking the sand mixture in an oven. b. Gassing type: Binding action is obtained in the sand after
		 assing type: binding detains obtained in the sand diter passing a known gas through the sand mixture. 8.Core oil is used as binder that hardens with the addition of heat. The sand and binder is mixed and backed at a temperature of 2500 -3000C and binding action takes place within few hours. 9.Sodium silicate is a self setting binder and no external heat is required for the binding action which takes place at room temperature when Co2 gas is passed. 10.During casting the core is placed inside the mould and the molten metal is poured in to the cavity. As the molten metal begins to cool, it begins to contract on the inner radius as well as the outer radius. Due to the contraction of the inner radius the core sand will be pulled outwards causing a tensile load around the core. Hence knowledge of tensile strength of core sand is important.
6	Procedure, Program, Activity, Algorithm, Pseudo Code	 Conduct the experiment in two parts. a. Using core oil as binder and b. Using sodium silicate as binder. Take proper proportions of base sand and binder then mix them together thoroughly. Assembly the core box and fill the mixture into it. Place the core box under sand rammer and ram the sand thrice. Using a wooden piece tap the core box gently from sides. Remove the core box leaving the rammed core on a flat metal plate Bake the specimen (which is on a plate) for about 30 minutes at a temperature of 1500 -2000 C in an oven. (When the binder is core oil) If the binder is sodium silicate, pass Co2gas for 5 secs. The core hardens instantly and the core can be directly used. Fix the tension shackles on to the sand testing machine, and place the hardened specimen in the shackles. Apply the load gradually by turning the hand wheel of the testing machine.
		readings.
7	Block, Circuit,	
	Model Diagram,	
	INCAULION EUUdlion.	

	Expected Graph	Guide Brac Knob Stationery Roller Movable J	aw Jaw		
8	Observation Table, Look-up Table, Output	Sl. No.	Percentage of sand	Percentage of Sodium Silicate or core oil	Tensile strengthN/m 2
9	Sample Calculations				
10	Graphs, Outputs	Tensile strength v/s	percentage binder		
11	Results & Analysis	Discuss the effect o	f variation in % binde	er on tensile strength	1
12	Application Areas				
13	Remarks				
14	Faculty Signature with Date				

Experiment 04 : Permeability test

-	Experiment No.:	4	Marks		Date	Date	
					Planned	Conducted	
1	Title	Perm	eability test	for molding :	sand		
3	Aim	To fin	d Permeabil	ity strength t	est for molding s	sand	
4	Material /	Perm	eability teste	er			
	Equipment						
	Required						
5	Theory, Formula	1.Mo	lten metals	always con	tain certain am	nount of dissolved ga	ses, which
	Principle, Concept	are e	volved whe	en the meta	I starts freezing	g.	
		2.Wh	nen molten i	meal come	s in contact wit	h moist sand, genera	ates steam
		or wa	ater vapour.				
		3.Ga	ses and wat	ter vapour a	are released in	the mould cavity by	the molten
		meta	al and sand.	If they do	not find opportu	unity to escape comp	pletely
		throu	ւցի the moւ	uld, they wi	ll get entrapped	d and form gas holes	or pores

		in the casting. The sand must therefore be sufficiently porous to allow the gases and water vapour to escape out. This property of sand is referred to as permeability.
		4.Permeability is one of the most important properties affecting the characteristic of moulds which depends upon the grain size, grain shape, grain distribution, binder content, moisture level and degree of compactness.
		5.Permeability is a physical property of the physical sand mixture, which allows gases to pass through it easily.
		6.The AFS (American Foundry Men Society) definition of permeability is "the number obtained by passing 2000cc of air through a standard specimen under a pressure of 10 gm/cm2for a given time in minutes".
		7.The permeability number PN can be found out by the equation
		PN= VH/PAT
		where V= volume of air passing through the specimen ,2000cc H= height of the specimen =50.8mm P = pressure as read from the manometer in gm/cm ² A= cross -section area of the specimen in cm ² T= time in minutes for 2000cc of air passed through the sand specimen
6	Procedure	1. Conduct the experiment in two parts. In the first case vary water percent
0	Program, Activity, Algorithm, Pseudo	keeping clay percent constant. In the second case vary clay percent and keep water percent constant.
	Code	2. Take weighed proportions of sand dry mix them together for 3 minutes. Then add required proportions of water and wet mix for another 2 minutes, to get a homogeneous and mixture. Take the total weight of the mixture between 150- 200 grams. The correct weight has to be determined by trial and error method.
		3. Fill the sand mixture into the specimen tube and ram thrice using sand rammer. Use the tolerance limit provided at the top end of the rammer for checking the specimen size. If the top end of the rammer is within the tolerance limit, the correct specimen is obtained. If it lies below the limit, increase the weight of sand mixture and prepare a new specimen. The specimen conforming to within limits represent the standard specimen required.
		4. Now the prepared standard specimen is having a dia. 50.8mm and height50.8mm.
		5. Place the standard specimen along with the tube in the inverted position on the rubber seal or on the mercury cup (specimen in the top position in the manometer reading).
		6. Operate the valve and start the stop watch simultaneously. When the zero mark on the inverted jar just touches the top of water tank, note down the manometer reading.
		7. Note down the time required to pass 2000cc of air through the specimen. Calculate the

7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	Ma Wa	nometer Knob [–] Adjus ater Outlet Valve–	Zero				Air Tank Water Tank t rifice ubber Bosh
8	Observation Table, Look-up Table, Output	SI.NO	% sand	% clay	% water consta nt	Manometer reading pressure(P)gm/cm² initial final P=Pi-Pf	Time in min	Permeability number PN= VH/PAT
0	Sample	Finding out	nremeat		mber us	sing formula		
9	Calculations	PN= VH/P	AT			Sing formata		
10	Graphs, Outputs	Permeability Permeability	y numbe y numbe	r v/s % r v/s %	Clay water			
11	Results & Analysis	Discuss the	effect of	water a	and clay	on Permeability of sar	nd	
12	Application Areas	Give the info	ormation	about s	sand pro	perties		
13	Remarks							
14	Faculty Signature with Date							

Experiment 05 : Clay content determination test for molding sand

-	Experiment No.:	5	Marks		Date Planned		Date Conducted	
1	Title	Clay	content dete	rmination tes	st for molding	sand		
3	Aim	Τod	etermine the	percentage	of clay prese	nt in base sa	ind	
4	Material / Equipment Required	Moul	Aould hardness tester					
5	Theory, Formula, Principle, Concept	Clay sand bindi 2.Cla no bi strer shap	lay can be those particles having less than 20 microns size. Moulding and contains 2 to 50 percent of clay. When mixed with water it imparts, inding strength and plasticity. .Clay consists of two ingredients a) Fine silt and b) True clay. Fine silt as o binding power where as true clay imparts the necessary boundary trength to the moulding sand; thereby the mould does not loose its have after ramming					

		3.Clay also can define as those particles which when mixed with water, agitated and then made to settled, fails to settle down at the rate of 1"/mm.
		4. The particles of clay are plate like from and have a very large surface area compared to its thickness and therefore have a
		5.Clay is the main constituent in a moulding sand and mixture other than sand grains. Clay imparts binding action to the sand and hence the
		6.Clay is of mineral origin available in plenty on earth. It is made of alumina silicate. The types of clay are a) montmorillonite b) Kaolinite and c) illite the first type is generally referred to as Bentonite. Clay is the main constituent in a moulding sand mixture other than sand grain. Clay help impart binding action to the sand and hence strength to the sand
		% clay = 50 -w _d /50 x 100
6	Procedure,	1. the green sand mixture with a suitable percentage of clay and moisture is
	Program, Activity,	prepared accordingly 2. with the help of a solid pattern, the mould is prepared with this mixture
	Code	alternately instead of a mould , a core of 50.8x50.8 mm can be prepared using
		sand rammer
		3. the ball of the indenter is pressed manually against the mould /core the depth of penetration indicated on the dial indicator is noted down readings are taken at three different locations and their average is tabulated as the hardness of mould or core
7	Block, Circuit,	
	Reaction Equation.	
	Expected Graph	Glass Jar
		Fair
		1 Cal
		Toggle Switch Timer Indicator Lamp
8	Ubservation Table,	
	Output	
9	Sample	
10	Calculations	
10	Graphs, Outputs	

Experiment 06: Sieve analysis test

-	Experiment No.:	6	Marks		Date		Date	
					Planned		Conducted	
1	Title	Sieve	Sieve analysis test for molding sand					
3	Aim	To de	To determine average grain fineness number(GFN) of given sand					
4	Material /	/Sieve testing appartus						
	Equipment							
	Required							
5	Theory, Formula,	1.The	base sand is	a mixture of	grains having	g a variety of	f shapes such	as
	Principle, Concept	a) Ro	und					

		b) subangular c) angular d) compounded grains. Base sand is relatively free from any binder or additives. 2.Depending on the average size of the grains, the sand can be grouped into: a) Fine b) Medium and c) Coarse grains.
		3. The shape and size of grains has a large influence on the permeability of sand mix as well as on the bonding action.
		4. The shape and size of grains determine the possibility of its application in various types of foundry practice. Ex: Fine grain sand results in good surface, on the casting but gases cannot escape out of the mould made from it.
		5.Coarse grain sand allows gases to escape out easily but the casting surface will be very rough. Hence grain size should select
		6.The given size of sand grains is designated by a number called grain fineness number that indicates the average size of grains in the mixture. he size is determined by passing the sand through sieves having specified apparatus which are measured in microns.
		7.The sieve number designates the pore size through which the sand grains, may pass through it or retained in it.
		α Average grains lineness number can be found out by the equation GEN = Ω/P
		Q= sum of product of percentage sand retained in sieves & corresponding multiplier
		P= sum of percentage of sand retained in sieves
6	Procedure, Program, Activity,	1. take 100 grams of dry silica sand and place it in the top sieve of a series and close the lid
	Algorithm, Pseudo Code	2. place the whole assembly of sieve on yhe vibrator sieve shaker and clamp it 3. switch ON the motor and allow the sieve assembly to vibrate for 15 minutes . Then switch OFF the motor 4.collect the sand particles retained in each of the sieves & record their weighs
		5. calculate the percentage weight retained by each of the sieves. Multiply this value with the multiplier for each sieve 6. calculate the average GFN
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	Knob Clamping patti Side flexible bar Set of sieve Spring Bumper
		Timer Toggle switch Indicator lamp Panel
8	Observation Table,	
	Look-up Table, Output	SI.NO sieve Weight of Percentag multiplier Product(DX

			sa re	and etained(B)	e sand retained) c)		C)
		1 2 3 4 5 6 7 8					
		9	Т	OTAL	P=C		Q=(DXC)
9	Sample Calculations	Calculation is done	by using	formula GFN	= Q/P		
10	Graphs, Outputs	To find average graiı	n fineness	s number(GFI	N) of given s	and	
11	Results & Analysis						
12	Application Areas	A sieve analysis (or used in civil engine gradation)	gradation eering) to	n test) is a pr o assess the	ractice or p particle siz	rocedure use e distribution	d (commonly 1 (also called
13	Remarks	Application Areas					
14	Faculty Signature with Date	Remarks					

Experiment 06:FOUNDRY PRACTICE

-	Experiment No.:	6	Marks		Date		Date	
					Planned		Conducted	
1	Title	Four	dry practice	of solid patte	ern			
3	Aim	To pr	epare moul	d cavity using	g solid patter	'n		
4	Material /	moul	d box,sprue	e ,riser,wood	len leveler,	wedge and	round har	nmer,shovel,
	Equipment	trowe	gate cutte	r,vent rod, so	lid pattern			
	Required		-		•			
5	Theory, Formula,							
	Principle, Concept							
6	Procedure,	1. pre	pare the gre	en sand mixt	ure for makir	ng mould		
	Program, Activity,	2. pla	ce the drag	box in its inv	erted positio	on pre cle	eaned floor a	and keep the
	Algorithm, Pseudo	solid	pattern in th	e mid positio	n of the mou	ld box.		
	Code	3. fill a	and ram the	green sand	mixture till th	ne top of the	drag box .inv	vert the drag
		box s	o that the pa	attern faces tl	ne top.			
		4. pla locati	ce the cope ons	box on top	of drag box	and place sp	orue and rise	r at suitable
		5. fill a	and ram the	green sand r	nixture till the	e top of core	box	
		6. level the sand using wooden leveler and remove the sprue and riser from the mould box						
		7. ven	t the cope b	ox with vent	rod			
		8. rol	l over the c	ope box on	the floor ar	nd eject the	pattern with	nout causing
		dama	ige to the m	ould cavity				
		9. cut	the gate usi	ng gate cutte	er and clean	the mould ca	avity with a b	lower.

		10. replace the cope box over the drag box and make the mould ready for pouring
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	PATTERN MOULD CAVITY BOTTOM
8	Observation Table, Look-up Table, Output	
9	Sample Calculations	To make prepare mould cavity by using pattern ,cope and drag
10	Graphs, Outputs	
11	Results & Analysis	A mould cavity is prepared using solid pattern
12	Application Areas	 Casting is the cheapest and most direct way of producing the shape of the component Casting is best suited to work where components required is in low quantity. Complicated shapes having internal openings and complex section variation can be produced quickly and cheaply by casting since liquid metal can flow into any form/ shape. Example: 1. Outer casing of all automobile engines. Electric motor housing Bench vice, Irrigation pumps etc. Heavy equipment such as machine beds of lathe, milling machine, shaping, drilling planing machine etc. can be cast/easily Casting is best suited for composite components Example.1. steel screw threads in zinc die casting All conductors into slot in iron armature for electric motor.
13	Remarks	
14	Faculty Signature with Date	

Experiment 07:FOUNDRY PRACTICE

-	Experiment No.:	6	Marks	Date	Date	
				Planned	Conducted	

1	Title	Foundry practice of split pattern, pattern
2	Aim	To prepare, mould cavity using solid pattern
 _∕	Material /	mould box sprue riser wooden leveler wedge and round hammer shovel
4	Equipment	trowel gate cutter, vent rod, solid pattern
	Required	
5	Theory, Formula,	
_	Principle, Concept	
6	Procedure, Program, Activity, Algorithm, Pseudo Code	 prepare the green sand mixture for making mould place the drag box in its inverted position on pre cleaned floor and keep the solid pattern in the mid position of the mould box. fill and ram the green sand mixture till the top of the drag box invert the drag box so that the pattern faces the top. place the cope box on top of drag box and place sprue and riser at suitable locations fill and ram the green sand mixture till the top of core box level the sand using wooden leveler and remove the sprue and riser from the mould box vent the cope box with vent rod roll over the cope box on the floor and eject the pattern without causing damage to the mould cavity cut the gate using gate cutter and clean the mould cavity with a blower. replace the cope box over the drag box and make the mould ready for pouring
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	Partin Line Pattern Pattern Cope Pattern Cope Dowell Pins Cope Drag
		(a) Split pattern. (b) Pattern in moulding sand. Fig. 3.2. Split pattern.
8	Observation Table,	(a) Split pattern. (b) Pattern in moulding sand. Fig. 3.2. Split pattern.
8	Observation Table, Look-up Table, Output	(a) Split pattern. (b) Pattern in moulding sand. Fig. 3.2. Split pattern.
8	Observation Table, Look-up Table, Output Sample	(a) Split pattern. (b) Pattern in moulding sand. Fig. 3.2. Split pattern. To make prepare mould cavity by using pattern .cope and drag
8	Observation Table, Look-up Table, Output Sample Calculations	(a) Split pattern. (b) Pattern in moulding sand. Fig. 3.2. Split pattern. To make prepare mould cavity by using pattern ,cope and drag
8 9 10	Observation Table, Look-up Table, Output Sample Calculations Graphs, Outputs	(a) Split pattern. (b) Pattern in moulding sand. Fig. 3.2. Split pattern. To make prepare mould cavity by using pattern ,cope and drag
8 9 10 11	Observation Table, Look-up Table, Output Sample Calculations Graphs, Outputs Results & Analysis	(a) Split pattern. (b) Pattern in moulding sand. Fig. 3.2. Split pattern. To make prepare mould cavity by using pattern ,cope and drag A mould cavity is prepared using split pattern
8 9 10 11 12	Observation Table, Look-up Table, Output Sample Calculations Graphs, Outputs Results & Analysis Application Areas	(a) Split pattern. (b) Pattern in moulding sand. Fig. 3.2. Split pattern. To make prepare mould cavity by using pattern ,cope and drag A mould cavity is prepared using split pattern 1.Casting is the cheapest and most direct way of producing the shape of
8 9 10 11 12	Observation Table, Look-up Table, Output Sample Calculations Graphs, Outputs Results & Analysis Application Areas	(a) Split pattern. (b) Pattern in moulding sand. Fig. 3.2. Split pattern. To make prepare mould cavity by using pattern ,cope and drag A mould cavity is prepared using split pattern 1.Casting is the cheapest and most direct way of producing the shape of the component
8 9 10 11 12	Observation Table, Look-up Table, Output Sample Calculations Graphs, Outputs Results & Analysis Application Areas	(a) Split pattern. (b) Pattern in moulding sand. Fig. 3.2. Split pattern. To make prepare mould cavity by using pattern ,cope and drag A mould cavity is prepared using split pattern 1.Casting is the cheapest and most direct way of producing the shape of the component 2.Casting is best suited to work where components required is in low
8 9 10 11 12	Observation Table, Look-up Table, Output Sample Calculations Graphs, Outputs Results & Analysis Application Areas	(a) split pattern. (b) Pattern in moulding sand. Fig. 3.2. Split pattern. To make prepare mould cavity by using pattern ,cope and drag A mould cavity is prepared using split pattern 1.Casting is the cheapest and most direct way of producing the shape of the component 2.Casting is best suited to work where components required is in low quantity.
8 9 10 11 12	Observation Table, Look-up Table, Output Sample Calculations Graphs, Outputs Results & Analysis Application Areas	(a) Split pattern. (b) Pattern in moulding sand. Fig. 3.2. Split pattern. To make prepare mould cavity by using pattern ,cope and drag A mould cavity is prepared using split pattern 1.Casting is the cheapest and most direct way of producing the shape of the component 2.Casting is best suited to work where components required is in low quantity. 3.Complicated shapes having internal openings and complex section variation can be produced quickly and cheaply by casting since liquid
8 9 10 11 12	Observation Table, Look-up Table, Output Sample Calculations Graphs, Outputs Results & Analysis Application Areas	(a) Split pattern. (b) Pattern in moulding sand. Fig. 3.2. Split pattern. To make prepare mould cavity by using pattern ,cope and drag A mould cavity is prepared using split pattern 1.Casting is the cheapest and most direct way of producing the shape of the component 2.Casting is best suited to work where components required is in low quantity. 3.Complicated shapes having internal openings and complex section variation can be produced quickly and cheaply by casting since liquid metal can flow into any form/ shape.
8 9 10 11 12	Observation Table, Look-up Table, Output Sample Calculations Graphs, Outputs Results & Analysis Application Areas	(a) Split pattern. (b) Pattern in moulding sand. Fig. 3.2. Split pattern. To make prepare mould cavity by using pattern ,cope and drag A mould cavity is prepared using split pattern 1.Casting is the cheapest and most direct way of producing the shape of the component 2.Casting is best suited to work where components required is in low quantity. 3.Complicated shapes having internal openings and complex section variation can be produced quickly and cheaply by casting since liquid metal can flow into any form/ shape.
8 9 10 11 12	Observation Table, Look-up Table, Output Sample Calculations Graphs, Outputs Results & Analysis Application Areas	(a) Split pattern. (b) Pattern in moulding sand. Fig. 3.2. Split pattern. To make prepare mould cavity by using pattern ,cope and drag A mould cavity is prepared using split pattern 1.Casting is the cheapest and most direct way of producing the shape of the component 2.Casting is best suited to work where components required is in low quantity. 3.Complicated shapes having internal openings and complex section variation can be produced quickly and cheaply by casting since liquid metal can flow into any form/ shape. Example: 1. Outer casing of all automobile engines.
8 9 10 11 12	Observation Table, Look-up Table, Output Sample Calculations Graphs, Outputs Results & Analysis Application Areas	(a) Split pattern. (b) Pattern in moulding sand. Fig. 3.2. Split pattern. To make prepare mould cavity by using pattern ,cope and drag A mould cavity is prepared using split pattern 1.Casting is the cheapest and most direct way of producing the shape of the component 2.Casting is best suited to work where components required is in low quantity. 3.Complicated shapes having internal openings and complex section variation can be produced quickly and cheaply by casting since liquid metal can flow into any form/ shape. Example: 1. Outer casing of all automobile engines. 2. Electric motor housing
8 9 10 11 12	Observation Table, Look-up Table, Output Sample Calculations Graphs, Outputs Results & Analysis Application Areas	(a) Split pattern. (b) Pattern in moulding sand. Fig. 3.2. Split pattern. To make prepare mould cavity by using pattern ,cope and drag A mould cavity is prepared using split pattern 1.Casting is the cheapest and most direct way of producing the shape of the component 2.Casting is best suited to work where components required is in low quantity. 3.Complicated shapes having internal openings and complex section variation can be produced quickly and cheaply by casting since liquid metal can flow into any form/ shape. Example: 1. Outer casing of all automobile engines. 2. Electric motor housing 3. Bench vice, Irrigation pumps etc.
8 9 10 11 12	Observation Table, Look-up Table, Output Sample Calculations Graphs, Outputs Results & Analysis Application Areas	(a) Split pattern. (b) Pattern in moulding sand. Fig. 3.2. Split pattern. To make prepare mould cavity by using pattern ,cope and drag A mould cavity is prepared using split pattern 1.Casting is the cheapest and most direct way of producing the shape of the component 2.Casting is best suited to work where components required is in low quantity. 3.Complicated shapes having internal openings and complex section variation can be produced quickly and cheaply by casting since liquid metal can flow into any form/ shape. Example: 1. Outer casing of all automobile engines. 2. Electric motor housing 3. Bench vice, Irrigation pumps etc. 4. Heavy equipment such as machine beds of lathe, milling machine,
8 9 10 11 12	Observation Table, Look-up Table, Output Sample Calculations Graphs, Outputs Results & Analysis Application Areas	(a) Split pattern. (b) Pattern in moulding sand. Fig. 3.2. Split pattern. To make prepare mould cavity by using pattern ,cope and drag A mould cavity is prepared using split pattern 1. Casting is the cheapest and most direct way of producing the shape of the component 2. Casting is best suited to work where components required is in low quantity. 3. Complicated shapes having internal openings and complex section variation can be produced quickly and cheaply by casting since liquid metal can flow into any form/ shape. Example: 1. Outer casing of all automobile engines. 2. Electric motor housing 3. Bench vice, Irrigation pumps etc. 4. Heavy equipment such as machine beds of lathe, milling machine, shaping, drilling planing machine etc. can be cast/easily 5. Casting is planing machine etc. can be cast/easily
8 9 10 11 12	Observation Table, Look-up Table, Output Sample Calculations Graphs, Outputs Results & Analysis Application Areas	(a) Split pattern. (b) Pattern in moulding sand. Fig. 3.2. Split pattern. To make prepare mould cavity by using pattern ,cope and drag A mould cavity is prepared using split pattern 1.Casting is the cheapest and most direct way of producing the shape of the component 2.Casting is best suited to work where components required is in low quantity. 3.Complicated shapes having internal openings and complex section variation can be produced quickly and cheaply by casting since liquid metal can flow into any form/ shape. Example: 1. Outer casing of all automobile engines. 2. Electric motor housing 3. Bench vice, Irrigation pumps etc. 4. Heavy equipment such as machine beds of lathe, milling machine, shaping, drilling planing machine etc. can be cast/easily 5.Casting is best suited for composite components Fyample 1. steel screw threads in zinc die casting
8 9 10 11 12	Observation Table, Look-up Table, Output Sample Calculations Graphs, Outputs Results & Analysis Application Areas	(a) split pattern. (b) Pattern in moulding sand. Fig. 3.2. Split pattern. To make prepare mould cavity by using pattern ,cope and drag A mould cavity is prepared using split pattern 1. Casting is the cheapest and most direct way of producing the shape of the component 2. Casting is best suited to work where components required is in low quantity. 3. Complicated shapes having internal openings and complex section variation can be produced quickly and cheaply by casting since liquid metal can flow into any form/ shape. Example: 1. Outer casing of all automobile engines. 2. Electric motor housing 3. Bench vice, Irrigation pumps etc. 4. Heavy equipment such as machine beds of lathe, milling machine, shaping, drilling planing machine etc. can be cast/easily 5. Casting is best suited for composite components Example.1. steel screw threads in zinc die casting All conductors into slot in iron armature for electric motor

13	Remarks	
14	Faculty Signature with Date	

Experiment 08:FOUNDRY PRACTICE

-	Experiment No.:	6	Marks		Date		Date	
1	Titlo	_			Planned		Conducted	
		Four	idry practice	of solid patte	ern			
3	Aim	To pr	repare moul	d cavity of cu	ube of sides 8	30mm with o	ut using patt	ern
4	Material / Equipment Required	moul trowe	d box,sprue el ,gate cutter	e ,riser,wood r,vent rod, so	len leveler,v lid pattern	wedge and	round han	nmer,shovel,
5	Theory, Formula, Principle, Concept							
6	Procedure, Program, Activity, Algorithm, Pseudo Code	1. pre 2. pla 3. fill box s 4. pla locati 5. fill 6. lev moul 7. ver 8. rol dama 9. cut 10. re pouri	pare the gree ce the drag pattern in the and ram the o that the pa ice the cope ions and ram the el the sand i d box it the cope b l over the c age to the mo the gate usi eplace the c ng	green sand mixture for making mould drag box in its inverted position on pre cleaned floor and keep the in the mid position of the mould box. It the green sand mixture till the top of the drag box invert the drag ne pattern faces the top. cope box on top of drag box and place sprue and riser at suitable the green sand mixture till the top of core box and using wooden leveler and remove the sprue and riser from the pe box with vent rod he cope box on the floor and eject the pattern without causing ie mould cavity e using gate cutter and clean the mould cavity with a blower. he cope box over the drag box and make the mould ready for				
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph							
8	Observation Table, Look-up Table, Output							
9	Sample Calculations							
10	Graphs, Outputs							

Experiment 09:FOUNDRY MODELS

-	Experiment No.:	6	Marks		Date			Date)
					Planned			Conduc	ted
1	Title	Preparation of forging models							
3	Aim	To pre	To prepare a 9x9 mm square bar from a 12mm dia cylinder bar						
4	Material	mould box,sprue ,riser,wooden leveler,wedge and round hammer,shovel,							
18ME	8MEL48B Copyright ©2017. cAAS. All rights reserved.								

	Equipment Required	trowel ,gate cutter,vent rod, solid pattern
5	Theory, Formula, Principle, Concept	A= 3.142/d ²
6	Procedure, Program, Activity, Algorithm, Pseudo Code	 ignite the coal in open hearth type furnance and switch on the blower keep the given square bar work piece in the hearth and heat to red hot temperature with the help of hammer ,anvil draw down the heated circular rod to the calculated length finish the work piece using the flatter cool the finished model by keeping it in air or quenching in cold water
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	
8	Observation Table, Look-up Table, Output	
9	Sample Calculations	Calculations are done for different shape and find out area for given diameter
10	Graphs, Outputs	
11	Results & Analysis	Prepared a given model to the required dimension
12	Application Areas	Hexagonal nut and bolt , model preparation
13	Remarks	
14	Faculty Signature with Date	

Experiment 10:FOUNDRY MODELS

-	Experiment No.:	6 Marks		Date Planned		Date Conducted	
1	Title	Preparation of	forging mod	els			
3	Aim	To forge aLs	shaped bar g	x9 mm squai	re bar from a	12mm bar	
4	Material Equipment Required	mould box,sp trowel ,gate cu	orue ,riser,wo htter,vent rod,	oden levele solid pattern	r,wedge and	d round han	nmer,shovel,
5	Theory, Formula, Principle, Concept	A= 3.142/d²					
6	 Procedure, Program, 1. Ignite the coal in open hearth type furnance and switch on the blower Activity, Algorithm, 2. keep the given square bar work piece in the hearth and heat to response to the presendo Code Pseudo Code 3. with the help of hammer ,anvil draw down the heated circular roc calculated length 4. finish the work piece using the flatter 5. cool the finished model by keeping it in air or guenching in cold wate 					olower it to red hot ar rod to the I water	
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	Calculation of considering sc	length of t ale loss.	he raw mate	erial required	d to prepare	the model
8	Observation Table, Look-up Table, Output						

9	Sample Calculations	Calculations are done for different shape and find out area
10	Graphs, Outputs	
		Preparing minimum three forged models involving upsetting, drawing and
		bending operations
11	Results & Analysis	Prepared a given model to the required dimension
12	Application Areas	Hexagonal nut and bolt , model preparation
13	Remarks	
14	Faculty Signature with	
	Date	

F. Content to Experiment Outcomes

1. TLPA Parameters

Table 1: TLPA -

Expt-	Course Content or Syllabus	Content	Blooms'	Final	Identified	Instructi	Assessment
#	(Split module content into 2 parts which	Teachin	Learning	Bloo	Action	on	Methods to
	have similar concepts)	g Hours	Levels	ms'	Verbs for	Methods	Measure
		_	for	Level	Learning	for	Learning
			Content			Learning	
Α	В	С	D	Ε	F	G	Н
1	Testing of Molding sand and Core sand	3	L3	L3	Test	Chalk	Practical
	Preparation of sand specimens and		(Apply)	(Appl		&	record & IA
	conduction of the following tests:			y)		Board,	
	1. Compression, Shear and					Demo	
	Tensile tests on Universal Sand						
	Testing Machine.						
	 Permeability test 						
	Sieve Analysis to find Grain						
	Fineness Number(GFN) of						
	Base Sand						
	Clay content determination in Base						
	Sand		-				
2	Foundry Practice	3	L3	L3	Model	Chalk	Practical
	1. Use of foundry tools and other		(Apply)	(Appl		_ & _	record & IA
	equipment's.			y)		Board,	
	2. Preparation of molding sand					Demo	
	mixture.						
	3. Preparation of green sand						
	molds using two molding						
	boxes kept ready for pouring.						
	Using patterns (Single						
	piece pattern and Split						
	pattern						
	Without patterns.						
	ncorporating core in the mold. (Core boxes).						
	Preparation of one casting						
	(Aluminum or cast Iron-						
3	Eorging Operations '	3	3	13	Model	Chalk	Practical
	Use of forging tools and other	5	(vlaaA)	laaA)		&	record & IA
	equipment's		· [·]· · ·	V)		Board.	
	Calculation of length of the					Demo	
	raw material required to						
	prepare the model						
	considering scale losses.						
	Preparing minimum three						
	forged models involving						
	upselling, drawing and						
	bending operations.						

	 Demonstration of forging model using Power Hammer 						
4	WELDING PRACTICE L-Joint, T-joint, Butt Joint, V-Joint Lap Joint	3	L3 (Apply)	L3 (Appl y)	Model	Chalk & Board, Demo	Practical record & IA

2. Concepts and Outcomes:

Table 2: Concept to Outcome – Example Course

	1		1			
Expt	Learning or	Identified	Final Concept	Concept	CO Components	Course Outcome
- #	Outcome	Concepts		Justification	(1.Action Verb,	
	from study	from		(What all Learning	2.Knowledge,	
	of the	Content		Happened from the	3.Condition /	Student Should be
	Content or			study of Content /	Methodology,	able to
	Syllabus			Syllabus. A short	4.Benchmark)	
				word for learning or		
				outcome)		
Α	1	J	K	L	М	N
1	Testing of	Preparatio	Clay content	Will be able to	Test	Different Testing
	Molding	n of sand	determinatio	understand the		Method
	sand	specimen	n in Base	basic testing		
		S	Sand	operations		
2	Molding	Foundry	Foundry	Will be able to	Model	Preparation of
	Sand			understand		molding sand
	Mixture			preparation of		mixture
				molding sand		
				mixture		
3	Forging	Forging	Forging	Will be able to	Model	Preparation of
	Operations			understand		forging model
				preparation of		
				forging models		
4	Welding	Arc	Arc Welding	Will be able to	Model	Welding models
		Welding		understand arc		
				welding operation		