Ref No:

Sri Krishna Institute of Technology, Bangalore

COURSE PLAN

Academic Year 2019-2020

Program:	B E – Electrical and Electronics Engineering
Semester :	8
Course Code:	15EE833
Course Title:	Integration of Distribution generation
Credit / L-T-P:	3 / 3-0-0
Total Contact Hours:	40
Course Plan Author:	Vinutha S

Academic Evaluation and Monitoring Cell

Sri Krishna Institute of Technology #29,Chimney hills,Hesaraghata Main road, Chikkabanavara Post Bangalore – 560090, Karnataka, INDIA Phone / Fax :08023721477/28392221/23721315 Web: www.skit.org.in , e-mail: <u>skitprinci@gmail.com</u>

Table of Contents

<u>A. COURSE INFORMATION</u>	2
<u>1. Course Overview</u>	2
<u>2. Course Content</u>	3
<u>3. Course Material</u>	3
<u>4. Course Prerequisites</u>	3
5. Content for Placement, Profession, HE and GATE	4
B. OBE PARAMETERS	4
<u>1. Course Outcomes</u>	4
<u>2. Course Applications</u>	4
<u>3. Articulation Matrix</u>	4
<u>4. Curricular Gap and Content</u>	5
C. COURSE ASSESSMENT	5
<u>1. Course Coverage</u>	5
2. Continuous Internal Assessment (CIA)	
D1. TEACHING PLAN - 1	5
Module - 1	5
Module – 2	6
E1. CIA EXAM – 1	7
a. Model Question Paper - 1	7
b. Assignment -1	7
D2. TEACHING PLAN - 2	7
Module – 3	7
Module – 4	8
E2. CIA EXAM – 2	9
a. Model Question Paper - 2	9
b. Assignment – 2	10
D3. TEACHING PLAN - 3	10
Module – 5	10
E3. CIA EXAM – 3	11
a. Model Question Paper - 3	11
b. Assignment – 3	11
F. EXAM PREPARATION	11
1. University Model Question Paper	11
2. SEE Important Questions	12

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	EE
Semester:	8	Academic Year:	2019-2020
Course Title:	Integration of Distributed Generators	Course Code:	15EE833
Credit / L-T-P:	3/L	SEE Duration:	180 Minutes
Total Contact Hours:	40	SEE Marks:	80 Marks
CIA Marks:	20	Assignment	1 / Module
Course Plan Author:	Vinutha S	Sign	
Checked By:	HOD	Sign	
CO Targets	CIA Target :	SEE Target:	

Note: Define CIA and SEE % targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute.

Μ	Content	Teachin	Blooms Learning
0		g Hours	Levels
d		-	
ul			
е			
1	Distributed Generation: Introduction, Sources of Energy - Wind	8	Remember L1
	Power, Solar Power, Combined Heat-and-Power, Hydropower,		Understand
	Tidal Power, Wave Power, Geothermal Power, Thermal Power		Understand
	Plants.		L2
2	Distributed Generation (continued): Interface with the Grid.	8	Understand L2
	Power System Performance: Impact of Distributed Generation	(2, 4,2)	Analyze L4
	on the Power System, Aims of the Power System, Hosting	(2, 4,2)	Anatyze L4
	Capacity Approach, Power Quality, Voltage Quality and Design of Distributed Generation, Hosting Capacity Approach for		
	Events, Increasing the Hosting Capacity.		
	Overloading and Losses : Impact of Distributed Generation,		
	Overloading: Radial Distribution Networks, Overloading:		
	Redundancy and Meshed Operation, Losses		
3	Overloading and Losses(continued): Increasing the Hosting	8	Apply L3,
	Capacity.		-
	Voltage Magnitude Variations: Impact of Distributed	(2, 6)	Analyze L4
	Generation, Voltage Margin and Hosting Capacity, Design of		
	Distribution Feeders, A Numerical Approach to Voltage		
	Variations, Tap Changers with Line-Drop Compensation,		
4	Probabilistic Methods for Design of Distribution Feeders Voltage Magnitude Variations (continued): Statistical	8	
4	Approach to Hosting Capacity, Increasing the Hosting Capacity.	0	Analyze L4
	Power Quality Disturbances: Impact of Distributed Generation,	(4,4)	Analyze L4
	Fast Voltage Fluctuations, Voltage Unbalance.		, .
5	Power Quality Disturbances (continued):Low-Frequency	8	Analyze L4
	Harmonics, High-Frequency Distortion, Voltage Dips, Increasing the Hosting Capacity.		Analyze L4
-	Total	40	
-			

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 – 30 minutes

2. Design: Simulation and design tools used – software tools used ; Free / open source

3. Research: Recent developments on the concepts – publications in journals; conferences etc.

Details	Chapt	Availability
	ers in	
	book	
Text books (Title, Authors, Edition, Publisher, Year.)	-	-
Integration of Distributed Generation in the Power System, Math	1,2,3,4	In Lib
Bollen,Wiley 2011	,5	
Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
Concept Videos or Simulation for Understanding	-	-
https://www.youtube.com/watch?v=ptiaNGkuylY-52 min		
https://www.youtube.com/watch?v=_iz8ZkjD7z8-45 min		
https://www.youtube.com/watch?v=UeaTgT2p-		
Software Tools for Design	-	-
Distribution system- <u>https://www.youtube.com/watch?v=YL-</u>		
<u>mfzDgpvl</u>		
Recent Developments for Research	-	-
Distribution		
generation-https://ieeexplore.ieee.org/document/8617795		
Others (Web, Video, Simulation, Notes etc.)	-	-
https://www.dg.history.vt.edu/ch1/introduction.html		
	Text books (Title, Authors, Edition, Publisher, Year.) Integration of Distributed Generation in the Power System,Math Bollen,Wiley 2011 Reference books (Title, Authors, Edition, Publisher, Year.) Concept Videos or Simulation for Understanding https://www.youtube.com/watch?v=ptiaNGkuylY-52 min https://www.youtube.com/watch?v=tiaZkjD7z8-45 min https://www.youtube.com/watch?v=lagTzp- Wl&list=PLRWKjJsFG7-6gWwDMLIOWy5DDRqyKP1uQ-30 min https://www.youtube.com/watch?v=hB-WU3AxdoA-5 min https://www.youtube.com/watch?v=govnvdiS7c - 6 min https://www.youtube.com/watch?v=QovnvdiS7c - 6 min https://www.youtube.com/watch?v=Y7_zKCnGgsl-15min https://www.youtube.com/watch?v=PtCTnDEhPQ-60 min https://www.youtube.com/watch?v=BbNCohM_mgo-3 min Software Tools for Design Distribution system- https://www.youtube.com/watch?v=BbNCohM_mgo-3 min Software Tools for Research Distribution generation-https://ieeexplore.ieee.org/document/8617795 Others (Web, Video, Simulation, Notes etc.)	ers in bookText books (Title, Authors, Edition, Publisher, Year.)-Integration of Distributed Generation in the Power System,Math Bollen,Wiley 20111,2,3,4 ,5Reference books (Title, Authors, Edition, Publisher, Year.)-Concept Videos or Simulation for Understanding-https://www.youtube.com/watch?v=ptiaNGkuyIY-52 min

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Students must have learnt the following Courses / Topics with described Content ...

M	Course	Course	Topic / Description	Se	Remarks	Blooms
od ule	Code	Name		m		Level
S						
1	15EE42	Power generation and economics	Power generation	4	-	L3
3	15EE62	Power system analysis	Representation of power system	5	-	L3

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Mo du	Topic / Description	Area	Remarks	Blooms Level
les				
1	Wind Power, Solar Power, Combined Heat-and-Power, Hydro power, Tidal Power, Wave Power, Geothermal Power, Thermal Power Plants.	Renewable energy resources	workshop on RES	Understan d L2

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs.

M	Course	Course Outcome	Teach.	Instr Method	Assess	Blooms'
od	Code.#	At the end of the course,	Hours		ment	Level
ule		student should be able to			Method	
S						
1	15EE833.1	Analyze and explain the Electric	8	Lecture /	Assign	L3
		Energy generation by renewable		PPT	ment	
		energy sources such as solar,			and CIA	
		wind and to choose locations to				
		install them.				
2	15EE833.2	Explain the impact of distributed	8	Lecture /	Assign	L4
		generation on power system-		PPT	ment	
		overloading and losses.			and CIA	
3	15EE833.	Explain the impact of distributed	8	Lecture /	Assign	L4
	3	generation on voltage		PPT	ment	
		magnitude variations of the			and CIA	
		power system.				
4	15EE833.	Explain the impact of distributed	8	Lecture /	Assign	L2
	4	generation on Power quality		PPT	ment	
		disturbances of the power			and CIA	
		system.				
5	15EE833.	Explain the effects of integration	8	Lecture /	Assign	L2
	5	of distributed generation on		PPT	ment	
		power system stability and			and CIA	
		reliability.				
-	-		40	-		L2-L4

2. Course Applications

Write 1 or 2 applications per CO.

Students should be able to employ / apply the course learnings to ...

Application Area	CO	Leve
Compiled from Module Applications.		l
Standby or emergency power	CO1	L2
Niche application, green power		
co-genration	CO2	L2
Emergency power system		
Resource dynamics cooperation consulting services	CO3	L3
	Compiled from Module Applications. Standby or emergency power Niche application, green power co-genration Emergency power system	Compiled from Module Applications. CO1 Standby or emergency power CO1 Niche application, green power CO2 co-genration CO2 Emergency power system CO2

	Uninterrupted power supply		
4	Transmission and distribution Deferal	CO4	L3
	Peak shaving		
5	Demand response	CO5	L4
	Reserves		

3. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	-	Course Outcomes	Program Outcomes					_										
М	CO.#	At the end of the course	Ρ	Ρ	Ρ	Ρ	Ρ	P	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	L
od		student should be able to	0	0	0	0	0	0	0	0	0	0	0	0	S	S	S	е
ule			1	2	3	4	5	6	7	8	9	1	1	1	0	0	0	V
S												0	1	2	1	2	3	el
1	CO1	Analyze and explain the	2	2				2	2						2			
		Electric Energy generation by																
		renewable energy sources																
		such as solar, wind and to																
		choose locations to install																
		them.																
2	CO2	Explain the impact of	2	2	2										2			
		distributed generation on																
		power system-overloading																
		and losses.																
3	CO3	Explain the impact of	3	3	2										3			
		distributed generation on																
		voltage magnitude variations																
		of the power system.																
4	CO4	Explain the impact of	2	3														
		distributed generation on																
		Power quality disturbances of																
	<u> </u>	the power system.																
5	CO5	Explain the effects of integration of distributed	3	2											2			
		generation on power system																
		stability and reliability.																
	15EE662.	Average																
-	PO, PSO	1.Engineering Knowledge; 2.Prob	lon		nal	Veic	· 21	Γρε	ian		Γον	مام	nm	ont	of	Sol	lutic	- nc'
	10,150	4.Conduct Investigations of Com																
		and Society; 7.Environment and																
		10.Communication; 11.Project Ma																
		Apply fundamental knowledge to identify, formulate, design and investigate various problems of electrical and electronic circuits, power electronics, and power systems.																
		PSO 2: Use latest Electrical and E																ng,
		manufacturing, maintenance o																
		components.PSO 3: Manage the																
		type of machinery, Conductors, E																
		operational parameters and sof																
		achieve reliability and economico																

4. Curricular Gap and Content

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Mo	Gap Topic	Actions	Schedule	Resources	PO Mapping
du		Planned	Planned	Person	
les					

1			
2			

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation.

M	Title	Tea				tion in			СО	Leve
0	THEO	ch.	CIA	CIA	CIA	Asg	Extr	SEE	00	ls
d		Hou	-1	-2	-3	, log	a	ULL		
ul		rs	-	_			Asg			
es							1.1.3			
1	Distributed Generation:	8	2	-	-	1	0	2	CO1	L2
	Introduction, Sources of Energy -									
	Wind Power, Solar Power,									
	Combined									
	Heat-and-Power, Hydro power,									
	Tidal Power, Wave Power,									
	Geothermal Power, Thermal									
	Power Plants									
2	Distributed Generation	8	2	-	-	1	0	2	CO2	L2
	(continued): Interface with the									
	Grid.									
	Power System Performance:									
	Impact of Distributed Generation on the Power System, Aims of									
	the Power System, Hosting									
	Capacity Approach, Power									
	Quality, Voltage Quality and									
	Design of Distributed Generation,									
	Hosting Capacity Approach for									
	Events, Increasing the Hosting									
	Capacity.									
	Overloading and Losses: Impact									
	of Distributed Generation,									
	Overloading: Radial Distribution									
	Networks, Overloading:									
	Redundancy and Meshed									
	Operation, Losses									
3	Overloading and	8	-	2	-	1	0	2	CO3	L3
	Losses(continued):Increasing the									
	Hosting Capacity. Voltage Magnitude Variations:									
	Impact of Distributed Generation,									
	Voltage Margin and Hosting									
	Capacity, Design of Distribution									
	Feeders, A Numerical Approach									
	to Voltage Variations, Tap									
	Changers with Line-Drop									
	Compensation, Probabilistic									
	Methods for Design of									
	Distribution Feeders									
4	Voltage Magnitude Variations	8	-	2	-	1	0	2	CO4	L3
	(continued): Statistical Approach									
	to Hosting Capacity, Increasing									
	the Hosting Capacity.									
	Power Quality Disturbances:									
	Impact of Distributed Generation,									

	Fast Voltage Fluctuations, Voltage Unbalance									
5	Power Quality Disturbances (continued):Low-Frequency Harmonics, High-Frequency Distortion, Voltage Dips, Increasing the Hosting Capacity	8	-	-	4	1	0	2	CO5	L4
-	Total	40	4	4	4	5	5	10	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

M	Evaluation	Weightage in Marks	CO	Levels
d				
ul es				
1, 2	CIA Exam – 1	15	CO1, CO2	L2
3, 4	CIA Exam – 2	15	CO3, CO4	L3
5	CIA Exam – 3	15	CO5	L4
1, 2	Assignment - 1	05	CO1, CO2	L2
3, 4	Assignment - 2	05	CO3, CO4	L3
5	Assignment - 3	05	CO5	L4
1, 2	Seminar - 1		-	-
3, 4	Seminar - 2		-	-
5	Seminar - 3		-	_
1, 2	Quiz - 1		-	-
3, 4	Quiz - 2		_	-
5	Quiz - 3		-	-
1 - 5	Other Activities – Mini Project	-		
	Final CIA Marks	20	-	-

D1. TEACHING PLAN - 1

Module - 1

Title:	Distribution Generation	Appr	8 Hrs
		Tim	
		e:	
a	Course Outcomes	CO	Bloo
			ms
	Analyze and explain the Electric Energy generation by renewable energy	CO1	L2
	sources such as solar, wind and to choose locations to install them.		

b	Course Schedule	-	-
Class No	Portion covered per hour	-	-
1	DistributedGeneration-Introduction to distributed generation	CO1	L2
2	Source of Energy-Wind Power Plants	CO1	L3
3	Source of Energy-Solar Power Plants	CO1	L3
4	Source of Energy-Combined heat and Power	CO1	L3
5	Source of Energy-Hydro Power Plants	CO1	L3
6	Source of Energy-Wave Power Plants	CO1	L3
7	Source of Energy-Geothermal Power Plants	CO1	L3
8	Source of Energy- Thermal Power Plants	CO1	L3
с	Application Areas		
-	Students should be able employ / apply the Module learnings to		
1	emergency power supply	CO1	L2
2	cogenration	CO1	L3
d	Review Questions		
- 1	How is DG being integrated into national power sector planning	CO1	L2
2	How are the objectives of DG efforts being established.	CO1	 L2
3	How clearly articulated are the direct and indirect objectives of the distributed-generation effort?	CO1	L2
4	How clear are the links between distributed-generation efforts and other development goals?	CO1	L2
5	how are choices made between competing priorities?	CO1	L2
6	How inclusive, transparent, and effective is the process for stakeholder participation in the identification of objectives?	CO1	L2
7	How are DG targets established?	CO1	L2
8	How well do targets reflect supply conditions, as well as present and future energy demand profiles?	CO1	L2
е	Experiences	_	-
1			
2			

Title:	Power system performance and overloading ,losses	Appr	8Hrs
		Tim	
		e:	
a	Course Outcomes	CO	Bloo
			ms
-		-	Level
	Explain the impact of distributed generation on power system-overloading and losses.	CO2	L2
b	Course Schedule	-	-
Class No	Portion covered per hour	-	-
1	DistributedGeneration-Interface with grid	CO2	L2
2	Power system performance- Impact of DG on power system	CO2	L2

3	Hosting capacity approach	CO2	L3
4	Power quality and voltage quality, design of distributed generation	CO2	L3
5	Hosting capacity approach for events	CO2	L3
6	Methods of increasing the hosting capacity	CO2	L4
7	Overloadingandlosses- impact of DG, Overloading in radial distribution networks	CO2	L2
8	Overloading in Redundancy and meshed operations and losses	CO2	L2
С	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	Emergency power system	CO2	L2
2	Resource dynamics cooperation consulting services	CO2	L2
d	Review Questions	-	-
- 9	How inclusive, transparent, and effective is the process for stakeholder	CO2	L2
9	participation in monitoring and evaluation?		
10	How effective is the process for monitoring and evaluating stated targets?	CO2	L2
11	What mechanisms are in place to monitor and respond to changes in energy demand over time?	CO2	L2
12	How clear and effective are policies for transitioning from DG if the central grid arrives?	CO2	L2
13	How effective are processes for the periodic review of tariffs?	CO2	L2
14	What safeguards against unanticipated policy and regulatory changes exist?	CO2	L2
15	What kinds of DG ownership models have been used successfully in the project context?	CO2	L2
16	What are the advantages and disadvantages of the different ownership and delivery models in the project context?	CO2	L2
е	Experiences		
1			
2			

E1. CIA EXAM – 1

a. Model Question Paper - 1

Crs Coo		15EE833	Sem:	8	Marks:	30	Time:	75 minut	tes	
Со. :	urse	Integratior	n of Distrib	ution gene	eration					
-	-	Note: Answer all questions, each carry equal marks. Module : 1, 2						Mar ks	СО	Lev el
1	a	Explain with neat sketch wind power plant.						7	CO1	L2
	b	Explain with neat sketch solar power plant.					8	CO1	L2	
					OR					
2	а	What is hydro power? Explain with neat sketch.				7	CO1	L2,L 3		
	b	Wright sho	ort note or	n thermal F	Power plant.			8	CO1	L2

3	a	How Power plants are interface with grid? Explain.	8	CO2	L2
	b	Explain current quality and voltage quality in power system	7	CO2	L2
		OR			
4	а	With a neat sketch Explain tidal power plant.	8	CO2	L2
	b	What are the steps taken to increase Hosting capacity.	7	CO2	L2

b. Assignment -1

				Мос	lel Assignmen	t Questions				
Crs Code	:	15EE83 3	Sem:	8	Marks:	5 / 10	Time:	90 - 120) minute	es
Cours	se:	Integratio	on of Distribu	uted gen	erations	Module :	1,2			
SNo	Ρο	wer quality	disturbanc	es				Appr Tim e:	8 Hrs	Lev el
1	Ho	w is DG be	ing integrat	ed into n	ational power	sector plan	ning	5	CO1	L2
2	Но	w are the c	objectives o	f DG effo	rts being estat	olished.		5	CO1	L2
3			rticulated a eneration ef		rect and indire	ct objective	s of the	5	CO1	L2
4	1	w clear are /elopment		etween o	listributed-ger	neration effo	orts and other	5	CO1	L2
5	how are choices made between competing priorities?						5	CO1	L2	
6	How inclusive, transparent, and effective is the process for stakeholder participation in the identification of objectives?						5	CO1	L2	
7	How are DG targets established?					5	CO1	L2		
8	futi	ure energy	demand pr	ofiles?	y conditions, a			5	CO1	L2
9			e, transparer n monitoring		fective is the p aluation?	process for s	stakeholder	5	CO2	L2
10	Ho				nonitoring and	evaluating	stated	5	CO2	L2
11	Wh	at mechar ergy dema	nd over time	ə?	monitor and re		•	5	CO2	L2
12	Ho	w clear and ntral grid a	d effective a	ire polici	es for transitio	ning from D	G if the	5	CO2	L2
13				ses for th	ne periodic rev	view of tariff	s?	5	CO2	L2
14	exis	st?	C		pated policy a	<u> </u>	, 0	5	CO2	L2
15	pro	ject conte	xt?	•	els have been		-	5	CO2	L2
16			advantages nodels in th		advantages of t context?	the differen	t ownership	5	CO2	L2

D2. TEACHING PLAN - 2

Title:	Voltage magnitude variations	Арр	8 Hrs
		r	
		Tim	

		e:	
а	Course Outcomes	со	Bloo ms
-	At the end of the topic the student should be able to	-	Level
	Explain the impact of distributed generation on voltage magnitude variations of the power system.	CO3	L3
b	Course Schedule		
Class No	Portion covered per hour	-	-
1	Overloading and losses- methods of increasing the hosting capacity	CO3	L3
2	Voltage Magnitude variation- impact of DG	CO3	L2
3	Voltage margin and hosting capacity	CO3	L3
4	Design of distribution feeders	CO3	L4
5	Design of numerical approach to voltage variations	CO3	L4
6	Tap changers with line-drop compensation	CO3	L3
7	Probabilistic methods for design of distribution feeders	CO3	L3
8	Problems	CO3	L3
с	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	Transmission and Distribution Deferal	CO3	L3
2	Peak shaving	CO3	L3
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
17	Explain the methods of Increasing the Hosting Capacity.	CO3	L3
18	Explain the Impact of Distributed Generation in distribution system	CO3	L3
19	How to calculate Voltage Margin and Hosting Capacity in distribution system	CO3	L3
20	Obtain the steps to be followed for Design of Distribution Feeders	CO3	L3
21	Explain the Numerical Approach to Voltage Variations	CO3	L3
22	Explain the conditions to be retained in Tap Changers	CO3	L3
23	What is the function of Line-Drop Compensation	CO3	L3
24	Explain the Probabilistic Methods for Design of Distribution Feeders	CO3	L3
е	Experiences	-	-
1			
2			

a	Course Outcomes	e: CO	Bloo
		Tim	
		r	
Title:	Voltage variations and power quality disturbances	Арр	8 Hrs

-	At the end of the topic the student should be able to	-	Leve
	Explain the impact of distributed generation on Power quality disturbances of the power system.	CO4	L3
b	Course Schedule		
Class No	Portion covered per hour	-	-
1	Voltage Magnitude Variations- introduction	CO4	L1
2	Statistical Approach to Hosting Capacity	CO4	L2
3	Increasing the Hosting Capacity	CO4	L2
4	Problems	CO4	L2
5	Power Quality Disturbances- Impact of Distributed Generation	CO4	L1
6	Fast Voltage Fluctuations	CO4	L2
7	Voltage Unbalance	CO4	L2
8	Problems	CO4	L2
с	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	Demand response	CO4	L3
2	Reserves	CO4	L3
d	Review Questions		
-	The attainment of the module learning assessed through following questions	-	-
25	What are the reasons for Voltage Magnitude Variations	CO4	L3
26	Explain the Statistical Approach to achieve Hosting Capacity	CO4	L3
27	Explain the different Methods to improve Hosting Capacity	CO4	L3
28	How the improvement in Increasing the Hosting Capacity can be achieved	CO4	L3
29	Define Power Quality Disturbances? what are the reasons for their occurrence	CO4	L3
30	What is voltage sag? What is voltage swell	CO4	L3
31	What is meant by Fast Voltage Fluctuations	CO4	L3
32	Explain the reasons for Voltage Unbalance.	CO4	L3
е	Experiences	-	-
<u> </u>		C07	L2

E2. CIA EXAM – 2

a. Model Question Paper - 2

C	crs	15EE833	Sem:	8	Marks:	30	Time:	75 r	75 minutes			
Co	ode:											
Со	urse :	Integration	egration of Distribution generation									
-	-	Note: Ansv	Note: Answer all questions, each carry equal marks. Module : 3, 4							Lev el		
1	а	Explain the	e methods o	8	CO3	L3						

COURSE PLAN - CAY 2019-20

	b	Obtain the steps to be followed for Design of Distribution Feeders	7	CO3	L3
		OR			
2	a	What is the function of Line-Drop Compensation	7	CO3	L3
	b	Explain the Probabilistic Methods for Design of Distribution Feeders	8	CO3	L3
3	a	What are the reasons for Voltage Magnitude Variations	8	CO4	L3
	b	Explain the different Methods to improve Hosting Capacity	7	CO 4	L3
		OR			
4	а	Explain the Statistical Approach to achieve Hosting Capacity	7	CO4	L3
	b	Explain Fast Voltage Fluctuations and the also mention the reasons for their occurrence.	8	CO4	L3

b. Assignment – 2

			Model	Assignment	Questions						
Crs Code:	15EE83 3	Sem	VIII	Marks:	5	Time:	90 - 120	0 – 120 minutes			
Course:	Integra	ation of Dist	ribution ge	neration	Modu	le : 3, 4					
SNo			Assignm	ent Descript	ion		Mar ks	со	Lev el		
17	Explain	the method	s of Increas	sing the Host	ing Capacit	у.	5	CO3	L3		
18	Explain	the Impact	of Distribute	ed Generatio	n in distribu	tion system	5	CO3	L3		
19		calculate Vo ion system	oltage Març	gin and Hosti	ng Capacity	/ in	5	CO3	L3		
20			be followe	d for Design	of Distributi	on Feeders	5	CO3	L3		
21	Explain	the Numeri	cal Approa	ch to Voltage	e Variations		5	CO3	L3		
22	Explain the conditions to be retained in Tap Changers						5	CO3	L3		
23	What is	What is the function of Line-Drop Compensation						CO3	L3		
24	Explain	the Probabi	listic Metho	ods for Desig	n of Distribu	ition Feeders	5 5	CO3	L3		
25	What ar	e the reaso	ns for Volta	ge Magnituc	le Variations	5	5	CO4	L3		
26	Explain	the Statistic	al Approac	h to achieve	Hosting Ca	pacity	5	CO4	L3		
27	Explain	the differen	t Methods t	o improve H	osting Capa	acity	5	CO4	L3		
28	achieve	d		asing the Ho	C .	-	5	CO4	L3		
29	occurre	nce	-	nces? what a		ons for their	5	CO4	L3		
30	What is	voltage sag	j? What is v	oltage swell			5	CO4	L3		
31	What is	meant by F	ast Voltage	e Fluctuations	S		5	CO4	L3		
32	Explain	the reasons	for Voltage	e Unbalance.			5	CO4	L3		

D3. TEACHING PLAN - 3

Title:	Power quality disturbances	Арр	8 Hrs
		r Tim e:	
a	Course Outcomes	CO	Bloo ms
-	At the end of the topic the student should be able to	-	Level
	Explain the effects of integration of distributed generation on power system stability and reliability	CO 5	L4
b	Course Schedule	-	-
Class No	Portion covered per hour	-	-
1	Power Quality Disturbances- introduction	CO 5	L2
2	Low-Frequency Harmonics	CO 5	L2
3	High-Frequency Distortion	CO 5	L2
4	Voltage Dips	CO 5	L2
5	Increasing the Hosting Capacity	CO 5	L2
6	Introduction to methods to reduce harmonics	CO 5	L2
7	Introduction to methods to reduce frequency distortion	CO 5	L2
8	Introduction to methods to reduce voltage dips	CO 5	L2
с	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	Demand response	CO 5	L4
2	Reserves	CO 5	L4
لم	Review Questions		
d -	The attainment of the module learning assessed through following questions	-	-
33	What are the reasons for Power Quality Disturbances	CO 5	L2
34	Why the Fast voltage fluctuations will occur	5 CO 5	L2
35	What are the reasons for Voltage unbalance	CO 5	L4
36	Explain Low frequency harmonics and the causes for it	CO 5	L2
37	Explain High frequency Distortion and the reason for its cause	CO 5	L4
38	What is meant by Voltage Dips? Why does it occurs	CO 5	L2
39	What is meant by Voltage raise? Why does it occurs	CO	L4

		5	
40	How to increase Hosting Capacity?	CO	L2
		5	
е	Experiences	-	-
1			
2			

E3. CIA EXAM – 3

a. Model Question Paper - 3

	Crs ode	15EE833	Sem:	VIII	Marks:	30	Time:	75 mini	75 minutes				
Co	urse :	Integration	of Distribut	tion gene	raton								
-	-	Note: Ansy	wer all que	stions, ea	ch carry equa	l marks. I	Module : 5	Mar ks	СО	Lev el			
1	a	What are t	he reasons		8	CO9	L4						
	b	Explain Hig	gh frequenc	7	CO9	L4							
			OR										
2	а	Explain Lo	w frequenc	7	CO9	L4							
	b	What are the reasons for Voltage unbalance							CO9	L4			
3	a	What is me	eant by Volt	age raise	? Why does it	occurs		8	CO1 0	L2			
	b	What are t	he reasons	for Powe	r Quality Distu	bances		7	CO1 0	L2			
					OR								
2	a	What is meant by Voltage Dips? Why does it occurs							CO1 0	L2			
	b	How to inc	8	CO1 0	L2								

b. Assignment – 3

	Model Assignment Questions												
Crs	17EE83	Sem:	VIII	Marks:	5	Tir	ne:	90 - 120	es				
Code:	3												
Course:	Integratio	on of Distrib	uted genera	tions	Modu	le : 5							
SNo	SNo Assignment Description									Lev			
										el			
33	What are the reasons for Power Quality Disturbances								CO5	L2			
34	Why the I	Fast voltage	e fluctuation	s will occur				5	CO5	L2			
35			s for Voltage					5	CO5	L4			
36	Explain Lo	ow frequen	cy harmonic	s and the c	auses fo	r it		5	CO5	L2			
37	Explain H	igh frequer	cy Distortior	n and the re	ason for	its cause	9	5	CO5	L4			
38	What is meant by Voltage Dips? Why does it occurs							5	CO5	L2			
39	What is meant by Voltage raise? Why does it occurs							5	CO5	L4			
40	How to in	crease Hos	ting Capacit	y?				5	CO5	L2			

F. EXAM PREPARATION

1. University Model Question Paper

Cours	se:	Integration c	of Distributed	generation			Month Year	/	June 2019	e /
Crs Co	ode:	15EE833	Sem:	VIII	Marks:	80	Time:		180 180	tos
Mod ule	No te	Answer all F	IVE full ques	stions. All que	estions carry e	equal marks.		Mar ks	CO	Le
1	a	Explain the r	properties ar	nd space requ	uirements of s	solar power		08	1	2
	b				arge hydro wi		tions in	08	1	2
				OR						
2	а	function of v	vind speed		ver and powe			08	1	3
	b	List the reasons for the new type of power production in powe system						08	1	2
3	a	Discuss any	two scheme	es of interfaci	ng distributed	l generation :	to arid	08	2	2
5	b				aims of pow			08	2	2
				OR						
4	a	Explain the full power electronic coupling with grid							2	2
	b	Write a note generation	on current	and voltage	quality conce	erned to dist	ributed	08	2	2
5	a				in distributed			08	3	2
	b	Explain adva	anced prote	ction scheme	e in distributed	d generation		08	3	3
				OR						
6	а	With neat di variations	agram expla	ain two stage	boosting co	ncerned to N	/oltage	10	3	3
	b	Explain basi	c rules of Dis	stribution fee	ders			8	3	2
7	a	Explain fast	fluctuations	in wind and s	olar power			8	4	3
	b	Explain how control	hosting ca	pacity can be	e increased b	by dynamic v	/oltage	8	4	3
				OR						
8	a				transmission			8	4	2
	b	Explain stro connected t			em in distr	ibuted gen	eration	8	4	3
9	a	Explain low generators	frequency	harmonics	in induction	and synch	ronous	8	5	3
	b	Explain abo		alanced and	d unbalance	d voltage o	dips in	8	5	3

		OR			
10	a	Explain parallel and series resonance concerned with harmonics	8	5	2
	b	Explain how hosting capacity can be increased by strengthening the grid and by emissions the generator limit	8	5	3

2. SEE Important Questions

Course:		Integration of Distributed generation Mont Year					Month Year	n /	June /201g	June /2019	
Crs Code:		15EE833	Sem:	VIII	Marks:	80	Time:	ime:		180 minutes	
	No te	Answer all FIVE full questions. All questions carry equal marks.						-	-		
Mo du le	Qn o.	Important Question						Mar ks	со	Ye ar	
1	a Explain the properties and space requirements of solar power							08	1	2	
	b	Explain the properties of small and large hydro with their variations in time						08	1	2	
2	а	Explain the full power electronic coupling with grid						08	2	2	
	b	Write a note on current and voltage quality concerned to distributed generation							2	2	
3	а	With neat diagram explain two stage boosting concerned to voltage variations						10	3	3	
	b Explain basic rules of Distribution feeders							8	3	2	
4	а	Explain voltage unbalance in weaker transmission systems						8	4	2	
	b	Explain stronger Distribution system in distributed generation connected to unbalance voltage						8	4	3	
5	а	Explain parallel and series resonance concerned with harmonics						8	5	2	
	b	Explain how hosting capacity can be increased by strengthening the grid and by emissions the generator limit						8	5	3	
L								I	I		