Ref No:

Sri krishna Institute of Technology Bangalore

COURSE PLAN

Academic Year 2019-20

Program:	B E – Electronics & Electronics Engineering
Semester :	8
Course Code:	15EE82
Course Title:	Industrial Drives and Applications
Credit / L-T-P:	4 / 4-0-0
Total Contact Hours:	40
Course Plan Author:	Chaitra A S

Academic Evaluation and Monitoring Cell

Sri Krishna Institute of Technology #29,Chimney hills,Hesaraghata Main road, Chikkabanavara Post Bangalore – 560090, Karnataka, INDIA Phone / Fax :08023721477/28392221/23721315 Web: www.skit.org.in , e-mail: <u>skitprinci@gmail.com</u>

Table of Contents

A. COURSE INFORMATION	4
1. Course Overview	4
2. Course Content	
<u>3. Course Material</u>	5
4. Course Prerequisites	6
5. Content for Placement, Profession, HE and GATE	<u>6</u>
B. OBE PARAMETERS	6
1. Course Outcomes	
2. Course Applications	7
3. Mapping And Justification	
4. Articulation Matrix	8
5. Curricular Gap and Content	<u>8</u>
6. Content Beyond Syllabus	9
C. COURSE ASSESSMENT.	9
1. Course Coverage	
2. Continuous Internal Assessment (CIA)	10
D1. TEACHING PLAN - 1	
Module - 1	
Module – 2	
E1. CIA EXAM – 1.	
a. Model Question Paper - 1	
b. Assignment -1	
D2. TEACHING PLAN - 2	
Module – 3	
Module – 4	
E2. CIA EXAM – 2.	
a. Model Question Paper - 2	
b. Assignment – 2	
D3. TEACHING PLAN - 3	
Module – 5	
E3. CIA EXAM – 3	
a. Model Question Paper - 3	
b. Assignment – 3	
F. EXAM PREPARATION	
1. University Model Question Paper	
2. SEE Important Questions	
G. Content to Course Outcomes	
1. TLPA Parameters	
2. Concepts and Outcomes:	<u>30</u>

Note : Remove "Table of Content" before including in CP Book

Each Course Plan shall be printed and made into a book with cover page

Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	EE
Semester:	8	Academic Year:	2019
Course Title:	Industrial Drives and Applications	Course Code:	15EE82
Credit / L-T-P:	4 / 4-0-0	SEE Duration:	180 Minutes
Total Contact Hours:	40 Hours	SEE Marks:	80 Marks
CIA Marks:	20 Marks	Assignment	1 / Module
Course Plan Author:	Chaitra A S	Sign	Dt:
Checked By:		Sign	Dt:
CO Targets	CIA Target : %	SEE Target:	%

Note: Define CIA and SEE % targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute. Identify 2 concepts per module as in G.

Mod	Content	Teachi	Identified Module	Blooms
ule	Content	ng	Concepts	Learning
		Hours	0011000010	Levels
1	Electrical Drives : Electrical Drives, Advantages of Electrical Drives. Parts of Electrical Drives, Choice of Electrical Drives, Status of dc and ac Drives. Dynamics of Electrical Drives : Fundamental Torque Equations, Speed Torque Conventions and Multi quadrant Operation. Equivalent Values of Drive Parameters, Components of Load Torques, Nature and Classification of Load Torques, Calculation of Time and Energy Loss in Transient Operations, Steady State Stability, Load Equalization. Control Electrical Drives : Modes of Operation, Speed Control and Drive Classifications, Closed	12 (5,7)	Choice of Electric drives Dynamics of Electric drives	Lavets L3,L4
2	Ioop Control of Drives. Selection of Motor Power Ratings: Thermal Model of Motor for Heating and Cooling, Classes of Motor Duty, Determination of Motor Rating. Direct Current Motor Drives: Controlled Rectifier Fed dc Drives, Single Phase Fully Controlled Rectifier Control of dc Separately Excited Motor, Single Phase Half Controlled Rectifier Control of dc Separately Excited Motor, Three Phase Fully Controlled Rectifier Control of dc Separately Excited Motor, Three Phase Half Controlled Rectifier Control of dc Separately Excited Motor, Multiquadrant Operation of dc Separately Excited Motor Fed Form Fully Controlled Rectifier ,Rectifier Control of dc Series Motor, Supply Harmonics, Power Factor and Ripple in Motor Current, Chopper Control of Separately Excited dc Motor, Chopper Control of Series Motor.	(5.7)	selection of motor Power rating Control of DC motor Drives	L3, L4
3	Induction Motor Drives: Analysis and Performance of Three Phase Induction Motors, Operation with Unbalanced Source Voltage and Single Phasing, Operation with Unbalanced Rotor Impedances, Analysis of Induction Motor Fed From Non-Sinusoidal Voltage Supply, Starting, Braking, Transient Analysis. Speed Control Techniques-Stator Voltage Control, Variable Voltage Frequency Control from Voltage Sources	(5,6)	Operation of Induction motor drives Performance of Induction motor drives	L3.L4
4	Induction Motor Drives (continued): Voltage Source Inverter (VSI) Control, Cycloconverter Control, Closed Loop Speed Control and Converter Rating for VSI and Cycloconverter Induction Motor Drives, Variable Frequency Control from a Current Source, Current Source (CSI) Control, current regulated voltage source inverter control, speed control of	(5,6)	Control of Induction motor drives	L3,L4

	Versus Stepping rate Characteristics, Drive Circuits for Stepper Motor. Industrial Drives: Textile Mills, Steel Rolling Mills, Cranes and Hoists, Machine Tools. Total	57	Application		
	Permanent Magnet ac (PMAC) Motor Drives, Sinusoidal PMAC Motor Drives, Brushless dc Motor Drives. Stepper Motor Drives: Variable Reluctance, Permanent Magnet, Important Features of Stepper Motors, Torque		Industrial		
5	Synchronous Motor Drives (continued): Self-controlled synchronous motor drive employing load commutated thruster inverter, Starting Large Synchronous Machines,	(6,5)	Control synchronous motor drives	of	L4, L4
	single phase induction motors. Synchronous Motor Drives: Operation from fixed frequency supply-starting, synchronous motor		Performance of Synchronous motor		

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 – 30 minutes

2. Design: Simulation and design tools used – software tools used ; Free / open source

3. Research: Recent developments on the concepts – publications in journals; conferences etc.

Modul	Details	Chapters	Availability
es		in book	
	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
	Fundamentals of Electrical Drives, Gopal K. Dubey, Narosa Publishing	1,	In Lib / In Dept
4, 5	House, 2nd Edition, 2001	2,3,4,5,	
		6	
	Electrical Drives: Concepts and Applications (Refer to chapter 07 for	2, 4	In Lib
	Industrial Drives under module 5.), Vedum Subrahmanyam, McGraw Hill,		
	2nd Edition, 2011		
	Reference books (Title, Authors, Edition, Publisher, Year.) Electric Drives, N.K De,P.K. Sen, PHI Learning, 1 st Edition, 2009	- 6	-
5		0	In Lib
	Concept Videos or Simulation for Understanding	-	-
	Basics of electric drives		
	https://www.youtube.com/watch?v=Ub-csHc4VhA 15 Mins		
C2	Speed torque characteristics and multi-quadrant operation,		
	load equalization.		
	https://www.youtube.com/watch?v=-L-weKRfDao: 28 mins		
	https://www.youtube.com/watch?v=fn6dk508F1c: 58 mins		
C3	Selection of motor rating for electrical drives		
	https://www.youtube.com/watch?v=hDQqcloXeA4: 44 mins		
C4	Nptel videos on DC motor electrical drives		
	https://nptel.ac.in/courses/108105062/32; 54mins		
C5	Nptel videos on Induction motor electrical drives		
	https://nptel.ac.in/courses/108105062/32		
C6	Nptel videos on Induction motor electrical drives		
	https://www.youtube.com/watch?v=96hvtQ8Qlvo		
C7	Nptel vedios on Synchronous motor drives		
	<u> https://www.youtube.com/watch?v=b24jORRoxEc</u>		

	COURSE PLAN - CAY 2019-20	BE-0-EE-SKII-PN5DI-F02-V2.2
C8	Nptel vedios on Synchronous motor drives	
	https://www.youtube.com/watch?v=E5CjfBRwoTo	
C9	Nptel vedios on Stepper motor drives	
	https://nptel.ac.in/courses/108104011/30	
C10	Vedios on paper mill drive,traction drives	
	https://www.youtube.com/watch?v=5RTuDefPHYE	
	https://www.youtube.com/watch?v=r5noJwqB6Hw	
D	Software Tools for Design	
	CAED tool for electrical drive design	
	National Instruments for circuit design	
E	Recent Developments for Research	
	Industrial Automation <u>https://ieeexplore.ieee.org/abstract/</u>	
	<u>document/6891996</u>	
F	Others (Web, Video, Simulation, Notes etc.)	
1	https://nptel.ac.in/courses/108104011/40	

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Mod	Course	Course Name	Topic / Description		Remarks	Blooms
ules	Code					Level
1	15ELN15	Basic	1. Knowledge on Basic working	2	-	L2
		Electronics				
2	15EE53	Power	FET, MOSFET, BJT, IGB ⁻	Г З	-	L3
		Electronics	Characteristics			
3	15EE44	Electric Motors	Knowledge DC Motor, Induction	n 4		L3
			motors			

Students must have learnt the following Courses / Topics with described Content

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Mod	Topic / Description	Area	Remarks	Blooms
ules				Level
	Synchronous machine models, transient and sub transient behavior.	Study	Gap A seminar on Synchronous machine transient and sub - transient behavior.	Understa nd L2
U U	Small machines used in drives for consumer goods	Higher Study	Gap A seminar on Small machines used in drives	Understa nd L2

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs. Identify a max of 2 Concepts per Module. Write 1 CO per Concept.

Mod	Course	Course Outcome	Teach.	Concept	Instr	Assessme	Blooms'
15EE82 Copyright ©2017. cAAS. All rights reserved.							reserved.

	BE-8-EE-SKIT-Ph5b1-F02-V2.2 COURSE PLAN - CAY 2019-20						
ules	Code.#	At the end of the course, student should be able to	Hours		Method	nt Method	Level
1	15EE82.1	Explain choice of electric drives by knowing its parts and advantages.		Choice of Electric drives	Lecture	Unit Test	L3 Apply
1	15EE82.2	Explain dynamics and different modes of operation of electric drives.		Dynamics of Electric drives	Lecture/ PPT	Assignme nt	L4 Analyze
2	15EE82.3	Selection of motor Power rating for a given electric drive application.	05	Selection of motor Power rating	Lecture	Assignme nt and unit Test	L3 Applying
2	15EE82.4	Control of DC motor using controlled rectifiers.	07	Control of DC motor Drives	Lecture / PPT	Assignme nt	L4 Analyze
3	15EE82.5	Operation of Induction motor with different conditions of source voltages.		Operation of Induction motor drives	Lecture	unit test	L3 Apply
3	15EE82.6	Analyze the performance of induction motor drives under different conditions.		Performan ce of Induction motor drives	Lecture and Tutorial	Assignme nt	L4 Analyze
4	15EE82.7	Control of induction motor using different type of Inverters.	05	Control of Induction motor drives	Lecture	Assignme nt and Unit Test	L3 Apply
4	15EE82.8	Analyze the performance of synchronous motor	06	Performan ce of Synchrono us motor	Lecture	Assignme nt	L4 Analyze
5	15EE82.9	Control of synchronous motor and Stepper motor drives under different conditions.		Control of synchrono us motor drives	Lecture / PPT	Assignme nt and Unit Test	L4 Analyze
5	15EE82.10	Propose a suitable electrical drive for specific application in the industry.		Industrial Application		Assignme nt	L4 Analyze
-	-	Total	57	-	-	-	L3-L4

2. Course Applications

Write 1 or 2 applications per CO. Students should be able to employ / apply the course learnings to . . .

Mod		CO	Level
ules	Compiled from Module Applications.		
1	Both AC and DC drives are used for the different operations in a cranes and hoists.	CO1	L4
	The preferred drives on consideration of economy end utility		
2	DC motors are used for load hoisting and lowering where smooth, precise and at the same time fast speed control is required as in the case of cranes used in steel plants, power houses and concrete dams		L4

	COURSE PLAN - CAY 2019-20		
2	Permanent magnet DC motors are used extensively in small DC motors and to an increasing extent in traction applications.	CO3	L4
2	DC motors drives are inexpensive to manufacture and are used in variable speed household appliances such as sewing machines and power tools.	CO4	L4
3	Induction motors drives are mainly used in Compressors, conveyors and crushers widely use this type of motor.	CO5	L4
3	Normal starting current, high starting torque (double cage) squirrel cage motors with direct-on-line starters are used for conveyers drives because they have often to start with full load.	CO6	L3
4	The squirrel cage induction motors and synchronous motors are used for driving blowers and fans and compressors.	CO8	L3
4	Centrifugal pumps are driven by squirrel-cage induction motors or synchronous motors. Reduced voltage starters can be used because of low starting torque requirements	C07	L4
5	Stepper motor drives are used in computer peripherals, textile industry, IC fabrications and robotics.	CO9	L4
5	Stepper motor drives are used in high speed pick and place equipment and multi axis machine, CNC machines etc.	CO9	L4
5	Industrial drives are used in textile industry, steel mills, paper mills and cement mills Machine tool applications, Coal mining, Centrifugal pumps and Turbo compressors etc.	CO10	L4

3. Mapping And Justification

CO – PO Mapping with mapping Level along with justification for each CO-PO pair.

To attain competency required (as defined in POs) in a specified area and the knowledge & ability required to accomplish it.

requ	irea ic	acco	mplish it.	-	
Mod		ping	Mapping	Justification for each CO-PO pair	Lev
ules			Level		el
-	CO	PO	-	'Area': 'Competency' and 'Knowledge' for specified 'Accomplishment'	-
1	CO1	PO1	2.5	<i>Engineering Knowledge :</i> Knowledge of drives,motors is required to choice an electric drive.	L2
1	CO1	PO2	2.5	<i>Problem Analysis :</i> Identify the different parts of electric drives and its advantage to analyse the choice of electric drive.	L2
1	CO2	PO1	2.5	<i>Engineering Knowledge:</i> Knowledge of electric drives is required to know its dynamics	L2
1	CO2	PO2	2.5	<i>Problem Analysis:</i> Analyse the operation of electric drives in different modes of operations.	L3
1	CO2	PO3	2.5	<i>Design Solutions:</i> Analysing multi-quadrant operation and designing translational and rotational loads.	L3
2	CO3	PO1	2.5	Knowledge of different electric motors is required for selection of electric motor power rating.	L2
2	CO3	PO2	2.5	Analyses of electric drives for selection of electric motor power rating.	L3
2	CO4	PO1	2.5	Knowledge on DC motor and its types are required for Control of DC motor	L2
2	CO4	PO2	2.5	Analysis of DC motor using controlled rectifiers.	L3
2	CO4	PO3	2.5	Design of DC motor drives with different types of controlled rectifiers and choppers.	L4
3	CO5	PO1	2.5	Knowledge on induction motor and its types are required for Control of induction motor.	L2
3	CO5	PO2	2.5	Analysis of induction motor with different conditions of source voltages.	L3
3	CO6	PO1	2.5	Knowledge on induction motor and its control methods are required for Control of induction motor.	L2
3	CO6	PO2	2.5	Analyze the performance of induction motor drives under different conditions.	L3
3	CO6	PO3	2.5	Design of induction motor drives with different types of starting and braking systems.	L4
4	CO7	PO1	2.5	Knowledge on induction motor and its control methods are required for Control of induction motor.	L2
15EE8	2			Copyright ©2017. cAAS. All rights reserved.	

				COURSE PLAN - CAY 2019-20	- VZ.Z
4	CO7	PO2	2.5	Analyse the different control techniques used in induction motor.	L3
4	CO7	PO3	2.5	Design of induction motor drives with different types of control	L4
				techniques using inverters.	
4	CO8	PO1	2.5	Knowledge on synchronous motor and its types are required to analyse the performance.	L2
4	CO8	PO2	2.5	Analyze the performance of synchronous motor.	L3
5	CO9	PO1	2.5	Knowledge on synchronous motor and stepper motor and its control	L2
				methods are required.	
5	CO9	PO2	2.5	Control of synchronous motor and Stepper motor drives under different conditions.	L3
5	CO9	PO3	2.5	Design of drives using different control techniques using cycloconverter and inverters.	L4
5	CO10	PO1	2.5	Knowledge on different electrical drives used in industry are required for a specific applications.	L2
5	CO10	PO2	2.5	Analysis of different electrical drives used in industry are required for a specific applications.	L3
5	CO10	PO9	2.5	Projects can be carried out using different control techniques in electrical drive system.	L3

4. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-		Course Outcomes Program Outcomes						rogi			/					-		
Mod	CO.#	At the end of the course	PO	PO	PO	PO								PO	PS	PS	PS	Lev
ules		student should be able to	1	2	3	4	5	6	7	8	9	10	11	12	O1	02	О3	el
1		Explain choice of electric drives by knowing its parts and advantages.																L3
1		Explain dynamics and different modes of operation of electric drives.																L4
2		Selection of motor Power rating for a given electric drive application.																L3
2		Control of DC motor using controlled rectifiers.																L4
3		Operation of Induction motor with different conditions of source voltages.		2.5	2.5													L3
3	-	Analyze the performance of induction motor drives under different conditions.		2.5	2.5													L4
4		Control of induction motor using different type of Inverters.	2.5	2.5	2.5													L3
4	-	Analyze the performance of synchronous motor	2.5	2.5														L4
5		Control of synchronous motor and Stepper motor drives under different conditions.																L4
5	_	Propose a suitable electrical drive for specific application in the industry.		2.5							2.5							L4
-		Average attainment (1, 2, or 3)																-
-		1.Engineering Knowledge; 2.Probl 4.Conduct Investigations of Compl Society; 7.Environment and Sl 10.Communication; 11.Project N S1.Software Engineering; S2.Data E	lex ustc 1an	Pro aina age	bler bilit eme	ns; ;y; ent	5.M 8.E ar	ode thic d	ern :s; Firi	Tool 9.Ir nanc	l Us ndiv ce;	age vidu 12	e; 6. al	The an	e En d	ngin Tea	eer mw	and ′ork;

5. Curricular Gap and Content

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Mod	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
ules					
1	Small machines used in	Seminar	2 nd week / date	Dr XYZ, Inst	List from B4
	drives				above
2	A seminar on	Seminar	3 rd Week/	-	List from B4
	Synchronous machine				above
	transient and sub -				
	transient behavior.				

6. Content Beyond Syllabus

Topics & contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Mod	Gap Topic	Area	Actions Planned	Schedule	Resources	PO Mapping
ules				Planned	Person	
1	ANSYS HFSS - High			3 rd week / date	Dr ABC, Inst.	List from B4
	Frequency Software	GATE,	students & Mini		Self	above
	Simulation Tool	Higher	Project			
		Study,				
		Entreprene				
		urship.				
1	Antenna Fabrication		Presentation	?	Self	
	process					
2						
2						
3						
3						
4						
4						
5						
5						

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

	Industrial Drives Total	58	4	4		5	5	10		
	(continued) Stepper Motor Drives					_		_		
	Synchronous Motor Drives	11		-	4	1	1	2	CO9, CO10	L4. L4
1 1	Induction Motor Drives (continued) Synchronous Motor Drives	11	-	2	-	1	1	2	CO7, C08	L3, L4
3	Induction Motor Drives	12	-	2	-	1	1	2	CO5, CO6	L3, L4
	Selection of Motor Power Ratings Direct Current Motor Drives	12	2	-	-	1	1	2	CO3, CO4	L3, L4
	Dynamics of Electrical Drives Control Electrical Drives								,	
1	Electrical Drives	12	2	-	-	1	Asg 1	2	CO1, CO2	1314
ules		Hours	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE		
Mod	Title	Teach.			f quest		Exam		CO	Levels

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2. 15EE82 Copyright ©2017. cAAS. All rights reserved.

		COURSE PLAN - CA		8-EE-SKII-Ph5b1-F02-V2.2
Mod		Weightage in	СО	Levels
ules		Marks		
1, 2	CIA Exam – 1	15	CO1, CO2, CO3, CO4	L3, L4, L3, L4
3, 4	CIA Exam – 2	15	CO5, CO6, CO7, C08	L3, L4, L3, L4
5	CIA Exam – 3	15	CO9, CO10	L4, L4
	Assignment - 1	05	CO1, CO2, CO3, CO4	L3, L4, L3, L4
	Assignment - 2	05	CO5, CO6, CO7, CO8	L3, L4, L3, L4
5	Assignment - 3	05	CO9, CO10	L4, L4
1, 2	Seminar - 1		-	-
3, 4	Seminar - 2		-	-
5	Seminar - 3		-	-
1, 2	Quiz - 1		-	-
3, 4	Quiz - 2		-	-
5	Quiz - 3		-	-
1 - 5	Other Activities – Mini Project	-	-	-
	Final CIA Marks	20	-	-

D1. TEACHING PLAN - 1

Module - 1

Title:	Microwave Tubes And Microwave Transmission Lines	Appr	12 Hrs
		Time:	
a	Course Outcomes	СО	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Explain choice of electric drives by knowing its parts and advantages.	CO1	L3
2	Explain dynamics and different modes of operation of electric drives.	CO2	L4
b	Course Schedule	_	-
Class No	Portion covered per hour	-	-
1	Electrical Drives: Electrical Drives, Advantages of Electrical Drives.	C01	L3
2	Parts of Electrical Drives, Choice of Electrical Drives	C01	L2
3	Status of dc and ac Drives.	C01	L3
4	Dynamics of Electrical Drives: Fundamental Torque Equations.	C02	L4
5	Speed Torque Conventions and Multi quadrant Operation.	C02	L4
6	Equivalent Values of Drive Parameters	C02	L4
7	Components of Load Torques	C02	L4
8	Nature and Classification of Load Torques	C02	L4
9	Calculation of Time and Energy Loss in Transient Operations	C02	L3
10	Steady State Stability, Load Equalization	C02	L4
11	Control Electrical Drives: Modes of Operation, Speed Control and Drive Classifications	C02	L4
12	Closed loop Control of Drives.	C02	L4
с	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	Both AC and DC drives are used for the different operations in a cranes and hoists. The preferred drives on consideration of economy end utility	CO1	L4
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	With basic block diagram, explain the essential element of electric drive.	C01	L3
2	Explain the speed torque conventions and Multi quadrant Operation?	C02	L3
3	Derive the expression for the equivalent load torque and equivalent moment	C02	L3

	COURSE PLAN - CAY 2019-20	inter trige	1-1 02-12.2
	of inertia for loads with translational and rotational motion		
4	What are the advantages of an electric drive? Mention the factors on which the choice of electrical drive depends	C01	L3
5	Explain the components of load torque.		
6	What are load torque components? Define active and passive load torques.	CO2	L4
7	What is an electric drive? Mention the factors which decide the choice of electrical drive.	CO2	L4
8	What is load equalization? How it is achieved in industry	CO2	L4
9	Describe the steady state stability in the drive system. Derive the required condition for stability.	CO2	L4
е	Experiences	-	-
1		CO1	L2
2			

Module – 2

Title:	Microwave network theory and Microwave passive devices	Appr Time:	7 Hrs
a	Course Outcomes	CO	Bloom
-	At the end of the topic the student should be able to	_	Level
1	Selection of motor Power rating for a given electric drive application.	CO3	L3
2	Control of DC motor using controlled rectifiers.	CO4	L4
b	Course Schedule	_	_
	Portion covered per hour	_	_
13	Selection of Motor Power Ratings: Thermal Model of Motor for Heating and Cooling	CO3	L3
14	Classes of Motor Duty	CO3	L3
15	Determination of Motor Rating.	CO3	L3
16	Direct Current Motor Drives: Controlled Rectifier Fed dc Drives	CO4	L4
17	Single Phase Fully Controlled Rectifier Control of dc Separately Excited Motor	CO4	L4
18	Single Phase Half Controlled Rectifier Control of dc Separately Excited Motor	CO4	L4
19	Three Phase Fully Controlled Rectifier Control of dc Separately Excited Motor	CO4	L4
20	Three Phase Half Controlled Rectifier Control of dc Separately Excited Motor	CO4	L4
21	Multiquadrant Operation of dc Separately Excited Motor Fed Form Fully Controlled Rectifier	CO4	L4
22	Rectifier Control of dc Series Motor	CO4	L3
23	Supply Harmonics, Power Factor and Ripple in Motor Current	CO4	L3
24	Chopper Control of Separately Excited dc Motor, Chopper Control of Series Motor	CO4	L3
с	Application Areas	_	-
-	Students should be able employ / apply the Module learnings to	-	-
1	DC motors are used for load hoisting and lowering where smooth, precise and at the same time fast speed control is required as in the case of cranes used in steel plants, power houses and concrete dams	CO3	L4
2	Permanent magnet DC motors are used extensively in small DC motors and to an increasing extent in traction applications.	CO3	L4
3	DC motors drives are inexpensive to manufacture and are used in variable speed household appliances such as sewing machines and power tools.	CO4	L4
d	Review Questions	_	-
-	The attainment of the module learning assessed through following questions	_	-
1	With usual notations, derive an expression for temperature rise of a machine. Sketch the temperature rise versus time curve.	CO3	L3

Copyright ©2017. cAAS. All rights reserved.

	COURSE PLAN - CAY 2019-20		1102 12.2
2	Derive an expression to obtain the power rating for short time duty loads.	CO3	L3
3	Obtain the thermal model of motor for heating and cooling. Also draw the heating and cooling.	CO3	L3
4	Derive the expression of overloading factor 'k' while selecting the main rating, for intermittent periodic duty.	Co3	L3
5	Derive the expression to determine the power rating for continuous duty, fluctuating and intermittent loads by equivalent current, and torque and power methods.	CO3	L3
6	Explain the working of Single-phase half controlled rectifier for continuous mode of operation	CO4	L5
7	Explain the dynamic braking operation of separately excited dc motor. Draw its speed torque characteristics.	CO4	L2
8	With dynamic equivalent circuit, explain the transient analysis of separately excited dc motor.		L3
9	Explain the reverse voltage braking with diagrams of D.C of separately excited dc motor.		L3
10	Explain the plugging of D.C of separately excited dc motor and draw its speed torque characteristics.	CO4	L4
11	Explain the motoring control and regenerative braking of chopper control of separately excited dc motor.	CO4	L3
12	Explain the multi-quadrant operation of D.C of separately excited dc motor using Single-phase fully controlled rectifier with a reversing switch	CO4	L4
13	Explain the chopper control of separately excited dc motor for regenerative braking	CO4	L3
14	With a neat circuit diagram and waveform, explain the chopper control of series motor.	CO4	L4
15	Explain the dynamic braking of separately excited by chopper circuit.	CO4	L4
16	Explain the rectifier control of d.c series motor and draw its speed torque curve	CO4	L4
17	With circuit diagram and waveforms explain three phase fully controlled rectifier control of separately excited dc motor.	CO4	L4
е	Experiences	-	-
1		CO3	L2
2			

E1. CIA EXAM – 1

a. Model Question Paper - 1

Crs Code:		15EE82	Sem:8	I	Marks:	30	Time:	75 n	ninutes	S	
Cour	se:	Industrial D	rives and A								
-	-	Note: Answ	ver all que	stions, each	carry equa	l marks.	Module : 1, 2	N	Marks	CO	Level
1	а	Obtain an moment o motion.			20	CO2	L3				
	b	With basic	block diag	ram, Explain	the essent	ial parts o	of electric drive.			CO1	L2
	С		What are the advantages of an electric drive system? What is the status of ac and dc drives?								L2
					OR						
1	а	Explain the motor drivir		•	ntion and f	our quac	Irant operation	of a	20	CO2	L4
	b	With a neat	t graph, ex	olain the vari	ous compo	nents of	load torque			CO1	L4
	С	Quadrant I, Quadrant I Where N is Tl=100 N-m	II and IV: T I, III and IV: s the spee 1 and wher		Im I, N-m nen hoist is ed, net loa	loaded, d torque	the net load tor Tl=-80, N-m. Ob			CO2	L3
	d	What is loa	d equaliza	tion? How it i	s achieved	in indust	ry			CO2	L2

-

-

_

2	а	Derive an expression to obtain the power rating for short time duty loads.	20	CO3	L3
	b	With a neat diagram, explain the regenerative & dynamic braking.		CO4	L2
	С	Explain the working of Single-phase half controlled rectifier for		CO4	L2
		continuous mode of operation			
		OR			
2	а	Obtain the thermal model of motor for heating and cooling. Also draw the heating and cooling.	20	CO3	L3
	b	With a neat circuit diagram and waveform, explain the chopper control of series motor.		CO4	L4
	С	With dynamic equivalent circuit, explain the transient analysis of separately excited dc motor.		CO4	L4

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

11010	71015			<u>U</u>							
		_			iodel /		nt Questions				
Crs C	ode:	15EE82	Sem:	8		Marks:	5 / 10	Time:	90 - 120	minute	S
Cours	se:	Industria	al Drives and	Applica	ations						
Note:	Each	student	to answer 2-;	3 assigr	nment	s. Each as	signment ca	arries equal ma	ark.		
SNo		USN			Assigi	nment Des	scription		Marks	СО	Level
1	1KT15	EE007	With basic block diagram, explain the essential element of electric drive.						of 5	C01	L3
2	1KT15	EE009	Explain the speed torque conventions and Multi quadrant Operation?						nt 5	C02	L3
3	1KT15	EE012	equivalent r	Derive the expression for the equivalent load torque and equivalent moment of inertia for loads with translational and rotational motion						C02	L3
4	1KT15	EE014	factors on w	hich the	e cho	ice of elec	trical drive c	e? Mention th lepends	ne 5	C01	L3
5	1KT15	EE016	Explain the o						5		
6								/e 5	CO2	L4	
7	1KT15	EE021	What is an the choice c				n the factor	s which decid	de 5	CO2	L4
8	1KT14	EE022					achieved ir	industry	5	CO2	L4
		EE024	Describe the	What is load equalization? How it is achieved in industry Describe the steady state stability in the drive system. Derive the required condition for stability.						CO2	L4
10	1KT14	EE033	With usual r	With usual notations, derive an expression for temperature rise of a machine. Sketch the temperature rise versus time curve.					-	CO3	L3
11	1KT16	6EE408	Derive an e> duty loads.	pressic	on to o	obtain the	power ratin	g for short tim	ne 5	CO3	L3
12	1KT16	6EE406	Obtain the t Also draw th				or for heatin	ng and coolin	ig. 5	CO3	L3
13	1KT16	SEE409	Derive the e	xpressi	ion of	overloadi		while selectir	ng 5	C03	L3
14	1KT15	EE007	continuous	the main rating, for intermittent periodic duty. Derive the expression to determine the power rating for continuous duty, fluctuating and intermittent loads by equivalent current, and torque and power methods.						CO3	L3
15	1KT15	EE009	Explain the continuous r				e half contro	olled rectifier f	or 5	CO4	L5
16	1KT15	EE012	Explain the dc motor. Dr					parately excite	ed 5	CO4	L2
17	1KT15	EE014		ic equi	valen	t circuit, ex		ansient analys	sis 5	CO4	L3
18	1KT15	EE016		reverse	e volta	age brakir	ng with diag	grams of D.C	of 5	CO4	L3
19	1KT15	EE020		oluggin	g of C	.C of sepa		ed dc motor ar	nd 5	CO4	L4
20	1KT1F	EE021						tive braking	of 5	CO4	L3

		COURSE PLAN - CAY 2019-20	-0-LL-3N	.11-P11501-	1 02-02.2
		chopper control of separately excited dc motor.			
21	1KT14EE022	Explain the multi-quadrant operation of D.C of separately excited dc motor using Single-phase fully controlled rectifier with a reversing switch		CO4	L4
22	1KT14EE024	Explain the chopper control of separately excited dc motor for regenerative braking	5	CO4	L3
23	1KT14EE033	With a neat circuit diagram and waveform, explain the chopper control of series motor.	5	CO4	L4
24	1KT16EE408	Explain the dynamic braking of separately excited by chopper circuit.	5	CO4	L4
25	1KT16EE406	Explain the rectifier control of d.c series motor and draw its speed torque curve	5	CO4	L4
26	1KT16EE409	With circuit diagram and waveforms explain three phase fully controlled rectifier control of separately excited dc motor.	5	CO4	L4

D2. TEACHING PLAN - 2

Module – 3

Title:	Striplines And Antenna Basics	Appr Time:	12 Hrs
а	Course Outcomes	со	Bloom
-	At the end of the topic the student should be able to	-	Level
1	Operation of Induction motor with different conditions of source voltages.	CO5	L3
2	Analyze the performance of induction motor drives under different conditions.	CO6	L4
b	Course Schedule		
Class No	Portion covered per hour	-	-
1	Induction Motor Drives: Introduction	CO5	L3
2	Analysis and Performance of Three Phase Induction Motors	CO5	L3
3	Operation with Unbalanced Source Voltage and Single Phasing	CO5	L3
4	Operation with Unbalanced Rotor Impedances	CO5	L3
5	Analysis of Induction Motor Fed From Non-Sinusoidal Voltage Supply	CO5	L3
6	Starting, Braking	CO6	L4
7	Transient Analysis	CO6	L4
8	Speed Control Techniques-Stator Voltage Control	CO6	L4
9	Problems	CO6	L4
10	Variable Voltage Frequency Control from Voltage Sources	CO6	L4
11	Problems	CO6	L4
12	Problems		
с	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	Induction motors drives are mainly used in Compressors, conveyors and crushers widely use this type of motor.	CO5	L4
2	Normal starting current, high starting torque (double cage) squirrel cage motors with direct-on-line starters are used for conveyors drives because they have often to start with full load.		L3
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	Explain the effect of unbalanced source voltage and single phasing on the Induction motor performance.	CO5	L3
2	Explain the effect of unbalanced rotor impedance on the Induction motor performance	CO5	L2
3	With neat diagrams, explain the a.c. dynamic braking with two-lead connection of a wound rotor induction motor.	CO6	L3
4	With circuit diagram and waveforms explain the operation of VSI fed IM drives. Also sketch various schemes of VSI fed IM	CO5	L2

	COURSE PLAN - CAY 2019-20		1102 12.2
5	With a neat drive circuit, explain the static scherbius drive	CO6	L3
6	With a neat block diagram, explain the closed loop speed control with regenerative braking of an Induction Motor	CO6	L3
7	What is slip-power recovery in an IM	CO6	L2
8	Explain the variable for control of an IM & draw the speed torque curves	CO6	L4
9	Describe the operation of $3-\Phi$ induction motor operating with unbalanced source voltages & single phasing	CO5	L3
10	Explain the reverse voltage braking of an Induction motor	CO6	L3
11	Explain any 3 methods of starting of an Induction motor?	CO5	L4
12	A 400V, star connected, 3-Φ, 6 pole, 50Hz IM has the following parameters referred to the stator. Rs=Rr1=1Ω, Xs=Xr1=2Ω is to be braked by plugging from its initial full load speed of 950 rpm. Stator to rotor turns ratio is 2.3. (i) Calculate the initial braking current & torque as a ratio of their full load values. (ii) What resistance must be inserted in rotor circuit to reduce the maximum braking current to 1.5 times full load current? What will be initial braking torque now? A 2200V, 2600 KW, 735 rpm, 50Hz, 8 pole, 3-Φ squirrel cage induction motor		L3 L3
	has following parameters referred to the stator: Rs=0.075 Ω , Rr1=0.1 Ω , Xs=0.45 Ω , Xr1=0.55 Ω . Stator winding is delta connected & consist of 2 sections connected in parallel. Calculate starting torque & maximum torque as a ratio of rated torque, if the motor is started by star-delta switching. What is the maximum value of line current during starting?		
14	Explain the dynamic breaking and multiquadrant operation of voltage source inverter (VSI) induction motor drive.	CO6	L3
15	Explain plugging applied to a 3 -phase induction motor.	CO6	L2
е	Experiences	-	_
1		CO6	L2
2			
L			

Module – 4

Title:	Antenna Point sources and Arrays And Electric DIpoles	Appr	13 Hrs
		Time:	
a	Course Outcomes	со	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Control of induction motor using different type of Inverters.	CO7	L3
2	Analyze the performance of synchronous motor	C08	L4
b	Course Schedule		
Class No	Portion covered per hour	-	-
1	Induction Motor Drives (continued)	CO7	L3
2	Voltage Source Inverter (VSI) Control	C07	L3
3	Cycloconverter Control	CO7	L3
4	Closed Loop Speed Control	CO7	L3
5	Converter Rating for VSI and Cycloconverter Induction Motor Drives	CO7	L3
6	Variable Frequency Control from a Current Source	CO7	L3
7	Current Source (CSI) Control	CO7	L3
8	current regulated voltage source inverter control, speed control of single phase induction motors	C07	L3
9	Synchronous Motor Drives: Introduction	C08	L4
10	Operation from fixed frequency supply-starting	C08	L4
11	synchronous motor	CO8	L4
с	Application Areas	_	-
- -	Students should be able employ / apply the Module learnings to	_	
1	The squirrel cage induction motors and synchronous motors are used for driving blowers and fans and compressors.	CO8	L3
2	Centrifugal pumps are driven by squirrel-cage induction motors or synchronous motors. Reduced voltage starters can be used because of low		L4

	starting torque requirements		
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	Explain with diagram, the static rotor resistance control of an IM.	CO7	L2
2	What are the relative advantages and disadvantages of CSI & VSI drives?	CO7	L2
3	With a neat circuit diagram & waveforms, explain the operation of voltage source inverter fed IM drives	C07	L3
4	Explain the operation of variable frequency control from voltage sources.	CO7	L3
5	Describe the speed control of $3-\Phi$ induction motor by static rotor resistance control.	C07	L4
6	Why the slip power recovery scheme is suitable mainly for drives with a low speed range?	C07	L3
7	Explain static Kramer drive for slip recovery scheme.	CO7	L2
8	Describe the current source inverter control of induction motor	CO7	L3
9	Explain the dynamic breaking and multiquadrant operation of voltage source inverter(VSI) induction motor drive.	C07	L3
10	With circuit diagram, explain the Self-controlled synchronous motor drive employing load commutated thyristor inverter.	CO8	L3
11	With block diagram, explain the operation of variable frequency control of multiple synchronous motor drive.	CO8	L3
12	Explain the pull-in process in the operation synchronous motor fed from fixed fr supply.	CO8	L4
13	Explain with block diagram, closed loop speed control of load commutated inverter synchronous motor drive.	CO8	L4
14	Explain the operation of synchronous motor from fixed frequency supply	CO8	L2
е	Experiences	-	_
1		CO7	L2
2			

E2. CIA EXAM – 2

a. Model Question Paper - 2

Crs Code	e:	15EE82	Sem: 8	II	Marks:	30	Time:	75	minute	nutes				
Coui	rse:	Industrial [Drives and A	Applicatio	ns			·						
-	-	Note: Ansv	wer all ques	stions, ea	ch carry equa	l marks.	Module : 3, 4		Marks	СО	Level			
1	а		xplain the effect of unbalanced source voltage and single phasing on 20 ne Induction motor performance											
	b	Explain the	plain the variable for control of an IM & draw the speed torque curves											
	С	parameter by pluggin ratio is 2.3 their full lo to reduce	xplain the variable for control of an IM & draw the speed torque curvesCO5 $400V$, star connected, $3-\Phi$, 6 pole, $50Hz$ IM has the following arameters referred to the stator. Rs=Rr1=1 Ω , Xs=Xr1=2 Ω is to be braked y plugging from its initial full load speed of 950 rpm. Stator to rotor turns atio is 2.3. (i) Calculate the initial braking current & torque as a ratio of neir full load values. (ii) What resistance must be inserted in rotor circuit preduce the maximum braking current to 1.5 times full load current?CO6											
					OR									
1	а				plain the clos ction Motor	sed loop	speed control	l with	20	CO6	L3			
	b	What is sli	p-power red	covery in a	an IM					CO6	L2			
	С	motor has Rr1=0.1 Ω , X of 2 sectio	s following (s=0.45 Ω , Xr ns connect a ratio of	parame 1=0.55Ω. ed in para rated tore	eters referred Stator winding allel. Calculate que, if the mo	to the is delta starting otor is s	iirrel cage indu stator: Rs=0.0 connected & co torque & maxi tarted by star-	o75 Ω onsist mum delta		CO6	L3			

_

2		With a neat circuit diagram & waveforms, explain the operation of voltage source inverter fed IM drives	20	C07	L3
		Explain the pull-in process in the operation synchronous motor fed from fixed fr supply.		CO8	L4
	С	What are the relative advantages and disadvantages of CSI & VSI drives?		CO7	L2
		OR			
2		With circuit diagram, explain the Self-controlled synchronous motor drive employing load commutated thyristor inverter.	20	CO8	L3
		Describe the speed control of 3-Φ induction motor by static rotor resistance control.		C07	L3
	С	Describe the current source inverter control of induction motor		CO7	L4

b. Assignment – 2

Note: A distinct assignment to be assigned to each student.

			griment to t			Assignment		5			
Crs C		15EE82	Sem:	8		Marks:	5 / 10	Time:	90 - 120	minute	S
Cours	se:	Industria	al Drives an	d Applica	tions						
Note:			to answer 2					arries equal ma			
SNo		JSN				nment Des			Marks	СО	Level
1	1KT15	EE007						tage and sing	le 5	CO5	L3
						motor perf					
2	1KT15	EE009	Induction r	notor per	form	ance		edance on th		CO5	L2
3	1KT15	EE012	two-lead c	onnectio	n of a	wound rot	or inductio			CO6	L3
4	1KT15	EE014		0				he operation of VSI fed IM	of 5	CO5	L2
5	1KT15	EE016	With a nea	t drive cir	cuit,	explain the	static sche	erbius drive	5	CO6	L3
6	1KT15	EE020			•	ram, explai braking of		sed loop spee on Motor	ed 5	CO6	L3
7	1KT15	EE021	What is slip	o-power r	recov	ery in an IM	1		5	CO6	L2
8	1KT14	EE022							ed 5	CO6	L4
9	1KT14	14EE024 Describe the operation of 3-Φ induction motor operating with unbalanced source voltages & single phasing						th 5	CO5	L3	
10	1KT14	EE033				ge braking		tion motor	5	CO6	L3
11	1KT16	EE408	Explain any	/ 3 methc	ds of	f starting of	an Inductio	on motor?	5	CO5	L4
12	1KT16	EE406	parameters be braked rpm. Stato braking cu What resis	s referred by plugg r to rotor rrent & to tance mu braking o	to the ging turn orque ist be currer	he stator. R from its init is ratio is 2 as a ratio inserted ir nt to 1.5 tim	s=Rr1=1Ω, tial full loa t.3. (i) Calo of their full n rotor circu	as the followir Xs=Xr1=2Ω is t d speed of 95 culate the initi l load values. (uit to reduce th d current? What	ii)	CO6	L3
13	1KT16	EE409	induction stator: Rs winding is in parallel. ratio of ra	motor ha =0.075Ω, delta cor Calculate ted torqu	as fo Rr1ª nnect e sta ue, if	llowing pa =0.1Ω, Xs= ed & consis rting torque the moto	rameters 0.45Ω, Xr st of 2 sect e & maxim r is starte	Φ squirrel cag referred to th 1=0.55Ω. State tions connecte oum torque as d by star-del e current durin	ne or ed a ta	CO6	L3
-	voltage source inverter (VSI) induction motor drive.							of 5	CO6	L3	
		EE009				to a 3 -pha			5	CO6	L2
16	1KT15	EE012	Explain wit	h diagrar:	n, th	e static rote	or resistan	ce control of a	in 5	CO7	L2

		COURSE PLAN - CAY 2019-20			-
17	1KT15EE014	What are the relative advantages and disadvantages of CSI & VSI drives?	5	CO7	L2
18	1KT15EE016	With a neat circuit diagram & waveforms, explain the operation of voltage source inverter fed IM drives	5	CO7	L3
19	1KT15EE020	Explain the operation of variable frequency control from voltage sources.	5	CO7	L3
20	1KT15EE021	Describe the speed control of $3-\Phi$ induction motor by static rotor resistance control.	5	CO7	L4
21	1KT14EE022	Why the slip power recovery scheme is suitable mainly for drives with a low speed range?	5	CO7	L3
22	1KT14EE024	Explain static Kramer drive for slip recovery scheme.	5	CO7	L2
23	1KT14EE033	Describe the current source inverter control of induction motor	5	CO7	L3
24	1KT16EE408	Explain the dynamic breaking and multiquadrant operation of voltage source inverter(VSI) induction motor drive.	5	CO7	L3
25	1KT16EE406	With circuit diagram, explain the Self-controlled synchronous motor drive employing load commutated thyristor inverter.	5	CO8	L3
26	1KT16EE409	With block diagram, explain the operation of variable frequency control of multiple synchronous motor drive.	5	CO8	L3
27	1KT15EE007	Explain the pull-in process in the operation synchronous motor fed from fixed fr supply.	5	CO8	L4
28	1KT15EE009	Explain with block diagram, closed loop speed control of load commutated inverter synchronous motor drive.	5	CO8	L4
29	1KT15EE012	Explain the operation of synchronous motor from fixed frequency supply	5	CO8	L2
30	1KT15EE014	Explain with diagram, the static rotor resistance control of an IM.	5	CO7	L2

D3. TEACHING PLAN - 3

Module - 5

Title:	Loop and Horn Antenna and Antenna Types	Appr	10 Hrs
		Time:	
a	Course Outcomes	со	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Control of synchronous motor and Stepper motor drives under different conditions.	CO9	L4
2	Propose a suitable electrical drive for specific application in the industry.	CO10	L4
b	Course Schedule	-	-
Class No	Portion covered per hour	-	-
1	Synchronous Motor Drives (continued)	CO9	
2	Self-controlled synchronous motor drive employing load commutated thruster inverter	CO9	L4
3	Starting Large Synchronous Machines	CO9	L3
4	Permanent Magnet ac (PMAC) Motor Drives	CO9	L4
5	Sinusoidal PMAC Motor Drives	CO9	L3
6	Brushless dc Motor Drives	CO9	L3
7	Stepper Motor Drives: Variable Reluctance	CO10	L3
8	Permanent Magnet, Important Features of Stepper Motors, Torque Versus Stepping rate Characteristics	CO10	L3
9	Drive Circuits for Stepper Motor.	CO10	L4
10	Industrial Drives: Textile Mills, Steel Rolling Mills	CO10	L4
11	Cranes and Hoists, Machine Tools	CO10	L4
С	Application Areas	-	-
-	Students should be able employ \checkmark apply the Module learnings to \ldots	-	-
1	Stepper motor drives are used in computer peripherals, textile industry, IC fabrications and robotics.	CO9	L4
2	Stepper motor drives are used in high speed pick and place equipment and	COg	L4
15EE82	Copyright ©2017. CAAS. All rig		

	COURSE PLAN - CAY 2019-20	,	
	multi axis machine, CNC machines etc.		
3	Industrial drives are used in textile industry, steel mills, paper mills and cement mills Machine tool applications, Coal mining, Centrifugal pumps and Turbo compressors etc.	CO10	L4
d	Review Questions	-	_
-	The attainment of the module learning assessed through following questions	-	-
1	With block diagram, explain the operation of variable frequency control of multiple synchronous motor drive.	CO9	L3
2	Explain the pull-in process in the operation synchronous motor fed from fixed fr supply.	CO9	L2
3	Explain with block diagram, closed loop speed control of load commutated inverter synchronous motor drive.	CO9	L2
4	Explain the operation of synchronous motor from fixed frequency supply	CO9	L3
5	How the operation of a synchronous motor shifts from motoring to regenerative breaking		L3
6	Explain the modes of variable frequency control of synchronous motor	CO9	L3
7	With a neat diagram, explain the operation of a self controlled synchronous motor drive employing load commutated thyristor inverter.	CO9	L3
8	Explain variable frequency control of multiple synchronous motors.	CO9	L2
9	Obtain the dynamic torque equation for the synchronous motor drives and explain its regenerative braking.	CO9	L3
10	What are the important features of stepper motor?	CO10	L2
11	Explain with a neat graph Torque Versus Stepping rate Characteristics.	CO10	L3
12	With the help of neat diagram explain Drive Circuits for Stepper Motor	CO10	L3
13	Write a technical note on (i) Textile Mills (ii) Steel Rolling Mills	CO10	L2
14	Classify the drives used in cement industry and explain them.	CO10	L3
15	What are the requirements in steel mills? Explain with reasons motor used in steel mills.		L2
16	Explain the reversing and continuous rolling mill drives with selection of motors and their ratings	CO10	L3
17	Explain with neat dia, screw down operation in a rolling mill drive	CO10	L3
18	Explain the drives used in textile mill and explain briefly, any one of them.	CO10	L4
19	Explain clearly the driving motors used in the textile mill industry fir the different operations.	CO10	L4
20	What are the requirements in steel mills? Explain with reasons motor used in steel mills.	CO10	L4
е	Experiences	_	_
1		CO10	L2
-		CO9	

E3. CIA EXAM – 3

a. Model Question Paper - 3

Crs		15EE82	Sem:	8	Marks:	30	Time: 7	5 minute	minutes		
Code):										
Cour	se:	Industrial D	rives and A	Applications							
-	-	Note: Answ	ote: Answer all questions, each carry equal marks. Module : 5						со	Level	
1	а	With block	With block diagram, explain the operation of variable frequency control						CO9	L3	
		multiple sy	multiple synchronous motor drive								
	b	Explain the		CO9	L3						
	С			explain the o					CO9	L3	
		synchronou	us motor d	rive employir	ng load con	nmutated	thyristor inverter.				
					OR						
2	a Explain the pull-in process in the operation synchronous motor fed from						n 20	CO9	L4		
		fixed fr supply.									
	b	Explain variable frequency control of multiple synchronous motors.							CO9	L3	
15FF8	2						Copyright ©2017 cA	AS All right	ts reserv	red	

Copyright ©2017. cAAS. All rights reserved.

-

_

3	а	What are the important features of stepper motor?	20	CO10	L2
	b	Explain with a neat graph Torque Versus Stepping rate Characteristics.		CO10	L3
		What are the requirements in steel mills? Explain with reasons motor used in steel mills.		CO10	L3
		OR			
4		Explain clearly the driving motors used in the textile mill industry fir the different operations	20	C010	L3
	b	Explain with neat dia, screw down operation in a rolling mill drive		CO10	L2
	С	Explain the drives used in textile mill and explain briefly, any one of them.		CO10	L3

b. Assignment – 3

Note: A distinct assignment to be assigned to each student.

			-	Mode	el Assignment	Questions				
Crs C		15EE82	Sem:	8	Marks:	5 / 10	Time:	90 - 120	minute	S
Cours			al Drives and A							
			to answer 2-3				rries equal m		1	
SNo		USN			gnment Desc	cription		Marks		Level
1		EE007	Differentiate between VSI and CSI.						CO10	L3
2	1KT15	EE009	Explain the synchronous		of variable	frequen	cy control	of 5	CO9	L3
3	3 1KT15EE012 With a neat diagram, explain the operation of a self controlle synchronous motor drive employing load commutated thyristor inverter.						d 5	CO9	L3	
4	1KT15	EE014	motors.	•	-		e synchrono		CO9	L2
		EE016	motor drives	and expla	in its regenera	ative brakir	•	us 5	CO9	L3
6	1KT15	EE020			features of s			5	CO10	L2
7	1KT15	EE021	Explain with Characteristic		graph Torqu	le Versus	Stepping ra	te 5	CO10	L3
8	1KT14	EE022		With the help of neat diagram explain Drive Circuits for Stepper Motor					CO10	L3
9	1KT14	EE024	Write a techr	ical note o	on (i) Textile M	lills (ii) Stee	l Rolling Mills	5	CO10	L2
10	1KT14	EE033	Classify the c	lrives used	d in cement in	dustry and	explain them	ı. 5	CO10	L3
11	1KT16	EE408	What are the motor used ir			nills? Expla	ain with reaso	ns 5	CO10	L2
12	1KT16	EE406	Explain the r selection of r			us rolling	mill drives wi	th 5	CO10	L3
13	1KT16	EE409	Explain with drive	neat dia,	screw down	operation	in a rolling m	nill 5	CO10	L3
14	1KT15	EE007	Explain the d one of them.	rives used	l in textile mill	and explai	n briefly, any	5	CO10	L4
15	1KT15	EE009	Explain clear industry fir th		ng motors us operations.	ed in the te	extile mill	5	CO10	L4
16	1KT15	EE012	With block frequency co				on of variab or drive.	le 5	CO9	L3
17	1KT15	EE014	Explain the motor fed fro			e operatio	n synchrono	us 5	CO9	L2
18	1KT15	EE016	Explain with I	olock diag			control of loa	ad 5	CO9	L2
19	1KT15	EE020		operatior			tor from fixe	ed 5	CO9	L3
20	1KT15	EE021		peration of		onous mot	or shifts fro	m 5	CO9	L3

F. EXAM PREPARATION

1. University Model Question Paper

Cours	se:	Industrial Drives and Applications Month	/ Year	May //	2018
Crs C		15EE82 Sem: 8 Marks: 80 Time:8		180 m	
Mod ule	Note	Answer all FIVE full questions. All questions carry equal marks.	Marks	со	Leve
1	а	Derive the expression for the equivalent load torque and equivalen moment of inertia for loads with translational and rotational motion	t 16 / 20	CO1	L3
	b	What are the advantages of an electric drive? Mention the factors or which the choice of electrical drive depends	า	CO1	L2
	С	What are load torque components? Define active and passive load torques.	b	CO1	L3
		OR			
-	a	What is an electric drive? Mention the factors which decide the choice c electrical drive.	f 16 / 20	CO1	L2
	b	What is load equalization? How it is achieved in industry		CO2	L2
	С	Describe the steady state stability in the drive system. Derive the required condition for stability.	k	CO2	L3
2	a	Derive the expression of overloading factor 'k' while selecting the main rating, for intermittent periodic duty.	n 16 / 20	C03	L3
	b	Obtain the thermal model of motor for heating and cooling. Also draw the heating and cooling.		CO3	L4
	С	With a neat circuit diagram and waveform, explain the chopper control c series motor	f	CO4	L4
		OR			
-	a	Derive an expression to obtain the power rating for short time duty loads.	16 / 20	CO3	L3
	b	Explain the working of Single-phase half controlled rectifier fo continuous mode of operation		CO4	L2
	С	Explain the dynamic braking operation of separately excited dc moto Draw its speed torque characteristics.	r.	CO4	L3
3	а	Explain the effect of unbalanced source voltage and single phasing on the Induction motor performance.	16 / 20	CO5	L3
	b	With a neat block diagram, explain the closed loop speed control with regenerative braking of an Induction Motor		CO6	L2
	C	A 400V, star connected, 3-Φ, 6 pole, 50Hz IM has the following parameters referred to the stator. Rs=Rr1=1Ω, Xs=Xr1=2Ω is to be braked by plugging from its initial full load speed of 950 rpm. Stator to rotor turns ratio is 2.3. (i) Calculate the initial braking current & torque as a ratio of their full load values. (ii) What resistance must be inserted in rotor circuit to reduce the maximum braking current to 1.5 times full load current? What will be initial braking torque now?		CO6	L3
-	а	Explain plugging applied to a 3 -phase induction motor.	16 / 20	CO5	L2
	b	What is slip-power recovery in an IM		CO5	L2
	С	A 2200V, 2600 KW, 735 rpm, 50Hz, 8 pole, 3- Φ squirrel cage induction motor has following parameters referred to the stator: Rs=0.075 Ω Rr1=0.1 Ω , Xs=0.45 Ω , Xr1=0.55 Ω . Stator winding is delta connected & consist of 2 sections connected in parallel. Calculate starting torque & maximum torque as a ratio of rated torque, if the motor is started by star-delta switching. What is the maximum value of line current during starting?	<u>2,</u> t n	CO6	L3
4	а	With a neat circuit diagram & waveforms, explain the operation of voltage source inverter fed IM drives	e 16 / 20	CO7	L3
	b	Explain the operation of variable frequency control from voltage sources.		C07	L3

		BE-8- COURSE PLAN - CAY 2019-20	EE-SKII	-Ph5b1-F	02-V2.2
	С	Explain with block diagram, closed loop speed control of load commutated inverter synchronous motor drive.		C08	L2
		OR			
	а	Describe the speed control of $3-\Phi$ induction motor by static rotor resistance control.	16 / 20	C07	L2
	b	With block diagram, explain the operation of variable frequency control of multiple synchronous motor drive.		CO8	L3
	С	Explain the pull-in process in the operation synchronous motor fed from fixed fr supply.		CO8	L3
5	а	Explain clearly the driving motors used in the textile mill industry fir the different operations.	16 / 20	CO9	L4
	b	What are the important features of stepper motor?		CO10	L2
	С	Explain the modes of variable frequency control of synchronous motor		CO10	L3
		OR			
	а	What are the requirements in steel mills? Explain with reasons motor used in steel mills.	16 / 20	CO10	L4
	b	Explain with a neat graph Torque Versus Stepping rate Characteristics.	0	CO9	L3
	d	What are the differences between the Greedy and Dynamic programming methods of problem solving?			

2. SEE Important Questions

Course:		Industrial Drives and Applications Month	/ Year	May /	2018
Crs Code:		15EE82 Sem: 8 Marks: 100 Time:		180 m	inutes
	Note	Answer all FIVE full questions. All questions carry equal marks.	-	-	
	Qno.	Important Question	Marks	CO	Year
ule	1	What is an electric drive? Mention the factors which decide the choice o	f 16 /	CO1	2014
1	T	20		2014	
		What is load equalization? How it is achieved in industry		CO1	2014
		Describe the steady state stability in the drive system. Derive the required condition for stability.	k	CO2	2017
		Derive the expression for the equivalent load torque and equivalen moment of inertia for loads with translational and rotational motion	t	CO2	2017
	-	What are the advantages of an electric drive? Mention the factors or which the choice of electrical drive depends	ו	CO1	2015
2		Explain the working of Single-phase half controlled rectifier fo continuous mode of operation	r 16 / 20	CO3	2015
		Explain the dynamic braking operation of separately excited dc motor Draw its speed torque characteristics.		C04	2015
	-	Derive the expression of overloading factor 'k' while selecting the mair rating, for intermittent periodic duty.	ו	CO4	2009
	4	Obtain the thermal model of motor for heating and cooling. Also draw the heating and cooling.	è	CO3	2009
		With a neat circuit diagram and waveform, explain the chopper control o series motor	f	CO4	2014
3		Explain the effect of unbalanced source voltage and single phasing on the Induction motor performance.	16 / 20	CO5	2016
		With a neat block diagram, explain the closed loop speed control with regenerative braking of an Induction Motor		CO6	2016
	3	A 400V, star connected, 3-Φ, 6 pole, 50Hz IM has the following parameters referred to the stator. Rs=Rr1=1Ω, Xs=Xr1=2Ω is to be braked by plugging from its initial full load speed of 950 rpm. Stator to rotor turns ratio is 2.3. (i) Calculate the initial braking current & torque as a ratio of their full load values. (ii) What resistance must be inserted in rotor circuit		CO6	2017

		COURSE PLAN - CAY 2019-20			
		to reduce the maximum braking current to 1.5 times full load current? What will be initial braking torque now?			
	4	Explain plugging applied to a 3 -phase induction motor.		C05	2014
	5	What is slip-power recovery in an IM		CO6	2014
4	1	With a neat circuit diagram & waveforms, explain the operation of voltage source inverter fed IM drives	16 / 20	C07	2011
	2	Explain the operation of variable frequency control from voltage sources.		C07	2012
	3	Explain with block diagram, closed loop speed control of load commutated inverter synchronous motor drive.		CO8	2016
	4	Describe the speed control of $3-\Phi$ induction motor by static rotor resistance control.		C07	2014
	5	With block diagram, explain the operation of variable frequency control of multiple synchronous motor drive.		CO8	2017
5	1	What are the requirements in steel mills? Explain with reasons motor used in steel mills.	16 / 20	CO10	2011
	2	Explain with a neat graph Torque Versus Stepping rate Characteristics.	20	CO10	2017
	3	Explain clearly the driving motors used in the textile mill industry fir the		CO10	
		different operations.			2017
	4	What are the important features of stepper motor?		CO10	2014
	5	Explain the modes of variable frequency control of synchronous motor		CO9	2015

G. Content to Course Outcomes

1. TLPA Parameters

Table 1: TLPA – Example Course

		1		-			
Мо						Instructi	Assessment
dul				Bloo		on	Methods to
e-	similar concepts)	g Hours	Levels	ms'	Verbs for	Methods	Measure
#				Level	Learning	for	Learning
			Content			Learning	
A	В	С	D	Ε	F	G	Н
	Electrical Drives: Electrical Drives,	05	- L1	L3	- Explain	Lecture	Unit Test
	Advantages of Electrical Drives. Parts of		- L2				
	Electrical Drives, Choice of Electrical Drives,						
	Status of dc and ac Drives.						
1	Dynamics of Electrical Drives: Fundamental		- L1	L4	-Explain		Assignment
	Torque Equations, Speed Torque Conventions		- L2			PPT	
	and Multi quadrant Operation. Equivalent		- L3				
	Values of Drive Parameters, Components of						
	Load Torques, Nature and Classification of						
	Load Torques, Calculation of Time and Energy						
	Loss in Transient Operations, Steady State						
	Stability, Load Equalization. Control Electrical						
	Drives: Modes of Operation, Speed Control						
	and Drive Classifications, Closed loop Control						
	of Drives.						
	Selection of Motor Power Ratings: Thermal	05	- L2	L3	-	Lecture	Assignment
	Model of Motor for Heating and Cooling,		- L3		Selection		and unit
	Classes of Motor Duty, Determination of Motor				-Analyse		Test
	Rating.						
	Direct Current Motor Drives: Controlled	,	- L2	L4	-Control		Assignment
	Rectifier Fed dc Drives, Single Phase Fully		- L3			/ PPT	
	Controlled Rectifier Control of dc Separately						
	Excited Motor, Single Phase Half Controlled						
	Rectifier Control of dc Separately Excited						
	Motor, Three Phase Fully Controlled Rectifier						
	Control of dc Separately Excited Motor, Three						

	COURSE PL	AN - CAY :	2019-20				
	Phase Half Controlled Rectifier Control of dc						
	Separately Excited Motor, Multi quadrant						
	Operation of dc Separately Excited Motor Fed						
	Form Fully Controlled Rectifier ,Rectifier						
	Control of dc Series Motor, Supply Harmonics,						
	Power Factor and Ripple in Motor Current,						
	Chopper Control of Separately Excited dc						
	Motor, Chopper Control of Series Motor.	~-	1.4		Orenanda	1	
3	Induction Motor Drives: Analysis and	05	- L1	L3	-Operate	Lecture	unit test
	Performance of Three Phase Induction		- L3				
	Motors, Operation with Unbalanced Source		- L2				
	Voltage and Single Phasing, Operation with						
	Unbalanced Rotor Impedances,						
3	Analysis of Induction Motor Fed From Non-	06	- L3	L4			Assignment
	Sinusoidal Voltage Supply, Starting, Braking,		- L2		Analyse	and	
	Transient Analysis. Speed Control Techniques-				-	Tutorial	
	Stator Voltage Control, Variable Voltage						
	Frequency Control from Voltage Sources.						
4	Induction Motor Drives (continued): Voltage	05	- L3	L3	-Control	Lecture	Assignment
	Source Inverter (VSI) Control, Cycloconverter		- L1				and Unit
	Control, Closed Loop Speed Control and						Test
	Converter Rating for VSI and Cycloconverter						
	Induction Motor Drives, Variable Frequency				_		
	Control from a Current Source, Current						
	Source (CSI) Control						
4	Current regulated voltage source	06	- L3	L4	-Analvse	Lecture	Assignment
.	inverter control, speed control of		- L4		- ,		5
	•						
	single phase induction motors.						
	Synchronous Motor Drives: Operation from						
	fixed frequency supply-starting, synchronous						
	motor.						
5	Synchronous Motor Drives (continued): Self-	06	- L4	L4	-Control	Lecture	Assignment
	controlled synchronous motor drive		- L3		-		and Unit
	employing load commutated thruster						Test
	inverter, Starting Large Synchronous						
	Machines, Permanent Magnet ac (PMAC)						
	Motor Drives, Sinusoidal PMAC Motor Drives,						
	Brushless dc Motor Drives.						
5	Stepper Motor Drives: Variable Reluctance,	05	- L3	L4	-Analyse	Lecture	Assignment
	Permanent Magnet, Important Features of		- L4		-Propose		Ŭ I
	Stepper Motors, Torque Versus Stepping rate						
	Characteristics, Drive Circuits for Stepper						
	Motor.						
	Industrial Drives: Textile Mills, Steel Rolling						
	Mills, Cranes and Hoists, Machine Tools.						
			1	1			1

2. Concepts and Outcomes:

Table 2: Concept to Outcome – Example Course

Мо	Learning or	Identified	Final Concept	Concept	CO Components	Course Outcome
dul	Outcome	Concepts		Justification	(1.Action Verb,	
e-	from study of	from		(What all Learning	2.Knowledge,	
#	the Content	Content		Happened from the	3.Condition /	Student Should be
	or Syllabus			study of Content /	Methodology,	able to
				Syllabus. A short	4.Benchmark)	
				word for learning or		
				outcome)		
A	1	J	K	L	М	N

			CC	OURSE PLAN - CAY 2019-2		8-EE-SKII-Ph5b1-F02-V2.2
1	basics of Electric drives	Choice of Electric drives	Choice	Choice of electric	- Explain	Explain choice of electric drives and its Dynamics by knowing its parts
	- Advantages of Electric drives - Study of Dynamics of Electric drives					and advantages.
1	-Study of multi quadrant operation. -Study of Steady State Stability - Speed Control and Drive Classification s	- Dynamics of Electric drives -	Dynamics	Variation of torque and speed of an electric drive using multiquadrant operation.	- Explain -Dynamics of electric drives -Different quadrant of operation	Explain dynamics and Control of operation of electric drives.
2	thermal		Motor Power Rating	Selection and Determination of Motor Rating.	-Selection -motor power rating -Drive applications	Selection of motor Power rating for a given electric drive application.
2	Rating -Control of Rectifier Fed dc Drives	-Control of DC motor Drives -	Control	Control of DC motor drives using controlled rectifiers and choppers	-Control -DC motor Controlled -rectifiers	Control of DC motor drives using controlled rectifiers.
3	of Three Phase Induction	- Operation of Induction motor drives	Operation	Operation of induction motor drives with Unbalanced Source Voltage.	-Operation -Induction motoring -source voltage	Operation of Induction motor with different conditions of source voltages.
3	- Analysis of Induction Motor Fed From Non- Sinusoidal Voltage Supply - Speed Control Techniques	Performa nce of Induction motor drives	Performance	Performance of induction motor drives by different control techniques	-Analyse -Performance of induction motoring -source voltage	Analyze the performance of induction motor drives under different conditions.
4	-Study of Inverter fed	Control of Induction	Control	Control of induction motor drives by		Control of induction motor drives using

			CC	OURSE PLAN - CAY 2019-2		0-EE-SI(II-FII301-I 02-V2.2
	Induction motor drives -Study of Cycloconvert er fed Induction motor drives	motor drives		different control techniques	-Different types of inverters	different type of Inverters.
	motor drives.	Performa nce of Synchron ous motor		drives.	-Analyse -Performance of synchronous - Motoring	Analyze the performance of synchronous motor drives
5	-Study of Inverter fed	Control of synchron ous motor drives		drives using	-Control -Synchronous motor and Stepper motor drives -Different conditions.	Control of synchronous motor drives under different conditions.
	Stepper Motors		Applications	Study of some of the drives for industrial applications.	-Propose -Application in the industry. -Electrical drive	Propose a suitable electrical drive for specific application in the industry.