Ref No:

SRI KRISHNA INSTITUTE OF TECHNOLOGY, BANGALORE

COURSE PLAN

Academic Year 2018-19

Program:	B E – Mechanical Engineering
Semester :	4
Course Code:	18ME43
Course Title:	FLUID MECHANICS
Credit / L-T-P:	03/3-0-0
Total Contact Hours:	44
Course Plan Author:	Naveen Kumar Pattar

Academic Evaluation and Monitoring Cell < #29, Hesaraghatta Main road, Chimney Hills, Chikkabanavara P.O., Bengaluru – 560090, Karnataka, INDIA Phone / Fax :+91 80 23721477 -STD- 080 23721315>

<<u>http://www.skit.org.in</u>: skit1princi@gmail.com: >

Table of Contents

A. COURSE INFORMATION	4
1. Course Overview	4
2. Course Content	4
3. Course Material	5
4. Course Prerequisites	6
5. Content for Placement. Profession. HE and GATE	6
B ORE PARAMETERS	6
1 Course Outcomes	6
2 Course Applications	7
To identify type of flow in blood vessel, Grocery cooling, Settling tanks, W	ind
tunnels, designing sewage systems	7
3. Mapping And Justification.	8
4. Articulation Matrix	9
5. Curricular Gap and Content	9
6. Content Beyond Syllabus	9
C. COURSE ASSESSMENT.	.10
1. Course Coverage	10
2. Continuous Internal Assessment (CIA)	10
D1. TEACHING PLAN - 1	.11
Module - 1	11
Module – 2	13
E1. CIA EXAM – 1	.14
a. Model Question Paper - 1	14
b. Assignment -1	15
D2. TEACHING PLAN - 2	.16
Module – 3	16
To identify type of flow in blood vessel, Grocery cooling, Settling tanks, W	ind
tunnels, designing sewage systems	16
Module – 4	19
E2. CIA EXAM – 2	.21
a. Model Question Paper - 2	21
b. Assignment – 2	21
D3. TEACHING PLAN - 3	.25
Module – 5	25
E3. CIA EXAM – 3	.26
a. Model Question Paper - 3	26
b. Assignment – 3	27
F. EXAM PREPARATION	.29
1. University Model Question Paper	29
2. SEE Important Questions	30
G. Content to Course Outcomes	.32
1. TLPA Parameters	32
2. Concepts and Outcomes:	34

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	ME
Semester:	IV	Academic Year:	2019-2020
Course Title:	FLUID MECHANICS	Course Code:	18ME43
Credit / L-T-P:	03/3-0-0	SEE Duration:	180 min
Total Contact Hours:	44 Hrs	SEE Marks:	60 Marks
CIA Marks:	40	Assignment	1 / Module
CoursePlan Author:	NAVEEN KUMAR PATTAR	Sign	Dt:
Checked By:	PRASANNA GOWDA	Sign	Dt:
CO Targets		Program:	ME

Note: Define CIA and SEE % targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute. Identify 2 concepts per module as in G.

Mod	Content	Teachi	Identified	Blooms
ule		ng	Module	Learning
		Hours	Concepts	Levels
1	Basics: Introduction, Properties of fluids-mass density, weight density, specific volume, specific gravity, viscosity, surface tension, capillarity, vapour pressure, compressibility and bulk modulus. Concept of continuum, types of fluids etc,pressure at a point in the static mass of fluid, variation of pressure, Pascal's law,Absolute, gauge, atmospheric and vacuum pressures pressure measurement by simple, differential manometers and mechanical gauges. Fluid Statics: Total pressure and center of pressure for horizontal plane, vertical plane surface and inclined plane surface submerged in static fluid.	12	Fluid properties	L3
2	Buoyancy: center of buoyancy, meta center and meta centric height its application. Fluid Kinematics: Velocity of fluid particle, types of fluid flow, description of flow, continuity equation, Coordinate free form, acceleration of fluid particle, rotational & irrotational flow, Laplace's equation in velocity potential and Poisson's equation in stream function, flow net.	08	Fluid flow types	L3
3	Fluid Dynamics; Introduction. Forces acting on fluid in motion. Euler's equation of motion along a streamline. Integration of Euler's equation to obtain Bernoulli's equation, Assumptions and limitations of Bernoulli's equation. Introduction to Navier-Stokes equation. Application of Bernoulli's theorem such as venturi-	10	Nature of flow	L3

	meter, orifice meter, rectangular and triangular notch, pitot tube. Laminar and turbulent flow: Flow through circular pipe, between parallel plates, Power absorbed in viscous flow in bearings, Poiseuille equation – velocity profile loss of head due to friction in viscous flow. Reynolds's experiment, frictional loss in pipe flow. Introduction to turbulence, characteristics of turbulent flow, laminar			
4	Flow over bodies: Development of boundary layer, Prandtl"s boundary layer equations, Blasius solution, integral momentum equation, drag on a flat plate, boundary layer separation and its control, streamlined and bluff bodies -flow around circular bodies and aero foils, calculation of lift and drag. Dimensional analysis: Introduction, derived quantities, dimensions of physical quantities, dimensional homogeneity, Rayleigh's method, Buckingham Pi- theorem, dimensionless numbers, similitude, types of similitude	09	Boundary layer	L3
5	Compressible Flows: Introduction, thermodynamic relations of perfect gases, internal energy and enthalpy, speed of sound, pressure field due to a moving source, basic Equations for one-dimensional flow, stagnation and sonic Properties, normal and oblique shocks. Introduction to CFD: Necessity, limitations, philosophy behind CFD, and applications.	05	1)Thermodyna mic properties 2)Computationa l Fluid Dynamics	L3
-	Total	44	-	-

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 - 30 minutes

2. Design: Simulation and design tools used – software tools used ; Free / open source

3.	Research: Recent	developments on	the concepts -	nublications in	iournals: conference	s etc.
э.	Nesearch, Necenc	developments on	the concepts -		journais, comerence	S CLC.

011100			
Modul	Details	Chapter	Availability
es		s in	
		book	
Α	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
1	Text books		
	Fluid Mechanics (SI Units), Yunus A. Cengel John M.Cimbala, 3rd	In Lib,	Available
	Ed., Tata. McGraw Hill, 2014.	In dept	
	Fluid Mechanics, F M White, McGraw Hill Publications Eighth	In Lib,	Available
	edition. 2016	In dept	
	Mechanics of Fluids, Merle C. Potter, Devid C. Wiggerrt, Bassem H.	In Lib,	Available
	Ramadan, Cengage learning, Fourth editions 2016.	In dept	
2	Reference books		
	Fundamentals of Fluid Mechanics by Munson, Young, Okiishi $\&$	In Lib	
	Huebsch, John Wiley Publications.7 th edition.		
	Fluid Mechanics, Pijush.K.Kundu, IRAM COCHEN, ELSEVIER, 3rd	In Lib	
	Ed. 2005.		
	Fluid Mechanics, John F.Douglas, Janul and M.Gasiosek and john	In Lib	
	A.Swaffield, Pearson Education Asia, 5th ed., 2006.		
	Introduction to Fluid Mechanics by Fox, McDonald, John Wiley	In Lib	Available
	Publications,8 th edition.		

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Students must have reame the following courses / ropies with described content						
Mod	Course	Course	Topic / Description	Sem	Remarks	Blooms
ules	Code	Name				Level
1-5	18PHY12	Engineering	Basic concepts of Archimedes	I		L2
		Physics	principal, Pascals Law			
4	18MAT21	Engineering	Engineering calculus	II		L2
		Mathematics				
3	18ME33	Basic	Basic thermodynamics	III		L2
		thermodyna				
		mics				

Students must have learnt the following Courses / Topics with described Content . . .

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Cours	se Frujecis, e. New Suitware roois, i. (JAIL TOPICS	, y. NFILL	viueus	s, n. Swaya		ueus elc.
Mod	Topic / Description	Area	Remarks			Blooms	
ules							Level
2	Buoyancy, center of buoyancy	Industry	Seminar	on	Center	of	L3
		and GATE	buoyancy				
3	Laminar and Turbulent Flows	GATE	NPTEL Vide	eos			L3

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs. Identify a max of 2 Concepts per Module. Write 1 CO per Concept.

Mod	Course	Course Outcome	Teach.	Concept	Instr	Assessm	Blooms'
ules	Code.#	At the end of the course, student	Hours		Method	ent	Level
		should be able to				Method	
1	18ME43.1	Identify and calculate the fluid	12	Fluid	Lecture	Chalk	L3
		properties used in the analysis				and	Apply
		of fluid behaviour		properties		board	
2	18ME43.2	Explain the principles of	08	Fluid flow	Lecture/	Chalk	L3
		buoyancy and fluid flow		types	Tutorial	and	Apply
		concept.				board	
3	18ME43.3	Apply the knowledge of fluid	10	Nature of	Lecture	Chalk	L3
		statics, kinematics and		flow		and	Apply
		dynamics while addressing				board	
		problems of mechanical					
		engineering.					
4	18ME43.4	Explain the concept of boundary	09	Boundary	Lecture	Chalk	L3
		layer in fluid flow.		layer		and	Apply
						board	
5	18ME43.5	Illustrate and explain the basic	05	1)Thermo	Lecture	Chalk	L3
		concept of compressible flow		dynamic		and	Apply
		and CFD.		properties		board	
				2)Comput			
				ational			

				Fluid Dynamics			
-	-	Total	44	-	-	-	L3

2. Course Applications

Mod	Application Area	CO	Level
1	Pascal's law is applicable for designing Hydraulic jacks. Hydraulic press	1	12
2	Principle of huovancy applicable for Submarines Hydrometer Shins & hoats	2	13
3	To identify the type of fluid flow through various channels	2	12
3	Application of Bernoulli's theorem for Flow measuring devices such as	3	13
	venturi meter,orifice meter,notches, pitot tube etc.	5	
4	To identify type of flow in blood vessel,Grocery cooling,Settling tanks,Wind tunnels,designing sewage systems	3	L2
4	Design of airfoils in airplanes, Design of automobile parts	3	L3
4	We use dimensional analysis for three prominent reasons, they are: Consistency of a dimensional equation Derive relation between physical quantities in physical phenomena To change units from one system to another	4	L3
5	 Nozzles and Diffusers and converging diverging nozzles Turbines, fans & pumps Throttles - flow regulators, One Dimensional Isentropic Flow - compressible pipe flow. 	4	L3
5	 Some of the applications of CFD in Industries are - Electronics- For design and analysis of cooling system. Turbo machinery- For design and analysis pumps, compressors, fans, blowers, turbines nozzle and diffusers. Power and Energy- For design and analysis of Thermal, nuclear and hydro power plants. It is also used for modelling of accident situations. Construction- For design and analysis dams, spillways, canals, HVAC systems of buildings. Hydraulics- Construction machinery like excavators, large Automotive, Aerospace and Marine- Aerodynamic design of vehicles, combustion modelling, performance of components like turbochargers, propellers, and cooling fans etc. Biomedical- Design of medical equipment like stents, blood flow through veins and arteries, pathology. Sports- Evaluating performance of athletes, design of high performance gear like swimsuit and helmets. 	5	L3

3. Mapping And Justification

CO – PO Mapping with mapping Level along with justification for each CO-PO pair. To attain competency required (as defined in POs) in a specified area and the knowledge & ability required to accomplish it.

Mod	Mapping Mappin		Mapping Justification for each CO-PO pair Le						
ules			Level		el				
-	CO	PO	-	'Area': 'Competency' and 'Knowledge' for specified 'Accomplishment'	-				
1	CO1	PO1	L2	'Engineering Knowledge:'Acquisition of Engineering_Knowledge is required to understand the different Knowledge of Fluid properties is required in construction of machines like pumps in Mechanical Engineering.	L2				
1	C01	PO2	L3	'Problem Analysis':Analyzing problems require knowledge of different Fluid flow systems requires the knowledge of fluid properties to complex engineering problems in Mechanical engineering.	L3				
2	CO2	PO1	L3	'Engineering Knowledge:'Acquisition of Engineering_Knowledge is required to understand the buoyancy and flotation is required for deciding stability of floating bodies to accomplish solutions to complex engineering_problems in Mechanical Engineering.	L3				
2	CO2	PO2	L3	'Problem Analysis':Analyzing problems require knowledge Floating bodies requires of fluid pressure and metacentre to accomplish solutions to complex engineering problems in Mechanical engineering.	L3				
3	CO3	PO1	L2	'Engineering Knowledge:'Acquisition of Engineering_Knowledge is required to understand the type of fluid flow in Mechanical Engineering.	L3				
3	CO3	PO2	L2	'Problem Analysis':Analyzing problems in fluid mechanics require the knowledge of fluid flow, to accomplish solutions to complex engineering problems in Mechanical engineering.	L3				
4	CO4	PO1	L3	'Engineering Knowledge:'Acquisition Knowledge on impact force is required to analyse various forces in fluid flow in Mechanical Engineering.	L3				
4	CO4	PO2	L3	'Problem Analysis':Analyzing problems require knowledge Principle of Bernoulli's theorem is applied for designing flow measuring devices to complex engineering problems in Mechanical engineering.	L3				
5	CO5	PO1	L3	'Engineering Knowledge:'Acquisition of Engineering_Knowledge is required to understand the thermodynamic relations of perfect gases, to accomplish solutions to complex engineering_problems in Mechanical Engineering.	L3				
5	CO5	PO2	L3	'Problem Analysis': Analyzing problems in an fluid flow concepts requires a knowledge of computational fluid dynamics, in Mechanical engineering.	L3				

4. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	-	Course Outcomes	Program Outcomes									-						
Mod	CO.#	At the end of the course student	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	Lev
ules		should be able to	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03	el
1	18ME43.1	Identify and calculate the fluid	\checkmark		-	-	-	-	-	-	-	-	-	-	-	-	-	L3
		properties used in the analysis of fluid behaviour																App ly
2	18ME43.2	Explain the principles of	\checkmark		-	-	-	-	-	-	-	-	-	-	-	-	-	L3
		buoyancy and fluid flow concept.																App ly
3	18ME43.3	Apply the knowledge of fluid			-	-	-	-	-	-	-	-	-	-	-	-	-	L3
		statics, kinematics and dynamics																App
		while addressing problems of	Ì															ТУ
		mechanical engineering.																
4	18ME43.4	Explain the concept of boundary	$ $ \checkmark	√	-	-	-	-	-	-	-	-	-	-	-	-	-	L3
		layer in fluid flow.																Арр
-	1045425		1	1														
5	18ME43.5	Illustrate and explain the basic	V	V	-	-	-	-	-	-	-	-	-	-	-	-	-	L3
		concept of compressible flow and																Арр
		CFD.																IY

5. Curricular Gap and Content

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Mod	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
ules					
2	Buoyancy	NPTEL Videos	-	-	PO2
3	Navier Stoke Equation	NPTEL Videos	-	-	PO2

6. Content Beyond Syllabus

Topics & contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Mod	Gap Topic	Area	Actions	Schedule	Resources	PO Mapping
ules			Planned	Planned	Person	
4	Different types of	Placement	NPTEL video	05/05/2020		PO1
	boundary layer	, GATE,			Self	
	concepts	Higher				
		Study, .				
5	Overview of	Placement	Presentation	29/05/2020	Prasanna	PO5
	Computational	, GATE,			Gowda	
	fluid dynamics	Higher				
		Study				

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Mod	Title	Teach		No. of question in Exam					CO	Levels
ules			CIA-1	CIA-2	CIA-3	Asg	Extra	SEE		
		Hours					Asg			
1	Basics: Fluid Statics:	12	2	-	-	1	1	2	C01	L2, L3
2	Buoyancy: Fluid Kinematics:	08	2	-	-	1	1	2	CO2	L2, L3
3	Fluid Dynamics; Laminar and turbulent flow:	10	-	2	-	1	1	2	CO3	L3
4	Flow over bodies: Dimensional analysis:	09	-	2	-	1	1	2	CO4	L3
5	Compressible Flows: Introduction to CFD:	05	-	-	4	1	1	2	CO5	L3
-	Total	44	4	4	4	5	5	10	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Mod	Evaluation	Weightage	СО	Levels
ules		in Marks		
1, 2	CIA Exam – 1	30	CO1, CO2,	L2, L3
3, 4	CIA Exam – 2	30	CO3, CO4	L2, L3
5	CIA Exam – 3	30	CO5	L2,L3
1, 2	Assignment - 1	10	CO1, CO2	L2, L3
3, 4	Assignment - 2	10	CO3, CO4,	L2,L3
5	Assignment - 3	10	CO5	L2, L3
1, 2	Seminar - 1	00		
3, 4	Seminar - 2	00		
5	Seminar - 3	00		
	-			
	Final CIA Marks	40	CO1 to Co5	L2, L3

D1. TEACHING PLAN - 1

Module - 1

Title:	Basics: Fluid Statics:	Appr Time:	12hrs
а	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Identify and calculate the fluid properties used in the analysis of fluid behaviour	C01	L3
b	Course Schedule	-	-
Class No	Module Content Covered	со	Level
1	Basics: Introduction, Properties of fluids-mass density, weight density, specific volume, specific gravity, viscosity, surface tension	C01	L2
2	capillarity, vapor pressure, comprehensibility and bulk modulus.	CO1	L2
3	Concept of continuum, types of fluids etc, pressure at a point in the static mass of fluid,	C01	L2
4	variation of pressure, Pascal's law	CO1	L2
5	Absolute, gauge, atmospheric and vacuum pressures	CO1	L2
6	pressure measurement by simple Manometer	CO1	L2
7	Differential manometers and mechanical gauges	CO1	L3
8	Fluid Statics: Total pressure and center of pressure for horizontal plane,	CO1	L3
9	vertical plane surface	C01	L3
10	Inclined plane surface submerged in static fluid.	C01	L3
11	Numericals	C01	L3
12	Numericals	C01	L3
	Application Aroas	<u> </u>	Loval
1	Pascal's law is applicable for designing Hydraulic jacks. Hydraulic press	C01	13
d	Paviaw Questions	-	-
u			_
1	Give reasons :	<u> </u>	12
	 i) Viscosity of liquids varies with temperature. ii) Thin objects float on free surface of static liquid. iii) Metacentric height determines stability of floating body. iv) Rise of water in a Calillary tube. v) Mercury is used as Manometric liquid. 		
2	Define following terms with their units. i) Specific weight ; ii) Kinematic viscosity ; iii) Surface Tension iv) Specific gravity ; v) Capillarity	C01	L3
3	The space between two square flat parallel plates is filled with oil. Each side of the plates is 800 mm. Thickness of the oil film is 20 mm. The upper plate moves at a uniform velocity of 3.2 m/sec when a force of 50 N applied to upper plate. Determine : i) Shear stress ii) Dynamic viscisity of oil in poise iii) Power absorbed in moving the plate iv) Kinematic viscosity of oil if specific gravity of oil is 0.90	CO1	L2
4	state and prove Hydrostatic law.	C01	L2
5	With neat sketch, explain working of differential u-Tube Manometer and derive relation for measuring pressure difference between two pipes.	C01	L3
6	A wooden block of size 6m x 5m x 3m height floats in freshwater. Find the depth of immersion and determine the metacentric height. Specify gravity of wood is 0.70. Find the volume of concrete block placed on the wooden block, so as to completely submerge the wooden block in	C01	L3

	water. Take specific gravity of concrete as 3.0		
7	Explain experimental procedure to determine the metacentric height of	CO1	L3
0	a nodring vessel.	CO1	12
0	i) Mass density and specific weight	COI	LZ
	i) Newtonian and non-Newtonian fluid		
	iii) Absolute and Kinematic viscosity		
Q	An oil film of thickness 2mm is used for lubrication between a square	CO1	12
	nlate of size 0.9m x 0.9m on an inclined plane having an angle of	COI	LZ
	inclination 30 ° The weight of the square plate is 350N and it slides		
	down the plane with a uniform velocity of 0.3m/sec. Find the viscosity		
	of the oil in poise.		
10	Establish a relationship among absolute, gauge and atmospheric	C01	L3
	pressures with a simple sketch.		
11	A U-tube manometer containing mercury is connected to a pipe in	CO1	L3
	which water is flowing. Water lend in the limb connected to pipe is		
	0.5m below centre of the pipe and the free surface mercury in the		
	other limb (open to atmosphere) is 0.8m below the centre of the pipe,		
	Calculate the pressure of water in the pipe.		
12	Define the terms :	COL	L2
	i) Total pressure		
12	An annular plato 3m external diameter and 1.5m internal diameter is	CO1	13
15	immersed in water with its greatest and least denths below water	01	LJ
	surface at 3 6m and 1 2m respectively. Determine the total pressure		
	and the position of centre of pressure on one face of the plate.		
14	A solid cylinder 15cm diameter and 60cm long consists of two parts	CO1	13
	made of different materials. The first part at the base is 1.2cm long and	001	23
	of specific gravity 5. The other part of the cylinder is made of the		
	material having specific gravity 0.6. State if it can float vertically in		
	water.		
15	Derive the relation for pressure intensity and the surface tensile force,	CO1	L3
	in case of soap bubble.		
16	A steel shaft of 30 mm diameter rotates at 240 rpm, in a bearing of	CO1	L3
	diameter 32 mm. Lubricant oil of viscosity 5 poise is used for lubricant		
	of shaft in the bearing. Determine the torque required at the shaft and		
17	power lost in maintaining the lubrication. Length of bearing is 90 mm.	<u> </u>	1.2
1/	State and prove Pascal's law.	C01	LZ
18	Show that, for a submerged plane surface, the centre of pressure, lies	COI	L3
10	A differential managemeter is used for managemeter the processor	CO1	1.2
19	A difference between two pipes A and P. Ding A is 500 mm above the pipe	COI	L3
	B and deflection in Ha manometer is 200 mm. Pressure intensity in pipe		
	Δ is greater than nine B. Pines carry oil of specific gravity 0.90. Find the		
	pressure difference between the two pipes. Sp. gr. of mercury = 13.6 .		
20	Differentiate between gauge pressure and absolute pressure.	CO1	12
	Represent positive and negative gauge pressures on a chart.		
21	Derive the relation for capillary rise of water in a glass tube.	CO1	L3
22	A liquid bubble of 2cm radius has an internal pressure of 12.95 Pascals.	CO1	L3
	Determine the surface tension of the liquid film.		
23	A differential U-tube manometer is used to measure the pressure	CO1	L3
	difference between two points in a horizontal water pipe line. If the		
	manometer shows a difference in mercury levels as 25 cm, find the		
	pressure difference between the points in bar.		
24	A wooden cylinder having specific gravity 0.7 is required to float in	CO1	L3
	water. If the diameter of the cylinder is 'd' and the length '1'. Show that		
	a cannot exceed 0.7715 d for the cylinder to float with its longitudinal		
25	dXIS VELUCAL. Define compressibility. Derive an expression for the bulk modulus of	CO1	10
23	elasticity for a perfect gas undergoing the isothermal process	COI	LZ
1	classicity for a perfect gas, andergoing the isothermal process.		

26	Calculate the capillary effect in mm in a glass tube of 3mm diameter, when, immersed in mercury. The value of the surface tension for mercury at 20°C in contact with air is 0.51 N/m. Contact angle for mercury = 130° . Also sketch the mercury surface inside and outside the tube indicating the angle of contact clearly.	C01	L3
27	If the equation of velocity profile over a flat plate is $V = 2y2/3$ where 'v' is the velocity in m/s and 'y' is the distance in m, determine shear stress at y = 75 mm. Take IA = 8.35 poise.	C01	L3

Module - 2

Title:	Buoyancy: Fluid Kinematics:	Appr Time:	8hrs
a	Course Outcomes	СО	Blooms
-		-	Level
1	Explain the principles of buoyancy and fluid flow concept.	CO2	L3
b	Course Schedule	-	-
Class No	Portion covered per hour	-	-
13	Module 2: Buoyancy, center of buoyancy, and	CO2	L2
14	Meta center Meta centric height its application.	CO2	L2
15	Numericals	CO2	L3
16	Fluid Kinematics: Velocity of fluid particle, types of fluid flow	CO2	L2
17	Description of flow, continuity equation,	CO2	L3
	Coordinate free form.		
18	Acceleration of fluid particle, rotational & irrotational flow.	CO2	L3
19	Laplace's equation in	CO2	L3
	velocity potential and Poisson's equation in stream function, flow net.		
20	Numericals	CO2	L3
С	Application Areas	со	Level
2	Principle of buoyancy applicable for Submarines, Hydrometer, Ships $\&$	CO2	L3
	boats		
a	Review Questions	-	-
-	Define : i) Buovancy and centre of buovancy : ii) Metacentre and	-	-
-	metacentric height.	002	
2	Explain the method to find the metacentric height experimentally.	CO2	L3
3	Derive an expression for the depth of centre of pressure from free	CO2	L2
	surface of, liquid of an inclined plane surface submerged in the liquid.		
4	A wooden cylinder of specific gravity 0.6 and circular in cross section is	CO2	L3
	required to float in oil of specific gravity 0.9. Find the L/D ratio for the		
	height of the cylinder and D is its diameter.		
5	Explain the importance of metacentre with stability of floating bodies.	CO2	L2
6	A wooden block (barge) 6 mts in length, 4 mts in width and 3 mts deep,	CO2	L3
	floats in fresh water with depth of immersion 1.5 mts. A concrete block		
	is placed centrally on the surface of the wooden block, so that the		
	depth of immersion with concrete is 2.8 mts. Find the volume of the		
	2.75. Find also the volume of water displaced.		
7	Velocity potential function for a two dimensional fluid flow is given by	CO2	L3
	(0 = x(2y - 1)). Check the existence of flow. Determine the velocity of	_	_
	flow at a P(2,3) and the stream function.		
8	Show that streamlines and equipotential lines are orthogonal to each	CO2	L3

	other.		
9	Distinguish between :	CO2	L2
	i)Steady and un-steady flow		
	ii) Uniform and non-uniform flow		
	iii) Laminar and turbulent flow		
10	Explain velocity potential and streamline	CO2	L3
11	What is flow net state its uses, Enlist the methods of flow net?	CO2	L2
12	Explain the different types of fluid flows with examples	CO2	L2

E1. CIA EXAM - 1

a. Model Question Paper - 1

Crs	Code:	18ME43	Sem:	4	Marks:	30	Time: 75	i minut	es	
Cou	rse:	FLUID ME	CHANICS							
-	-	Note: Answ	ver all ques	tions, each ca	arry equal m	narks. Modul	e:1,2	Marks	со	Level
1	а	Give reas i) Viscosit ii) Thin ob iii) Metace iv) Rise of	ons : y of liquid ojects float entric heig f water in	s varies witl on free sur ht determir a Calillary tu	h temperat face of sta nes stabilit ube.	ture. itic liquid. y of floating	j body.	5	1	L2
	b	v) Mercur An oil film square pla angle of il and it slid Find the v	10	1	L3					
	С	Define fol i) Specific iv) Specifi	lowing ter weight ic gravity	ms with the ii) Kinem v) Capilla	ir units. atic viscos arity	ity iii) Su	urface Tension	5	1	L2
			(DR						
2	а	Show that lies below	t, for a sub the centr	omerged pla e of gravity	ane surface of the sub	e, the centromerged su	e of pressure, rface.	10	2	L2
	b	An oil film of thickness 2mm is used for lubrication between a square plate of size $0.9m \times 0.9m$ on an inclined plane having an angle of inclination 30 °. The weight of the square plate is 350N and it slides down the plane with a uniform velocity of $0.3m/sec$. Find the viscosity of the oil in poise.							2	L3
3	a	Define : i) metacent	Buoyancy ric height.	y and centre	e of buoyaı	ncy ; ii) Met	acentre and	10	3	L3
	b	A wooden section is D ratio foi oil; where	r cylinder required t r the cylin t L is the h	of specific g to float in oi der to float eight of the	ravity 0.6 l of specifi with its lor cylinder a	and circular c gravity 0. ngitudinal a nd D is.its o	r in cross 9. Find the L/ xis vertical in diameter.	10	3	L3

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

				Model	Assignmer	t Questio	ns			
Crs (Code: 1	8ME43	Sem:	IV	Marks:	10	Time:	90 - 12	0 minut	es
Cour	se: F	luid me	CHANICS			Module	: 1, 2			
Note	: Each	student	to answer	2-3 assign	ments. Ea	ch assignr	ment carries e	qual ma	irk.	
SNo	US	5N		Assi	gnment Des	cription		Marks	СО	Level
1		I	Derive cont	inuity equa	ation for a	three dim	ensional fluid	5	C01	L2
		1	low in Cart	esian co-o	rdinates.					
2			/elocity po	tential fund	tion for a	two dimer	nsional fluid	5	CO2	L3
		1	low is give	n by (0= x	(2y —1) . (check the	existence of			
		1	flow. Determine the velocity of flow at a P(2,3) and the							
2			Stream fund	ction.		notontial	lines are		602	1.2
5			orthogonal	to each ot	hor	potential	lilles ale		COZ	LS
1			State and r		ner. Nulli's paus	tion for a	fluid flow	5	CO1	13
-			Mention as	sumptions	made in de	Privation	nulu now.		001	LJ
5			Nater is flo	wing throu	gh a taper	pipe of le	enath 150m.	5	CO1	12
			naving diar	neter 500 i	mm at the	upper end	d and 250 mm	า	001	
		á	at the lowe	r end. Rate	e of flow is	70 liters p	er sec. The			
			bipeline has	s a slope o	f 1 in 30. F	ind the pr	essure at the			
			ower end it	f the press	ure at high	er level is	5 2.5 bar.			
6			Explain with	h neat sket	ch, workin	g of pitot-	static tube.	5	CO2	L3
7		I	Differentiat	e betwee	n Orificen	neter and	d venturimet	er 5	CO2	L3
			with neat sl	ketches.						
8			A horizonta	al venturin	neter with	50cm dia	ameter at inle	et 5	CO2	L3
		ć	and 20cm t	if the proc	neter is us	ed for me	easuring rate			
			valer now,	the three	t is 30cm	et is 1.0 d	oal and vaccu			
			$\Delta f f = \Delta c$	sume 10%	differenti	al nressu	re head is lo	ct		
			between th	e inlet and	throat se	ction. Ass	ume coefficie	nt		
			of discharge	e is 0.96						
9			Distinguish	between :				5	CO2	L2
		i)Steady an	d un-stead	ly flow					
		i	i) Uniform a	and non-ur	niform flow					
		i	ii) Laminar	and turbu	lent flow		<u> </u>			
10		l	f for a two	dimension	al potentia	l flow, the	e velocity	5	CO2	L3
			potential is	given by		يلم والم	the neight (2			
			1) = 4x(3y)	— 4),deter	mine the v	elocity at	the point (2,			
		-	3). Determine 3).							
11			Define Fule	er's equatio	n of motio	n Deduce	Bernoulli's	5	C02	13
			equation from	om the san	ne.		Bernoullis		002	
12			A pipe line	carrying oi	l of specifie	c gravity ().8 changes in	ı 5	C01	L3
		c	liameter fr	om 300mn	n at positio	n A to 500	0mm diamete	r		
		á	at position	B which is	5m at a hig	gher level	. If the			
		1	pressure at	A and B a	re 20N/cm	2 and 15	N/cm2			
		1	espectivel	y and disch	harge is 15	0 litres/se	c, determine			
12		1	he loss of l	head and d	lirection of	flow.	+		CO1	1.2
13			A NORIZONTA	i venturim	eter with if	met diame	the flow of	5		L2
			Mator Tho		t the inlet	ic 17 659	lie now of			
			valei. The	pressure at th	he throat is	30cm of	mercury Find			
		t	he dischar	ae of wate	r through t	he ventur	imeter. Take	•		
			Cd = 0.98.							
14			or a two d	imensional	fluid flow,	velocity p	potential is 4)		CO2	L3
		:	= y + x2 —	y2. Find tl	he stream	function a	nd velocity at	:		
		á	a point P (2	, 3). Check	irrotation	ality of flo	w			

D2. TEACHING PLAN - 2

Module - 3

Title:	Fluid Dynamics; Laminar and turbulent flow:	Appr Time:	8 Hrs
а	Course Outcomes	СО	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Apply the knowledge of fluid statics, kinematics and dynamics while addressing problems of mechanical engineering.	CO3	L3
b	Course Schedule		
Class No	Portion covered per hour	-	-
1	Fluid Dynamics; Introduction. Forces acting on fluid in motion. Euler's equation of motion along a streamline.	CO3	L2
2	Integration of Euler's equation to obtain Bernoulli's equation, Assumptions and limitations of Bernoulli's equation.	CO3	L3L3
3	Introduction to Navier-Stokes equation. Application of Bernoulli's theorem such as venturi-meter	CO3	L2
4	Orifice meter, rectangular and triangular notch, pitot tube.	CO3	L3
5	Laminar and turbulent flow: Flow through circular pipe, between parallel plates, Power absorbed in viscous flow in bearings,	CO3	L2
6	Poiseuille equation – velocity profile loss of head due to friction in viscous flow.	CO3	L3
7	Reynolds's experiment, frictional loss in pipe flow.	CO3	L3
8	Introduction to turbulence, characteristics of turbulent flow,	CO3	L3
9	laminar turbulent transition major and minor losses.	CO3	L3
10	Numericals	CO3	L3
C	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	Application of Bernoulli's theorem for Flow measuring devices such as venturi meter, orifice meter, notches, pitot tube etc.	CO3	L3
2	To identify type of flow in blood vessel,Grocery cooling,Settling tanks,Wind tunnels,designing sewage systems	CO3	L3
d	Paviaw Quastians		_
-	The attainment of the module learning assessed through following guestions	-	-
1	Explain with neat sketch, working of pitot-static tube.	CO3	L3
2	Differentiate between Orificemeter and venturimeter with neat sketches.	CO3	L3
3	A horizontal venturimeter with 50cm diameter at inlet and 20cm throat diameter is used for measuring rate of water flow, if the pressure at inlet is 1.8 Bar and vaccum pressure at the throat is 30cm of mercury, find the rate of flow. Assume 10% differential pressure head is lost between the inlet and throat section. Assume coefficient of discharge is 0.96	CO3	L3
4	Define Euler's equation of motion. Deduce Bernoulli's equation from the same.	CO3	L3
5	Sketch and derive the relation for actual discharge through an orifice meter.	CO3	L3
6	Derive an expression for discharge through V — notch.	CO3	L3
7	A horizontal venturimeter with inlet diameter 20cm and throat diameter 10cm is used to measure the flow of water. The pressure at inlet is 147 kPa and vacuum pressure at the throat is 40cm of mercury. Find the discharge of water through venturimeter. Take $Cd = 0.98$.	CO3	L3
8	Derive an expression for discharge through a rectangular notch.	CO3	L3

۵	Derive an expression for discharge through a venturi-meter	CUS	13
10	When do you prefer orifice meter over a venturimeter? Why?	CO3	12
10	A rectangular channel 2 m wide has a discharge of 0.25 m3/s, which is	CO3	L2
	measured by a right-angled V-notch weir. Find the position of the apex		
	of the notch from the bed of the channel if maximum depth of water is		
11	not to exceed 1.3 m. Take $Cd = 0.62$.	602	
	Derive Hagen-poiseulle's equation for viscous flow through a circular	CO3	L3
12	Rate of water flow through a horizontal pipe is 0.030 m 3/sec. Length of	CO3	1.3
	pipe is 1000 meters. Diameter of pipe for first half of length is 200mm	000	23
	and suddenly changes to 400mm for remaining length. Find the		
	elevation difference between the two reservoirs connected by the		
10	horizontal pipeline. Take f=0.01 for material of pipeline.	602	1.2
13	what are the energy losses that occur in pipes? Derive an expression for loss of head due to friction in pipes	03	L3
14	A pipe of dia 30cm and length 1000m connects two reservoirs having	CO3	1.3
	difference of water levels as 15m. Determine the discharge through the	000	25
	pipe. If an additional pipe of diameter 30cm and length 600m is		
	attached to the last 600m length, find the increase in discharge. Take f		
15	= 0.02 and neglect minor losses.	602	1.2
13	the pipe for viscous flow through it.	03	LO
16	An oil of viscosity 0.1Ns/m 2 and relative density 0.9 is flowing through	CO3	L3
	a circular pipe of diameter 50mm and length 300m. The rate of flow of		
	fluid through the pipe is 3.5 litres/sec. Find the pressure drop in a		
17	length of 300m and also the shear stress at the pipe wall.	602	
1/	A pipeline 50 m long, connects two reservoirs, naving water level difference of 10m. Diameter of the pipe is 300 mm. Find rate of water	CO3	L3
	flow, considering all the losses. Coefficient of friction for pipe material is		
	0.01.		
18	List the types of losses, with a neat sketch and equations for head	CO3	L2
10	Derive a relation for the discharge through a circular nine of diameter	CO3	13
15	D, for the viscous flow.	000	LJ
20	Fuel is pumped up in a 30 cm diameter and 15 km long pipeline at the	CO3	L3
	rate of 750 kg/min. The pipe is laid at an upgrade of 1:300. The specific		
	gravity of fuel oil is 0.95 and its kinematic viscosity 20 stokes. Find the		
21	There is a horizontal crack 40 mm wide and 2.5 mm deep in a wall of	CO3	13
21	thickness 100 mm. Water leaks through the crack. Find the rate of	005	LJ
	leakage of water through the crack, if the difference of pressures		
	between the two ends of the crack (fixed plates) is 0.02943 N/cm2.		
22	Take the viscosity of water equal to 0.01 poise.	602	
22	pretch the shear stress and velocity profile across a section of a circular nine, for the viscous flow. Derive the expressions governing	603	L3
	shear stress and velocity profile.		
23	Water is to be supplied to the inhabitants of a college campus through	CO3	L3
	a supply main. The following data is given :		
	Distance of the reservoir from the campus $= 3$ km,		
	Number of innabitants = 4000 , Consumption of water per day of each inhabitant = 180 litres		
	Loss of head due to friction = $18m$.		
	Coefficient of friction for the pipe, $f = 0.007$.		
	If half of the daily supply is pumped in 8 hours, determine the size of		
	the supply main.		
24	Inree pipes of diameters 300mm, 200mm and 400mm, and length	CO3	L3
	difference in water surface levels in two tanks is 18m. Determine the		
	rate of flow of water if co-efficient of frictions are 0.0075. 0.0078 and		
	0.0072 respectively. Neglect the minor losses. Also find the equivalent		

	diameters of the pipe if the equivalent coefficient of friction is 0.0075		
	diameters of the pipe if the equivalent coefficient of friction is 0.0075.		
25	Show that the average velocity is equal to the half of the maximum	CO3	L2
	velocity in a laminar flow through pipe.		
26	Determine i) the pressure gradient ii) the shear stress at the two	CO3	L3
	horizontal plates iii) discharge per meter width for laminar flow of oil		
	with a maximum velocity of 2m/s between two plates which are 150mm		
	apart. Given 1.1= 2.5 Pa-s.		
27	Derive Darcy's equation for the loss of head due to friction in a circular	CO3	L3
	pipe.		
28	Prove that the ratio of maximum velocity to average velocity in a	CO3	L3
	viscous flow of fluid through a circular pipe is 2.0.		
29	Lubricating oil of specific gravity 0.85 and dynamic viscosity 0.1 N-s/m2	CO3	L3
	is pumped through a 3 cm diameter pipe. If the pressure drop per		
	metre length of the pipe is 15 kPa. determine:		
	i) The mass flow rate of oil in kg/min.		
	ii) The shear stress at the pipe wall.		
	iii) Revnolds number of the flow and		
	iv) The power required per 40 m length of the pipe to maintain the flow.		
30	An oil of viscosity 10 poise flows between two parallel fixed plates	CO3	13
	which are kept at a distance of 50 mm apart. Find the rate of flow of oil	005	23
	between the plates if the drop of pressure in a length of 1.2 m be 0.3 N/		
	cm3. The width of plates is 200 mm		
21	The diameter of a horizontal nine which is 300mm is suddenly enlarged	CO3	13
51	to 600 mm. The rate of flow of water through this pipe is 0.4 m3 /s. If	005	LJ
	to obo min. The face of now of water through this pipe is 0.4 ms /s. if		
	i)) ass of head, due to sudden enlargement		
	i)Intensity of prossure in the larger pine and		
	ii) needsty of pressure in the larger pipe and		
22	III) FOWEI IOSE due to enidigement. The flow of liquid in a circular nine is laminar. At what radial distance	602	1.2
32	fine now of figure in a circular pipe is faminar. At what radial distance	03	L3
	from the wall of the pipe, the local velocity is hall of the maximum		
22	velocity, if the diameter of the pipe is softim.	602	1.2
33	Inere are two pipes A and B. Diameter of the pipe B is half of diameter	CO3	L3
	of pipe A. Both pipes have same length and same fluid flows through		
	each pipe. If volumetric flow rate is maintained same in both the pipes,		
	compare the loss of head. Assume flow to be laminar.		
34	Three pipes of 400mm, 200mm and 30mm diameters have lengths of	CO3	L3
	400m, 200m and 300m respectively. They are connected in series to		
	make a compound pipe. The ends of this compound pipe are connected		
	with two tanks whose difference of water levels is 16m. If co-efficient of		
	friction for these pipe is same and equal to 0.005, determine the		
	discharge through the compound pipe neglecting first the minor losses		
	and then including them.		

	Μ	od	u	le	_	4	
--	---	----	---	----	---	---	--

Title:	Flow over bodies: Dimensional analysis:	Appr Time:	9 Hrs
а	Course Outcomes	СО	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Explain the concept of boundary layer in fluid flow.	CO4	L3
b	Course Schedule		
Class No	Portion covered per hour	-	-
1	Flow over bodies: Development of boundary layer.	CO4	L2
2	Prandtl''s boundary layer equations Blasius solution	CO4	L3
3	Integral momentum equation drag on a flat plate	CO4	L2
<u> </u>	Boundary layer seneration and its control streamlined	CO4	13
5	Doundary layer separation and its control, streammed		13
	Biult bodies -flow around circular bodies and aero folis.calculation of fift	04	
	and drag.	604	1.2
0	Dimensional analysis: Introduction, derived quantities, dimensions of	C04	L3
	physical quantities.		
7	Homogeneity, Rayleigh's method, Buckingham Pi-theorem,	CO4	L3
8	Dimensionless numbers, similitude, types of similitude	CO4	L3
9	Numericals.	CO4	L3
C	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	Design of airfoils in airplanes, Design of automobile parts	CO4	L3
2	We use dimensional analysis for three prominent reasons, they are:	CO4	L3
	Consistency of a dimensional equation Derive relation between physical		
	quantities in physical phenomena. To change units from one system to		
d	Review Ouestions	-	-
-	The attainment of the module learning assessed through following	-	-
	questions		
1	Show that streamlines and equipotential lines are orthogonal to each	CO4	L3
	other.		
2	Explain Model Similitude and Non-dimensional numbers.	CO4	L3
3	The pressure difference 'Ap' in a pipe of diameter D and length '1' due	CO4	L2
	to viscous now depends on velocity v, viscosity t and density p. Using Ruckingham's TE theorem, obtain an expression for An		
4	Define ·	CO4	12
	i) Displacement thickness	004	
	ii) Momentum thickness		
	iii) Energy thickness		
	iv) Shape factor as with respect to boundary layer.		
5	A man descends the ground from an airoplane with h&j, of a parachute,	CO4	L2
	which is hemispherical having a diameter of 5m against the resist of air		
	which a uniform velocity of 25m/s. Find the weight of the man if the weight of parachute is $9,81, CD = 0.6$		
6	Explain the different types of similitude	CO4	12
8	Assume the viscous force F exerted by a fluid on sphere of diameter D	CO4	L2 L2
	depends on viscosity 1.t of mass density p and velocity of motion of the	007	
	sphere, obtain the expression for shear force F, using Buckingham's it -		
	theorem		
9	Explain the terms:	CO4	L2
	i) Lift and drag		

	ii) Momentum thickness		
10	Define Mach number. What is the significance of Mach number in	CO4	12
10	compressible fluid flows?	001	
11	An aeroplane weighing 40 kN is flying in a horizontal direction at 360	CO4	L3
	km/hr. the plane has a wing surface area of 35 m2. Determine the lift		
	coefficient and the power required to drive the plane. Assume drag		
12	$\Delta \text{ projectile travels in air of pressure 10.10/3 N/cm2 at 10°C at a speed}$	CO4	13
12	of 1500 km/hr. Find the Mach number and Mach angle. Take $K = 1.4$	004	LJ
	and $R = 287$ J/kgK.		
13	What is the meaning of boundary layer separation? What is the effect of	CO4	L2
14	pressure gradient on boundary layer separation?	<u> </u>	
14	A kile 0.8m x 0.8m weighing 3.924N assumes an angle of 12° to the	C04	L3
	horizontal. The pull on the string is 24.525 N wizen the wind is flowing		
	at a speed of 30 km/hr. find the corresponding coefficient of drag and		
	lift. Take density of air = 1.25 kg/m3.		
15	a. Explain the following:	CO4	L2
	(i) Stream line body (ii) Bluff body		
	(iii) Mach number		
	(iv) Mach angle		
	(v) Boundary layer thickness		
16	An aeroplane is flying at a height of 15 km where the temperature is - $E_{0}^{\circ}C$. The speed of the plane is corresponding to M = 2.0. Assuming K	CO4	L3
	= 1.4 and R = 287 I/kg -K, find the speed of the plane.		
17	Experiments were conducted in a wind tunnel with a wind speed of 50	CO4	L3
	km/hour on a flat plate of size 2 m long and 1 m wide. The density of air		
	is 1.15 kg/m3. The co-efficients of lift and drag are 0.75 and 0.15		
	respectively. Determine (1) Drag force		
	(ii)Lift force.		
	(iii) Resultant force.		
18	State Buckingham's it theorem. Why this theorem is considered	CO4	L2
10	superior over the Rayleigh's method for dimensional analysis?	<u> </u>	1.2
20	Derive a relation for the velocity of sound in a compressible fiuld.	C04	
20	Temperature of air is 22°C, density of air is 1.2 kg/m 3. Assume $v = 1.4$	04	LJ
	and $R = 287 \text{ J/kg K}$.		
21	A flat plate 1.8mx1.8m moves at 36 km/hr in a stationary air of mass	CO4	L3
	density 1.2 kg/m 3 . If the coefficients of drag and lift are 0.15 and 0.75		
	i)Drag force		
	ii)Lift force		
	iii)Resultant force		
	iv)Power required to keep the plate in motion.		
22	Explain the dimensional homogeneity, with an example.	CO4	
23	(k).	CU4	LJ
24	Define Mach number and derive an expression for the same.	CO4	L2
25	The experiments were conducted in a wind tunnel with a wind speed of	CO4	L3
	50 km/hr on a flat plate of size 2 m long and I m wide. The density of air		
	is 1.15 kg/m ⁻ . The coefficients of lift and drag are 0.75 and 0.15 respectively. Determine:		
	i) Lift force		
	ii) Drag force		
	iii) The resultant force		
	IV) Direction of resultant force		
	v) rower exerced by all off plate		

26	State Buckingham's n theorem. The efficiency ri of a fan depends on CO4	L3
	density p, dynamic viscosity p. of the fluid, angular velocity co,	
	diameter D, discharge Q. Express rl in terms of dimensionless	
	parameters.	

E2. CIA EXAM – 2

a. Model Question Paper - 2

Crs 18ME43 Sem: IV Marks: 30 Time: 75 mir Code:		utes	S								
Cour	rse:	Energy En	gineering								
-	-	Note: Answ	er all questio	ns, each ca	rry equal m	arks. Mod	lule : 3, 4	Mar	ks	CO	Level
1	а	Derive Hag circular pip	gen-poiseul be	le's equati	on for visc	ous flow	through a	10)	3	L2
	b	Sketch the of the pipe	e velocity ar	nd shear st s flow thro	tress distri ugh it.	bution a	cross the section	on 10		3	L2
					ŌR						
2	а	Derive Dar circular pip	rcy's equati pe.	on for the	loss of hea	ad due to	o friction in a	10		3	L2
	b	An oil of viscosity 10 poise flows between two parallel fixed plates which are kept at a distance of 50 mm apart. Find the rate of flow of oil between the plates if the drop of pressure in a length of 1.2 m be 0.3 N/cm3. The width of plates is 200 mm.						es 10 ow L.2		3	L3
3	а	Experimen 50 km/hou density of 0.75 and 0 (I) Drag for (ii)Lift forc (iii) Resulta	nts were con ur on a flat air is 1.15 0.15 respect rce. e. ant force.	nducted in plate of kg/m3. Tl ively. Dete	a wind tu size 2 m he co-effic ermine	nnel with long and ients of	n a wind speed d 1 m wide. T lift and drag a	of 10 he are		4	L3
	b	Derive a re	elation for t	he velocity	/ of sound	in a com	pressible fluid	. 10)	4	L2
					OR						
4	а	Explain the	e different t	ypes of sir	militude.			5		4	L2
	b	State Buck superior ov	kingham's ver the Ray	it theorem leigh's me	n. Why th thod for d	is theore mensior	em is consider al analysis?	ed 5		4	L2
	С	Assume the diameter velocity of force F, us	he viscous D, depend f motion of ing Bucking	force F s on visc the sphei ham's it -	exerted k cosity 1.t re, obtain theorem	oy a flu of mass the exp	id on sphere s density p a ression for she	of 10 nd ear		4	L3

L3

b. Assignment – 2

Note: A distinct assignment to be assigned to each student.

				Model A	Assignmer	nt Quest	ions			
Crs C	ode: 1	L5ME71	Sem:	VII	Marks:	5	Time: 9	90 - 120) minut	es
Cours	se: E	Energy E	Engineering			Modu	le : 3, 4			
Note	: Each	studen	t to answer 2	2-3 assign	ments. Ea	ch assig	Inment carries ec	qual ma	rk.	
SNo	U	ISN		Assig	gnment Des	cription		Marks	СО	Level
1			Derive Hage	n-poiseull	e's equati	on for vi	scous flow	5	CO3	L3
			through a ci	rcular pipe	9					
2			Rate of wate	er flow thro	bugh a hoi	rizontal	pipe is 0.030 m	5	C03	L3
			3/sec. Lengt	h of pipe i	s 1000 me	eters. Di	ameter of pipe			
			for first half	of length i	s 200mm	and suc	Idenly changes			
		,	to 400mm fo	or remainiı	ng length.	Find the	e elevation			
			difference b	etween the	e two rese	ervoirs c	onnected by the			
			horizontal pi	peline. Ta	ke f=0.01	for mat	erial of pipeline.			
3			What are the	e energy lo	osses that	occur ii	n pipes? Derive	5	C03	L2
			an expressio	on for loss	of head d	ue to fri	ction in pipes.			

4	A pipe of dia 30cm and length 1000m connects two reservoirs having difference of water levels as 15m. Determine the discharge through the pipe. If an additional pipe of diameter 30cm and length 600m is attached to the last 600m length, find the increase in discharge. Take $f = 0.02$ and neglect minor losses	5	C03	L3
5	Sketch the velocity and shear stress distribution across the section of the pipe for viscous flow through it.	5	C03	L2
6	An oil of viscosity 0.1Ns/m 2 and relative density 0.9 is flowing through a circular pipe of diameter 50mm and length 300m. The rate of flow of fluid through the pipe is 3.5 litres/sec. Find the pressure drop in a length of 300m	5	C03	L3
7	A pipeline 50 m long, connects two reservoirs, having water level difference of 10m. Diameter of the pipe is 300 mm. Find rate of water flow, considering all the losses. Coefficient of friction for pipe material is 0.01.	5	C03	L3
8	List the types of losses, with a neat sketch and equations for head losses.	5	CO3	L2
9	Derive a relation for the discharge through a circular pipe of diameter D, for the viscous flow.	5	CO3	L3
10	Fuel is pumped up in a 30 cm diameter and 15 km long pipeline at the rate of 750 kg/min. The pipe is laid at an upgrade of 1:300. The specific gravity of fuel oil is 0.95 and its kinematic viscosity 20 stokes. Find the power required to pump oil.		CO3	L2
11	There is a horizontal crack 40 mm wide and 2.5 mm deep in a wall of thickness 100 mm. Water leaks through the crack. Find the rate of leakage of water through the crack, if the difference of pressures between the two ends of the crack (fixed plates) is 0.02943 N/cm2. Take the viscosity of water equal to 0.01 poise.	5	CO3	L3
12	Sketch the shear stress and velocity profile across a section of a circular pipe, for the viscous flow. Derive the expressions governing shear stress and velocity profile.	5	CO3	L2
13	Water is to be supplied to the inhabitants of a college campus through a supply main. The following data is given :Distance of the reservoir from the campus = 3km, Number of inhabitants = 4000, Consumption of water per day of each inhabitant = 180 litres, Loss of head due to friction = 18m, Coefficient of friction for the pipe, f = 0.007. If half of the daily supply is pumped in 8 hours, determine the size of the supply main.	5	CO3	L3
14	Three pipes of diameters 300mm, 200mm and 400mm, and length 450m, 255m and 315m respectively are connected in series. The difference in water surface levels in two tanks is 18m. Determine the rate of flow of water if co-efficient of frictions are 0.0075, 0.0078 and 0.0072 respectively. Neglect the minor losses. Also find the equivalent diameters of the pipe if the equivalent coefficient of friction is 0.0075.		CO3	L3
15	Show that the average velocity is equal to the half of the maximum velocity in a laminar flow through nine	5	CO3	L2
16	Determine i) the pressure gradient ii) the shear stress at the two horizontal plates iii) discharge per meter width for laminar flow of oil with a maximum velocity of 2m/s between two plates which are 150mm apart. Given 1.1= 2.5 Pa-s.	5	CO3	L3
17	Derive Darcy's equation for the loss of head due to	5	CO4	L2

	friction in a singular ping			
	friction in a circular pipe.			
18	Prove that the ratio of maximum velocity to average		CO4	L2
	velocity in a viscous flow of fluid through a circular pipe			
	is 2.0.			
19	Lubricating oil of specific gravity 0.85 and dynamic	5	CO4	L3
	viscosity 0.1 N-s/m2 is pumped through a 3 cm diameter			
	pipe. If the pressure drop per metre length of the pipe is			
	15 kPa, determine:			
	i) The mass flow rate of oil in kg/min			
	ii) The shear stress at the nine wall			
	iii) Revolds number of the flow and			
	iii) Reynolds humber of the now and iv) The newer required per 40 m length of the nine to			
	iv) the power required per 40 th length of the pipe to			
20		-	604	1.2
20	An oil of viscosity 10 poise flows between two parallel	5	C04	L3
	fixed plates which are kept at a distance of 50 mm			
	apart. Find the rate of flow of oil between the plates if			
	the drop of pressure in a length of 1.2 m be 0.3 N/cm3.			
	The width of plates is 200 mm.			
21	The diameter of a horizontal pipe which is 300mm is	5	CO4	L3
	suddenly enlarged to 600 mm. The rate of flow of water			
	through this pipe is 0.4 m3 /s. If the intensity of pressure			
	in the smaller pipe is 125 kPa. Determine:			
	i)Loss of head, due to sudden enlargement			
	ii)Intensity of pressure in the larger nine and			
	iii) Power lest due te enlargement			
22	The flow of liquid in a circular pipe is laminar. At what	F	<u> </u>	12
22	rife now of inquid in a circular pipe is familiar. At what	5	C04	LS
	radial distance from the wall of the pipe, the local			
	velocity is half of the maximum velocity, if the diameter			
	of the pipe is 50mm.			
23	There are two pipes A and B. Diameter of the pipe B is	5	CO4	L3
	half of diameter of pipe A. Both pipes have same length			
	and same fluid flows through each pipe. If volumetric			
	flow rate is maintained same in both the pipes, compare			
	the loss of head. Assume flow to be laminar.			
24	Three pipes of 400mm, 200mm and 30mm diameters	5	CO4	L3
	have lengths of 400m, 200m and 300m respectively.			
	They are connected in series to make a compound pipe.			
	The ends of this compound pipe are connected with two			
	tanks whose difference of water levels is 16m. If co-			
	efficient of friction for these pipe is same and equal to			
	0.005 determine the discharge through the compound			
	nine neglecting first the minor losses and then including			
	them			
25	Water at 15°C flows between two narallel plates at a	5	CO4	13
25	distance of 1.6 mm anart. Determine:	J	C04	LJ
	i) Maximum velecity			
	i) Maximum velocity			
	ii) Pressure loss per unit length			
	III) Shear stress at the plate if the average velocity is 0.2			
	m/s. viscosity of water at 15°C is 0.01 poise. Take unit			
	width of the plate.			
26	Show that streamlines and equipotential lines are	5	CO4	L2
	orthogonal to each other.			
27	Explain Model Similitude and Non-dimensional numbers.	5	CO4	L2
28	The pressure difference 'Ap' in a pipe of diameter D and	5	CO4	L3
	length '1' due to viscous flow depends on velocity V.			
	viscosity t and density p. Using Buckingham's TF			
	theorem, obtain an expression for Ap			
29	Define :	5	CO4	12
	i) Displacement thickness	2		62
	ii) Momentum thickness			

	iii) Energy thickness			
30	A man descends the ground from an airoplane with h&j, of a parachute, which is hemispherical having a diameter of 5m against the resist of air with a uniform velocity of 25m/s. Find the weight of the man if the weight of parachute is 9. 81, CD = 0.6.	5	CO4	L3
31	Explain the different types of similitude.	5	CO5	L2
32	Assume the viscous force F exerted by a fluid on sphere of diameter D, depends on viscosity 1.t of mass density p and velocity of motion of the sphere, obtain the expression for shear force F, using Buckingham's it - theorem	5	CO4	L2
33	Explain the terms: i) Lift and drag ii) Momentum thickness iii) Sonic and subsonic flow	5	CO5	L2
34	Define Mach number. What is the significance of Mach number in compressible fluid flows?	5	C05	L2
35	An aeroplane weighing 40 kN is flying in a horizontal direction at 360 km/hr. the plane has a wing surface area of 35 m2. Determine the lift coefficient and the power required to drive the plane. Assume drag coefficient CD = 0.03 and for air $p = 1.20$ kg/m3.	5	CO5	L3
36	A projectile travels in air of pressure 10.1043 N/cm2 at 10° C at a speed of 1500 km/hr. Find the Mach number and Mach angle. Take K = 1.4 and R = 287 J/kgK.	5	CO5	L3
37	What is the meaning of boundary layer separation? What is the effect of pressure gradient on boundary layer separation?	5	CO5	L2
38	A kite 0.8m x 0.8m weighing 3.924N assumes an angle of 12° to the horizontal. The attached to the kite makes an angle of 45° to the horizontal. The pull on the string is 24.525 N wizen the wind is flowing at a speed of 30 km/hr. find the corresponding coefficient of drag and lift. Take density of air = 1.25 kg/m3.	5	CO5	L3
39	a. Explain the following: (i) Stream line body (ii) Bluff body (iii) Mach number (iv) Mach angle (v) Boundary layer thickness	5	CO5	L2
40	An aeroplane is flying at a height of 15 km where the temperature is -50°C. The speed of the plane is corresponding to $M = 2.0$. Assuming $K = 1.4$ and $R = 287$ J/kg-K, find the speed of the plane.	5	CO5	L3
41	Experiments were conducted in a wind tunnel with a wind speed of 50 km/hour on a flat plate of size 2 m long and 1 m wide. The density of air is 1.15 kg/m3. The co- efficients of lift and drag are 0.75 and 0.15 respectively. Determine (I) Drag force. (ii)Lift force. (iii) Resultant force.	5	C05	L3
42	State Buckingham's it theorem. Why this theorem is considered superior over the Rayleigh's method for dimensional analysis?	5	CO5	L2
43	Derive a relation for the velocity of sound in a compressible fluid.	5	CO5	L3
44	Find the velocity of a bullet fired in the air, if the Mach	5	C05	L

	angle is 30°. Temperature of air is 22°C, density of air is 1.2 kg/m 3 . Assume $y = 1.4$ and R = 287 J/kg K.			
45	A flat plate 1.8mx1.8m moves at 36 km/hr in a stationary air of mass density 1.2 kg/m 3 . If the coefficients of drag and lift are 0.15 and 0.75 respectively. Determine i)Drag force ii)Lift force iii)Resultant force iv)Power required to keep the plate in motion.	5	CO5	L3
46	Explain the dimensional homogeneity, with an example.	5	CO4	L2
47	Derive an expression for the velocity of sound in terms of bulk modulus (k).	5	CO5	L3

D3. TEACHING PLAN - 3

Module - 5

Title:	Compressible Flows: Introduction to CFD:	Appr Time:	5rs
а	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Illustrate and explain the basic concept of compressible flow and CFD.	CO5	L3
b	Course Schedule	-	-
Class N	o Portion covered per hour	-	-
1	Compressible Flows: Introduction thermodynamic relations of perfect gases, internal energy and enthalpy	CO5	L2
2	speed of sound, pressure field due to a moving source	C05	L2
3	basic Equations for one-dimensional flow, stagnation and sonic Properties,normal and oblique shocks,	CO5	L3
4	Introduction to CFD, Necessity of CFD, Limitations of CFD, Philosophy and applications .	CO5	L2
5	Numericals	CO5	L3
C	Applications:	-	-
1	 Nozzles and Diffusers and converging diverging nozzles Turbines, fans & pumps Throttles - flow regulators, One Dimensional Isentropic Flow - compressible pipe flow. 	CO5	L2
2	Some of the applications of CFD in Industries are - 1.Electronics- For design and analysis of cooling system. 2.2.Turbo machinery- For design and analysis pumps, compressors, fans, bl turbines nozzle and diffusers. 3.Sports- Evaluating performance of athletes, design of high performance gear like swimsuit and helmets.	CO5	L3
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	Write short essay on the engineering application of CFD, brining the advantages and the limitations.	CO5	L2
2	Define the following terms and write the relevant equations for the same : - i) Stagnation Temperature ii) Stagnation Pressure	CO5	L2
3	Define: i) Mach line ii) Mach angle iii) Subsonic and supersonic flow.	C05	L2
4	Calculate the velocity and Mach number of a supersonic aircraft flying at an altitude of 1200m when temperature is 300K. Sound of aircraft is	CO5	L2

	heard 2 seconds after passage of aircraft over the head of an observer Take $r=1.41$, $R = 287 J/kg/k$.		
5	Explain the terms: i) Lift and drag ii) Momentum thickness iii) Sonic and subsonic flow	CO5	L2
6	Define Mach number. What is the significance of Mach number in compressible fluid flows?	-	L2
7	An aeroplane weighing 40 kN is flying in a horizontal direction at 360 km/hr. the plane has a wing surface area of 35 m2. Determine the lift coefficient and the power required to drive the plane. Assume drag coefficient CD = 0.03 and for air $p = 1.20$ kg/m3.	CO5	L2
8	A projectile travels in air of pressure 10.1043 N/cm2 at 10°C at a speed of 1500 km/hr. Find the Mach number and Mach angle. Take $K = 1.4$ and $R = 287$ J/kgK	CO5	L2
9	Show that the velocity of a sound wave in a compressible fluid medium is given by $c = kVP$ where k and p are bulk modules of elasticity and density of the fluid respectively.	C05	L2
10	Calculate the velocity and mach number of a supersonic aircraft flying at an altitude of 1000 in where the temperature is 280 K. Sound of the aircraft is heard 2.15 seconds after the passage of the aircraft on the head of an observer. Take $y = 1.41$ and $R = 287$ J/kgK.	C05	L2
11	Define stagnation temperature of a fluid. Show that the stagnation temperature and static temperatures are related by $T0/T=1+(r-1/2)$ where r = ratio of specific heats, m = mach number	CO5	L2
12	Mention the applications and limitations of computational fluid dynamics.	CO5	L2
	Obtain an expression for velocity of the sound wave in a compressible fluid in terms of change of pressure and change of density.	CO5	L3
13	Calculate the Mach number and Mach angle at a point on a jet propelled aircraft which is flying at 900 km/hour at sea level where air temperature is 15°C. Take $K = 1.4$ and $R = 287$ J/kgK.	CO5	L2

E3. CIA EXAM – 3

a. Model Question Paper - 3

Crs Code	e:	18ME43 Sem: IV Marks: 30 Time: 7				75 min	5 minutes			
Cour	se:	FLUID MEC	HANICS		·					
-	-	Note: Answe	er any 2 que	stions, each	carry equal	marks.		Mark	s CO	Level
1	а	Define: i) flow.	Mach line	nic 10	5	L2				
	b	Calculate flying at ar aircraft is of an obse	the veloci n altitude o heard 2 se rver Take	aft 10 of ad	5	L3				
					OR					
2	а	Show that the velocity of a sound wave in a compressible fluid medium is given by $c = kVP$ where k and p are bulk modules of elasticity and density of the fluid respectively.							5	L3
	b	Calculate flying at a Sound of t the aircraf J/kgK.	the velocit in altitude the aircraf t on the he	ty and mac of 1000 ir it is heard ead of an ob	ch number n where the 2.15 secor oserver. Ta	of a super e temperat ds after th ke y = 1.41	sonic aircr ure is 280 e passage and R = 2	aft 10 K. of 87	5	L3

3	а	Write short essay on the engineering application of CFD, brining the advantages and the limitations.	10	5	L3
	b	Define the following terms and write the relevant equations for the same : - i) Stagnation Temperature ii) Stagnation Pressure	10	5	L2
		OR			
4	а	Define stagnation temperature of a fluid. Show that the stagnation temperature and static temperatures are related by $T0/T=1+(r-1/2)$ where r = ratio of specific heats, m = mach number	10	5	L3
	b	Mention the applications and limitations of computational fluid dynamics.	10	5	L2

b. Assignment – 3

Note: A distinct assignment to be assigned to each student.

Model Assignment Questions										
Crs C	ode: 18ME43	Sem:	IV	Marks:	10	Time:	90 - 120) minut	es	
Cours	se: FLUID M	ECHANICS			Module : !	5				
Note	Note: Each student to answer 2-3 assignments. Each assignment carries equal mark.									
SNo	USN		Assi	gnment Desc	ription		Marks	CO	Level	
1		Explain the t	terms:				5	CO5	L2	
		i) Lift and dr	ag							
	ii) Momentum thickness									
		iii) Sonic and	d subsonic	flow						
2		Define Mach	number.	What is the	significan	ce of Mach	5	CO5	L2	
		number in c	ompressib	ole fluid flov	<u>/s?</u>		-	005		
3		An aeroplar	e weighir	ng 40 kN i	s flying in	a horizont	al	C05	L3	
		airection at	300 Km/	nr. the pla	ne nas a	wing surrad	ce			
		nower regi	ired to	drive the	nlane A	Assume dr				
		coefficient C	D = 0.03	and for air	p = 1.20 kg	g/m3.	19			
4		A projectile	travels in	air of press	ure 10.104	3 N/cm2 at	5	CO5	L3	
		10°C at a sp	eed of 15	00 km/hr. F	ind the Ma	ch number				
		and Mach ar	ngle. Take	K = 1.4 an	d R = 287	J/kgK.				
5		What is the	meaning o	of boundary	layer sepa	aration? Wh	at 5	CO5	L2	
		is the effect	t of pres	sure gradi	ent on bo	oundary lay	er			
		separation?						COL	1.2	
0		A KITE U.8M	X U.8M W	eigning 3.9	AZAN assul	mes an ang	ie 5	05	L3	
		an angle of	2 110112011L 15° to the	al. The allo		n the string	ic			
		24 525 N w	vizen the	wind is flo	wing at a	sneed of 3	30			
		km/hr find the corresponding coefficient of drag and lift								
		Take density	/ of air = 1	1.25 kg/m3						
7		a. Explain th	e followin	g:				CO5	L2	
		(i) Stream lii	ne body							
		(ii) Bluff bod	У							
		(iii) Mach nu	mber							
		(IV) Mach an	gle							
0		(V) Boundar	y layer thi	ckness	of 15 km	whore the	E	COF	12	
0		temperature	e is nying	The speed	of the plan		5	COS	LZ	
		correspondi	na to M =		ing $K = 14$	1 and R =				
		287]/ka-K. f	ind the sp	eed of the	olane.					
9		Experiments	s were co	nducted in	a wind t	unnel with	a 5	CO5	L3	
		wind speed	of 50 km/l	hour on a fl	at plate of	size 2 m lor	ng			
		and 1 m wid	de. The de	ensity of air	is 1.15 kg	g/m3. The c	0-			
		efficients of	lift and d	rag are 0.7	5 and 0.15	respectivel	у.			
		Determine								

	(I) Drag force. (ii)Lift force. (iii) Resultant force.			
10	Derive a relation for the velocity of sound in a compressible fluid.	5	CO5	L3
11	Find the velocity of a bullet fired in the air, if the Mach angle is 30°. Temperature of air is 22°C, density of air is 1.2 kg/m 3. Assume $y = 1.4$ and $R = 287$ J/kg K.		CO5	L3
12	A flat plate 1.8mx1.8m moves at 36 km/hr in a stationary air of mass density 1.2 kg/m 3 . If the coefficients of drag and lift are 0.15 and 0.75 respectively. Determine i)Drag force ii)Lift force iii)Resultant force iv)Power required to keep the plate in motion.	5	CO5	L3
13	Write short essay on the engineering application of CFD, brining the advantages and the limitations.	5	CO5	L2
14	Define the following terms and write the relevant equations for the same : - i) Stagnation Temperature ii) Stagnation Pressure	5	C05	L2
15	Define: i) Mach line ii) Mach angle iii) Subsonic and supersonic flow.		CO5	L2
16	Calculate the velocity and Mach number of a supersonic aircraft flying at an altitude of 1200m when temperature is 300K. Sound of aircraft is heard 2 seconds after passage of aircraft over the head of an observer Take r=1.41, R = 287 J/kg/k.	5	CO5	L3
17	Explain the terms: i) Lift and drag ii) Momentum thickness iii) Sonic and subsonic flow	5	CO5	L2
18	Define Mach number. What is the significance of Mach number in compressible fluid flows?	5	CO5	L2
19	An aeroplane weighing 40 kN is flying in a horizontal direction at 360 km/hr. the plane has a wing surface area of 35 m2. Determine the lift coefficient and the power required to drive the plane. Assume drag coefficient CD = 0.03 and for air $p = 1.20$ kg/m3.	5	CO5	L3
20	A projectile travels in air of pressure 10.1043 N/cm2 at 10°C at a speed of 1500 km/hr. Find the Mach number and Mach angle. Take $K = 1.4$ and $R = 287$ J/kgK	5	CO5	L3
21	Show that the velocity of a sound wave in a compressible fluid medium is given by c = kVP where k and p are bulk modules of elasticity and density of the fluid respectively.		CO5	L3
22	Calculate the velocity and mach number of a supersonic aircraft flying at an altitude of 1000 in where the temperature is 280 K. Sound of the aircraft is heard 2.15 seconds after the passage of the aircraft on the head of an observer. Take $y = 1.41$ and $R = 287$ J/kgK.	5	CO5	L3
23	Define stagnation temperature of a fluid. Show that the stagnation temperature and static temperatures are related by $T0/T=1+(r-1/2)$ where r = ratio of specific heats, m = mach number	5	CO5	L3
24	Mention the applications and limitations of computational fluid dynamics.	5	CO5	L2
25	Obtain an expression for velocity of the sound wave in a	5	CO5	L2

	compressible fluid in terms of change of pressure and change of density.			
26	Calculate the Mach number and Mach angle at a point on a jet propelled aircraft which is flying at 900 km/hour at sea level where air temperature is 15° C. Take K = 1.4 andR = 287 J/kgK.	5	CO5	L3

F. EXAM PREPARATION

1. University Model Question Paper

Cour	se:	FLUID MECHANICS Month							/ Year May /2019		
Crs C	Code:	18ME43	Sem:	IV	Marks:	100	Time:		180		
									minut	es	
Mod	Note	Answer all FIV	'E full quest	ions. All que	stions carry	equal mar	KS.	Marks	СО	Level	
ule		-									
1	а	Give reasons	:					5	C01	L2	
		i) Viscosity of	liquids varie	es with temp	perature.						
		ii) Thin object	s float on fre	ee surface o	f static liqui	d.					
		III) Metacentri	c height dei	termines sta	bility of floa	iting body.					
		IV) RISE OF Wat	ter in a Calli	lary tube.	· : -I						
	h	v) Mercury IS	useu as Mar	nometric liqu	110. or lubricatio	n hatwaan		10	CO1	1.2	
	D		nickness Zr	nm is used f	or inclined a	on between	a	10	COL	L3	
		square place of	of Size 0.9m	X U.911 ON d	an inclined p	nane naving	J an DEON				
		angle of inclin	angle of inclination 50°. The weight of the square plate is 5500								
		Find the visco	ind the viscosity of the oil in poise								
	C	Define followi	na terms wi	th their unit	c			5	CO1	12	
	C	i) Specific wei	abt ii) k	(inematic vie	s. scosity iii	i) Surface T	onsion		01		
		iv) Specific ar	avity v) (Canillarity	scosicy in	i) Sunace i	ension				
		iv) specific gr	avity V/	<u>م</u>	P						
2	а	Show that for	r a submerg	ed plane sur	face the ce	entre of pre	ssure	10	C02		
-	ŭ	lies below the	centre of a	ravity of the	submerged	l surface.	ssure,	10	002		
	b	Define : i) Buc	ovancy and	centre of bu	ovancy : ii)	Metacentre	and	10	CO2	12	
		metacentric h	eight.		- j j , ,						
			- 5							L3	
3	а	Derive contin	uity equatio	n for a three	dimension	al fluid flow	in	10	CO2	L3	
		Cartesian co-o	ordinates.								
	b	Explain with r	leat sketch,	working of p	oitot-static t	ube.		10	CO2	L2	
				OR							
4	а	Derive an exp	ression for	discharge th	rough V — I	notch.		10	CO3	L3	
	b	An orifice met	er with orifi	ce diameter	10cm is ins	serted in a p	pipe of	10	CO3	L3	
		20 cm diamet	er. The pres	ssure gauges	s fitted upst	ream and	-				
		downstream o	of the orifice	e meter give	readings of	19.62 N/cr	n2 and				
		9.81 N/cm2 re	espectively.	Cd for the m	neter is 0.6.	Find the					
		discharge of w	vater throug	gh the pipe.							
5	а	Derive Hagen	-poiseulle's	equation for	viscous flov	w through a	à	10	CO3	L3	
		circular pipe									
	b	Sketch the ve	locity and s	hear stress o	distribution	across the	section	10	CO3	L3	
		of the pipe for	r viscous flo	w through it	•						
				OR	f h a a d d	L. 6.1		10	<u> </u>		
σ	a	Derive Darcy	s equation f	or the loss o	n nead due	to friction li	n a	10	04	LJ	
	h	An oil of vice	ncity 10 poir	so flows both	woon two n	arallol fixer	1 plates	10	<u> </u>	12	
	U	which are ker	value and the second		m apart Ei	ad the rate					
		of oil between	n the plates	if the drop	of pressure	in a length	00 110W ח of 1 ס				
		m be 0.3 N/cm	n3 The wide	th of plates i	s 200 mm	in a lengti	1 01 1.2				
					5 200 mm.						
1	1	1						1	1	1	

7	а	Experiments were conducted in a wind tunnel with a wind speed of 50 km/hour on a flat plate of size 2 m long and 1 m wide. The density of air is 1.15 kg/m3. The co-efficients of lift and drag are 0.75 and 0.15 respectively. Determine (I) Drag force. (ii)Lift force. (iii) Resultant force.	10	CO3	L3
	b	Derive a relation for the velocity of sound in a compressible fluid.	10	CO4	L3
		OR			
8	а	Explain the different types of similitude.	5	CO4	L3
	b	State Buckingham's it theorem. Why this theorem is considered superior over the Rayleigh's method for dimensional analysis?	5	CO4	L3
	С	Assume the viscous force F exerted by a fluid on sphere of diameter D, depends on viscosity 1.t of mass density p and velocity of motion of the sphere, obtain the expression for shear force F, using Buckingham's it - theorem	10	CO4	L3
9	а	Define stagnation temperature of a fluid. Show that the stagnation temperature and static temperatures are related by $T0/T=1+(r-1/2)$ where r = ratio of specific heats, m = mach number	10	CO5	L3
	b	Define the following terms and write the relevant equations for the same : - i) Stagnation Temperature ii) Stagnation Pressure	10	C05	L2
		OR			
10	а	Write short essay on the engineering application of CFD, brining the advantages and the limitations.	10	CO5	L2
	b	Mention the applications and limitations of computational fluid dynamics.	10	CO5	L2

2. SEE Important Questions

Cour	se:	FLUID MECHA	NICS				Month	/Year	May /2	2019
Crs C	Code:	18ME43	Sem:	IV	Marks:	100	Time:		180	
									minut	es
	Note	Answer all FIV	/E full quest	ions. All que	stions carry	equal mark	s.	-	-	
Mod	Qno.	Important Que	estion					Marks	СО	Year
ule										
1	1	Give reasons	:					5	CO1	2016
		i) Viscosity of liquids varies with temperature.								
		II) Thin object	s float on fr	ee surface o	f static liquid	d.				
		iii) Metacentric height determines stability of floating body.								
		IV) RISE OF War	used as Mai	lary tube.	uid					
	2	v) Mercury is	useu as Mai	nonieuric ilqu	nu. or lubricatio	n hotwoon	<u> </u>	10	CO1	2016
	2	square plate (of size 0.9m	$\times 0.9$ m on a	or inclined n	lane having	an an	10	COI	2010
		angle of inclin	nation 30 °	The weight	of the squar	e nlate is 3	50N			
		and it slides d	lown the pla	ine with a ur	niform veloci	tv of 0.3m/	sec.			
		Find the visco	sity of the o	oil in poise.						
	3	Define followi	ng terms wi	th their unit	S.			5	CO1	2014
		i) Specific wei	ight ii) I	Kinematic vis	scosity iii) Surface Te	ension			
		iv) Specific gr	avity v)	Capillarity						
				0	R					
1	1	Show that, for	r a submerg	ed plane sur	face, the ce	ntre of pres	sure,	10	CO2	2018
		lies below the	e centre of g	ravity of the	submerged	surface.				
	2	Define : i) Buo	oyancy and	centre of bu	oyancy ; ii) I	Metacentre	and	10	CO2	2016
		metacentric h	neight.							

2	1	Derive continuity equation for a three dimensional fluid flow in Cartesian co-ordinates.		CO2	2015
	2	Explain with neat sketch, working of pitot-static tube.	10	CO2	2014
		OR			
2	1	Derive an expression for discharge through V — notch.	10	CO2	2015
	2	An orifice meter with orifice diameter 10cm is inserted in a pipe of	10	CO2	2014
		20 cm diameter. The pressure gauges fitted upstream and			
		downstream of the orifice meter give readings of 19.62 N/cm2 and			
		9.81 N/cm2 respectively. Cd for the meter is 0.6. Find the			
		discharge of water through the pipe.			
	-			600	2010
3	1	Derive Hagen-poiseulle's equation for viscous flow through a	10	CO3	2016
	2	Circular pipe	10	602	2014
	Z	Sketch the velocity and shear stress distribution across the section	10	03	2014
	of the pipe for viscous flow through it.				
2	1	Derive Darcy's equation for the loss of head due to friction in a	10	CO3	2017
J	T	circular nine	10	005	2017
	2	An oil of viscosity 10 poise flows between two parallel fixed plates	10	CO3	2013
	-	which are kept at a distance of 50 mm apart. Find the rate of flow		005	
		of oil between the plates if the drop of pressure in a length of 1.2			
		m be 0.3 N/cm3. The width of plates is 200 mm.			
		·			
4	1	Experiments were conducted in a wind tunnel with a wind speed of	10	C04	2015
		50 km/hour on a flat plate of size 2 m long and 1 m wide. The			
		density of air is 1.15 kg/m3. The co-efficients of lift and drag are			
		0.75 and 0.15 respectively. Determine			
		(i) Drag force.			
		(iii) Resultant force			
	2	Derive a relation for the velocity of sound in a compressible fluid.	10	CO4	2017
		OR			2017
4	1	Explain the different types of similitude.	5	CO4	2014
-	2	State Buckingham's it theorem. Why this theorem is considered	5	CO4	2016
		superior over the Rayleigh's method for dimensional analysis?	-		
	3	Assume the viscous force F exerted by a fluid on sphere of	10	CO4	2017
		diameter D, depends on viscosity 1.t of mass density p and velocity			
		of motion of the sphere, obtain the expression for shear force F,			
		using Buckingham's it - theorem			
	-		10	005	2010
5	L	Define stagnation temperature of a fluid. Show that the stagnation	10	C05	2018
		temperature and static temperatures are related by $10/1=1+(r-1/2)$ where $r = ratio of specific heats, m = mach pumber$			
	2	Define the following terms and write the relevant equations for the	10	C05	2016
	2	same : -	10		2010
		i) Stagnation Temperature			
		ii) Stagnation Pressure			
		OR			2017
5	1	Write short essay on the engineering application of CFD, brining	10	C05	2018
		the advantages and the limitations.			
	2	Mention the applications and limitations of computational fluid	10	C05	2018
		dynamics.			

G. Content to Course Outcomes

1. TLPA Parameters

Table 1: TLPA – Example Course								
Мо	Course Content or Syllabus	Conten	Blooms'	Final	Identifie	Instructi	Assessmen	
dul	(Split module content into 2 parts which	t	Learnin	Bloo	d Action	on	t Methods	
e-	have similar concepts)	Teachin	g .	_ms'	Verbs	Method	to Measure	
#		g Hours	Levels	Leve	for	s for	Learning	
			tor	I	Learning	Learnin		
	D		Content			g		
	Basice Introduction Droportion of fluids	C	D	E	F Undorst	Chalk	Accignmon	
Ť	mass density, weight density, specific volume, specific gravity, viscosity, surface tension, capillarity, vapour pressure, compressibility and bulk modulus. Concept of continuum, types of fluids etc,pressure at a point in the static mass of fluid, variation of pressure, Pascal's law,Absolute, gauge, atmospheric and vacuum pressures pressure measurement by simple, differential manometers and mechanical	6	L1,L2	L2	and	and board	t	
1	gauges. Fluid Statics: Total pressure and center of pressure for horizontal plane, vertical plane surface and inclined plane surface submerged in static fluid.	6	L1,L2,L 3	L3	Apply	Chalk and board	Assignmen t	
2	Buoyancy: center of buoyancy, meta center and meta centric height its application.	4	L1,L2,L 3	L3	Apply	Chalk and board	Assignmen t and Slip Test	
2	Fluid Kinematics: Velocity of fluid particle, types of fluid flow, description of flow, continuity equation, Coordinate free form, acceleration of fluid particle, rotational & irrotational flow, Laplace's equation in velocity potential and Poisson's equation in stream function, flow net.	4	L1,L2,L 3	L3	Apply	Chalk and board	Assignmen t	
3	Fluid Dynamics; Introduction. Forces acting on fluid in motion. Euler's equation of motion along a streamline. Integration of Euler's equation to obtain Bernoulli's equation, Assumptions and limitations of Bernoulli's equation. Introduction to Navier-Stokes equation. Application of Bernoulli's theorem such as venturi-meter, orifice meter, rectangular and triangular notch, pitot tube.	5	L1,L2,L 3	L3	Apply	Chalk and board	Assignmen t and slip test	
3	Laminar and turbulent flow: Flow through circular pipe, between parallel plates, Power absorbed in viscous flow in bearings, Poiseuille equation – velocity profile loss of head due to friction in viscous flow. Reynolds's	5	L1,L2	L2	Underst and	Chalk and board	Assignmen t	

	experiment, frictional loss in pipe flow. In- troduction to turbulence, characteristics of turbulent flow, laminar turbulent transi- tion major and minor losses.						
4	Flow over bodies : Development of boundary layer, Prandtl"s boundary layer equations, Blasius solution, integral momentum equation, drag on a flat plate, boundary layer separation and its control, streamlined and bluff bodies - flow around circular bodies and aero foils, calculation of lift and drag.	5	L1,L2,L 3	L3	Apply	Chalk and board	Assignmen t
4	Dimensional analysis : Introduction, derived quantities, dimensions of physical quantities, dimensional homogeneity, Rayleigh's method, Buckingham Pi-theorem, dimensionless numbers, similitude, types of similitude	4	L1,L2,L 3	L3	Apply	Chalk and board	Assignmen t
5	Compressible Flows: Introduction, thermodynamic relations of perfect gases, internal energy and enthalpy, speed of sound, pressure field due to a moving source, basic Equations for one- dimensional flow, stagnation and sonic Properties, normal and oblique shocks.	3	L1,L2,L 3	L3	Underst and	Chalk and board	Assignmen t
5	Introduction to CFD: Necessity, limitations, philosophy behind CFD, and applications.	2	L1,L2	L2	underst and	Chalk and board	Assignmen t
с 	philosophy behind CFD, and applications.		L1,L2	L2	and	and board	t

2. Concepts and Outcomes:

Table 2: Concept to Outcome - Example Course

	Mo dul e- #	Learning or Outcome from study of the Content or Syllabus	Identified Concepts from Content	Final Concept	Concept Justification (What all Learning Happened from the study of Content / Syllabus. A short word for learning or outcome)	CO Components (1.Action Verb, 2.Knowledge, 3.Condition / Methodology, 4.Benchmark)	Course Outcome Student Should be able to
	A	1	J	K		M	N
	T	-	-	Fluid properties	Different types of fluid properties.	- Understand - Fluid Properties	Identify and calculate the fluid properties used in the analysis of fluid behaviour
-	2	-	-	Fluid flow types	Understanding the fluid flow types	- Understand Fluid flows and analysing the flow	Explain the principles of buoyancy and fluid flow concept.
	3	-	-	Nature of flow	Understanding the different types of flow	- Understanding -Different flows	Apply the knowledge of fluid statics, kinematics and dynamics while addressing problems of mechanical engineering.
	4	-	-	Boundary layer	Understand the different types of boundary layer	- Understand - Different boundary layer -	Explain the concept of boundary layer in fluid flow.
	5	_	-	1)Thermody namic properties 2)Computati onal Fluid Dynamics	Understand the thermodynamic properties and application of CFD	- Understand - Computational Fluid dynamics 	Illustrate and explain the basic concept of compressible flow and CFD.