Ref No:

Academic Evaluation and Monitoring Cell

COURSE PLAN

Academic Year 2019 - 20

Program:	B E – MECHANICAL
Semester :	II
Course Code:	18EGDL25
Course Title:	ENGINEERING GRAPHICS
Credit / L-T-P:	3 / 2-0-2
Total Contact Hours:	60
Course Plan Author:	PARAMESHA M

#29, Hesaraghatta Main road, Chimney Hills, Chikkabanavara P.O., Bengaluru – 560090, Karnataka, INDIA
Phone / Fax :+91 80 23721477 -STD- 080 23721315
Web:www.skit.org.in
E-mail:skit1princi@gmail.com/principal@skit.org.in

Table of Contents

A. COURSE INFORMATION	4
1. Course Overview	4
2. Course Content	4
3. Course Material	5
4. Course Prerequisites	5
5. Content for Placement, Profession, HE and GATE	6
B. OBE PARAMETERS	6
1. Course Outcomes	6
2. Course Applications	7
4. Mapping Justification	7
4. Articulation Matrix	
5. Curricular Gap and Content	8
6. Content Beyond Syllabus	9
C. COURSE ASSESSMENT	
1. Course Coverage	9
2. Continuous Internal Assessment (CIA)	
D1. TEACHING PLAN - 1	10
Module - 1	10
Module – 2	10
E1. CIA EXAM – 1	11
a. Model Question Paper - 1	11
b. Assignment -1	12
D2. TEACHING PLAN - 2	12
Module – 3	12
Module – 4	13
E2. CIA EXAM – 2	14
a. Model Question Paper - 2	14
b. Assignment – 2	
D3. TEACHING PLAN - 3	15
Module – 5	
E3. CIA EXAM – 3	
a. Model Question Paper - 3	
b. Assignment – 3	
F. EXAM PREPARATION	
1. University Model Question Paper	
2. SEE Important Questions	

G. Content to Course Outcomes	
1. TLPA Parameters	
2. Concepts and Outcomes:	
Note : Remove "Table of Content" before including in CP Book	

Each Course Plan shall be printed and made into a book with cover pag Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	ME
Year / Semester :	1/II	Academic Year:	2019-2020
Course Title:	Engineering Graphics	Course Code:	18EGDL25
Credit / L-T-P:	3/2-2-0	SEE Duration:	180 Minutes
Total Contact Hours:	60	SEE Marks:	60Marks
CIA Marks:	40	Assignment	1 / Module
Course Plan Author:	Paramesha M	Sign	Dt:
Checked By:	Chandraiah M T	Sign	Dt:

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute. Identify 2 concepts per module as in G.

Module	Module Content	Teaching	Module Concepts	Bloo
		Hours		ms
				Leve
	Introduction, Drawing Instruments and their uses, BIS conventions, Lettering, Dimensioning and free hand practicing. Computer screen, layout of the software, standard toolbar/menus and description of most commonly used tool bars, navigational tools. Co-ordinate system .Reference planes. HP, VP, RPP & LPP. of 2D/3D environment. Selection of drawing size and scale. Commands and creation of Lines, Co-ordinate points, axes, ploy-lines, square, rectangle, polygons, splines, circles, ellipse, text, move, copy, off-set, mirror, rotate, trim, extend, break, chamfer, fillet, curves, constraints viz. tangency, parallelism, inclination and perpendicularity	5	-Drawing basics	L2
2	Introduction, Definitions - Planes of projection, reference line and conventions employed, Projections of points in all the four Quadrants, Projections of straight lines (located in First quadrant/first angle only), True and apparent lengths, True and apparent inclinations to reference planes (No application problems).Orthographic Projections of Plane Surfaces. Projections of plane surfaces-triangle,square, rectangle, rhombus, pentagon, hexagon and circle, planes in different positions by change of position method only(No problems on punched plates and composite plates).		-Orthographic Projections	L3
	Introduction, Definitions – Projections of right regular tetrahedron, hex-hedron (cube), prisms, pyramids, cylinders and cones in different positions (No problems on octahedron and combination solid		- Projections of solids	L3

4	Introduction, Section planes, Sections, Section views, Sectional views, Apparent shapes and True shapes of Sections of right regular prisms, pyramids, cylinders and cones resting with base on hp only. Development of their frustums and truncations	-Development of simple solids	L3
5	Introduction, Isometric scale, Isometric projection of simple plane figures, Isometric projection of tetrahedron, hexahedron (cube), right regular prisms, pyramids, cylinders, cones, spheres, cut spheres and combination of two solids, conversion of given isometric/pictorial views to orthographic views of simple objects	- Isometric projection	L3

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 - 30 minutes

2. Design: Simulation and design tools used - software tools used ; Free / open source

3. Research: Recent developments on the concepts – publications in journals; conferences etc.

0.1(05)	earch. Recent developments on the concepts – publications in journals, con		
Modul	Details	Chapters in	Available
е		Book	
Α	Text books (Title, Authors, Edition, Publisher, Year.)		
1,2,3,4	Engineering Drawing-N.D Bhatt & V.M Panchal, 48 th edition 2005-charotar	1,2,3,,4,5	In Lib,In
,5	Publishing House	1,2,3,4,5	Dept
	Engineering Graphics-K R Gopalakrishna, 32 nd edition, 2005- Subash		
	Publishers	1,2,3,4,5	
	Computer Aided Engineering Drawing-Dr. M H Annaiah,Dr. C N		
	Chandrappa and Dr. B Sudheer Premkumar, 5 th edition, New age		
	International Publishers		
В	Reference books (Title, Authors, Edition, Publisher, Year.)		
1,2,3,4	Computer Aided Engineering Drawing- s. Trymbaka murty- I K	1,2,3,4,5	In Lib
,5	International Publishing House Pvt.Ltd	3,,4,5	
	Engineering Drawing- N S Parthasarathy & Vela Murali, Oxford University		
	Press 2015		
С	Concept Videos or Simulation for Understanding		
C1	https://www.engineeringgraphics		
C2	http://nptel.ac.in		
	Software Tools for Design		
	Solidedge ST4		

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Students must have learnt the following Courses / Topics with described Content						
SNo	Course	Course Name	Module / Topic / Description	Sem	Remarks	Blooms
	Code					Level

Note: If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Mod	Topic / Description	Area	Remarks	Blooms
ules				Level
1	Auto Cadd	Higher Study	To design model	Apply L3

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs. Identify a max of 2 Concepts per Module. Write 1 CO per Concept.

#	Cos	Teach.	Concept	Instr	Assessment	Blooms'
	students should be able to	Hours		Method	Method	Level
18EGDL25	Understand the field of engineering	5	Drawing	Chalk	- sketch book	L2
	drawing as per BIS conventions and		basics	and		Understand
	Graphical Languages		Reference	board		
			planes	LCD		
			and	Projector		
			board			
			LCD			
			Projector			
	Create Engineering drawings on	12	Orthographic	Chalk	- sketch book	L3
	Orthographic Views		Projections		& printout	Apply
				board	-CIE	
				LCD		
				Projector		
	Apply the knowledge of orthographic	16	Projection of		- sketch book	L3
	Projections of simple solids.		Solids	and	& printout	Apply
				board	-CIE	
				LCD Draiactor		
	Angle the language of lateral	40	Development	Projector		1.0
	Apply the knowledge of Lateral	12	Development		- sketch book	L3
	surface of simple Solids.		of simple solids	and board	& printout -CIE	Apply
			Solius	LCD		
				Projector		
	Convert pictorial and isometric views	15	Isometric	Chalk	- sketch book	L3
	of simple objects to orthographic	15	projection	and	& printout	Apply
	views		projection	board	-CIE	трый
	VIGWO			LCD		
L						

	Projector	
--	-----------	--

Note: Identify a max of 2 Concepts per Module. Write 1 CO per concept.

2. Course Applications

Write 1 or 2 applications per CO.

Students should be able to employ / apply the course learnings to . . .

CO CO1	Level
0.01	
001	
001	L2
ind CO2	L2
CO3	L2
CO4	L2
CO5	L2
a	and CO2 CO3 CO4 CO5

4. Mapping Justification

Мар	ping	Justification	Mapping Level
CO	PO		-
CO1	PO1	understand the basic knowledge of Engineering drawing and software	L2
CO1	PO5	Understand the tool like solid edge	L2
CO2	PO1	understand the basic knowledge of points lines and planes	L2
CO2	PO2	Analyzation is require to solve the problem in different position	L3
CO2	PO5	Understand the tool like solid edge	L2
CO3	PO1	understand the basic knowledge of different types of solid part	L2
CO3	PO2	analyzation is require to solve the problem in different stages	L3
CO3	PO5	Understand the tool like solid edge	L2
CO4	PO1	understand the basic knowledge of section of solids	L2
CO4	PO2	Analyzation is require to solve the problem in different stages	L3
CO4	PO5	Understand the tool like solid edge	L2
CO5	PO1	understand the knowledge of isometric view	L2
CO5	PO2	Analyzation is require to solve the combination of solids	L3
CO5	PO5	Understand the tool like solid edge	L2

Note: Write justification for each CO-PO mapping.

4. Articulation Matrix

(CO – PO MAPPING)

•																		
-	-	Course Outcomes				F	Progra	am (Outc	ome	S							
Modu	#	COs	PO1	PO	PO	PO	PO5	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	Lev
les				2	3	4		6	7	8	9	10	11	12	O 1	02	O3	el
1	18EGDL25	Understand the	\sim	-	-	-	\checkmark	-	-	-	-	-	-	-	-	-	-	L2
		Knowledge of																
		Engineering																
		Geometry and solid																
		edge soft ware																
2	18EGDL25	CreateEngineering	\checkmark	\checkmark	-	-	\checkmark	-	-	-	-	-	-	-	-	-	-	L3

COURSE PLAN - CAY 2019-20

	drawings on Orthographic Views. (points line Planes)																
3	Use the Knowledge of orthographic Projections of simple solids.		\checkmark	-	-	\checkmark	-	-	-	-	-	-	-	-	-	-	L3
4	Draw the development of Lateral surface of simple Solids.	\checkmark	\checkmark	-	-	\checkmark	-	-	-	-	-	-	-	-	-	-	L3
5	Draw the isometric Projection of Simple plans and solids	\checkmark	\checkmark	-	-	\checkmark	-	-	-	-	-	-	-	-	-	-	L3

5. Curricular Gap and Content

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1	Auto Cadd	Presentation by		Mr. Mohan Kumar	L3
		training institute	08/04/2020	CADD Centre	
		people			

Note: Write Gap topics from A.4 and add others also.

6. Content Beyond Syllabus

Mod	Gap Topic	Area	Actions Planned	Schedule	Resources Person	PO
ules				Planned		Mapping
3	Auto Cadd	Placement,	Presentation by	05/05/2020	Mr. Mohan Kumar	L3
		GATE, Higher	training institute		CADD Centre	
		Study,	people			

Note: Anything not covered above is included here.

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Mod	Title	Teaching		No. of	f quest	ion in	Exam		CO	Levels
ule #		Hours	CIA-1	CIA-2	-	Asg	Extra	SEE		
							Asg			
1	Introduction, Drawing Instruments	5	-	-	-	-	-	-	CO1	L2
	and their uses									
2	introduction, Definitions - Planes of	12	3	3	-	2	1	2	CO2	L3
	projection,									
3	introduction, Definitions – Projections	16	1	1	-	2	1	2	CO3	L3
	of right regular tetrahedron,									
	hexahedron (cube), prisms,									
	pyramids, cylinders and cones in									
	different positions									
4	introduction, Section planes,	12	2	2	-	2	1	2	CO4	L4
	Sections, Section views, Sectional									

COURSE PLAN - CAY 2019-20

	views,									
	Introduction, Isometric scale, Isometric projection of simple plane	15	1	1	-	2	1	2	CO5	L3
-	Total	60	7	7	-	8	4	8	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Evaluation	Weightage in Marks	CO	Levels
CIA Exam	20	CO2, CO3, CO4, CO5	L3
Sketch Book	12	CO2, CO3	L3
Assignement1			
Sketch Book	12	CO4	L3
Assignement1			
Sketch Book	12	CO5	L3
Assignement1			
Print Out 1	08	CO2, CO3	L3
Print Out 1	08	CO4	L3
Print Out 1	08	CO5	L3
Other Activities define –			
Slip test			
Final CIA Marks	40	-	-

Module - 1

Title:	Introduction to computer aided sketching	Appr	5 Hrs
		Time:	
а	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Understand the Engineering Visualization Principle, Projection theory and Applications.	CO1	L2
b	Course Schedule	-	-
Class No	Module Content Covered	СО	Level
1	Introduction, Drawing Instruments and their uses, BIS conventions	C01	L2
2	Lettering, Dimensioning and free hand practicing. Computer screen, layout of the software, standard tool-bar/menus and description of most commonly used tool bars	C01	L2
3	Co-ordinate system .Reference planes. HP, VP, RPP & LPP. of 2D/3D environmen	C01	L2
4	Co-ordinate points, axes, ploy-lines, square, rectangle, polygons, splines, circles, ellipse, text, move, copy, off-set, mirror, rotate, trim, extend, break, chamfer, fillet, curves, constraints viz	C01	L2
5	parallelism, inclination and perpendicularity	C01	L2
c	Application Areas	со	Level
1	To expose the Conventions Followed in Preparation of Enng Drawings.	CO1	L2

d	Review Questions	-	-
е	Experiences	-	-

ſ

Title:	Orthographic projections of points, lines and planes	Appr Time:	12 Hrs
а	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Use the Knowledge of orthographic Projections of simple solids.	CO2	L3
b	Course Schedule	-	-
Class No	Module Content Covered	СО	Level
1	Projections of points in all the four quadrants Projections of straight lines	CO2	L2
2	Projections of points	CO2	L3
3	Projections of points	CO2	L3
4	Projections of straight lines	CO2	L3
5	Projections of straight lines	CO2	L3
6	Introduction on Orthographic Projections of Plane Surfaces	CO2	L3
7	Problem solved on triangular , square rectangular lamina	CO2	L3
8	Problem solved on pentagonal, hexagonal lamina	CO2	L3
9	Problems solved on circular lamina	CO2	L3
10	Problem solved on top and front view	CO2	L3
11	Problems solved on alpha & beta angle	CO2	L3
12	Problems solved on alpha & beta angle	CO2	L3
С	Application Areas	СО	Level
1	its helps streamline the manufacturing process	CO2	L3
d	Review Questions	_	_
1	A point is lying on HP, 20mm behind VP and 25 mm behind/in front/from RPP. Draw the projections and name the side view	CO2	L3
2	Line AB is 75 mm long and it is 30 0 & 40 0 Inclined to Hp & Vp respectively. End A is 12mm above Hp and 10 mm in front of Vp. Draw projections. Line is in 1 st quadrant.	CO2	L3
3	A point is 35mm below HP, 15mm behind VP and 25mm behind / in front/ from RPP. Draw its projections and name the side view	CO2	L3
4	Line AB is 75 mm long .It's Fv and Tv measure 50 mm & 60 mm long respectively. End A is 10 mm above Hp and 15 mm in front of Vp. Draw projections of line AB if end B is in first quadrant. Find angle with Hp and Vp.	CO2	L3
5	Line AB 80 mm long, makes 30 0 angle with Hp and lies in an Aux. Vertical Plane 45 0 inclined to Vp. End A is 15 mm above Hp and VT is 10 mm below X-y line. Draw projections, fine angle with Vp and Ht.	CO2	L3
6	he projectors drawn from VT & end A of line AB are 40mm apart. End A is 15mm above Hp and 25 mm in front of Vp. VT of line is 20 mm below Hp. If line is 75mm long, draw it's projections, find inclinations with HP & Vp	CO2	L3
7	A line AB is 75 mm long. It's Fv & Tv make 45 0 and 60 0 inclinations with X- Y line resp End A is 15 mm above Hp and VT is 20 mm below Xy line. Line is	CO2	L3

	in first quadrant. Draw projections, find inclinations with Hp & Vp. Also locate HT.		
8	Projectors drawn from HT and VT of a line AB are 80 mm apart and those drawn from it's ends are 50 mm apart. End A is 10 mm above Hp, VT is 35 mm below Hp while it's HT is 45 mm in front of Vp. Draw projections, locate traces and find TL of line & inclinations with Hp and Vp.	CO2	L3
9	End A of a line AB is 25mm below Hp and 35mm behind Vp. Line is 300 inclined to Hp. There is a point P on AB contained by both HP & VP. Draw projections, find inclination with Vp and traces.	CO2	L3
10	Draw the projections of a line AB 100mm long inclined at 45 ° to VP and 30 ° to HP. One end of the line is 20 mm above the HP and in the VP. Also determine the apparent length and inclinations.	CO2	L3
11	A point is lying on HP, 20mm behind VP and 25 mm behind/in front/from RPP. Draw the projections and name the side view.	CO2	L3
12	A point is lying on HP, 20mm behind VP and 25 mm behind/in front/from RPP. Draw the projections and name the side view.	CO2	L3
13	Draw the projections of a line AB 100mm long inclined at 45 ° to VP and 30 ° to HP. One end of the line is 20 mm above the HP and in the VP. Also determine the apparent length and inclinations.	CO2	L3
14	A line AB measuring 70mm has its end A 15mm in front of VP and 20mm above HP and the other end B 60mm in front of VP and 50mm above HP. Draw the projections of the line and find the inclinations of the line with the both reference lines of projections.	CO2	L3
15	A point is lying on HP, 20mm behind VP and 25 mm behind/in front/from RPP. Draw the projections and name the side view.	CO2	L3
16	A pentagonal lamina of edges 25mm each resting on HP with one of its corners such that the edge opposite to this corner is 20mm above HP and makes an angle of 45 deg with VP. Draw the top and front view is the lamina in this position. Determine the inclination of the lamina with HP	CO2	L3
17	An equilateral triangular lamina of 25mm side lies with one of its edges on HP such that the surface of the lamina is inclined to HP at 60°. The edge on which it rests is inclined to VP at 60°. Draw the projections.	CO2	L3
18	A point is lying on HP, 20mm behind VP and 25 mm behind/in front/from RPP. Draw the projections and name the side view.	CO2	L3
19	A point is lying on HP, 20mm behind VP and 25 mm behind/in front/from RPP. Draw the projections and name the side view.	CO2	L3
20	Draw the projections of a line AB 100mm long inclined at 45 ° to VP and 30 ° to HP. One end of the line is 20 mm above the HP and in the VP. Also determine the apparent length and inclinations.		
21	A point is lying on HP, 20mm behind VP and 25 mm behind/in front/from RPP. Draw the projections and name the side view.		
22	A point is lying on HP, 20mm behind VP and 25 mm behind/in front/from RPP. Draw the projections and name the side view.	CO2	L3
23	Draw the projections of a line AB 100mm long inclined at 45 ° to VP and 30 ° to HP. One end of the line is 20 mm above the HP and in the VP. Also determine the apparent length and inclinations.	CO2	L3
24	A line AB measuring 70mm has its end A 15mm in front of VP and 20mm above HP and the other end B 60mm in front of VP and 50mm above HP. Draw the projections of the line and find the inclinations of the line with the both reference lines of projections.	CO2	L3

e Experiences

- -

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

Crs C	ode:	18EGD)L25	Sem:		Marks:	ent Question: 5 / 10	Time:	9	0 – 120 i	minutes	3
Cours				graphics	1							•
				• •	assianme	ents. Each as	signment ca	rries equal ma	rk.			
SNo		USN				signment De				Marks	CO	Leve
1			edę HP	ges on HP	l triangula such tha ne edge	ar lamina of a at the surfac	25mm side li e of the larr	ies with one of hina is inclined hed to VP at 6	l to		CO2	L3
2			sid	es on HP	. The lar	mina makes		lies on one of P and one of ctions.			CO2	L3
3			A t VP	riangular la such that	amina of 2 the medi	25mm sides an passing t	rests on one hrough the o	e of its corners corner on whic w the projectio	h it		CO2	L3
4			one ang the	e of its corr gle of 60° v	ners, suc vith HP. I sts make	h that the su If the side op es an angle	irface of the posite to the	esting on HP v lamina makes corner on wh VP, draw the	an iich		CO2	L3
5			one cor of 3	e of its cor ner on whi 30° with VF	ners touc ch it rest P. Draw th	ching it, such s is 15mm a ne top and fr	that the sid bove HP and ont views in	esting on HP v le opposite to d makes an an this position. A ference plane.	the gle		CO2	L3
6			the set	longest si	ide is in l elf is incl	HP, making	an angle of	so kept such t 30° with VP. 7 the projections	Гhe		CO2	L3
7			25r the with	mm long a front view h the side	nd altitud is seen that is pa nt views.	le of 35mm as an equil arallel to VP Also determ	is placed or ateral triangl is inclined at	ckness has ba n HP such tha e of 25mm sid t 45° to HP. Dr nation of the pl	t in des raw	,	CO2	L3
8			The	e lamina r	nakes 30		d the side	f its sides on H on which it re		I I	CO2	L3
9			dia	· ·				ch that one of to VP. Draw			CO2	L3
10			tha AB The	t the diago and AD o	onal AC a containing	appears to be g the A mak	e at 45° to V e equal incl	on corner A su /P. The two sid inations with H Draw its top a	des HP.		CO2	L3

11	A top view of a square lamina of side 30 mm is a rectangle is a sides 30mm x 20mm with the longer side of the rectangle being parallel to both HP and VP. Draw the front views of the square lamina. What is the inclination of the surface of the lamina with HP and VP?	12	CO2	L3
12	A rectangular lamina of sides 20mm x 30mm rests on HP on one of its longer edges. The lamina is tilted about the edge on which it rests till its plane surface is inclined to HP at 45°. The edge on which it rests is inclined at 30° to VP. Draw the projections of the lamina.	12	CO2	L3
13	A rectangular lamina of 35mm x 20mm rests on HP one of its shorter edges. The lamina is rotated about the edge on which it rests till it appears as a square in the top view. The edge on which the lamina rests being parallel to both HP and VP. Draw its projections and find its inclinations to HP and VP.	12	CO2	L3
14	A rectangular lamina of 35mm x 20mm rests on HP on one of its shorter edges. The lamina is rotated about the edge on which it rests till it appears as a square in the top view. The edge on which the lamina rests is inclined 30° to VP. Draw its projections and find its inclination to HP.	12	CO2	L3
15	A rectangular lamina of sides 20mm x 25mm has an edge in HP and adjoining in VP, is tilted such the front view appears as a rectangle of 20mm x 15mm. The edge, which is in VP, is 30mm from the right profile plane. (a) Draw the top view, front view and the left profile view in this position. (b) Find its inclinations with the corresponding principal planes.	12	CO2	L3
16	The front view of a rectangular lamina of sides 30mm x 20mm is square of 20mm sides. Draw the projections and determine the inclinations of the surface of the lamina with HP and VP.	12	CO2	L3
17	A mirror 30mm x 40mm is inclined to the wall such that its front view is a square of 30mm side. The longer sides of the mirror appear perpendicular to both HP and VP. Find the inclination of the mirror with the wall.	12	CO2	L3
18	A rectangle plate of negligible thickness of size 35 x 20mm has one of its shorter edges in VP with that edge inclined at 40° to HP. Draw the top view it its front view is a square of side 20mm.	12	CO2	L3
19	A pentagonal lamina of edges 25mm is resting on HP with one of its sides such that the surface makes an angle of 60 with HP. The edge on which it rests is inclined at 45° to VP. Draw its projections.	12	CO2	L3
20	A pentagonal lamina of edges 25mm is resting on HP with one of its corners such that the plane surface makes an angle of 60° with HP. The two of the edges containing the corner on which the lamina rests make equal inclinations with HP. When the edge opposite to this corner make an angle of 45° with VP and nearer to the observer, draw the top and front views of the plane lamina in this position.	12	CO2	L3
21	A pentagonal lamina of edges 25mm is resting on HP with one of its corners such that the corner is 20mm above HP and makes an angle of 45° with VP. Draw the top and front views of the lamina in this position. Determine the inclination of the lamina with HP.	12	CO2	L3

22	A pentagonal lamina of sides 25mm is resting on HP with one of its edges on HP with the corner opposite to that edge touching VP. This edge is parallel to VP and the corner, which touches VP, is at a height of 15mm above HP. Draw the projections of the lamina and determine the inclinations of the lamina with HP and VP and the distance at which the parallel edge lies from VP.	12	CO2	L3
23	A pentagonal lamina of edges 25mm is placed on one of its corners on HP such that the perpendicular bisector of the edge passing through the corner on which the lamina rests is inclined at 30° to HP and 45° VP. Draw the top and front views of the lamina.	12	CO2	L3
24	A pentagonal lamina of sides 25mm is having a side both on HP and VP. The corner opposite to the side o which it rests is 15mm above HP. Draw the top and front views of the lamina.	12	CO2	L3
25	A pentagonal lamina of sides 25mm is having a side both on HP and VP. The surface of the lamina is inclined at an angle of 60° with HP. Draw the top and front views of the lamina.	12	CO2	L3
26	A regular pentagonal lamina of 25mm side is resting on one of its corners on HP while the side opposite to this corner touches VP. If the lamina makes an angle of 60° with HP. Draw the projections of the lamina.	12	CO2	L3
27	A pentagonal lamina having edges 25mm is placed on one of its corners on HP such that the surface makes an angle of 30° with HP and perpendicular bisector of the edge passing through the corner on which the lamina rests appears to be inclined at 30° to VP. Draw the top and front views of the lamina.	12	CO2	L3
28	A regular pentagonal lamina of 25mm side is resting on one of its sides on HP while the corner opposite to this side touches VP. If the lamina makes an angle of 60° with HP, draw the projections of the lamina.	12	CO2	L3
29	A pentagonal lamina of edges 25mm is resting on VP with one of its sides such that the surface makes an angle of 60° with VP. The edge on which it rests is inclined at 45° to HP. Draw the projections.	12	CO2	L3
30	A pentagonal lamina having edges 25mm is placed on of its corners on VP such that the surface makes an angle 30° with VP and perpendicular bisector of the edge, passing through the corner on which the lamina rests appears to be inclined at 30° to HP. Draw the top and front views of the lamina.	12	CO2	L3
31	A pentagonal lamina having edges 25mm is placed on of its corners on VP such that the surface makes an angle 30° with VP and perpendicular bisector of the edge, passing through the corner on which the lamina rests is inclined at 45° to HP. Draw the top and front views of the lamina.	12	CO2	L3
32	A hexagonal lamina of 30mm sides rests on HP with one of its corners touching VP and surface inclined at 45° to it. One of its edges is inclined to HP at 30°. Draw the front and top views of the lamina in its final position.	12	CO2	L3
33	Draw the top and front views of a hexagonal lamina of 30mm sides having two of its edges parallel to both vertical and horizontal planes and one of its edges is 10mm from each of the planes of projection. The surface of the lamina is inclined at an	12	CO2	L3

	angle of 60° to the HP.			
34	A regular hexagon of sides 30mm is lying in such a way that one of its sides touches both the reference planes. If the lamina	12	CO2	L3
	makes 60° with HP, draw the projections of the lamina.			
35	A regular hexagon of sides 30mm is lying in such a way that one	12	CO2	L3
	of its sides touches both the reference planes. If the side			
	opposite to the side on which it rests is 45mm above HP, draw			
	the projections of the lamina.			
36	A regular hexagonal lamina of sides 25mm is lying in such a way	12	CO2	L3
	that one of its sides on HP while the side opposite on which it			
	rests is on VP. If the lamina makes 60° to HP. Draw the			
	projections of the lamina.			
37	A regular hexagonal lamina of sides 25mm is lying in such a way	12	CO2	L3
	that one of corners pm HP while the corner opposite to the			
	corner on which it rest is on VP. If the lamina makes 60° to HP,			
	Draw the projections of the lamina.			
38	A hexagonal lamina of sides 30mm is resting on one of its	12	CO2	L3
	corners in VP and its surface inclined at an angle of 30° with VP.			
	The diagonal passing through that corner which is in VP is			
	inclined at 45° to HP. Draw the projections of the lamina.			
39	A hexagonal lamina of sides 30mm is resting on one of its	12	CO2	L3
	corners in VP and its surface inclined at an angle of 30° with VP.			
	The diagonal passing through that corner which is in VP appears			
	to be inclined at 45° to HP. Draw the projections of the lamina.			
40	A hexagonal lamina of sides 25mm rests on one of its sides on	12	CO2	L3
	HP. The lamina makes 45° to HP and the side on which it rests			
	makes 30° to VP. Draw its projections.			
41	A hexagonal lamina of sides 25mm rests on one of its corners on	12	CO2	L3
	HP. The lamina makes 45° to HP and the diagonal passing			
	through the corner on which it rests is inclined at 30° to VP. Draw			
42	its projections.	10	<u> </u>	L3
42	A hexagonal lamina of sides 25mm rests on one of its corners on HD . The lamine makes 45° to HD and the diagonal passing	12	CO2	LS
	HP. The lamina makes 45° to HP and the diagonal passing through the corner on which it rests appears to be inclined at 30°			
	to VP. Draw its projections.			
43	A hexagonal lamina of sides 25mm rests on one of its sides on	12	CO2	L3
-10	VP. The lamina makes 45° to VP and the side on which it rests	12		20
	makes 45° to HP. Draw its projections.			
44	A hexagonal lamina of sides 25mm rests on one of its sides on	12	CO2	L3
	VP. The side opposite to the side on which it rests is 30mm	12		20
	infront of VP and the side on which it rests makes 45° to HP.			
	Draw its projections. Also determine the inclination of the lamina			
	with the reference plane.			
45	A hexagonal lamina of sides 25mm rests on one of its corners on	12	CO2	L3
	HP. The corner opposite to the corner on which it rests is 35mm			
	above HP and the diagonal passing through the corner on which			
	it rests is inclined at 30° to VP. Draw its projections. Find the			
	inclination of the surface with HP.			
46	An equilateral triangular lamina of 25mm side lies with one of its	12	CO2	L3
	edges on HP such that the surface of the lamina is inclined to			
	HP at 60°. The edge on which it rests is inclined to VP at 60°.			
	Draw the projections.			

Title:	Projection of solids	Appr Time:	16 Hrs
а	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Draw the development of Lateral surface of simple Solids.	CO3	L3
b	Course Schedule		
Class No	Module Content Covered	СО	Level
1	Introduction, Definitions course objectives and outcomes.	CO3	L3
2	Projections of right regular tetrahedron	CO3	L3
3	Projections of right regular tetrahedron	CO3	L3
4	Projections of right regular hexahedron	CO3	L3
5	Projections of right regular prisms	CO3	L3
6	Projections of right regular prisms	CO3	L3
7	Projections of right regular prisms	CO3	L3
8	Projections of right regular pyramids	CO3	L3
9	Projections of right regular cylinders	CO3	L3
10	Projections of right regular cylinders	CO3	L3
11	Projections of right regular cones	CO3	L3
12	Projections of right regular cones	CO3	L3
13	Problem solved on triangular face	CO3	L3
14	Problem solved on triangular face	CO3	L3
15	Problem solved on slant edge	CO3	L3
16	Problem solved on slant edge	CO3	L3
c	Application Areas	CO	Level
1	Powerful communication media during the discussion of a new product design	CO3	L3
d	Review Questions		_
1	A square prism 35mm sides of base and 60mm axis length rests on HP on	CO3	L3
	one of its edges of the base which is inclined to VP at 30°. Draw the		
	projections of the prism when the axis is inclined to HP at 45°.		
2	A square prism 35 mm sides of base and 60mm axis length rests on HP one of its corners of the base such that the two base edges containing the corner on which it rests make equal inclinations with HP. Draw the projections of	CO3	L3
	the prism when the axis of the prism is inclined to HP at 40 ^o and appears to be inclined to VP at 45 ^o		
3	A square prism 35mm sides of base and 60mm axis length rests on HP on	CO3	L3

axis is inclined to VP at 45°		
	1	
HP on one of its slant edges. Draw the projections of the pyramid when the	000	20
A hexagonal pyramid 25mm sides of base and 50mm axis length rests on	CO3	L3
when the axis is inclined to VP at 45 ^o .		
A pentagonal pyramid 25mm sides of base and 50mm axis length rests on	CO3	L3
when the axis appears to be inclined to VP at 45 °.		
	CO3	L3
is inclined to VP at 45		
on one of its slant edges. Draw the projections of the pyramid when the axis		
A square pyramid 35mm sides of base and 60mm axis length rests on HP	CO3	L3
HP on one of its edges of the base which is inclined to VP at 30°. Draw the		
A pentagonal pyramid 25mm sides of base and 60 mm axis length rests on	CO3	L3
-		
	005	LJ
	CO3	L3
	CO3	L3
and to VP at 30 ^o		
projections of the prism when the axis of the prism is inclined to HP at 40 ^o		
corner on which it rests make equal inclinations with HP. Draw the		
	 projections of the prism when the axis of the prism is inclined to HP at 40° and to VP at 30° A hexagonal prism 25mm sides of base and 50mm axis length rests on HP on one of its edges. Draw the projections of the prism when the axis is inclined to HP at 45° and appears to be inclined to VP 40° A square pyramid 35mm sides of base and 65 mm axis length rests on HP on one of its edges of the base which is inclined to VP at 30. Draw the projections of the prism when the axis is inclined to HP at 45° A pentagonal pyramid 25mm sides of base and 60 mm axis length rests on HP on one of its edges of the base which is inclined to VP at 30°. Draw the projections of the prism when the axis is inclined to VP at 30°. Draw the projections of the prism when the axis is inclined to HP at 40° A square pyramid 35mm sides of base and 60 mm axis length rests on HP on one of its edges. Draw the projections of the prism when the axis is inclined to HP at 40° A square pyramid 35mm sides of base and 60mm axis length rests on HP on one of its slant edges. Draw the projections of the pyramid when the axis is inclined to VP at 45 A pentagonal pyramid 25mm sides of base and 50mm axis length rests on HP on one of its slant triangular faces. Draw the projections of the pyramid when the axis appears to be inclined to VP at 45°. A pentagonal pyramid 25mm sides of base and 50mm axis length rests on HP on one of its slant triangular faces. Draw the projections of the pyramid when the axis is inclined to VP at 45°. A hexagonal pyramid 25mm sides of base and 50mm axis length rests on HP on one of its slant triangular faces. Draw the projections of the pyramid when the axis is inclined to VP at 45°. A hexagonal pyramid 25mm sides of base and 50mm axis length rests on HP on one of its slant triangular faces. Draw the projections of the pyramid when the axis is inclined to VP at 45°. 	corner on which it rests make equal inclinations with HP. Draw the projections of the prism when the axis of the prism is inclined to HP at 40° and to VP at 30°CO3A hexagonal prism 25mm sides of base and 50mm axis length rests on HP on one of its edges. Draw the projections of the prism when the axis is inclined to HP at 45° and appears to be inclined to VP 40°CO3A square pyramid 35mm sides of base and 65 mm axis length rests on HP on one of its edges of the base which is inclined to VP at 30. Draw the projections of the prism when the axis is inclined to HP at 45°CO3A pentagonal pyramid 25mm sides of base and 60 mm axis length rests on Projections of the prism when the axis is inclined to VP at 30°. Draw the projections of the prism when the axis is inclined to HP at 40°CO3A square pyramid 35mm sides of base and 60 mm axis length rests on Projections of the prism when the axis is inclined to VP at 30°. Draw the projections of the prism when the axis is inclined to HP at 40°CO3A square pyramid 35mm sides of base and 60mm axis length rests on Projections of the prism when the axis is inclined to HP at 40°CO3A square pyramid 35mm sides of base and 60mm axis length rests on HP on one of its slant edges. Draw the projections of the pyramid when the axis is inclined to VP at 45CO3A pentagonal pyramid 25mm sides of base and 50mm axis length rests on HP on one of its slant triangular faces. Draw the projections of the pyramid when the axis appears to be inclined to VP at 45°.CO3A pentagonal pyramid 25mm sides of base and 50mm axis length rests on HP on one of its slant triangular faces. Draw the projections of the pyramid when the axis is inclined to VP at 45°.CO3A hexagonal pyramid 25mm sides of

b. Assignment – 2

Note: A distinct assignment to be assigned to each student.

				Model	Assignment	Question	S			
Crs		18EGDL25	Sem:	II	Marks:	5 / 10	Time:	90 – 120	S	
Code										
Cours	se:	Engineerin	g Graphics							
Note:	Ead	ch student to	o answer 2-3 a	assignments	. Each assig	gnment ca	rries equal marl	۲.		
SNo		USN		Assig	nment Desc	ription		Marks	СО	Level
1			on HP on one	e of its edge	s of the bas	e which is	n axis length res inclined to VP ne axis is incline	at	CO3	L3
2			on HP one c edges contai inclinations w	f its corners ning the co ith HP. Drav rism is incli	s of the bas orner on w v the projec	se such th hich it re tions of th	n axis length res hat the two bas ests make equ le prism when th nd appears to b	se al ne	CO3	L3

3	A square prism 35mm sides of base and 60mm axis length rests on HP on one of its corners of the base such that the two base edges containing the corner on which it rests make equal inclinations with HP. Draw the projections of the prism when the axis of the prism is inclined to HP at 40 ^o and to VP at 30 ^o	12	CO3	L3
4	A hexagonal prism 25mm sides of base and 50mm axis length rests on HP on one of its edges. Draw the projections of the prism when the axis is inclined to HP at 45° and appears to be inclined to VP 40°	12	CO3	L3
5	A square pyramid 35mm sides of base and 65 mm axis length rests on HP on one of its edges of the base which is inclined to VP at 30. Draw the projections of the prism when the axis is inclined to HP at 45°	12	CO3	L3
6	A pentagonal pyramid 25mm sides of base and 60 mm axis length rests on HP on one of its edges of the base which is inclined to VP at 30 ^o . Draw the projections of the prism when the axis is inclined to HP at 40 ^o	12	CO3	L3
7	A square pyramid 35mm sides of base and 60mm axis length rests on HP on one of its slant edges. Draw the projections of the pyramid when the axis is inclined to VP at 45	12	CO3	L3
8	A pentagonal pyramid 25mm sides of base and 50mm axis length rests on HP on one of its slant triangular faces. Draw the projections of the pyramid when the axis appears to be inclined to VP at 45 °.	12	CO3	L3
9	A pentagonal pyramid 25mm sides of base and 50mm axis length rests on HP on one of its slant triangular faces. Draw the projections of the pyramid when the axis is inclined to VP at 45°.	12	CO3	L3
10	A hexagonal pyramid 25mm sides of base and 50mm axis length rests on HP on one of its slant edges. Draw the projections of the pyramid when the axis is inclined to VP at 45 ^o	12	CO3	L3

Title:	Development of lateral surface of solids	Appr	15 Hrs
		Time:	
а	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Draw the development of Lateral surface of simple Solids.	CO4	L3
b	Course Schedule		
Class No	Module Content Covered	СО	Level
1	Introduction to Section planes	CO4	L3
2	Sections, Section views, Apparent shapes .	CO4	L3
3	Sections, Section views, Apparent shapes .	CO4	L3
4	True shapes of Sections of right regular prisms resting with base on hp	CO4	L3
5	True shapes of Sections of right regular prisms resting with base on hp	CO4	L3

6	True shapes of Sections of right regular prisms resting with base on hp	CO4	L3
7	True shapes of Sections of right regular pyramids resting with base on hp	CO4	L3 L3
8		CO4	L3
<u> </u>	True shapes of Sections of right regular pyramids resting with base on hp True shapes of Sections of right regular cylinders resting with base on hp	CO4	L3 L3
		CO4	L3
10 11	True shapes of Sections of right regular cones resting with base on hp	CO4	L3 L3
	Development of their frustums and truncations		
12	Development of their frustums and truncations	CO4 CO4	L3
13 14	Introduction to Section planes	CO4	L3 L3
	Sections, Section views, Apparent shapes . Sections, Section views, Apparent shapes .	CO4	
15	Sections, Section views, Apparent snapes .	004	L3
c	Application Areas	со	Level
1	its helps to measure the true length and inclination of the drawing	CO4	L3
•			
d	Review Questions	-	-
1	A pentagonal pyramid 25mm sides of base and 50mm axis length rests on	CO4	L3
-	HP on one of its corners of the base such that the two base edges		
	containing the corner on which it rests make equal inclinations with HP.		
	Draw the projections of the pyramid when the axis of the pyramid is inclined		
	to HP at 40° and to VP at 30°.		
2	A hexagonal pyramid 25mm sides of base and 50mm axis length rests on	CO4	L3
	HP on one of its corners of the base such that the two base edges		
	containing the corner on which it rests make equal inclinations with HP.		
	Draw the projections of the pyramid when the axis of the pyramid is inclined		
	to HP at 40° and to VP at 30°.		
2	A pentagonal pyramid 25mm sides of base and 50mm axis length rests on	CO4	L3
	HP on one of its slant triangular faces. Draw the projections of the pyramid		
	when the axis is inclined to VP at 45°.		
3	A hexagonal pyramid 25mm sides of base and 50mm axis length rests on	CO4	L3
	HP on one of its slant triangular faces. Draw the projections of the pyramid		
	when the axis is inclined to VP at 45°.		
4	A cone of base dia 40mm and axis length 50mm is resting on HP on a point	CO4	L3
	on the circumference of its base such that its apex is at 40mm above the HP		
	and its top view of the axis is inclined at 60° to VP. Draw the top and front		
	views of the solid. Also, determine the inclinations of the axis when the base		
6	is nearer to the observer.	CO4	1.2
6	A rectangular prism of base size 25mm X 40 mm and axis length 65 mm is resting on H P on its base with the longer side of base inclined at 30° to VP.	CO4	L3
	It is cut by a plane inclined at 40° to HP and perpendicular to VP and passes		
	through the extreme left corner of base. Draw the development of the lateral		
	surface of the remaining portion of the the prism.		
7	A vertical cylinder of base diameter 45mm and axis length 60mm is cut by a	CO4	L3
•	plane perpendicular to VP and inclined at 50° to HP is passing through the		
	center point of the top face. Draw the development of the Lateral surface of		
	the cylinder.		
8	A square pyramid of 25mm base edge and 50mm height rests with its base	CO4	L3
-	on HP with all of its base edges equally inclined to VP. It is cut by a plane		
	perpendicular to VP and inclined to HP at 60° passing throught the extreme		
	right corner of base. Draw the development of the lateral surface of the		
	Pyramid.		
е	Experiences	_	-

Title:	Isometric projections	Appr Time:	15 Hrs
а	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Draw the isometric Projection of Simple plans and solids	CO5	L3
b	Course Schedule		
Class No	Module Content Covered	СО	Level
1	Introduction to Subject, course objectives and outcomes	CO5	L3
2	Isometric scale	CO5	L3
3	Isometric projection of simple plane	CO5	L3
4	Isometric projection of simple plane figures	CO5	L3
5	Isometric projection of simple plane figures	CO5	L3
6	Isometric projection of tetrahedron	CO5	L3
7	Isometric projection of tetrahedron	CO5	L3
8	Isometric projection of hexahedron	CO5	L3
9	Isometric projection of hexahedron	CO5	L3
10	right regular prisms	CO5	L3
11	Isometric projection of pyramids	CO5	L3
12	Isometric projection of cylinders	CO5	L3
13	Isometric projection of cones	CO5	L3
14	cut spheres and combination of two solids,	CO5	L3
15	conversion of given isometric/pictorial views to orthographic views of simple	CO5	L3
	objects		
c	Application Areas	CO	Level
1	Convert pictorial and isometric views of simple objects to orthographic views	CO5	L3
d	Review Questions	_	_
1	A rectangular prism of base size 25mm X 40 mm and axis length 65 mm is	CO5	L3
	resting on H P on its base with the longer side of base inclined at 30° to VP.		
	It is cut by a plane inclined at 40° to HP and perpendicular to VP and passes		
	through the extreme left corner of base. Draw the development of the lateral		
	surface of the remaining portion of the the prism.		
2	A sphere of diameter 50 mm rests centrally o top of a cube of sides 50 mm. Draw the isometric projections of the combination of solids.	CO5	L3
2	A hemisphere of 40 mm diameter is supported co-axially on ht vertex of a	CO5	L3
	cone of base dia. 60 mm and axis length 50mm. The flat circular face of the		
	hemisphere is facing upside. Draw the isometric projections of the		
	combination of solids.		
3	Draw the isometric projection of a rectangular prism of 60 x 80 x 20 mm thick	CO5	L3
	surrounding a tetrahedron of sides 45mm such that the axes of the solids		
	are collinear and at least one of the edges of both the solids is parallel to VP.		
4	Following figure shows the top view of a cylinder which is centrally mounted	CO5	L3
			1
•	on a frustum of a pentagonal pyramid of 60mm Height. Draw the isometric		

5	Following figure shows the front view of combination of solids consisting of a cut sphere and frustums of a cone and a square pyramid. Draw the isometric projections of the combination of solids.	CO5	L3
6	The frustum of a square pyramid of base side 40mm, top face side 20mm and height 60mm rest on the center of the square block of side 60mm and height 20mm. The edges of the pyramid are parallel to the top edges of the square block. Draw the isometric projections of the combination of solids	CO5	L3
7	A rectangular pyramid of base 40mm x 25mm and height 50mm is placed centrally on a rectangular slab sides 100mm x 60mm and thickness 20mm. Draw the isometric projections of the combination.	CO5	L3
8	A frustum of cone base diameter 50mm, top diameter 25mm and height 50mm is placed centrally on the top face of a cylinder diameter 60mm and height 60mm. Draw the isometric projections of the combination.	CO5	L3
9	A hemisphere diameter 50mm is resting on its curved surface centrally on the top face of frustum of a rectangular pyramid base 80mm x 60mm and top 60mm x 40mm, height 55mm. Draw the isometric projections of the combination.	CO5	L3
10	A hemisphere diameter 70mm is placed on the ground on its curved surface.	CO5	L3

COURSE PLAN - CAY 2019-20

	A cone base diameter 70mm and height 70mm is placed centrally on it.		
	Draw the isometric projections of the combination.		
e	Experiences	-	-

b. Assignment – 3

Note: A distinct assignment to be assigned to each student.

	/ 1 0.01				el Assignmen					
Crs C	ode:	18EGDL	.25 Sem:	II	Marks:	5 / 10	Time:	90 – 120	minutes	5
Cours	e:	Enginee	ering Graphics							
Vote:	Each	student	to answer 2-3 a	assignmer	nts. Each ass	ignment car	ries equal marl	۲.		
SNo		USN		Ass	ignment Des	cription		Marks	СО	Leve
1			side 20mm a block of side (nd height 60mm anc o the top	60mm rest of height 20mr edges of th	on the cent n. The edge ne square	40mm, top fac er of the squa es of the pyram block. Draw th	re iid	CO5	L3
2			20 mm thick s	surroundin e solids a	g a tetrahedr re collinear a	on of sides	rism of 60 x 80 45mm such th one of the edge	at	CO5	L3
3			A sphere of o	diameter 5	60 mm rests	-	top of a cube the combination		CO5	L3
4	4		side 20mm a block of side	nd height 60mm anc o the top	60mm rest of height 20mr edges of th	on the cent n. The edge ne square	40mm, top fac er of the squa es of the pyram block. Draw th	re iid	CO5	L3
5	5		is placed cen	trally on a	rectangular	slab sides	and height 50m 100mm x 60m ojections of th	m	CO5	L3
6			height 50mm	is placed mm and	l centrally on height 60	the top fa	meter 25mm ar ice of a cylind the isometi	er	CO5	L3
7	7		A hemisphere centrally on t	e diameter he top fa x 60mm a	r 50mm is re ce of frustur and top 60m	n of a rect nm x 40mm	s curved surfac angular pyram n, height 55mr n.	id	CO5	L3
8			A sphere of o	diameter 5	i0 mm rests	centrally o	top of a cube the combination		CO5	L3
9			vertex of a co	ne of base ace of the	e dia. 60 mm hemisphere	and axis le is facing u	co-axially on ngth 50mm. Th pside. Draw th s.	ne	CO5	L3
10							rism of 60 x 80 45mm such th		CO5	L3

the axes of the solids are collinear and at least one of the edges		
of both the solids is parallel to VP.		

E. CIA Exam

Cou	rse:	Engineering (Graphics				Month /	Year	May /2	2020
Crs	Code:	18EGDL25	Sem:	П	Marks:	100	Time:		180 m	inutes
-	Note	Note: Answer	any 3 question	s, each carry	equal marks.			Marks	СО	Level
1	а	A point is lying	g on HP, 20mm	behind VP a	nd 25 mm be	hind/in front/	from	15	CO3	L3
		RPP. Draw th	e projections a	nd name the s	side view					
	b	Draw the proj	ections of a line	AB 100mm l	ong inclined a	at 45 ° to VP	and 30 °	15	CO3	L3
		to HP. One er	nd of the line is	20 mm above	e the HP and	in the VP. Al	so			
		determine the apparent length and inclinations								
				OR						
1	a	A regular hexagonal lamina of sides 30mm is lying in such a way that one of						30	CO4	L3
		its sides touch	nes both the ref	erence plane	s. If the lamin	a makes 60°	with			
		HP. Draw the	projections of t	he lamina.						
2	-	Anontogonal	nriam OEmm ai	daa of baaa 9	E0mm avia l	anath is supr	andad	40	CO4	L3
2	a		prism 25mm si			• .		40	C04	L3
		freely from a corner of its base. Draw the projections of the prism when the axis appears to be inclined to VP at 45 [°]								
		axis appears	to be inclined to	o VP at 45°						
3	а	A frustum of a	a pentagonal py	ramid, smalle	er base sides	16mm and b	igger top	30	CO4	L3
		face sides 32	mm and height	40mm is rest	ting on the HF	on its small	ler base,			
		with one of its	base side para	allel to the VP	. Draw the pro	ojections of t	he			
		frustum and d	levelop the late	ral surface of	it.	-				
			•	OR						
3	b	A triangular p	yramid base sic	le 40mm and	height 50mm	is placed ce	ntrally	30	C04	L3
		on a slab side	e 80mm and 20i	mm thick. Dra	w the isomet	ric projection	s of the			
		combinations								

F. EXAM PREPARATION

1. University Model Question Paper

Cou	rse:	Engineering Graphics Month / `							May /2	2020
Crs	Code:	18EGDL25 Sem: II Marks: 100 Time:							180 m	inutes
-	Note	Note: Answer	any 3 question	ons, each o	carry equal marks	•		Marks	CO	Level
1	а	Y line resp E	nd A is 15 mr	n above ⊦	make 45 0 and 6 Ip and VT is 20 m s, find inclination	m below XY	line. Line	•	CO3	L3
1	b	adjoining in V x 15mm. The Draw the top	/P, is tilted su edge, which view, front vie	ch the from is in VP, i w and the	nm x 25mm has nt view appears a is 30mm from the e left profile view ir g principal planes.	s a rectangle right profile h this position	e of 20mm plane. (a)		CO3	L3
					OR					
1	а	its sides touc	-	a of sides eference	30mm is lying in s planes. If the lami	-		30	CO4	L3
2	а	freely from a	•	ase. Draw	ase & 50mm axis / the projections o 45º	-	•	40	CO4	L3
3	a	face sides 32	mm and heights base side pa	nt 40mm arallel to th teral surfa	smaller base sides is resting on the H ne VP. Draw the p ce of it. OR	P on its sma	iller base,		CO4	L3
3	b		e 80mm and 2	side 40mn	n and height 50mr k. Draw the isome	-	•	30	C04	L3

2. SEE Important Questions

Course:		Engineering Gr	aphics				Month /	'Year	May /2	020
Crs (Code:	18EGDL25	Sem:	II	Marks: 100 Time:				180 minutes	
	Note	Answer any 3 questions, each carry equal marks.						-	-	
Mod	Qno.	Important Ques	stion					Marks	СО	Year
ule										
1	а	Draw all the th	ree views of p	ooint P lying 6	60mm below	HP 70mm in	front of	10	CO2	2014
		VP and 40mm	from the RPP.	Also state the	e quadrant in	which it lies				
	а	A point A is 4	0mm in front	of VP and is	situated in th	e fourth quad	drant its	10	CO2	2016
		shortest distan	ce from the ir	ntersection of	XY and X Y	is 45 mm , [Draw its			
		projections. Also find its distance from HP.								
	а	A point is 35mm below HP, 15mm behind VP and 25mm behind / in front							CO2	
		from RPP. Drav	w its projection	ns and name t	he side view					

1	b	line AB is 75 mm long. It's FV & TV make 45 0 and 60 0 inclinations with X-Y line resp End A is 15 mm above Hp and VT is 20 mm below XY line. Line is in first quadrant. Draw projections, find inclinations with Hp & VP. Also locate HT.	15	CO2	2013
	b	Line AB 100 mm long is 30 0 and 45 0 inclined to Hp & VP respectively. End A is 10 mm above Hp and it's VT is 20 mm below Hp Draw projections of the line and it's HT.	15	CO2	2017
	b	The top view of a 75 mm long line AB measures 65mm, while the front view is 50mm .Its one end Ais in the HP and 12mm in front of the VP. Draw the projections of AB and determine its inclinations with the HP and the VP	30	CO2	2016
1		A top view of a square lamina of side 30 mm is a rectangle is a sides 30mm x 20mm with the longer side of the rectangle being parallel to both HP and VP. Draw the front views of the square lamina. What is the inclination of the surface of the lamina with HP and VP?	30	CO2	2014
		A rectangular lamina of sides 20mm x 30mm rests on HP on one of its longer edges. The lamina is tilted about the edge on which it rests till its plane surface is inclined to HP at 45°. The edge on which it rests is inclined at 30° to VP. Draw the projections of the lamina.	30	CO2	2014
		A rectangular lamina of 35mm x 20mm rests on HP on one of its shorter edges. The lamina is rotated about the edge on which it rests till it appears as a square in the top view. The edge on which the lamina rests is inclined 30° to VP. Draw its projections and find its inclination to HP.	30	CO2	2015
		A rectangular lamina of sides 20mm x 25mm has an edge in HP and adjoining in VP, is tilted such the front view appears as a rectangle of 20mm x 15mm. The edge, which is in VP, is 30mm from the right profile plane. (a) Draw the top view, front view and the left profile view in this position. (b) Find its inclinations with the corresponding principal planes.	30	CO2	2016
2		A hexagonal pyramid 25mm sides of base and 50mm axis length rests on HP on one of its corners of the base such that the two base edges containing the corner on which it rests make equal inclinations with HP. Draw the projections of the pyramid when the axis of the pyramid is inclined to HP at 40° and to VP at 30°.	30	CO3	2015
		A square pyramid 35mm sides of base and 60mm axis length is suspended freely from a corner of its base. Draw the projections of the pyramid when the axis appears to be inclined to VP at 45°	30	CO3	2016
		A hexagonal pyramid 25mm sides of base and 50mm axis length is suspended freely from a corner of its base. Draw the projections of the pyramid when the axis appears to be inclined to VP at 45°.	30	CO3	2015
		A pentagonal pyramid 25mm sides of base and 50mm axis length rests on HP on one of its slant edges. Draw the projections of the pyramid when the	30	CO3	2017

	axis is inclined to VP at 45°.			
	A pentagonal pyramid 25mm sides of base and 50mm axis length rests on HP on one of its slant triangular faces. Draw the projections of the pyramid when the axis appears to be inclined to VP at 45°.	30	CO3	2017
	A cone of 50mm base diameter and 60mm axis length rests on HP on one of its generators. Draw the projections when the axis is inclined to VP at 30°.	30	CO3	2014
3	A square pyramid base 40 mm side and axis 65 mm ling has its base on HP and all the edges of the base are equally inclined to V P. It is cut to with an inclined section plane so as the truncated surface at 45° to its axis, bisection it. Draw the development of the truncated pyramid.	30	CO3	2015
	A cube of sides 40mm is resting on HP with its base on HP such that one of its vertical faces is inclined at 30° to the VP. It I cut by a section plane perpendicular to VP, inclined to HP at an angle 45° and passes through the midpoint of the axis. Draw the development of the lower lateral surface of the cube.	30	CO3	2015
	A rectangular prism of base size 25mm X 40 mm and axis length 65 mm is resting on H P on its base with the longer side of base inclined at 30° to VP. It is cut by a plane inclined at 40° to HP and perpendicular to VP and passes through the extreme left corner of base. Draw the development of the lateral surface of the remaining portion of the the prism.	30	CO3	2016
4	A cube of side 40mm is resting centrally on hexagonal prism base side 40mm and height 50mm, such that one of the base sides of the cube is parallel to one of the sides of the top face of the prism. Draw the isometric projections of the combination of solids.	30	CO3	2015
	An equilateral triangular prism base side 30mm and length 70mm is resting on its rectangular face on top of a square slab side 70mm and 25mm thick. Draw the isometric projections of the combination of solids	30	CO2	2015
	A cone of base diameter 50mm and height 50mm is placed centrally on an equilateral triangular prism of side 100mm and 20mm thick. Draw the isometric projections of the combination of solids.	30	CO2	2016
	square prism side 40mm and height 70mm has a full depth co-axial square hole side 20mm, such that edges of both the squares are parallel. Draw the isometric projection of the hollow prism.	30	CO2	2016
	Two rectangular plates are placed one above the other co-axially with dimensions (Ixbxh) 100mmx60mmx20mm and 100mmx40mmx20mm such that longer edges are parallel. Draw the isometric projections of the combination of solids.	30	CO2	2017
	A triangular pyramid base side 40mm and height 50mm is placed centrally on a square slab side 80mm and 20mm thick. Draw the isometric projections of the combination of solids.	30	CO3	2014

G. Content to Course Outcomes

1. TLPA Parameters

	Table 1: TLPA	– Examp	le Course				
Мо	Course Content or Syllabus	Content	Blooms'	Final	Identified	Instructio	Assessment
dul	(Split module content into 2 parts which have	Teachin	Learning	Bloo	Action	n	Methods to
e-	similar concepts)	g Hours	Levels	ms'	Verbs for	Methods	Measure
#		-	for	Level	Learning	for	Learning
			Content		_	Learning	-
A	В	С	D	Е	F	G	Н
1	Drawing Instruments and their uses, BIS	5	- L1	L2	Understa	Chalk	-sketch
	conventions, Lettering, Dimensioning and free		- L2		nd	and	book
	hand practicing. Computer screen, layout of					board	
	the software, Reference planes. HP, VP, RPP					LCD	
	& LPP. of 2D/3D environment. Commands					Projector	
	and creation of Lines, Co-ordinate points,						
	axes, ploy-lines, square, rectangle, polygons,						
	splines, circles, ellipse, text, move, copy, off-						
	set, mirror, rotate, trim, extend, break,						
	chamfer, fillet, curves, constraints viz.						
	Definitions - Planes of projection, reference line		- L2	L3	Compute	Chalk	- sketch
	and conventions employed, Projections of		- L3			and	book &
	points in all the four Quadrants, Projections of						printout
	straight lines True and apparent lengths.					LCD	-CIE
	Orthographic Projections of Plane Surfaces.					Projector	
	Projections of plane surfaces-triangle,square,						
	rectangle, rhombus, pentagon, hexagon and						
	circle, planes in different positions by change of						
	position method only				•	<u> </u>	
3	Definitions – Projections of right regular		- L2	L3	Compute	Chalk	- sketch
	tetrahedron, hex-hedron (cube), prisms,		- L3				book &
	pyramids, cylinders and cones in different						printout
	positions (No problems on octahedron and					LCD Draiaatar	-CIE
	combination solid	40	1.0	1.0	O a manufa	Projector	
4	Section planes, Sections, Section views,		- L2	L3	Compute	Chalk	- sketch
	Sectional views, Apparent shapes and True		- L3				book &
	shapes of Sections of right regular prisms,					board LCD	printout -CIE
	pyramids, cylinders and cones resting with						-CIE
	base on hp only. Development of their frustums and truncations					Projector	
5		15	- L2	L3	Compute	Chalk	- sketch
5	Isometric projection of simple plane figures, Isometric projection of tetrahedron, hexahedron		- L2 - L3	L3	Compute		- sketch book &
	(cube), right regular prisms, pyramids,		- LJ				printout
	cylinders, cones, spheres, cut spheres and					LCD	-CIE
	combination of two solids, conversion of given					Projector	
	isometric/pictorial views to orthographic views					riojecior	
	of simple objects						

2. Concepts and Outcomes:

Table 2: Concept to Outcome - Example Course

Мо	Learning or	Identified	Final Concept	Concept Justification	CO Components	Course Outcome
dul	Outcome	Concepts		(What all Learning	(1.Action Verb,	
e-	from study of	from		Happened from the	2.Knowledge,	
#	the Content	Content		study of Content /	3.Condition /	Student Should be
	or Syllabus			Syllabus. A short	Methodology,	able to
				word for learning or	4.Benchmark)	
				outcome)		
Α	1	J	K	L	М	N
1	-BIS	Dimension	Graphical	Understand basic	-Understand	Understand the field
	conversions	ing	language	concepts of	-graphical language	of engineering
		-reference		engineering drawing		drawing as per BIS
		planes				conventions and
						Graphical Languages
2	-projection	Orthograp	Orthographic	Comprehend the	-Understand	Create Engineering
	points,	hic	views	projections of points,	-projections of points	drawings on
	lines,planes	projections		line and plane surface	line planes	Orthographic Views
3	-proiection of	orthograph	Orthographic	Comprehend the	-Understand	Apply the knowledge
				projections of solid	-simple solids	of orthographic
	-			part		Projections of simple
				F		solids.
4	-	developm	Development	Comprehend the	-Understand	Apply the knowledge
	development	ent of solid	lateral surface	development of solid	-development of	of Lateral surface of
	of lateral	part	of solid part	part	simple solids	simple Solids.
	surfaces	-	•	-		
5	-isometric	conversion	Conversion of	Comprehend the	-Understand	Convert pictorial and
	projections	of	pictorial view to	•	-isometric view	isometric views of
			•	orthographic views		simple objects to
			view			orthographic views
						- ·