SRI KRISHNA INSTITUTE OF TECHNOLOGY, BANGALORE

COURSE PLAN

Academic Year 2018-19

Program:	B E - Mechanical Engineering
Semester :	4
Course Code:	18ME43
Course Title:	FLUID MECHANICS
Credit / L-T-P:	$03 / 3-0-0$
Total Contact Hours:	44
Course Plan Author:	Naveen Kumar Pattar

Academic Evaluation and Monitoring Cell
< \#29, Hesaraghatta Main road, Chimney Hills, Chikkabanavara P.O.,
Bengaluru - 560090, Karnataka, INDIA
Phone / Fax :+91 8023721477 -STD- $08023721315>$
<http://www.skit.org.in: skit1princi@gmail.com: >

Table of Contents

A. COURSE INFORMATION 4

1. Course Overview 4
2. Course Content 4
3. Course Material 5
4. Course Prerequisites 6
5. Content for Placement, Profession, HE and GATE 6
B. OBE PARAMETERS 6
6. Course Outcomes 6
7. Course Applications 7
To identify type of flow in blood vessel,Grocery cooling,Settling tanks,Wind tunnels,designing sewage systems 7
8. Mapping And Justification 8
9. Articulation Matrix 9
10. Curricular Gap and Content. 9
11. Content Beyond Syllabus 9
C. COURSE ASSESSMENT. 10
12. Course Coverage 10
13. Continuous Internal Assessment (CIA) 10
D1. TEACHING PLAN - 1 11
Module - 1 11
Module - 2 13
E1. CIA EXAM - 1 14
a. Model Question Paper - 1 14
b. Assignment -1 15
D2. TEACHING PLAN - 2 16
Module - 3 16
To identify type of flow in blood vessel,Grocery cooling,Settling tanks,Wind tunnels, designing sewage systems 16
Module-4 19
E2. CIA EXAM - 2 21
a. Model Question Paper - 2 21
b. Assignment - 2 21
D3. TEACHING PLAN - 3 25
Module - 5 25
E3. CIA EXAM - 3 26
a. Model Question Paper - 3 26
b. Assignment - 3 27
F. EXAM PREPARATION 29
14. University Model Question Paper 29
15. SEE Important Questions 30
G. Content to Course Outcomes 32
16. TLPA Parameters 32
17. Concepts and Outcomes 34

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	ME
Semester:	IV	Academic Year:	$2019-2020$
Course Title:	FLUID MECHANICS	Course Code:	18ME43
Credit / L-T-P:	$03 / 3-0-0$	SEE Duration:	180 min
Total Hours:	44 Hrs	SEE Marks:	60 Marks
CIA Marks:	40	Assignment	$1 /$ Module
CoursePlan Author:	NAVEEN KUMAR PATTAR	Sign	Dt:
Checked By:	PRASANNA GOWDA	Sign	Dt:
CO Targets		Program:	ME

Note: Define CIA and SEE \% targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute. Identify 2 concepts per module as in G.

Mod ule	Content	$\begin{gathered} \text { Teachi } \\ \text { ng } \\ \text { Hours } \end{gathered}$	Identified Module Concepts	Blooms Learning Levels
1	Basics: Introduction, Properties of fluids-mass density, weight density, specific volume, specific gravity, viscosity, surface tension, capillarity, vapour pressure, compressibility and bulk modulus. Concept of continuum, types of fluids etc, pressure at a point in the static mass of fluid, variation of pressure, Pascal's law,Absolute, gauge, atmospheric and vacuum pressures pressure measurement by simple, differential manometers and mechanical gauges. Fluid Statics: Total pressure and center of pressure for horizontal plane, vertical plane surface and inclined plane surface submerged in static fluid.	12	Fluid properties	L3
	Buoyancy:center of buoyancy, meta center and meta centric height its application. Fluid Kinematics: Velocity of fluid particle, types of fluid flow, description of flow, continuity equation, Coordinate free form, acceleration of fluid particle, rotational \& irrotational flow, Laplace's equation in velocity potential and Poisson's equation in stream function, flow net.	08	Fluid flow types	L3
	Fluid Dynamics; Introduction. Forces acting on fluid in motion. Euler's equation of motion along a streamline. Integration of Euler's equation to obtain Bernoulli's equation, Assumptions and limitations of Bernoulli's equation. Introduction to Navier-Stokes equation. Application of Bernoulli's theorem such as venturi-	10	Nature of flow	L3

meter,orifice meter, rectangular and triangular notch, pitot tube.
Laminar and turbulent flow: Flow through circular pipe, between parallel plates, Power absorbed in viscous flow in bearings, Poiseuille equation - velocity profile loss of head due to friction in viscous flow. Reynolds's experiment, frictional loss in pipe flow. Introduction to turbulence, characteristics of turbulent flow, laminar turbulent transition major and minor losses.
4 Flow over bodies: Development of boundary layer, Prandt|"s boundary layer equations, Blasius solution, integral momentum equation, drag on a flat plate, boundary layer separation and its control, streamlined and bluff bodies flow around circular bodies and aero foils, calculation of lift and drag.
Dimensional analysis: Introduction, derived quantities, dimensions of physical quantities, dimensional homogeneity, Rayleigh's method, Buckingham Pitheorem, dimensionless numbers, similitude, types of similitude
5 Compressible Flows: Introduction, thermodynamic relations of perfect gases, internal energy and enthalpy, speed of sound, pressure field due to a moving source, basic Equations for one-dimensional flow, stagnation and sonic Properties, normal and oblique shocks.
Introduction to CFD: Necessity, limitations, philosophy behind CFD, and applications.

- Total

3. Course Material

Books \& other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15-30 minutes
2. Design: Simulation and design tools used - software tools used ; Free / open source
3. Research: Recent developments on the concepts - publications in journals; conferences etc.

Modul es	Details	Chapter s in book	Availability
A	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
1	Text books		
	Fluid Mechanics (SI Units), Yunus A. Cengel John M.Cimbala, 3rd Ed., Tata. McGraw Hill, 2014.	In Lib, In dept	Available
	Fluid Mechanics, F M White, McGraw Hill Publications Eighth edition. 2016	In Lib, In dept	Available
	Mechanics of Fluids, Merle C. Potter, Devid C. Wiggerrt, Bassem H. Ramadan, Cengage learning, Fourth editions 2016.	In Lib, In dept	Available
2	Reference books		
	Fundamentals of Fluid Mechanics by Munson, Young, Okiishi\& Huebsch, John Wiley Publications. 7 th edition.	In Lib	
	Fluid Mechanics, Pijush.K.Kundu, IRAM COCHEN, ELSEVIER, 3rd Ed. 2005.	In Lib	
	Fluid Mechanics, John F.Douglas, Janul and M.Gasiosek and john A.Swaffield, Pearson Education Asia, 5th ed., 2006.	In Lib	
	Introduction to Fluid Mechanics by Fox, McDonald, John Wiley Publications, 8 th edition.	In Lib	Available

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.
Students must have learnt the following Courses / Topics with described Content . . .

Mod ules	Course Code	Course Name	Topic / Description	Sem	Remarks	Blooms Level
$1-5$	18 PHY12	Engineering Physics	Basic concepts of Archimedes principal, Pascals Law	I	L2	
4	18 MAT21	Engineering Mathematics	Engineering calculus	II	L2	
3	18 ME33	Basic thermodyna mics	Basic thermodynamics	III		L2

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry \& profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.
Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Mod ules	Topic / Description	Area	Blooms Level		
2	Buoyancy, center of buoyancy	Industry and GATE	Seminar buoyancy	on Center of	L3
3	Laminar and Turbulent Flows	GATE	NPTEL Videos	L3	

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs. Identify a max of 2 Concepts per Module. Write 1 CO per Concept.

Mod ules	Course Code.\#	Course Outcome At the end of the course, student should be able to ...	Teach. Hours	Concept	Instr Method	$\begin{aligned} & \text { Assessm } \\ & \text { ent } \\ & \text { Method } \end{aligned}$	Blooms' Level
1	18ME43.1	Identify and calculate the fluid properties used in the analysis of fluid behaviour	12	Fluid properties	Lecture	Chalk and board	$\begin{gathered} \text { L3 } \\ \text { Apply } \end{gathered}$
2	18ME43.2	Explain the principles of buoyancy and fluid flow concept.	08	Fluid flow types	Lecture/ Tutorial	Chalk and board	$\begin{gathered} \text { L3 } \\ \text { Apply } \end{gathered}$
3	18ME43.3	Apply the knowledge of fluid statics, kinematics dynamics while addressing problems engineering. of mechanical	10	Nature of flow	Lecture	Chalk and board	$\begin{gathered} \text { L3 } \\ \text { Apply } \end{gathered}$
4	18ME43.4	Explain the concept of boundary layer in fluid flow.	09	Boundary layer	Lecture	Chalk and board	$\begin{gathered} \text { L3 } \\ \text { Apply } \end{gathered}$
5	18ME43.5	Illustrate and explain the basic concept of compressible flow and CFD.	05	1)Thermo dynamic properties 2)Comput ational	Lecture	Chalk and board	$\begin{gathered} \text { L3 } \\ \text { Apply } \end{gathered}$

COURSE PLAN - CAY 2018-19

			Fluid Dynamics				
-	-	Total	$\mathbf{4 4}$	-	-	-	$\mathbf{L 3}$

2. Course Applications

Mod ules	Application Area Compiled from Module Applications.	CO	Level
1	Pascal's law is applicable for designing Hydraulic jacks, Hydraulic press	1	L2
2	Principle of buoyancy applicable for Submarines, Hydrometer, Ships \& boats	2	L3
3	To identify the type of fluid flow through various channels.	2	L2
3	Application of Bernoulli's theorem for Flow measuring devices such as venturi meter,orifice meter, notches, pitot tube etc.	3	L3
4	To identify type of flow in blood vessel,Grocery cooling,Settling tanks,Wind tunnels, designing sewage systems	3	L2
4	Design of airfoils in airplanes, Design of automobile parts	3	L3
4	We use dimensional analysis for three prominent reasons, they are: Consistency of a dimensional equation Derive relation between physical quantities in physical phenomena To change units from one system to another	4	L3
	1. Nozzles and Diffusers and converging diverging nozzles 2. Turbines, fans \& pumps 3. Throttles - flow regulators, 4. One Dimensional Isentropic Flow - compressible pipe flow.	4	L3
5	Some of the applications of CFD in Industries are - 1. Electronics- For design and analysis of cooling system. 2. Turbo machinery- For design and analysis pumps, compressors, fans, blowers, turbines nozzle and diffusers. 3. Power and Energy- For design and analysis of Thermal, nuclear and hydro power plants. It is also used for modelling of accident situations. 4. Construction- For design and analysis dams, spillways, canals, HVAC systems of buildings. 5. Hydraulics- Construction machinery like excavators, large 6. Automotive, Aerospace and Marine- Aerodynamic design of vehicles, combustion modelling, performance of components like turbochargers, propellers, and cooling fans etc. 7. Biomedical- Design of medical equipment like stents, blood flow through veins and arteries, pathology. 8. Sports- Evaluating performance of athletes, design of high performance gear like swimsuit and helmets.	5	L3

3. Mapping And Justification

CO - PO Mapping with mapping Level along with justification for each CO-PO pair.
To attain competency required (as defined in POs) in a specified area and the knowledge \& ability required to accomplish it.

	Mapping		Mapping Level	Justification for each CO-PO pair	Lev
-	co	PO		'Area': 'Competency' and 'Knowledge' for specified 'Accomplishment'	
1	CO1	PO1	L2	'Engineering Knowledge:'Acquisition of Engineering_Knowledge is required to understand the different Knowledge of Fluid properties is required in construction of machines like pumps in Mechanical Engineering.	L2
1	CO1	PO2	L3	‘Problem Analysis’:Analyzing problems require knowledge of different Fluid flow systems requires the knowledge of fluid properties to complex engineering problems in Mechanical engineering.	
2	CO2	PO1	L3	‘Engineering Knowledge:'Acquisition of Engineering_Knowledge is required to understand the buoyancy and flotation is required for deciding stability of floating bodies to accomplish solutions to complex engineering_problems in Mechanical Engineering.	
2	CO2	PO2	L3	‘Problem Analysis':Analyzing problems require knowledge Floating bodies requires of fluid pressure and metacentre to accomplish solutions to complex engineering problems in Mechanical engineering.	L3
3	CO3	PO1	L2	'Engineering Knowledge:'Acquisition of Engineering_Knowledge is required to understand the type of fluid flow in Mechanical Engineering.	
3	CO3	PO2	L2	'Problem Analysis':Analyzing problems in fluid mechanics require the knowledge of fluid flow, to accomplish solutions to complex engineering problems in Mechanical engineering.	L3
4	CO4	PO1	L3	‘Engineering Knowledge:'Acquisition Knowledge on impact force is required to analyse various forces in fluid flow in Mechanical Engineering.	
4	CO4	PO2	L3	‘Problem Analysis’:Analyzing problems require knowledge Principle of Bernoulli's theorem is applied for designing flow measuring devices to complex engineering problems in Mechanical engineering.	L3
5	CO5	PO1	L3	'Engineering Knowledge:'Acquisition of Engineering_Knowledge is required to understand the thermodynamic relations of perfect gases, to accomplish solutions to complex engineering_problems in Mechanical Engineering.	
5	CO5	PO2	L3	'Problem Analysis': Analyzing problems in an fluid flow concepts requires a knowledge of computational fluid dynamics, in Mechanical engineering.	

4. Articulation Matrix

CO - PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	-	Course Outcomes	Program Outcomes															-
Mod ules	CO.\#	At the end of the course student should be able to . . .	1	PO	PO	PO	PO	PO\|	PO	PO	PO	PO	PO	PO	PS	PS	$\begin{aligned} & \mathrm{PS} \\ & \mathrm{O} 3 \end{aligned}$	$\begin{gathered} \text { Lev } \\ \mathrm{el} \end{gathered}$
1		Identify and calculate the fluid properties used in the analysis of fluid behaviour	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-		L3 App ly
2	18ME43.2	Explain the principles of buoyancy and fluid flow concept.	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-		$\begin{gathered} \text { L3 } \\ \text { App } \\ \text { ly } \end{gathered}$
3	18ME43.3	Apply the knowledge of fluid statics, kinematics and dynamics while addressing problems of mechanical engineering.		\checkmark	-	-	-	-	-	-	-	-	-	-	-	-		$\begin{gathered} \text { L3 } \\ \text { App } \\ \text { ly } \end{gathered}$
4	18ME43.4	Explain the concept of boundary layer in fluid flow.	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-		$\begin{gathered} \text { L3 } \\ \text { App } \\ \text { ly } \end{gathered}$
5	18ME43.5	Illustrate and explain the basic concept of compressible flow and CFD.		\checkmark	-	-	-	-	-	-	-	-	-	-	-	-		$\begin{gathered} \mathrm{L} 3 \\ \mathrm{App} \\ \mathrm{ly} \end{gathered}$

5. Curricular Gap and Content

Topics \& contents not covered (from A.4), but essential for the course to address POs and PSOs.

Mod ules	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
2	Buoyancy	NPTEL Videos	-	-	PO2
3	Navier Stoke Equation	NPTEL Videos	-	-	PO2

6. Content Beyond Syllabus

Topics \& contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Mod ules	Gap Topic	Area	Actions Planned	Schedule Planned	Resources Person	PO Mapping
4	Different types of boundary layer concepts	Placement GATE, Higher Study, .	NPTEL video	$05 / 05 / 2020$	Self	PO1
5	Overview of Computational fluid dynamics	Placement GATE, Higher Study	Presentation	$29 / 05 / 2020$	Prasanna Gowda	PO5

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Mod ules	Title	Teach	No. of question in Exam						CO	Levels
		Hours	CIA-1	CIA-2	CIA-3	Asg	$\begin{array}{\|c\|} \hline \text { Extra } \\ \text { Asg } \\ \hline \end{array}$	SEE		
1	Basics: Fluid Statics:	12	2	-	-	1	1	2	CO1	L2, L3
2	Buoyancy: Fluid Kinematics:	08	2	-	-	1	1	2	CO2	L2, L3
3	Fluid Dynamics; Laminar and turbulent flow:	10	-	2	-	1	1	2	CO3	L3
4	Flow over bodies: Dimensional analysis:	09	-	2	-	1	1	2	CO4	L3
5	Compressible Flows: Introduction to CFD:	05	-	-	4	1	1	2	CO5	L3
-	Total	44	4	4	4	5	5	10	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Mod ules	Weightage in Marks	CO	Levels
1, 2 CIA Exam - 1	30	CO1, CO2,	L2, L3
3, 4 CIA Exam - 2	30	CO3, CO4	L2, L3
5 CIA Exam - 3	30	CO5	L2,L3
1, 2 Assignment - 1	10	CO1, CO2	L2, L3
3, 4 Assignment - 2	10	CO3, CO4,	L2,L3
5 Assignment-3	10	CO5	L2, L3
1, 2 Seminar - 1	00		
3, 4 Seminar - 2	00		
5 Seminar-3	00		
-			
Final CIA Marks	40	CO1 to Co5	L2, L3

D1. TEACHING PLAN - 1

Module - 1

Title:	Basics: Fluid Statics:	Appr Time:	12 hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Identify and calculate the fluid properties used in the analysis of fluid behaviour	CO1	L3
b	Course Schedule	-	-
Class No	Module Content Covered	CO	Level
1	Basics: Introduction, Properties of fluids-mass density, weight density, specific volume, specific gravity, viscosity, surface tension	CO1	L2
2	capillarity, vapor pressure, comprehensibility and bulk modulus.	CO1	L2
3	Concept of continuum, types of fluids etc, pressure at a point in the static mass of fluid,	CO1	L2
4	variation of pressure, Pascal's law	CO1	L2
5	Absolute, gauge, atmospheric and vacuum pressures	CO1	L2
6	pressure measurement by simple Manometer	CO1	L2
7	Differential manometers and mechanical gauges	CO1	L3
8	Fluid Statics: Total pressure and center of pressure for horizontal plane,	CO1	L3
9	vertical plane surface	CO1	L3
10	Inclined plane surface submerged in static fluid.	CO1	L3
11	Numericals	CO1	L3
12	Numericals	CO1	L3
C	Application Areas	CO	Level
1	Pascal's law is applicable for designing Hydraulic jacks, Hydraulic press	CO1	L3
d	Review Questions	-	-
-		-	-
1	Give reasons : i) Viscosity of liquids varies with temperature. ii) Thin objects float on free surface of static liquid. iii) Metacentric height determines stability of floating body. iv) Rise of water in a Calillary tube. v) Mercury is used as Manometric liquid.	CO1	L2
2	Define following terms with their units. i) Specific weight ; ii) Kinematic viscosity ; iii) Surface Tension iv) Specific gravity ; v) Capillarity	CO1	L3
3	The space between two square flat parallel plates is filled with oil. Each side of the plates is 800 mm . Thickness of the oil film is 20 mm . The upper plate moves at a uniform velocity of $3.2 \mathrm{~m} / \mathrm{sec}$ when a force of 50 N applied to upper plate. Determine: i) Shear stress ii) Dynamic viscisity of oil in poise iii) Power absorbed in moving the plate iv) Kinematic viscosity of oil if specific gravity of oil is 0.90	CO1	L2
4	state and prove Hydrostatic law.	CO1	L2
5	With neat sketch, explain working of differential u-Tube Manometer and derive relation for measuring pressure difference between two pipes.	CO1	L3
6	A wooden block of size $6 \mathrm{~m} \times 5 \mathrm{~m} \times 3 \mathrm{~m}$ height floats in freshwater. Find the depth of immersion and determine the metacentric height. Specify gravity of wood is 0.70 . Find the volume of concrete block placed on the wooden block, so as to completely submerge the wooden block in	CO1	L3

COURSE PLAN - CAY 2018-19

	water. Take specific gravity of concrete as 3.0		
7	Explain experimental procedure to determine the metacentric height of a floating vessel.	CO1	L3
8	Distinguish between : i) Mass density and specific weight ii) Newtonian and non-Newtonian fluid iii) Absolute and Kinematic viscosity.	CO1	L2
9	An oil film of thickness 2 mm is used for lubrication between a square plate of size $0.9 \mathrm{~m} \times 0.9 \mathrm{~m}$ on an inclined plane having an angle of inclination 30°. The weight of the square plate is 350 N and it slides down the plane with a uniform velocity of $0.3 \mathrm{~m} / \mathrm{sec}$. Find the viscosity of the oil in poise.	CO1	L2
10	Establish a relationship among absolute, gauge and atmospheric pressures with a simple sketch.	CO1	L3
11	A U-tube manometer containing mercury is connected to a pipe in which water is flowing. Water lend in the limb connected to pipe is 0.5 m below centre of the pipe and the free surface mercury in the other limb (open to atmosphere) is 0.8 m below the centre of the pipe, Calculate the pressure of water in the pipe.	CO1	L3
12	Define the terms : i) Total pressure ii) Centre of pressure	CO1	L2
13	An annular plate 3 m external diameter and 1.5 m internal diameter is immersed in water with its greatest and least depths below water surface at 3.6 m and 1.2 m respectively. Determine the total pressure and the position of centre of pressure on one face of the plate.	CO1	L3
14	A solid cylinder 15 cm diameter and 60 cm long consists of two parts made of different materials. The first part at the base is 1.2 cm long and of specific gravity 5 . The other part of the cylinder is made of the material having specific gravity 0.6 . State if it can float vertically in water.	CO1	L3
15	Derive the relation for pressure intensity and the surface tensile force, in case of soap bubble.	CO1	L3
16	A steel shaft of 30 mm diameter rotates at 240 rpm , in a bearing of diameter 32 mm . Lubricant oil of viscosity 5 poise is used for lubricant of shaft in the bearing. Determine the torque required at the shaft and power lost in maintaining the lubrication. Length of bearing is 90 mm .	CO1	L3
17	State and prove Pascal's law.	CO1	L2
18	Show that, for a submerged plane surface, the centre of pressure, lies below the centre of gravity of the submerged surface.	CO1	L3
19	A differential mercury manometer is used for measuring the pressure difference between two pipes A and B. Pipe A is 500 mm above the pipe B and deflection in Hg manometer is 200 mm . Pressure intensity in pipe A is greater than pipe B. Pipes carry oil of specific gravity 0.90 . Find the pressure difference between the two pipes. Sp.gr. of mercury $=13.6$.	CO1	L3
20	Differentiate between gauge pressure and absolute pressure. Represent positive and negative gauge pressures on a chart.	CO1	L2
21	Derive the relation for capillary rise of water in a glass tube.	CO1	L3
22	A liquid bubble of 2 cm radius has an internal pressure of 12.95 Pascals. Determine the surface tension of the liquid film.	CO1	L3
23	A differential U-tube manometer is used to measure the pressure difference between two points in a horizontal water pipe line. If the manometer shows a difference in mercury levels as 25 cm , find the pressure difference between the points in bar.	CO1	L3
24	A wooden cylinder having specific gravity 0.7 is required to float in water. If the diameter of the cylinder is ' d ' and the length ' 1 '. Show that '1' cannot exceed 0.7715 d for the cylinder to float with its longitudinal axis vertical.	CO1	L3
25	Define compressibility. Derive an expression for the bulk modulus of elasticity for a perfect gas, undergoing the isothermal process.	CO1	L2

COURSE PLAN - CAY 2018-19

26	Calculate the capillary effect in mm in a glass tube of 3 mm diameter, when, immersed in mercury. The value of the surface tension for mercury at $20^{\circ} \mathrm{C}$ in contact with air is 0.51 N/m. Contact angle for mercury $=130^{\circ}$. Also sketch the mercury surface inside and outside the tube indicating the angle of contact clearly.	CO1	L3
27	If the equation of velocity profile over a flat plate is $V=2 y 2 / 3$ where 'v' is the velocity in m / s and ' y ' is the distance in m, determine shear stress at $y=75 ~ m m . ~ T a k e ~ I A ~$$=8.35$ poise.	CO1	L3

Module - 2

Title:	Buoyancy: Fluid Kinematics:	Appr Time:	8hrs
a	Course Outcomes	CO	Blooms
-		-	Level
1	Explain the principles of buoyancy and fluid flow concept.	CO2	L3
b	Course Schedule	-	-
Class No	Portion covered per hour	-	-
13	Module 2: Buoyancy, center of buoyancy, and	CO2	L2
14	Meta center Meta centric height its application.	CO2	L2
15	Numericals	CO2	L3
16	Fluid Kinematics: Velocity of fluid particle, types of fluid flow	CO2	L2
17	Description of flow, continuity equation, Coordinate free form.	CO2	L3
18	Acceleration of fluid particle, rotational \& irrotational flow.	CO2	L3
19	Laplace's equation in velocity potential and Poisson's equation in stream function, flow net.	CO2	L3
20	Numericals	CO2	L3
C	Application Areas	CO	Level
2	Principle of buoyancy applicable for Submarines, Hydrometer, Ships \& boats	CO2	L3
d	Review Questions	-	-
-		-	-
1	Define : i) Buoyancy and centre of buoyancy ; ii) Metacentre and metacentric height.	CO 2	L2
2	Explain the method to find the metacentric height experimentally.	CO2	L3
3	Derive an expression for the depth of centre of pressure from free surface of, liquid of an inclined plane surface submerged in the liquid.	CO2	L2
4	A wooden cylinder of specific gravity 0.6 and circular in cross section is required to float in oil of specific gravity 0.9 . Find the L/D ratio for the cylinder to float with its longitudinal axis vertical in oil; where L is the height of the cylinder and D is.its diameter.	CO 2	L3
5	Explain the importance of metacentre with stability of floating bodies.	CO2	L2
6	A wooden block (barge) 6 mts in length, 4 mts in width and 3 mts deep, floats in fresh water with depth of immersion 1.5 mts . A concrete block is placed centrally on the surface of the wooden block, so that the depth of immersion with concrete is 2.8 mts . Find the volume of the concrete block placed centrally, if the specific gravity of concrete is 2.75. Find also thevolume of water displaced.	CO2	L3
7	Velocity potential function for a two dimensional fluid flow is given by ($0=x(2 y-1)$. Check the existence of flow. Determine the velocity of flow at a $P(2,3)$ and the stream function.	CO 2	L3
8	Show that streamlines and equipotential lines are orthogonal to each	CO2	L3
18ME43 Copyright ©2017. cAAS. All			

	other.		
9	Distinguish between : i)Steady and un-steady flow ii) Uniform and non-uniform flow iii) Laminar and turbulent flow	CO 2	L 2
10	Explain velocity potential and streamline	CO 2	L 3
11	What is flow net state its uses,Enlist the methods of flow net?	CO 2	L 2
12	Explain the different types of fluid flows with examples	CO 2	L 2

E1. CIA EXAM - 1

a. Model Question Paper - 1

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

Model Assignment Questions								Time:	$90-120$ minutes
Crs Code:	18ME43	Sem:	IV	Marks:	10				
Course:	FLUID MECHANICS			Module : 1, 2					

Note: Each student to answer 2-3 assignments. Each assignment carries equal mark.

SNo	USN	Assignment Description	Marks	CO	Level
1		Derive continuity equation for a three dimensional fluid flow in Cartesian co-ordinates.		CO1	L2
2		Velocity potential function for a two dimensional fluid flow is given by $(0=x(2 y-1)$. Check the existence of flow. Determine the velocity of flow at a $P(2,3)$ and the stream function.	5	CO2	L3
3		Show that streamlines and equi potential lines are orthogonal to each other.	5	CO2	L3
4		State and prove Bernoulli's equation for a fluid flow. Mention assumptions made in derivation.	5	CO1	L3
5		Water is flowing through a taper pipe of length 150 m , having diameter 500 mm at the upper end and 250 mm at the lower end. Rate of flow is 70 liters per sec. The pipeline has a slope of 1 in 30 . Find the pressure at the lower end if the pressure at higher level is 2.5 bar.	5	CO1	L2
6		Explain with neat sketch, working of pitot-static tube.	5	CO2	L3
7		Differentiate between Orificemeter and venturimeter with neat sketches.	5	CO2	L3
8		A horizontal venturimeter with 50 cm diameter at inlet and 20 cm throat diameter is used for measuring rate of water flow, if the pressure at inlet is 1.8 Bar and vaccum pressure at the throat is 30 cm of mercury, find the rate of flow. Assume 10% differential pressure head is lost between the inlet and throat section. Assume coefficient of discharge is 0.96	5	CO2	L3
9		Distinguish between : i)Steady and un-steady flow ii) Uniform and non-uniform flow iii) Laminar and turbulent flow	5	CO2	L2
10		If for a two dimensional potential flow, the velocity potential is given by (I) $=4 \times(3 y-4)$,determine the velocity at the point (2 , 3). Determine also the value of stream function $x v$ at the point $(2,3)$.	5	CO2	L3
11		Define Euler's equation of motion. Deduce Bernoulli's equation from the same.	5	CO2	L3
12		A pipe line carrying oil of specific gravity 0.8 changes in diameter from 300 mm at position A to 500 mm diameter at position B which is 5 m at a higher level. If the pressure at A and B are $20 \mathrm{~N} / \mathrm{cm} 2$ and $15 \mathrm{~N} / \mathrm{cm} 2$ respectively and discharge is 150 litres $/ \mathrm{sec}$, determine the loss of head and direction of flow.	5	CO1	L3
13		A horizontal venturimeter with inlet diameter 20 cm and throat diameter 10 cm is used to measure the flow of water. The pressure at the inlet is $17.658 \mathrm{~N} / \mathrm{cm} 2$ and the vacuum pressure at the throat is 30 cm of mercury. Find the discharge of water through the venturimeter. Take $C d=0.98$.	5	CO1	L2
14		For a two dimensional fluid flow, velocity potential is 4) $=y+x 2-y 2$. Find the stream function and velocity at a point $P(2,3)$. Check irrotationality of flow.		CO2	L3

18ME43

D2. TEACHING PLAN - 2
Module - 3

Title:	Fluid Dynamics; Laminar and turbulent flow:	Appr Time:	8 Hrs
a	Course Outcomes	co	Blooms
-	At the end of the topic the student should be able to	-	Le
1	Apply the knowledge of fluid statics, kinematics and dynamics while addressing problems of mechanical engineering.	CO3	L3
b	Course Schedule		
Class No	Portion covered per hour	-	-
1	Fluid Dynamics; Introduction. Forces acting on fluid in motion. Euler's equation of motion along a streamline.	CO3	L2
2	Integration of Euler's equation to obtain Bernoulli's equation, Assumptions and limitations of Bernoulli's equation.	CO3	L3L3
3	Introduction to Navier-Stokes equation. Application of Bernoulli's theorem such as venturi-meter	CO3	L2
4	Orifice meter, rectangular and triangular notch, pitot tube.	CO3	L3
5	Laminar and turbulent flow: Flow through circular pipe, between parallel plates, Power absorbed in viscous flow in bearings,	CO3	L2
6	Poiseuille equation - velocity profile loss of head due to friction in viscous flow.	CO3	L3
7	Reynolds's experiment, frictional loss in pipe flow.	CO3	L3
8	Introduction to turbulence, characteristics of turbulent flow,	CO3	L3
9	laminar turbulent transition major and minor losses.	CO3	L3
10	Numericals	CO3	L3
c	Application Areas		
-	Students should be able employ / apply the Module learnings to		
1	Application of Bernoulli's theorem for Flow measuring devices such as venturi meter, orifice meter, notches, pitot tube etc.	CO3	L3
2	To identify type of flow in blood vessel,Grocery cooling,Settling tanks, Wind tunnels, designing sewage systems	CO3	L3
d	Review Question		
-	The attainment of the module learning assessed through following questions	-	-
1	Explain with neat sketch, working of pitot-static tube.	CO3	L3
2	Differentiate between Orificemeter and venturimeter with neat sketches.	CO3	L3
3	A horizontal venturimeter with 50 cm diameter at inlet and 20 cm throat diameter is used for measuring rate of water flow, if the pressure at inlet is 1.8 Bar and vaccum pressure at the throat is 30 cm of mercury, find the rate of flow. Assume 10\% differential pressure head is lost between the inlet and throat section. Assume coefficient of discharge is 0.96	CO3	L3
4	Define Euler's equation of motion. Deduce Bernoulli's equation from the same.	CO3	L3
5	Sketch and derive the relation for actual discharge through an orifice meter.	CO3	L3
6	Derive an expression for discharge through V - notch.	CO3	L3
7	A horizontal venturimeter with inlet diameter 20 cm and throat diameter 10 cm is used to measure the flow of water. The pressure at inlet is 147 kPa and vacuum pressure at the throat is 40 cm of mercury. Find the discharge of water through venturimeter. Take $\mathrm{Cd}=0.98$.	CO3	L3
8	Derive an expression for discharge through a rectangular notch.	CO3	L3

9	Derive an expression for discharge through a venturi-meter.	CO3	L3
10	When do you prefer orifice meter over a venturimeter? Why?	CO3	L2
	A rectangular channel 2 m wide has a discharge of $0.25 \mathrm{~m} 3 / \mathrm{s}$, which is measured by a right-angled V-notch weir. Find the position of the apex of the notch from the bed of the channel if maximum depth of water is not to exceed 1.3 m . Take $\mathrm{Cd}=0.62$.	CO3	L3
11	Derive Hagen-poiseulle's equation for viscous flow through a circular pipe	CO3	L3
12	Rate of water flow through a horizontal pipe is $0.030 \mathrm{~m} \mathrm{3} / \mathrm{sec}$. Length of pipe is 1000 meters. Diameter of pipe for first half of length is 200 mm and suddenly changes to 400 mm for remaining length. Find the elevation difference between the two reservoirs connected by the horizontal pipeline. Take $\mathrm{f}=0.01$ for material of pipeline.	CO3	L3
13	What are the energy losses that occur in pipes? Derive an expression for loss of head due to friction in pipes.	CO3	L3
14	A pipe of dia 30 cm and length 1000 m connects two reservoirs having difference of water levels as 15 m . Determine the discharge through the pipe. If an additional pipe of diameter 30 cm and length 600 m is attached to the last 600 m length, find the increase in discharge. Take f $=0.02$ and neglect minor losses.	CO3	L3
15	Sketch the velocity and shear stress distribution across the section of the pipe for viscous flow through it.	CO3	L3
16	An oil of viscosity $0.1 \mathrm{Ns} / \mathrm{m} 2$ and relative density 0.9 is flowing through a circular pipe of diameter 50 mm and length 300 m . The rate of flow of fluid through the pipe is 3.5 litres $/ \mathrm{sec}$. Find the pressure drop in a length of 300 m and also the shear stress at the pipe wall.	CO3	L3
17	A pipeline 50 m long, connects two reservoirs, having water level difference of 10 m . Diameter of the pipe is 300 mm . Find rate of water flow, considering all the losses. Coefficient of friction for pipe material is 0.01 .	CO3	L3
18	List the types of losses, with a neat sketch and equations for head losses.	CO3	L2
19	Derive a relation for the discharge through a circular pipe of diameter D, for the viscous flow.	CO3	L3
20	Fuel is pumped up in a 30 cm diameter and 15 km long pipeline at the rate of $750 \mathrm{~kg} / \mathrm{min}$. The pipe is laid at an upgrade of $1: 300$. The specific gravity of fuel oil is 0.95 and its kinematic viscosity 20 stokes. Find the power required to pump oil.	CO3	L3
21	There is a horizontal crack 40 mm wide and 2.5 mm deep in a wall of thickness 100 mm . Water leaks through the crack. Find the rate of leakage of water through the crack, if the difference of pressures between the two ends of the crack (fixed plates) is $0.02943 \mathrm{~N} / \mathrm{cm} 2$. Take the viscosity of water equal to 0.01 poise.	CO3	L3
22	Sketch the shear stress and velocity profile across a section of a circular pipe, for the viscous flow. Derive the expressions governing shear stress and velocity profile.	CO3	L3
23	Water is to be supplied to the inhabitants of a college campus through a supply main. The following data is given : Distance of the reservoir from the campus $=3 \mathrm{~km}$, Number of inhabitants $=4000$, Consumption of water per day of each inhabitant $=180$ litres, Loss of head due to friction $=18 \mathrm{~m}$, Coefficient of friction for the pipe, $f=0.007$. If half of the daily supply is pumped in 8 hours, determine the size of the supply main.	CO3	L3
24	Three pipes of diameters $300 \mathrm{~mm}, 200 \mathrm{~mm}$ and 400 mm , and length $450 \mathrm{~m}, 255 \mathrm{~m}$ and 315 m respectively are connected in series. The difference in water surface levels in two tanks is 18 m . Determine the rate of flow of water if co-efficient of frictions are $0.0075,0.0078$ and 0.0072 respectively. Neglect the minor losses. Also find the equivalent	CO3	L3

COURSE PLAN - CAY 2018-19

	diameters of the pipe if the equivalent coefficient of friction is 0.0075 .		
25	Show that the average velocity is equal to the half of the maximum velocity in a laminar flow through pipe.	CO3	L2
26	Determine i) the pressure gradient ii) the shear stress at the two horizontal plates iii) discharge per meter width for laminar flow of oil with a maximum velocity of $2 \mathrm{~m} / \mathrm{s}$ between two plates which are 150 mm apart. Given $1.1=2.5 \mathrm{~Pa}-\mathrm{s}$.	CO3	L3
27	Derive Darcy's equation for the loss of head due to friction in a circular pipe.	CO3	L3
28	Prove that the ratio of maximum velocity to average velocity in a viscous flow of fluid through a circular pipe is 2.0 .	CO3	L3
29	Lubricating oil of specific gravity 0.85 and dynamic viscosity $0.1 \mathrm{~N}-\mathrm{s} / \mathrm{m} 2$ is pumped through a 3 cm diameter pipe. If the pressure drop per metre length of the pipe is 15 kPa , determine: i) The mass flow rate of oil in $\mathrm{kg} / \mathrm{min}$. ii) The shear stress at the pipe wall. iii) Reynolds number of the flow and iv) The power required per 40 m length of the pipe to maintain the flow.	CO3	L3
30	An oil of viscosity 10 poise flows between two parallel fixed plates which are kept at a distance of 50 mm apart. Find the rate of flow of oil between the plates if the drop of pressure in a length of 1.2 m be $0.3 \mathrm{~N} /$ cm 3 . The width of plates is 200 mm .	CO3	L3
31	The diameter of a horizontal pipe which is 300 mm is suddenly enlarged to 600 mm . The rate of flow of water through this pipe is $0.4 \mathrm{~m} 3 / \mathrm{s}$. If the intensity of pressure in the smaller pipe is 125 kPa . Determine: i)Loss of head, due to sudden enlargement ii)Intensity of pressure in the larger pipe and iii) Power lost due to enlargement.	CO3	L3
32	The flow of liquid in a circular pipe is laminar. At what radial distance from the wall of the pipe, the local velocity is half of the maximum velocity, if the diameter of the pipe is 50 mm .	CO3	L3
33	There are two pipes A and B. Diameter of the pipe B is half of diameter of pipe A. Both pipes have same length and same fluid flows through each pipe. If volumetric flow rate is maintained same in both the pipes, compare the loss of head. Assume flow to be laminar.	CO3	L3
34	Three pipes of $400 \mathrm{~mm}, 200 \mathrm{~mm}$ and 30 mm diameters have lengths of $400 \mathrm{~m}, 200 \mathrm{~m}$ and 300 m respectively. They are connected in series to make a compound pipe. The ends of this compound pipe are connected with two tanks whose difference of water levels is 16 m . If co-efficient of friction for these pipe is same and equal to 0.005 , determine the discharge through the compound pipe neglecting first the minor losses and then including them.	CO3	L3

Module - 4

Title:	Flow over bodies: Dimensional analysis:	Appr Time:	9 Hrs
a	Course Outcomes	CO	Blooms
-	At the end of the topic the student should be able to		Level
1	Explain the concept of boundary layer in fluid flow.	CO4	L3
b	Course Schedule		
Class No	Portion covered per hour	-	
1	Flow over bodies: Development of boundary layer.	CO4	L2
2	Prandtl's boundary layer equations, Blasius solution	CO4	L3
3	Integral momentum equation, drag on a flat plate,	CO4	L2
4	Boundary layer separation and its control, streamlined	CO4	L3
5	Bluff bodies -flow around circular bodies and aero foils.calculation of lift and drag.	CO4	L3
6	Dimensional analysis: Introduction, derived quantities, dimensions of physical quantities.	CO4	L3
7	Homogeneity, Rayleigh's method, Buckingham Pi-theorem,	CO4	L3
8	Dimensionless numbers, similitude, types of similitude	CO4	L3
9	Numericals.	CO4	L3
c	Application Areas		
-	Students should be able employ / apply the Module learnings to . . .		
1	Design of airfoils in airplanes, Design of automobile parts	CO4	L3
2	We use dimensional analysis for three prominent reasons, they are: Consistency of a dimensional equation Derive relation between physical quantities in physical phenomena To change units from one system to another	CO4	L3
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	Show that streamlines and equipotential lines are orthogonal to each other.	CO4	L3
2	Explain Model Similitude and Non-dimensional numbers.	CO4	L3
3	The pressure difference ' $A p$ ' in a pipe of diameter D and length ' 1 ' due to viscous flow depends on velocity V , viscosity t and density p . Using Buckingham's TE theorem, obtain an expression for Ap.	CO4	L2
4	Define: i) Displacement thickness ii) Momentum thickness iii) Energy thickness iv) Shape factor as with respect to boundary layer.	CO4	L2
5	A man descends the ground from an airoplane with h\&j, of a parachute, which is hemispherical having a diameter of 5 m against the resist of air with a uniform velocity of $25 \mathrm{~m} / \mathrm{s}$. Find the weight of the man if the weight of parachute is $9.81, C D=0.6$.	CO4	L2
6	Explain the different types of similitude.	CO4	L2
8	Assume the viscous force F exerted by a fluid on sphere of diameter D, depends on viscosity $1 . t$ of mass density p and velocity of motion of the sphere, obtain the expression for shear force F, using Buckingham's it theorem	CO4	L2
9	Explain the terms: i) Lift and drag	CO4	L2

COURSE PLAN - CAY 2018-19

	ii) Momentum thickness iii) Sonic and subsonic flow		
10	Define Mach number. What is the significance of Mach number in compressible fluid flows?	CO4	L2
11	An aeroplane weighing 40 kN is flying in a horizontal direction at 360 $\mathrm{km} / \mathrm{hr}$. the plane has a wing surface area of 35 m 2 . Determine the lift coefficient and the power required to drive the plane. Assume drag coefficient $C D=0.03$ and for air $p=1.20 \mathrm{~kg} / \mathrm{m} 3$.	CO4	L3
12	A projectile travels in air of pressure $10.1043 \mathrm{~N} / \mathrm{cm} 2$ at $10^{\circ} \mathrm{C}$ at a speed of $1500 \mathrm{~km} / \mathrm{hr}$. Find the Mach number and Mach angle. Take $\mathrm{K}=1.4$ and $\mathrm{R}=287 \mathrm{~J} / \mathrm{kgK}$.	CO4	L3
13	What is the meaning of boundary layer separation? What is the effect of pressure gradient on boundary layer separation?	CO4	L2
14	A kite $0.8 \mathrm{~m} \times 0.8 \mathrm{~m}$ weighing 3.924 N assumes an angle of 12° to the horizontal. The attached to the kite makes an angle of 45° to the horizontal. The pull on the string is 24.525 N wizen the wind is flowing at a speed of $30 \mathrm{~km} / \mathrm{hr}$. find the corresponding coefficient of drag and lift. Take density of air $=1.25 \mathrm{~kg} / \mathrm{m} 3$.	CO4	L3
15	a. Explain the following: (i) Stream line body (ii) Bluff body (iii) Mach number (iv) Mach angle (v) Boundary layer thickness	CO4	L2
16	An aeroplane is flying at a height of 15 km where the temperature is $50^{\circ} \mathrm{C}$. The speed of the plane is corresponding to $\mathrm{M}=2.0$. Assuming K $=1.4$ and $\mathrm{R}=287 \mathrm{~J} / \mathrm{kg}-\mathrm{K}$, find the speed of the plane.	CO4	L3
17	Experiments were conducted in a wind tunnel with a wind speed of 50 $\mathrm{km} /$ hour on a flat plate of size 2 m long and 1 m wide. The density of air is $1.15 \mathrm{~kg} / \mathrm{m} 3$. The co-efficients of lift and drag are 0.75 and 0.15 respectively. Determine (I) Drag force. (ii) Lift force. (iii) Resultant force.	CO4	L3
18	State Buckingham's it theorem. Why this theorem is considered superior over the Rayleigh's method for dimensional analysis?	CO4	L2
19	Derive a relation for the velocity of sound in a compressible fluid.	CO4	L3
20	Find the velocity of a bullet fired in the air, if the Mach angle is 30°. Temperature of air is $22^{\circ} \mathrm{C}$, density of air is $1.2 \mathrm{~kg} / \mathrm{m} 3$. Assume $\mathrm{y}=1.4$ and $\mathrm{R}=287 \mathrm{~J} / \mathrm{kg} \mathrm{K}$.	CO4	L3
21	A flat plate 1.8 mx 1.8 m moves at $36 \mathrm{~km} / \mathrm{hr}$ in a stationary air of mass density $1.2 \mathrm{~kg} / \mathrm{m} 3$. If the coefficients of drag and lift are 0.15 and 0.75 respectively. Determine i)Drag force ii) Lift force iii)Resultant force iv)Power required to keep the plate in motion.	CO4	L3
22	Explain the dimensional homogeneity, with an example.	CO4	L2
23	Derive an expression for the velocity of sound in terms of bulk modulus (k).	CO4	L3
24	Define Mach number and derive an expression for the same.	CO4	L2
25	The experiments were conducted in a wind tunnel with a wind speed of $50 \mathrm{~km} / \mathrm{hr}$ on a flat plate of size 2 m long and I m wide. The density of air is $1.15 \mathrm{~kg} / \mathrm{m}^{\prime}$. The coefficients of lift and drag are 0.75 and 0.15 respectively. Determine: i) Lift force ii) Drag force iii) The resultant force iv) Direction of resultant force v) Power exerted by air on plate	CO4	L3

COURSE PLAN - CAY 2018-19
26 State Buckingham's n theorem. The efficiency ri of a fan depends on CO4 density p , dynamic viscosity p . of the fluid, angular velocity co, diameter D , discharge Q . Express rl in terms of dimensionless parameters.

E2. CIA EXAM - 2
a. Model Question Paper - 2

Crs Code:	18ME43	Sem:	IV	Marks:	30	Time:	75 minutes

Course: Energy Engineering

-	-	Note: Answer all questions, each carry equal marks. Module : 3,4	Marks	CO	Level
1	a	Derive Hagen-poiseulle's equation for viscous flow through a circular pipe	10	3	L2
	b	Sketch the velocity and shear stress distribution across the section of the pipe for viscous flow through it.	10	3	L2
		OR			
2	a	Derive Darcy's equation for the loss of head due to friction in a circular pipe.	10	3	L2
	b	An oil of viscosity 10 poise flows between two parallel fixed plates which are kept at a distance of 50 mm apart. Find the rate of flow of oil between the plates if the drop of pressure in a length of 1.2 m be $0.3 \mathrm{~N} / \mathrm{cm} 3$. The width of plates is 200 mm .	10	3	L3
3	a	Experiments were conducted in a wind tunnel with a wind speed of $50 \mathrm{~km} /$ hour on a flat plate of size 2 m long and 1 m wide. The density of air is $1.15 \mathrm{~kg} / \mathrm{m} 3$. The co-efficients of lift and drag are 0.75 and 0.15 respectively. Determine (I) Drag force. (ii) Lift force. (iii) Resultant force.	10	4	L3
	b	Derive a relation for the velocity of sound in a compressible fluid.	10	4	L2
		OR			
4	a	Explain the different types of similitude.	5	4	L2
	b	State Buckingham's it theorem. Why this theorem is considered superior over the Rayleigh's method for dimensional analysis?	5	4	L2
	c	Assume the viscous force F exerted by a fluid on sphere of diameter D, depends on viscosity 1.t of mass density p and velocity of motion of the sphere, obtain the expression for shear force F, using Buckingham's it - theorem	10	4	L3

L3
b. Assignment - 2

Note: A distinct assignment to be assigned to each student.
Model Assignment Questions
Crs Code: 15ME71 Sem: \quad VII \quad Marks: 5 Time: 90 - 120 minutes

Course: Energy Engineering
Module : 3, 4
Note: Each student to answer 2-3 assignments. Each assignment carries equal mark.

SNo	USN	Assignment Description	Marks	CO	Level
1		Derive Hagen-poiseulle's equation for viscous flow through a circular pipe	5	CO3	L3
2		Rate of water flow through a horizontal pipe is 0.030 m 3/sec. Length of pipe is 1000 meters. Diameter of pipe for first half of length is 200mm and suddenly changes to 400mm for remaining length. Find the elevation difference between the two reservoirs connected by the horizontal pipeline. Take f=0.01 for material of pipeline.	5	C03	L3
3		What are the energy losses that occur in pipes? Derive an expression for loss of head due to friction in pipes.	5	C03	L2

18ME43

4	A pipe of dia 30 cm and length 1000 m connects two reservoirs having difference of water levels as 15 m . Determine the discharge through the pipe. If an additional pipe of diameter 30 cm and length 600 m is attached to the last 600 m length, find the increase in discharge. Take $f=0.02$ and neglect minor losses.	5	C03	L3
5	Sketch the velocity and shear stress distribution across the section of the pipe for viscous flow through it.	5	C03	L2
6	An oil of viscosity $0.1 \mathrm{Ns} / \mathrm{m} 2$ and relative density 0.9 is flowing through a circular pipe of diameter 50 mm and length 300 m . The rate of flow of fluid through the pipe is 3.5 litres $/ \mathrm{sec}$. Find the pressure drop in a length of 300 m and also the shear stress at the pipe wall.	5	C03	L3
7	A pipeline 50 m long, connects two reservoirs, having water level difference of 10 m . Diameter of the pipe is 300 mm . Find rate of water flow, considering all the losses. Coefficient of friction for pipe material is 0.01 .	5	C03	L3
8	List the types of losses, with a neat sketch and equations for head losses.	5	CO3	L2
9	Derive a relation for the discharge through a circular pipe of diameter D, for the viscous flow.	5	CO3	L3
10	Fuel is pumped up in a 30 cm diameter and 15 km long pipeline at the rate of $750 \mathrm{~kg} / \mathrm{min}$. The pipe is laid at an upgrade of $1: 300$. The specific gravity of fuel oil is 0.95 and its kinematic viscosity 20 stokes. Find the power required to pump oil.		CO3	L2
11	There is a horizontal crack 40 mm wide and 2.5 mm deep in a wall of thickness 100 mm . Water leaks through the crack. Find the rate of leakage of water through the crack, if the difference of pressures between the two ends of the crack (fixed plates) is $0.02943 \mathrm{~N} / \mathrm{cm} 2$. Take the viscosity of water equal to 0.01 poise.	5	CO3	L3
12	Sketch the shear stress and velocity profile across a section of a circular pipe, for the viscous flow. Derive the expressions governing shear stress and velocity profile.	5	CO3	L2
13	Water is to be supplied to the inhabitants of a college campus through a supply main. The following data is given : Distance of the reservoir from the campus $=3 \mathrm{~km}$, Number of inhabitants $=4000$, Consumption of water per day of each inhabitant $=180$ litres, Loss of head due to friction $=18 \mathrm{~m}$, Coefficient of friction for the pipe, $\mathrm{f}=0.007$. If half of the daily supply is pumped in 8 hours, determine the size of the supply main.	5	CO3	L3
14	Three pipes of diameters $300 \mathrm{~mm}, 200 \mathrm{~mm}$ and 400 mm , and length $450 \mathrm{~m}, 255 \mathrm{~m}$ and 315 m respectively are connected in series. The difference in water surface levels in two tanks is 18 m . Determine the rate of flow of water if co-efficient of frictions are $0.0075,0.0078$ and 0.0072 respectively. Neglect the minor losses. Also find the equivalent diameters of the pipe if the equivalent coefficient of friction is 0.0075 .		CO3	L3
15	Show that the average velocity is equal to the half of the maximum velocity in a laminar flow through pipe.	5	CO3	L2
16	Determine i) the pressure gradient ii) the shear stress at the two horizontal plates iii) discharge per meter width for laminar flow of oil with a maximum velocity of $2 \mathrm{~m} / \mathrm{s}$ between two plates which are 150 mm apart. Given $1.1=$ 2.5 Pa-s.	5	CO3	L3
17	Derive Darcy's equation for the loss of head due to	5	CO4	L2

COURSE PLAN - CAY 2018-19

	friction in a circular pipe.			
18	Prove that the ratio of maximum velocity to average velocity in a viscous flow of fluid through a circular pipe is 2.0 .		CO4	L2
19	Lubricating oil of specific gravity 0.85 and dynamic viscosity $0.1 \mathrm{~N}-\mathrm{s} / \mathrm{m} 2$ is pumped through a 3 cm diameter pipe. If the pressure drop per metre length of the pipe is 15 kPa , determine: i) The mass flow rate of oil in $\mathrm{kg} / \mathrm{min}$. ii) The shear stress at the pipe wall. iii) Reynolds number of the flow and iv) The power required per 40 m length of the pipe to maintain the flow.	5	CO4	L3
20	An oil of viscosity 10 poise flows between two parallel fixed plates which are kept at a distance of 50 mm apart. Find the rate of flow of oil between the plates if the drop of pressure in a length of 1.2 m be $0.3 \mathrm{~N} / \mathrm{cm} 3$. The width of plates is 200 mm .	5	CO4	L3
21	The diameter of a horizontal pipe which is 300 mm is suddenly enlarged to 600 mm . The rate of flow of water through this pipe is $0.4 \mathrm{~m} 3 / \mathrm{s}$. If the intensity of pressure in the smaller pipe is 125 kPa . Determine: i)Loss of head, due to sudden enlargement ii)Intensity of pressure in the larger pipe and iii) Power lost due to enlargement.	5	CO4	L3
22	The flow of liquid in a circular pipe is laminar. At what radial distance from the wall of the pipe, the local velocity is half of the maximum velocity, if the diameter of the pipe is 50 mm .	5	CO4	L3
23	There are two pipes A and B. Diameter of the pipe B is half of diameter of pipe A. Both pipes have same length and same fluid flows through each pipe. If volumetric flow rate is maintained same in both the pipes, compare the loss of head. Assume flow to be laminar.	5	CO4	L3
24	Three pipes of $400 \mathrm{~mm}, 200 \mathrm{~mm}$ and 30 mm diameters have lengths of $400 \mathrm{~m}, 200 \mathrm{~m}$ and 300 m respectively. They are connected in series to make a compound pipe. The ends of this compound pipe are connected with two tanks whose difference of water levels is 16 m . If coefficient of friction for these pipe is same and equal to 0.005 , determine the discharge through the compound pipe neglecting first the minor losses and then including them.	5	CO4	L3
25	Water at $15^{\circ} \mathrm{C}$ flows between two parallel plates at a distance of 1.6 mm apart. Determine: i) Maximum velocity ii) Pressure loss per unit length iii) Shear stress at the plate if the average velocity is 0.2 m / s. Viscosity of water at $15^{\circ} \mathrm{C}$ is 0.01 poise. Take unit width of the plate.	5	CO4	L3
26	Show that streamlines and equipotential lines are orthogonal to each other.	5	CO4	L2
27	Explain Model Similitude and Non-dimensional numbers.	5	CO4	L2
28	The pressure difference ' Ap ' in a pipe of diameter D and length ' 1 ' due to viscous flow depends on velocity V , viscosity t and density p. Using Buckingham's TE theorem, obtain an expression for Ap.	5	CO4	L3
29	Define: i) Displacement thickness ii) Momentum thickness	5	CO4	L2

18ME43

	iii) Energy thickness iv) Shape factor as with respect to boundary layer.			
30	A man descends the ground from an airoplane with $h \& j$, of a parachute, which is hemispherical having a diameter of 5 m against the resist of air with a uniform velocity of $25 \mathrm{~m} / \mathrm{s}$. Find the weight of the man if the weight of parachute is $9.81, C D=0.6$.	5	CO4	L3
31	Explain the different types of similitude.	5	CO5	L2
32	Assume the viscous force F exerted by a fluid on sphere of diameter D, depends on viscosity 1.t of mass density p and velocity of motion of the sphere, obtain the expression for shear force F, using Buckingham's it theorem	5	CO4	L2
33	Explain the terms: i) Lift and drag ii) Momentum thickness iii) Sonic and subsonic flow	5	CO5	L2
34	Define Mach number. What is the significance of Mach number in compressible fluid flows?	5	CO5	L2
35	An aeroplane weighing 40 kN is flying in a horizontal direction at $360 \mathrm{~km} / \mathrm{hr}$. the plane has a wing surface area of 35 m 2 . Determine the lift coefficient and the power required to drive the plane. Assume drag coefficient $C D=0.03$ and for air $p=1.20 \mathrm{~kg} / \mathrm{m} 3$.	5	CO5	L3
36	A projectile travels in air of pressure $10.1043 \mathrm{~N} / \mathrm{cm} 2$ at $10^{\circ} \mathrm{C}$ at a speed of $1500 \mathrm{~km} / \mathrm{hr}$. Find the Mach number and Mach angle. Take $K=1.4$ and $\mathrm{R}=287 \mathrm{~J} / \mathrm{kgK}$.	5	CO5	L3
37	What is the meaning of boundary layer separation? What is the effect of pressure gradient on boundary layer separation?	5	CO5	L2
38	A kite $0.8 \mathrm{~m} \times 0.8 \mathrm{~m}$ weighing 3.924 N assumes an angle of 12° to the horizontal. The attached to the kite makes an angle of 45° to the horizontal. The pull on the string is 24.525 N wizen the wind is flowing at a speed of 30 $\mathrm{km} / \mathrm{hr}$. find the corresponding coefficient of drag and lift. Take density of air $=1.25 \mathrm{~kg} / \mathrm{m} 3$.	5	CO5	L3
39	a. Explain the following: (i) Stream line body (ii) Bluff body (iii) Mach number (iv) Mach angle (v) Boundary layer thickness	5	CO5	L2
40	An aeroplane is flying at a height of 15 km where the temperature is $-50^{\circ} \mathrm{C}$. The speed of the plane is corresponding to $\mathrm{M}=2.0$. Assuming $\mathrm{K}=1.4$ and $\mathrm{R}=$ $287 \mathrm{~J} / \mathrm{kg}-\mathrm{K}$, find the speed of the plane.	5	CO5	L3
41	Experiments were conducted in a wind tunnel with a wind speed of $50 \mathrm{~km} /$ hour on a flat plate of size 2 m long and 1 m wide. The density of air is $1.15 \mathrm{~kg} / \mathrm{m} 3$. The coefficients of lift and drag are 0.75 and 0.15 respectively. Determine (I) Drag force. (ii) Lift force. (iii) Resultant force.	5	CO5	L3
42	State Buckingham's it theorem. Why this theorem is considered superior over the Rayleigh's method for dimensional analysis?	5	CO5	L2
43	Derive a relation for the velocity of sound in a compressible fluid.	5	CO5	L3
44	Find the velocity of a bullet fired in the air, if the Mach	5	CO5	L

COURSE PLAN - CAY 2018-19

	angle is 30°. Temperature of air is $22^{\circ} \mathrm{C}$, density of air is $1.2 \mathrm{~kg} / \mathrm{m} 3$. Assume $\mathrm{y}=1.4$ and $\mathrm{R}=287 \mathrm{~J} / \mathrm{kg} \mathrm{K}$.			
45	A flat plate 1.8 mx 1.8 m moves at $36 \mathrm{~km} / \mathrm{hr}$ in a stationary air of mass density $1.2 \mathrm{~kg} / \mathrm{m} 3$. If the coefficients of drag and lift are 0.15 and 0.75 respectively. Determine i) Drag force ii) Lift force iii) Resultant force iv) Power required to keep the plate in motion.	5	CO5	L3
46	Explain the dimensional homogeneity, with an example.	5	CO4	L2
47	Derive an expression for the velocity of sound in terms of bulk modulus (k).	5	C05	L3

D3. TEACHING PLAN - 3

Module - 5

Title:	Compressible Flows: Introduction to CFD:	Appr Time:	5 rs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Illustrate and explain the basic concept of compressible flow and CFD.	CO5	L3
b	Course Schedule	-	-
Class No	Portion covered per hour	-	-
1	Compressible Flows: Introduction thermodynamic relations of perfect gases, internal energy and enthalpy	CO5	L2
2	speed of sound, pressure field due to a moving source	C05	L2
3	basic Equations for one-dimensional flow, stagnation and sonic Properties, normal and oblique shocks,	CO5	L3
4	Introduction to CFD,Necessity of CFD,Limitations of CFD,Philosophy and applications .	CO5	L2
5	Numericals	CO5	L3
c	Applications:	-	-
1	1. Nozzles and Diffusers and converging diverging nozzles 2. Turbines, fans \& pumps 3. Throttles - flow regulators, 4. One Dimensional Isentropic Flow - compressible pipe flow.	CO5	L2
$\begin{array}{ll} 2 \\ & \\ & 2 . \\ & \text { bl } \\ & 3 . \\ & \mathrm{gi} \end{array}$	Some of the applications of CFD in Industries are - 1.Electronics- For design and analysis of cooling system. 2.Turbo machinery- For design and analysis pumps, compressors, fans, turbines nozzle and diffusers. Sports- Evaluating performance of athletes, design of high performance ear like swimsuit and helmets.	CO5	L3
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	Write short essay on the engineering application of CFD, brining the advantages and the limitations.	CO5	L2
2	Define the following terms and write the relevant equations for the same:- i) Stagnation Temperature ii) Stagnation Pressure	CO5	L2
3	Define: i) Mach line ii) Mach angle iii) Subsonic and supersonic flow.	CO5	L2
4	Calculate the velocity and Mach number of a supersonic aircraft flying at an altitude of 1200 m when temperature is 300 K . Sound of aircraft is	CO5	L2

COURSE PLAN - CAY 2018-19

	heard 2 seconds after passage of aircraft over the head of an observer Take $\mathrm{r}=1.41, \mathrm{R}=287 \mathrm{~J} / \mathrm{kg} / \mathrm{k}$.		
5	Explain the terms: i) Lift and drag ii) Momentum thickness iii) Sonic and subsonic flow	CO5	L2
6	Define Mach number. What is the significance of Mach number in compressible fluid flows?	-	L2
7	An aeroplane weighing 40 kN is flying in a horizontal direction at 360 $\mathrm{km} / \mathrm{hr}$. the plane has a wing surface area of 35 m 2 . Determine the lift coefficient and the power required to drive the plane. Assume drag coefficient $C D=0.03$ and for air $p=1.20 \mathrm{~kg} / \mathrm{m} 3$.	CO5	L2
8	A projectile travels in air of pressure $10.1043 \mathrm{~N} / \mathrm{cm} 2$ at $10^{\circ} \mathrm{C}$ at a speed of $1500 \mathrm{~km} / \mathrm{hr}$. Find the Mach number and Mach angle. Take $\mathrm{K}=1.4$ and $\mathrm{R}=287 \mathrm{~J} / \mathrm{kgK}$	CO5	L2
9	Show that the velocity of a sound wave in a compressible fluid medium is given by $\mathrm{c}=\mathrm{kVP}$ where k and p are bulk modules of elasticity and density of the fluid respectively.	CO5	L2
10	Calculate the velocity and mach number of a supersonic aircraft flying at an altitude of 1000 in where the temperature is 280 K . Sound of the aircraft is heard 2.15 seconds after the passage of the aircraft on the head of an observer. Take $y=1.41$ and $R=287 \mathrm{~J} / \mathrm{kgK}$.	CO5	L2
11	Define stagnation temperature of a fluid. Show that the stagnation temperature and static temperatures are related by T0/T=1+(r-1/2) where $r=$ ratio of specific heats, $m=$ mach number	CO5	L2
12	Mention the applications and limitations of computational fluid dynamics.	CO5	L2
	Obtain an expression for velocity of the sound wave in a compressible fluid in terms of change of pressure and change of density.	CO5	L3
13	Calculate the Mach number and Mach angle at a point on a jet propelled aircraft which is flying at $900 \mathrm{~km} / \mathrm{hour}$ at sea level where air temperature is $15^{\circ} \mathrm{C}$. Take $\mathrm{K}=1.4$ and $\mathrm{R}=287 \mathrm{~J} / \mathrm{kgK}$.	CO5	L2

E3. CIA EXAM - 3

a. Model Question Paper - 3

Crs Code:	18ME43	Sem:	IV	Marks:	30	Time:	75 minutes
Cours:	FLIID MECHANICS						

Course: FLUID MECHANICS

-	-	Note: Answer any 2 questions, each carry equal marks.	Marks	CO	Level
1	a	Define: i) Mach line ii) Mach angle iii) Subsonic and supersonic flow.	10	5	L2
	b	Calculate the velocity and Mach number of a supersonic aircraft flying at an altitude of 1200 m when temperature is 300 K . Sound of aircraft is heard 2 seconds after passage of aircraft over the head of an observer Take $\mathrm{r}=1.41, \mathrm{R}=287 \mathrm{~J} / \mathrm{kg} / \mathrm{k}$.	10	5	L3
		OR	10		
2	a	Show that the velocity of a sound wave in a compressible fluid medium is given by $\mathrm{c}=\mathrm{kVP}$ where k and p are bulk modules of elasticity and density of the fluid respectively.		5	L3
		Calculate the velocity and mach number of a supersonic aircraft flying at an altitude of 1000 in where the temperature is 280 K . Sound of the aircraft is heard 2.15 seconds after the passage of the aircraft on the head of an observer. Take $y=1.41$ and $R=287$ J/kgK.	10	5	L3

COURSE PLAN - CAY 2018-19

3	a	Write short essay on the engineering application of CFD, brining the advantages and the limitations.	10	5	L3
	b	Define the following terms and write the relevant equations for the same :- i) Stagnation Temperature ii) Stagnation Pressure	10	5	L2
		OR			
4	a	Define stagnation temperature of a fluid. Show that the stagnation temperature and static temperatures are related by $T 0 / T=1+(r-$ $1 / 2$) where $r=$ ratio of specific heats, $m=$ mach number	10	5	L3
	b	Mention the applications and limitations of computational fluid dynamics.	10	5	L2

b. Assignment - 3

Note: A distinct assignment to be assigned to each student.

Model Assignment Questions							
Crs Code:	18ME43	Sem:	IV	Marks:	10	Time:	
Course:	FLUID MECHANICS		Module:				

Note: Each student to answer 2-3 assignments. Each assignment carries equal mark.

SNo	USN	Assignment Description	Marks	CO	Level
1		Explain the terms: i) Lift and drag ii) Momentum thickness iii) Sonic and subsonic flow	5	CO5	L2
2		Define Mach number. What is the significance of Mach number in compressible fluid flows?	5	CO5	L2
3		An aeroplane weighing 40 kN is flying in a horizontal direction at $360 \mathrm{~km} / \mathrm{hr}$. the plane has a wing surface area of 35 m 2 . Determine the lift coefficient and the power required to drive the plane. Assume drag coefficient $C D=0.03$ and for air $p=1.20 \mathrm{~kg} / \mathrm{m} 3$.		CO5	L3
4		A projectile travels in air of pressure $10.1043 \mathrm{~N} / \mathrm{cm} 2$ at $10^{\circ} \mathrm{C}$ at a speed of $1500 \mathrm{~km} / \mathrm{hr}$. Find the Mach number and Mach angle. Take $\mathrm{K}=1.4$ and $\mathrm{R}=287 \mathrm{~J} / \mathrm{kgK}$.	5	CO5	L3
5		What is the meaning of boundary layer separation? What is the effect of pressure gradient on boundary layer separation?	5	CO5	L2
6		A kite $0.8 \mathrm{~m} \times 0.8 \mathrm{~m}$ weighing 3.924 N assumes an angle of 12° to the horizontal. The attached to the kite makes an angle of 45° to the horizontal. The pull on the string is 24.525 N wizen the wind is flowing at a speed of 30 $\mathrm{km} / \mathrm{hr}$. find the corresponding coefficient of drag and lift. Take density of air $=1.25 \mathrm{~kg} / \mathrm{m} 3$.	5	CO5	L3
7		a. Explain the following: (i) Stream line body (ii) Bluff body (iii) Mach number (iv) Mach angle (v) Boundary layer thickness		CO5	L2
8		An aeroplane is flying at a height of 15 km where the temperature is $-50^{\circ} \mathrm{C}$. The speed of the plane is corresponding to $\mathrm{M}=2.0$. Assuming $\mathrm{K}=1.4$ and $\mathrm{R}=$ $287 \mathrm{~J} / \mathrm{kg}-\mathrm{K}$, find the speed of the plane.	5	CO5	L2
9		Experiments were conducted in a wind tunnel with a wind speed of $50 \mathrm{~km} / \mathrm{hour}$ on a flat plate of size 2 m long and 1 m wide. The density of air is $1.15 \mathrm{~kg} / \mathrm{m} 3$. The coefficients of lift and drag are 0.75 and 0.15 respectively. Determine	5	CO5	L3

18ME43

	(I) Drag force. (ii) Lift force. (iii) Resultant force.			
10	Derive a relation for the velocity of sound in a compressible fluid.	5	CO5	L3
11	Find the velocity of a bullet fired in the air, if the Mach angle is 30°. Temperature of air is $22^{\circ} \mathrm{C}$, density of air is $1.2 \mathrm{~kg} / \mathrm{m} 3$. Assume $y=1.4$ and $\mathrm{R}=287 \mathrm{~J} / \mathrm{kg} \mathrm{K}$.		CO5	L3
12	A flat plate 1.8 mx 1.8 m moves at $36 \mathrm{~km} / \mathrm{hr}$ in a stationary air of mass density $1.2 \mathrm{~kg} / \mathrm{m} 3$. If the coefficients of drag and lift are 0.15 and 0.75 respectively. Determine i) Drag force ii)Lift force iii) Resultant force iv)Power required to keep the plate in motion.	5	CO5	L3
13	Write short essay on the engineering application of CFD, brining the advantages and the limitations.	5	CO5	L2
14	Define the following terms and write the relevant equations for the same :- i) Stagnation Temperature ii) Stagnation Pressure	5	CO5	L2
15	Define: i) Mach line ii) Mach angle iii) Subsonic and supersonic flow.		CO5	L2
16	Calculate the velocity and Mach number of a supersonic aircraft flying at an altitude of 1200 m when temperature is 300 K . Sound of aircraft is heard 2 seconds after passage of aircraft over the head of an observer Take $r=1.41, R=287 \mathrm{~J} / \mathrm{kg} / \mathrm{k}$.	5	CO5	L3
17	Explain the terms: i) Lift and drag ii) Momentum thickness iii) Sonic and subsonic flow	5	CO5	L2
18	Define Mach number. What is the significance of Mach number in compressible fluid flows?	5	CO5	L2
19	An aeroplane weighing 40 kN is flying in a horizontal direction at $360 \mathrm{~km} / \mathrm{hr}$. the plane has a wing surface area of 35 m 2 . Determine the lift coefficient and the power required to drive the plane. Assume drag coefficient $C D=0.03$ and for air $p=1.20 \mathrm{~kg} / \mathrm{m} 3$.	5	CO5	L3
20	A projectile travels in air of pressure $10.1043 \mathrm{~N} / \mathrm{cm} 2$ at $10^{\circ} \mathrm{C}$ at a speed of $1500 \mathrm{~km} / \mathrm{hr}$. Find the Mach number and Mach angle. Take $\mathrm{K}=1.4$ and $\mathrm{R}=287 \mathrm{~J} / \mathrm{kgK}$	5	CO5	L3
21	Show that the velocity of a sound wave in a compressible fluid medium is given by $\mathrm{c}=\mathrm{kVP}$ where k and p are bulk modules of elasticity and density of the fluid respectively.		CO5	L3
22	Calculate the velocity and mach number of a supersonic aircraft flying at an altitude of 1000 in where the temperature is 280 K . Sound of the aircraft is heard 2.15 seconds after the passage of the aircraft on the head of an observer. Take $y=1.41$ and $R=287 \mathrm{~J} / \mathrm{kgK}$.	5	CO5	L3
23	Define stagnation temperature of a fluid. Show that the stagnation temperature and static temperatures are related by $T 0 / T=1+(r-1 / 2)$ where $r=$ ratio of specific heats, $m=$ mach number	5	CO5	L3
24	Mention the applications and limitations of computational fluid dynamics.	5	CO5	L2
25	Obtain an expression for velocity of the sound wave in a	5	CO5	L2

COURSE PLAN - CAY 2018-19

	lompressible fluid in terms of change of pressure and change of density.			
26	Calculate the Mach number and Mach angle at a point on a jet propelled aircraft which is flying at $900 \mathrm{~km} / \mathrm{hour}$ at sea level where air temperature is $15^{\circ} \mathrm{C}$. Take $\mathrm{K}=1.4$ andR $=287 \mathrm{~J} / \mathrm{kgK}$.	5	$\mathrm{CO5}$	$\mathrm{L3}$

F. EXAM PREPARATION

1. University Model Question Paper

Cour		FLUID ME	ANICS				Month /	/ Year	May	2019
Crs	Code:	18ME43	Sem:	IV	Marks:	100	Time:		$\begin{aligned} & 180 \\ & \text { minut } \end{aligned}$	
Mod ule	Note	Answer al	E full	ns	tions C	equa		Marks	CO	Level
1	a	Give reas i) Viscosit ii) Thin ob iii) Metace iv) Rise of v) Mercur	f liquids ts float ric heig ater in used	s w ee su erm ary om	erature. static bility of id.	d. ting		5	CO1	L2
	b	An oil film square pla angle of in and it slid Find the	thickne of size nation down the osity of	$\begin{gathered} \mathrm{nm} \mathrm{i} \\ \times 0 . \end{gathered}$ The ne w il in	for lubric an inclin of the sq niform v	n bet plane ha re plat ity of	a g an 350N /sec.	10	CO1	L3
		Define fol i) Specific iv) Specific	ing ter ight ravity		cosity	Surf	ension	5	CO1	L2
					OR					
2	a	Show that lies below	r a sub e centre	$\begin{aligned} & \mathrm{d} p \\ & \text { avit } \end{aligned}$	face, th subme	surfa	ssure,	10	CO 2	
	b	Define : i) metacent	uoyancy height.		uoyancy	Metac	e and	10	CO 2	L2
										L3
3	a	Derive co Cartesian	nuity eq -ordinat		dimens	al fluid		10	CO2	L3
	b	Explain w	neat sk	wor	itot-sta	be.		10	CO 2	L2
4	a	Derive an	pression	disch	rough V	notch.		10	CO3	L3
	b	An orifice 20 cm dia downstre 9.81 N/cm discharge	eter with ter. Th of the respecti water th		10 cm is s fitted reading meter is	serted ream 19.62 Find	pipe of m2 and	10	CO3	L3
5	a	Derive Ha circular pip	-poise	qua	viscous	w thro		10	CO3	L3
	b	Sketch th of the pip	elocity visco	$\begin{aligned} & \text { hear } \\ & \text { w th } \end{aligned}$	distribut	across	section	10	CO3	L3
6	a	Derive Da circular pip	's equa	or th	of head	to fric	in a	10	CO4	L3
	b	An oil of which are of oil bet m be 0.3	osity 1 pt at a n the m3. Th	se flow nce if th th of	ween tw mopart of pres is 200 m	aralle nd the in a	d plates of flow h of 1.2	10	CO4	L3

COURSE PLAN - CAY 2018-19

2. SEE Important Questions

COURSE PLAN - CAY 2018-19

G. Content to Course Outcomes

1. TLPA Parameters

Table 1: TLPA - Example Course

Mo dul e\#	Course Content or Syllabus (Split module content into 2 parts which have similar concepts)	Conten t Teachin g Hours	Blooms' Learnin g Levels for Content	Final Bloo ms' Leve I	Identifie d Action Verbs for Learning	Instructi on Method s for Learnin g	Assessmen t Methods to Measure Learning
A	B	C	D	E	F	G	H
1	Basics: Introduction, Properties of fluidsmass density, weight density, specific volume, specific gravity, viscosity, surface tension, capillarity, vapour pressure, compressibility and bulk modulus. Concept of continuum, types of fluids etc, pressure at a point in the static mass of fluid, variation of pressure, Pascal's law,Absolute, gauge, atmospheric and vacuum pressures pressure measurement by simple, differential manometers and mechanical gauges.	6	L1,L2	L2	Underst and	Chalk and board	$\underset{\mathrm{t}}{\text { Assignmen }}$
1	Fluid Statics: Total pressure and center of pressure for horizontal plane, vertical plane surface and inclined plane surface submerged in static fluid.	6	$\underset{3}{\mathrm{~L} 1, \mathrm{~L} 2, \mathrm{~L}}$	L3	Apply	Chalk and board	$\underset{\mathrm{t}}{\text { Assignmen }}$
2	Buoyancy:center of buoyancy, meta center and meta centric height its application.	4	$\underset{3}{\mathrm{~L} 1, \mathrm{~L} 2, \mathrm{~L}}$	L3	Apply	Chalk and board	Assignmen t and Slip Test
2	Fluid Kinematics: Velocity of fluid particle, types of fluid flow, description of flow, continuity equation, Coordinate free form, acceleration of fluid particle, rotational \& irrotational flow, Laplace's equation in velocity potential and Poisson's equation in stream function, flow net.	4	$\begin{gathered} \mathrm{L} 1, \mathrm{~L} 2, \mathrm{~L} \\ 3 \end{gathered}$	L3	Apply	Chalk and board	Assignmen t
3	Fluid Dynamics; Introduction. Forces acting on fluid in motion. Euler's equation of motion along a streamline. Integration of Euler's equation to obtain Bernoulli's equation, Assumptions and limitations of Bernoulli's equation. Introduction to Navier-Stokes equation. Application of Bernoulli's theorem such as venturi-meter,orifice meter, rectangular and triangular notch, pitot tube.	5	$\underset{3}{\mathrm{~L} 1, \mathrm{~L} 2, \mathrm{~L}}$	L3	Apply	Chalk and board	```Assignmen t and slip test```
3	Laminar and turbulent flow: Flow through circular pipe, between parallel plates, Power absorbed in viscous flow in bearings, Poiseuille equation velocity profile loss of head due to friction in viscous flow. Reynolds's	5	L1,L2	L2	Underst and	Chalk and board	Assignmen t

	experiment, frictional loss in pipe flow. Introduction to turbulence, characteristics of turbulent flow, laminar turbulent transition major and minor losses.						
4	Flow over bodies: Development of boundary layer, Prandt\|"s boundary layer equations, Blasius solution, integral momentum equation, drag on a flat plate, boundary layer separation and its control, streamlined and bluff bodies flow around circular bodies and aero foils, calculation of lift and drag.	5	$\begin{gathered} \mathrm{L} 1, \mathrm{~L} 2, \mathrm{~L} \\ 3 \end{gathered}$	L3	Apply	Chalk and board	$\underset{t}{\text { Assignmen }}$
	Dimensional analysis: Introduction, derived quantities, dimensions of physical quantities, dimensional homogeneity, Rayleigh's method, Buckingham Pi-theorem, dimensionless numbers, similitude, types of similitude	4	$\begin{gathered} \mathrm{L} 1, \mathrm{~L} 2, \mathrm{~L} \\ 3 \end{gathered}$	L3	Apply	Chalk and board	$\underset{t}{\text { Assignmen }}$
5	$\begin{array}{llll}\text { Compressible } & \text { Flows: } & \text { Introduction, } \\ \text { thermodynamic } & \text { relations } & \text { of } & \text { perfect }\end{array}$ gases, internal energy and enthalpy, speed of sound, pressure field due to a moving source, basic Equations for onedimensional flow, stagnation and sonic Properties, normal and oblique shocks.	3	$\underset{3}{\mathrm{~L} 1, \mathrm{~L} 2, \mathrm{~L}}$	L3	Underst and	Chalk and board	$\underset{t}{\text { Assignmen }}$
5	Introduction to CFD: Necessity, limitations, philosophy behind CFD, and applications.	2	L1,L2	L2	underst and	Chalk and board	$\underset{t}{\text { Assignmen }}$

2. Concepts and Outcomes:

Table 2: Concept to Outcome - Example Course

$\begin{array}{\|c} \hline \mathrm{Mo} \\ \text { dul } \\ \mathrm{e}- \\ \# \end{array}$	Learning or Outcome from study of the Content or Syllabus	Identified Concepts from Content	Final Concept	Concept Justification (What all Learning Happened from the study of Content / Syllabus. A short word for learning or outcome)	CO Components (1.Action Verb, 2.Knowledge, 3.Condition / Methodology, 4.Benchmark)	Course Outcome Student Should be able to ...
A	1	J	K	L	M	N
1			Fluid properties	Different types of fluid properties.	- Understand - Fluid Properties	Identify and calculate the fluid properties used in the analysis of fluid behaviour
2			Fluid flow types	Understanding the fluid flow types	- Understand Fluid flows and analysing the flow	Explain the principles of buoyancy and fluid flow concept.
3			Nature of flow	Understanding the different types of flow	- Understanding -Different flows	Apply the knowledge of fluid statics, kinematics and dynamics while addressing problems of mechanical engineering.
4			Boundary layer	Understand the different types of boundary layer	- Understand - Different boundary layer	Explain the concept of boundary layer in fluid flow.
5			1)Thermody namic properties 2)Computati onal Fluid Dynamics	Understand the thermodynamic properties and application of CFD-	- Understand - Computational Fluid dynamics	Illustrate and explain the basic concept of compressible flow and CFD.

