Ref No:

SKIT, Bangalore

COURSE PLAN

Academic Year - 2018-2019

Program:	B E – Electrical and Electronics		
Semester :	6		
Course Code:	15EEL68		
Course Title:	Digital signal processing Lab		
Credit / L-T-P:	2 / 0-0-2		
Total Contact Hours:	60		
Course Plan Author:	Likhitha R		

Academic Evaluation and Monitoring Cell

#29, Hesaraghatta Main Road, Chimney Hills, Chikkabanavara Post Bengaluru – 560090, Karnataka, INDIA Phone :080-23721477 Web: www.skit.org , e-mail:skitprinci1@gmail.com

INSTRUCTIONS TO TEACHERS

- Classroom / Lab activity shall be started after taking attendance.
- Attendance shall only be signed in the classroom by students.
- Three hours attendance should be given to each Lab.
- Use only Blue or Black Pen to fill the attendance.
- Attendance shall be updated on-line & status discussed in DUGC.
- No attendance should be added to late comers.
- Modification of any attendance, over writings, etc is strictly prohibited.
- Updated register is to be brought to every academic review meeting as per the COE.

Table of Contents

A. LABORATORY INFORMATION	4
1. Laboratory Overview	4
2. Laboratory Content	4
3. Laboratory Material	5
4. Laboratory Prerequisites:	5
5. Content for Placement, Profession, HE and GATE	5
B. Laboratory Instructions.	6
1. General Instructions	6
2. Laboratory Specific Instructions	6
C. OBE PARÁMETERS.	6
1. Laboratory Outcomes	6
2. Laboratory Applications	7
3. Mapping And Justification	8
4. Articulation Matrix	<u>8</u>
5. Curricular Gap and Experiments	9
6. Experiments Beyond Syllabus	9
D. COURSE ASSESSMENT	10
1. Laboratory Coverage	
2. Continuous Internal Assessment (CIA)	
E. EXPERIMENTS	11
Experiment 01 : Structure of C program	
Experiment 02 : Keywords and identifiers	
Experiment 03 :	<u>13</u>
Experiment 04 :	<u>13</u>
F. Content to Experiment Outcomes	14
1. TLPA Parameters	
2. Concepts and Outcomes:	

Note : Remove "Table of Content" before including in CP Book

Each Laboratory Plan shall be printed and made into a book with cover page Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

A. LABORATORY INFORMATION

1. Laboratory Overview

Degree:	B.E	Program:	EE
Year / Semester :	3/6	Academic Year:	2018-19
Course Title:	Digital Signal Processing Lab	Course Code:	15EEL68
Credit / L-T-P:	1+2	SEE Duration:	180 Minutes
Total Contact Hours:	42	SEE Marks:	80 Marks
CIA Marks:	20	Assignment	-
Lab. Plan Author:	Likhitha R	Sign	Dt :
Checked By:	HOD	Sign	Dt :

2. Laboratory Content

Expt.	Title of the Experiments	Lab Hours	Concept	Blooms Level
1	Verification of Sampling Theorem both in time and frequency domains	3	sampling	L4 Analyze
2	Evaluation of impulse response of a system	3	LTI response	L4
3	To perform linear convolution of given sequences	3	convolution	L4
4	To perform circular convolution of given sequences using (a) the convolution summation formula (b) the matrix method and (c) Linear convolution from circular convolution with zero padding.	3	System analysis	L4
5	Computation of N–point DFT and to plot the magnitude and phase spectrum.	3	Frequency Response	L4
6	Linear and circular convolution by DFT and IDFT method.	3	Frequency Response	L4
7	Solution of a given difference equation.	3	Frequency Response	L4
8	Calculation of DFT and IDFT by FFT	3	Fast fourier transform	L4
9	Design and implementation of IIR filters to meet given specification (Low pass, high pass, band pass and band reject filters)	3	IIR Filter	L4
10	Design and implementation of FIR filters to meet given specification (Low pass, high pass, band pass and band reject filters) using different window functions	3	FIR Filter	L4
11	Design and implementation of FIR filters to meet given specification (Low pass, high pass, band pass and band reject filters) using frequency sampling technique.	3	Frequenc y sampling	L4
12	Realization of IIR and FIR filters	3	Realizatio n	L4

3. Laboratory Material

Books & other material as recommended by university (A, B) and additional resources used by Laboratory teacher (C).

Expt.	Details	Expt. in	Availability
		book	
Α	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
5,6,7,	Digital signal processing – Principles Algorithms &	3, 4	In Lib / In Dept

8,9,10	Applications, Proakis & Monalakis, Pearson education, 4th		
,11,12	Edition, New Delhi, 2007		
		2, 4	In Lib⁄ In dept
В	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
1,2,3,4	Discrete Time Signal Processing, Oppenheim & Schaffer, PHI, 2003		In Lib
1, 2,3,4	Digital Signal Processing, S. K. Mitra, Tata Mc-Graw Hill, 3rd Edition, 2010.		In Lib
3,4,5,6	Digital Signal Processing, Lee Tan: Elsevier publications, 2007.		In Lib
С	Concept Videos or Simulation for Understanding	-	-
C1	https://www.youtube.com/watch?v=qjeLUcCDCIM -8min		
C2	https://www.youtube.com/watch?v=E3633vpoCGQ		
c3	https://www.youtube.com/watch?v=8Sx_ruSfJ0s -6min		
C4	https://www.youtube.com/watch?v=u9ZPVJt0YT4 -4min		
C5	https://www.youtube.com/watch?v=QKhy1JsdiUo -21min		
c6	https://www.youtube.com/watch?v=3FAIXEkxyBs -15min		
C7	https://www.youtube.com/watch?v=9DGjAKEB0eU -8min		
c8	https://www.youtube.com/watch?v=U3dHb2TWGJI -17min		
c9	https://www.youtube.com/watch?v=wxQFxIv2QRk -6min		
C10	https://www.youtube.com/watch?v=0xgNtsGj8G8 -5min		
D	Software Tools for Design	-	-
	MATLAB-17.0		
E	Recent Developments for Research	-	-
	Others (Wah Video Cimulation Nature sta)	?	In lıb
	Uthers (web, video, Simulation, Notes etc.)	-	-
1			

4. Laboratory Prerequisites:

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Students must have learnt the following	ng Courses / To	opics with described Content
---	-----------------	------------------------------

Evnt	Lah	Lah Namo	Topic / Description	Som	Domarks	Blooms
Lvbr.	LaD.	Lab. Name	Topic / Description	Jem	Remarks	DIOOTTIS
	Code					Level
1	15EE35	Signals and	Knowledge on signals and systems	4		Understa
		systems				nd L2
2	15MAT31	Maths -III	Knowledge on Fourier transform	3	Plan Gap Course	Understa
						nd L2

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Expt.	Topic / Description	Area	Remarks	Blooms
15EEL68/ B			Copyright ©2017. cAAS. All rights	s reserved.

								Level
1	Filter design	Design of	Filter	design	by	using	MATLAB	Understa
		filters	simul	ink simu	latio	n tool		nd L2

B. Laboratory Instructions

1. General Instructions

SNo	Instructions	Remarks
1	Observation book and Lab record are compulsory.	
2	Students should report to the concerned lab as per the time table.	
3	After completion of the program, certification of the concerned staff in- charge in the observation book is necessary.	
4	Student should bring a notebook of 100 pages and should enter the readings /observations into the notebook while performing the experiment.	
5	The record of observations along with the detailed experimental procedure of the experiment in the Immediate last session should be submitted and certified staff member in-charge.	
6	Should attempt all problems / assignments given in the list session wise.	
7	It is responsibility to create a separate directory to store all the programs, so that nobody else can read or copy.	
8	When the experiment is completed, should disconnect the setup made by them, and should return all the components/instruments taken for the purpose.	
9	Any damage of the equipment or burn-out components will be viewed seriously either by putting penalty or by dismissing the total group of students from the lab for the semester/year	
10	Completed lab assignments should be submitted in the form of a Lab Record in which you have to write the algorithm, program code along with comments and output for various inputs given	

2. Laboratory Specific Instructions

SNo	Specific Instructions	Remarks		
1	Start computer			
2	Open the text editor			
3	Select new file.			
4	Write the program			
5	Save the program with .m extension.			
6	Compile the program F9			
7	Execute the program F5			

C. OBE PARAMETERS

1. Laboratory Outcomes

Expt.	Lab Code #	COs / Experiment O	utcome	Teach	Concept	Instr	Assessment	Blooms'
				Hours		Method	Method	Level
-	-	At the end of the expe	riment, the	-	-	-	-	-
		student should be a	ole to					
1	15EEL68.1	Verification of sampling I	3	sampling	Demon	Slip Test	L4	
						strate		
2	15EEL68.2	Impulse response of firs	st order an	d 03	LTI response	Demon		L4
		second order system				strate		
3	15EEL68.3	Linear convolution	of tw	o 03	convolution	Demon	Slip test	L4
		sequences				strate		
4	15EEL68.4	Circular convolution	of tw	0 03	System	Demon	Slip test	L4

		sequences		analysis	strate		
5	15EEL68.5	N–point DFT and to plot the magnitude and phase spectrum.	03	Frequency Response	Demon strate	Slip test	L4
6	15EEL68.6	Solution of a given difference equation	03	Frequency Response	Demon strate	Slip test	L4
7	15EEL68.7	Calculation of DFT and IDFT by FFT	03	Frequency Response	Demon strate	Slip test	L4
8	15EEL68.8	Design and implementation of IIR filter to meet given specifications	03	Fast fourier transform	Simulat ion	Slip test	L4
9	15EEL68.9	Design and implementation of FIR filter to meet given specifications	03	IIR Filter	simulati on	Slip test	L4
10	15EEL68.10	Design and implementation of FIR filters using different window	03	FIR Filter	simulati on	Slip test	L4
11	15EEL68.11	Design and implementation of FIR filters using frequency sampling technique.	03	Frequency sampling	Simulat ion	Slip test	L4
12	15EEL68.12	Realization of IIR and FIR filters	03	Realization	Simulat ion	Slip test	L4

Note: Identify a max of 2 Concepts per unit. Write 1 CO per concept.

2. Laboratory Applications

Expt.	Application Area	CO	Level
1	A to D converter	CO1	L4
2	Statistics and probability	CO2	L4
3	Signal detection and pattern recognition	CO3	L4
4	Quantum mechanics and electrodynamics	CO4	L4
5	Frequency analysis	CO5	L4
6	Spectral analysis	CO6	L4
7	Signal selection using FIR filter	CO7	L4
8	Signal selection using IIR filter	CO8	L4
9	Radar	CO9	L4
10	sonar	CO10	L4
11	Filter	CO11	L4
12	Filter design	CO12	L4

Note: Write 1 or 2 applications per CO.

3. Mapping And Justification

CO – PO Mapping with mapping Level along with justification for each CO-PO pair. To attain competency required (as defined in POs) in a specified area and the knowledge & ability required to accomplish it.

Expt	Mapp	bing	Mapping	Justification for each CO-PO pair	Lev					
1.1			Level		el					
-	СО	PO	-	'Area': 'Competency' and 'Knowledge' for specified 'Accomplishment'	-					
1	CO1	PO1		Applies basic mathematics and science knowledge for solution to						
				engineering problems						
1	CO1	PO2		Identify, formulate and review complex engineering problems						
1	CO1	PO3		Design digital system components						
1	CO1	PO5		Specific tool available for simulation and implementation						
1	CO1	CO1 PO9		Applies to individual and team work for project, internship and miniprojec						
2	CO2	PO1		Applies basic mathematics and science knowledge for solution to						
				engineering problems						
2	CO2	PO2		Identify, formulate and review complex engineering problems						
2	CO2	PO3		Design digital system components						
2	CO2	PO5		Specific tool available for simulation and implementation						
2	CO2	PO9		Applies to individual and team work for project, internship and miniproject						
3	CO3	PO1		Applies basic mathematics and science knowledge for solution to						
				engineering problems						

3	0.03	PO2	Identify formulate and review complex engineering problems
3	CO3	PO3	Design digital system components
2	CO3	POs	Specific tool available for simulation and implementation
3	CO3	POg	Applies to individual and team work for project internship and miniproject
	CO4	PO1	Applies to internate the science knowledge for solution to
4	004		engineering problems
1	CO4	PO2	Identify formulate and review complex engineering problems
4	CO4	PO2	Design digital system components
4	CO4	PO5	Specific tool available for simulation and implementation
4	CO4	POg	Applies to individual and team work for project, internship and miniproject
5	CO5	PO1	Applies basic mathematics and science knowledge for solution to
	005		engineering problems
5	CO5	PO2	Identify, formulate and review complex engineering problems
5	CO5	PO3	Design digital system components
5	CO5	PO5	Specific tool available for simulation and implementation
5	CO5	POg	Applies to individual and team work for project, internship and miniproject
6	C06	PO1	Applies basic mathematics and science knowledge for solution to
			engineering problems
6	CO6	PO2	Identify, formulate and review complex engineering problems
6	C06	PO3	Design digital system components
6	CO6	PO5	Specific tool available for simulation and implementation
6	C06	POg	Applies to individual and team work for project, internship and miniproject
7	C07	PO1	Applies basic mathematics and science knowledge for solution to
'			engineering problems
7	CO7	PO2	Identify, formulate and review complex engineering problems
7	C07	PO3	Design digital system components
7	CO7	PO5	Specific tool available for simulation and implementation
7	CO7	POg	Applies to individual and team work for project, internship and miniproject
8	CO8	PO1	Applies basic mathematics and science knowledge for solution to
			engineering problems
8	CO8	PO2	Identify, formulate and review complex engineering problems
8	C08	PO ₃	Design digital system components
8	CO8	PO ₅	Specific tool available for simulation and implementation
8	CO8	POg	Applies to individual and team work for project, internship and miniproject
9	COg	PO1	Applies basic mathematics and science knowledge for solution to
			engineering problems
9	CO9	PO2	Identify, formulate and review complex engineering problems
9	CO9	PO3	Design digital system components
9	COg	PO ₅	Specific tool available for simulation and implementation
9	COg	POg	Applies to individual and team work for project, internship and miniproject
10	CO10	PO1	Applies basic mathematics and science knowledge for solution to
			engineering problems
10	CO10	PO2	Identify, formulate and review complex engineering problems
10	CO10	PO3	Design digital system components
10	CO10	PO5	Specific tool available for simulation and implementation
10	CO10	PO9	Applies to individual and team work for project, internship and miniproject
11	CO11	PO1	Applies basic mathematics and science knowledge for solution to
			engineering problems
11	CO11	PO2	Identify, formulate and review complex engineering problems
11	CO11	PO3	Design digital system components
11	CO11	PO5	Specific tool available for simulation and implementation
11	CO11	PO9	Applies to individual and team work for project, internship and miniproject
12	CO12	PO1	Applies basic mathematics and science knowledge for solution to
			engineering problems
12	CO12	PO2	Identify, formulate and review complex engineering problems
12	CO12	PO3	Design digital system components
12	CO12	PO5	Specific tool available for simulation and implementation
12	CO12	PO9	Applies to individual and team work for project, internship and miniproject
15EEL	68/ B		Copyright ©2017. cAAS. All rights reserved.

4. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	-	Experiment Outcomes					Р	rogi	rarr	100	JUCC	orne	35					-
Expt.	CO.#	At the end of the experiment	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PO	PO	PS	PS	PS	Lev
		student should be able to	1	2	3	4	5	6	7	8	9	10	11	12	O1	02	О3	el
1	15EEL68.1	Verification of sampling		\checkmark							\checkmark							L4
		theorem																-
2	15FEL 68 2	Impulse response of first order	- 1															LA
	196660.2	and second order system	`	Y	•		•				•							Ц4
													\mid					
3	15EEL08.3	Linear convolution of two	N	γ	N		γ				N							L4
		sequences												\mid				
4	15EEL68.4	Circular convolution of two	1	\checkmark	$$						\checkmark							L4
		sequences																
5	15EEL68.5	N–point DFT and to plot the									\checkmark							L4
		magnitude and phase																
		spectrum.																
6	16FEL 68.6	Solution of a given difference																11
	1922200.0	equation	'		'		'											- 4
-	15EEL 697	Calculation of DET and IDET by		2	1		2				2							
/	15EEL00./		N N	N	N		N				N							∟4
			<u> </u>	1			-				1		\mid	<u> </u>				<u> </u>
8	15EEL68.8	Design and implementation of	1	γ	N		γ				N							L4
		IIR filter to meet given																
		specifications																
9	15EEL68.9	Design and implementation of									\checkmark							L4
		FIR filter to meet given												í I				
		specifications																
10	15FFI 6810	Design and implementation of																11
10	1922200.10	EID filters using different	'				'							í I				-4
		window												í I				
			-										\mid					
11	15EEL08.11	Design and implementation of	N N	N	Ň		N				'N							L4
		FIR filters using frequency																
		sampling technique.		,	_													
12	15EEL68.12	Realization of IIR and FIR filters																L4
-	15EEL68	Average attainment (1, 2, or 3)																-
-	PO, PSO	1.Engineering Knowledge: 2.Problem Anglysis: 3.Design / Development of Solutions							ons;									
		4.Conduct Investigations of Complex Problems: 5.Modern Tool Usage: 6.The Engineer																
		and Society: <i>zEnvironment</i> and	15	ust	ninc	bili	tv [.]	8.Ft	hic	s: c	alna	divid	ามตะ	[a	nd	Tea	mv	ork'
		10 Communication: 11 Project	Ma	nan	iem	ent	יי, מ	nd	Fi	nan	,іс ісе [,]	12	> if	p_lr	na.	16	- nrr	ina [.]
		Si Software Engineering: S2 Data Rase Management: S2 Web Design							ıy,									
		S1.Software Engineering, S2.Data Base Management, S3.web Design																

5. Curricular Gap and Experiments

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Expt	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					

Note: Write Gap topics from A.4 and add others also.

6. Experiments Beyond Syllabus

Topics & contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

ExptGap TopicActions PlannedSchedule PlannedResources PersonPO Mapping

1			
2			
3			
4			
5			

D. COURSE ASSESSMENT

1. Laboratory Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Unit	Title	Teachi		Nc		CO	Levels				
		ng	CIA-1	CIA-2	CIA-3	Asg-1	Asg-2	Asg-3	SEE		
		Hours									
1	Verification of Sampling Theorem	03	1	-	-	-	-	-	1	CO1	L2
	both in time and frequency										
	Condition of impulse response of	00								<u> </u>	
2	a system	03	1	-	-	-	-	-	T		∟3
3	To perform linear convolution of	03	1	_	_	_	_	_	1	CO3	13
	given sequences	00	-						-		
4	To perform circular convolution of	03	1	-	-	-	-	-	1	CO4	L3
	given sequences using (a) the										
	convolution summation formula (b)										
	the										
	matrix method and (c) Linear										
	convolution with zero										
	padding										
5	Computation of N-point DFT and	03	_	1	_	_	_	-	1	CO5	L4
	to plot the magnitude and phase	U U									
	spectrum.										
6	Linear and circular convolution by	03	-	1	-	-	-	-	1	CO6	L4
	DFT and IDFT method.										
7	Solution of a given difference	03	-	1	-	-	-	-	1	CO7	L4
0	equation.	00								<u> </u>	
0	FET	03	-	1		-	-	-	T	000	L4
a	Design and implementation of IIR	03	-		1	-	-	-	1	COg	14
	filters to meet given specification	•0			-				-		
	(Low pass, high pass, band pass										
	and band reject filters)										
10	Design and implementation of FIR	03	-	-	1	-	-	-	1	CO10	L4
	filters to meet given specification										
	(Low pass, high pass, band pass										
	and band roiget filters) using different										
	window										
	functions										
11	Design and implementation of FIR	03	-	-	1	-	-	-	1	CO11	L4
	filters to meet given specification										
	(Low pass, high pass, band pass										
	and hand reject filters) using from series										
	sampling technique										
12	Realization of IIR and FIR filters	03	_	_	1	-	_	_	1	CO12	
-	Total	60	7	8	5	5	5	5	20	-	

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Evaluation	Weightage in Marks	СО	Levels
CIA Exam – 1	20	CO1, CO2, CO3, CO4	L1,L2, L3,L4
CIA Exam – 2	20	CO5, CO6, CO7,CO8	L1,L2, L3,L4
CIA Exam – 3	20	CO9,CO10,CO11,CO12	L1,L2, L3,L4
Assignment - 1	_	-	-
Assignment - 2	-	-	-
Assignment - 3	-	-	-
Seminar - 1	-	-	-
Seminar - 2	-	-	-
Seminar - 3	_	-	_
Other Activities – define –			
Slip test			
Final CIA Marks	20	-	-

SNo	Description	Marks
1	Observation and Weekly Laboratory Activities	10 Marks
2	Record Writing	10 Marks for each Expt
3	Internal Exam Assessment	20 Marks
4	Internal Assessment	40 Marks
5	SEE	600 Marks
-	Total	100 Marks

E. EXPERIMENTS

_

Experiment 01 : Sampling theorem

-	Experiment No.:	1	Marks		Date Planned		Date Conducted				
1	Title	Vei	rification of S	ampling The	orem both in	time and fre	equency dom	ains			
2	Course Outcomes	Re	Reconstruction of the signal								
3	Aim Verification of sampling theorem.										
4	Material / EquipmentLab Manual										
	Required										
5	Theory, Formula,	Ny	quist rate								
	Principle, Concept										
6	Procedure, Program,		• step 1: :	start							
	Activity, Algorithm,		• step 2:	write prograr	nming						
	Pseudo Code		• step 3:	save the pro	gram						

		• step 4: compile
		 step 5:if error then correct the errors
		• step 6:run
		• step 7:stop
7	Block Circuit Model	
′	Diagram Peaction	clear all:
	Equation Exported	
	Equation, Expected	
	Graph	tm = input(Enter the modulating signal frequency =);
		x = sin(2*pi*fm*t);
		subplot(4,2,1);
		plot(t,x);
		xlabel('Time>');
		vlabel('Amplitude>'):
		title('Message Signal')
		fs1 - input('Enter Sampling Frequency < Modulating Signal Frequency - ');
		fsz - input/Enter Sampling Frequency < Modulating Signal Frequency - /,
		isz = input Enter Sampling Frequency = Modulating Signal Frequency =),
		rs3 = Input(Enter Sampling Frequency > Modulating Signal Frequency =);
		%Sampling at fs<<2fm
		n = 0:1/fs1:1;
		x1 = sin(2*pi*fm*n);
		subplot(4,2,2);
		stem(n,x1);
		xlabel('Time>'):
		vlabel('Amplitude>')
		title('I Indersampled fs//2fm Signal');
		cubalat(4.2.2);
		Subplot(4,2,3),
		xlabel(Time>);
		ylabel('Amplitude>');
		title('Reconstructed Undersampled fs<<2fm Signal');
		%Sampling at fs=2fm
		n = 0:1/fs2:1;
		x2 = sin(2*pi*fm*n);
		subplot(4,2,4);
		stem(n.x2):
		xlabel('Time>'):
		vlabel('Amplitude>')
		title('Sampled at Nyquist Pate fs-2fm Signal');
		cubalat(1.2 c);
		subplot(4,2,5),
		plou(n,x2);
		xlabel('Time>');
		ylabel('Amplitude>');
		title('Reconstructed Nyquist Rate fs=2fm Signal');
		%Sampling at fs>>2fm
		n = 0:1/fs3:1;
		x3 = sin(2*pi*fm*n);
		subplot(4,2,6);
		stem(n,x3);
		xlabel('Time>'):
		vlabel('Amplitude>'):
		title('Oversampled fs>>2fm Signal')
		cubalat(1.2.7)
		$p(x_1, z_1, z_1)$
		ylabell Amplitude>');
L		title('Reconstructed Oversampled fs>>2fm Signal');
8	Observation Table,	• _
	Look-up Table,	• _
	Output	• -
9	Sample Calculations	•

		•
10	Graphs, Outputs Results & Analysis	Sinusoidal Signall 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
12	Application Areas	Analog to Digital Converter
13	Remarks	-
14	Faculty Signature with Date	-

Experiment 02 : Impulse Response

-	Experiment No.:	2	Marks		Date		Date		
					Planned		Conducted		
1	Title	Eval	Evaluation of impulse response of a system						
2	Course Outcomes	Use I	e Impulse response of first order and second order system						
3	Aim	To ev	valuate the impulse response for the given order of the sequence						
4	Material / Equipment Required	Lab N	o Manual						
5	Theory, Formula, Multiply and add Principle, Concept								
6	Procedure, Program, Activity, Algorithm, Pseudo Code	Step Step Step Step Step	1: start 2: Assign the 3: Assign the 4: Perform co 5: Give the x 6: stop	variables to t lower and up privolution us label and y la	the input sec oper limits fo ing the funct bel and title	uence and i r both input ion 'conv' it. Save and	mpulse sequ and impulse run the progr	ence. sequence ram	
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	x=inp h=inp u1=inp u2=inp u2=inp a=l1:1: subp stem xlabe title(') b=l2:1 subp stem xlabe ylabe	ut('enter the put('enter the put('enter the put('enter the put('enter the cut('enter the cut('en	sequence for sequence for a upper limit fo lower limit fo lower limit fc);	r x(n):') r h(n):') or x(n):') or x(n):') for h(n):') or h(n):')				

8	Observation Table, Look-up Table,	title('b(n)'); y=conv(x,h); c=(l1+l2):1:(u1+u2); subplot(2,2,3); stem(c,y); xlabel('time'); ylabel('amplitude' title('y(n)');
9	Sample	
	Calculations	
10	Graphs, Outputs	
11	Results & Analysis	
12	Application Areas	
13	Remarks	Probability and statistics
14	with Date	

Experiment 03 :Linear convolution

-	Experiment No.:	3	Marks		Date		Date	
					Planned		Conducted	
1	Title	To pe	erform linear	convolution of	of given sequ	lences		
2	Course Outcomes	Simila	arity Analysis	of two discre	ete sequence	es		
3	Aim	Auto	and cross co	prrelation of t	wo sequence	es and verific	ation of their	properties
4	Material /	Lab N	1anual					
	Equipment							
	Required							
5	Theory, Formula,	Com	pare the seq	uences				
	Principle, Concept							
6	Procedure,	Step	1: start					
	Program, Activity,	Step	2: read first d	liscrete seque	ence			
	Algorithm, Pseudo	Step	3: read secor	nd discrete se	equence			
	Code	Step	4: compare					
		Step	5: print the re	esult				
		step	6: stop					
7	Block, Circuit,	x= inp	out ('Enter an	y sequence');				
	Model Diagram,	subp	lot(3,2,1);					
	Reaction Equation,	stem	(x);					
	Expected Graph	xlabe	el('Time peric	d');				
		ylabe	el('Amplitude	');				

		title('Input sequence');
		y=xcorr(x);
		subplot(3,2,2);
		xlabel('Time period');
		ylabel('Amplitude');
		title('Auto correlation');
		x=input(Enter any sequence);
		SUDPLOT(3,2,1);
		stern(x),
		xiabel('Amplitude');
		title('Input sequence')
		h=input('Enter any sequence')
		subplot(3,2,2);
		stem(h);
		xlabel('Time period');
		ylabel('Amplitude');
		title('Impulse sequence');
		y=xcorr(x,h);
		subplot(3,2,3);
		sternky), Vlabal('Timo poriod');
		vlabel('Amplitude')
		title('Cross correlation'):
8	Observation Table,	
	Look-up Table,	
	Output	
9	Sample	
	Calculations	
10	Graphs, Outputs	input response autocorrelation
		3- 0 -
		1 1.5 2 2.5 3 3.5 4 1 2 3 4 5 6 7 time
11	Results & Analysis	
12	Application Areas	
13	Remarks	Signal detection and pattern recognition
14	Faculty Signature	
	with Date	

Experiment 04 : Discrete Fourier transform

-	Experiment No.:	4	Marks		Date Planned		Date Conducted	
1	Title	Corr	putation c	of N –point	DFT and to	plot the n	nagnitude	and phase
2	Course Outcomes	Frequ	uency synthe	esis				
3	Aim	Com phase	outation of N e spectrum	N point DFT	of a given se	equence and	d to plot ma	gnitude and
4	Material / Equipment Required	Lab N	Manual					
5	Theory, Formula, Principle, Concept	Calcı	ulating impul	se response	of the system	ו		
6	Procedure,	Step	1: start					

	Program, Activity,	Step 2: read input sequence
	Algorithm, Pseudo	Step 3: calculate impulse response
	Code	Step 4: find out system coefficients
		Step 5: print the result
		step 6: stop
7	Block, Circuit,	PROGRAM: (Spectrum Analysis Using DFT)
	Model Diagram,	N=input('type length of DFT= ');
	Reaction Equation,	T=input('type sampling period= ');
	Expected Graph	freq=input('type the sinusoidal freq= ');
		k=0:N-1;
		f=sin(2*pi*freq*1/T*k);
		F=fft(f);
		stem(k,abs(F));
		grid on;
		xlabel('k');
		ylabel('X(k)');
		type length of DF I =32
		type sampling period=04
		type the sinusoidal freq=11
8	Observation Table	
	Look-up Table	
	Output	
9	Sample	
	Calculations	
10	Graphs, Outputs	1 9 1 1 9 9 9 9 1
		0.5
		eg
		-0.5
		-1 2 3 4 5 6 7 8 time
11	Results & Analysis	
12	Application Areas	
13	Remarks	Quantum mechanics and electrodynamics
14	Faculty Signature	
	with Date	

Add required experiments

Experiment 05: Difference equation

-	Experiment No.:	5	Marks		Date		Date	
					Planned		Conducted	
1	Title	Top	erform circ	cular convo	lution of g	iven seque	ences usinc	g (a) the
		con	onvolution summation formula (b) the matrix method and (c)					
		Line	inear convolution from circular convolution with zero padding.					
2	Course Outcomes	Syste	System design					
3	Aim	Solvi	ng a given di	fference equ	ation			
4	Material /	Lab N	Manual					
	Equipment							
	Required							

_		
5	Principle, Concept	Calculating impulse response of the system
6	Procedure, Program, Activity,	Step 1: start Step 2: read input sequence
	Algorithm, Pseudo Code	Step 3: calculate impulse response Step 4: find out system coefficients
	Code	Step 5: print the result
7	Plack Circuit	step 6: stop
	Model Diagram, Reaction Equation, Expected Graph	a=input (enter the input); b=input('enter the input); x=linspace(0,2*pi,100); y=sin(x); subplot(2,3,1); plot(y); xlabel('time period'); ylabel('amplitude'); title('sine wave'); e=rand(size(x)); subplot(2,3,2); plot(e); xlabel('time period'); ylabel('amplitude'); title('noise signal'); subplot(2,3,3); t=y+e; plot(x,t); xlabel('time period');
		y(n)+y(n-1)+y(n-2)=x(n)
8	Observation Table, Look-up Table, Output	
9	Sample Calculations	
10	Graphs, Outputs	pole-zero plot 0.5 0.5 -1 -0.5 0.5 -1 -0.5 0.5 -1 -0.5 0.5 -1 -0.5 0.5 -1 -0.5 0.5 -1 -0.5 -0.4 -0.2 -0.4 -0.2 -0.4 -0.2 -0.4 -0.2 -0.4 -0.2 -0.4 -0.2 -0.4 -0.2 -0.4 -0.2 -0.4 -0.2 -0.4 -0.2 -0.4 -0.2 -0.4 -0.5 -0.5
11	Results & Analysis	
12	Application Areas	
13	Remarks	Quantum mechanics and electrodynamics
14	Faculty Signature with Date	

Experiment 09

- Experiment No.: Marks Date Date

		Planned Conducted
1	Title	Linear and circular convolution by DFT and IDFT method.
2	Course Outcomes	Frequency synthesis
3	Aim	Verification of DFT properties
4	Material /	Lab Manual
	Equipment	
_	Required	
5	Ineory, Formula,	Linearity and Parseval's theorem
6	Principle, Concept	Stop 1: start
0	Program Activity	Step 2. read input sequence
	Algorithm Pseudo	Step 3: calculate impulse response
	Code	Step 4: find out system coefficients
		Step 5: print the result
		step 6: stop
7	Block, Circuit,	PROGRAM: (Spectrum Analysis Using DFT)
	Model Diagram,	N=input('type length of DFT= ');
	Reaction Equation,	T=input('type sampling period= ');
	Expected Graph	freq=input("type the sinusoidal freq=");
		K=0:N-1; f cin(2*ni*froc*1/T*1/);
		F=ff(f)
		stem(k abs(E))
		arid on:
		xlabel('k');
		ylabel('X(k)');
		ÎNPUT:
		type length of DFT=32
		type sampling period=64
		type the sinusoidal freq=11
0	Observation Table	OUTPUT: (Spectrum Analysis Using DFT)
0	Look-up Table	
	Output	
9	Sample	
	Calculations	
10	Graphs, Outputs	
11	Results & Analysis	Enter the x sequence ==>[2 4 6 8]
		Enter the h sequence ==>[10 3 5 2 5 7]
		ftx = Columns 1 through 4 20.0000 2.1061 -15.4082i -6.9436 + 0.9369i
		5.0000 + 1.73211 Columns 5 through 8 -1.1625 - 4.43961 -1.1625 + 4.43961 5.0000
12	Application Areas	- 1./3211 -6.9436 - 0.93691 Column 9 2.1061 +15.40821
12	Application Areas	Quantum mechanics and electrodynamics
11	Faculty Signature	
4	with Date	

Experiment 11 / Design and Implementation of IIR filter

-	Experiment No.:	1	Marks		Date		Date	
	-				Planned		Conducted	
1	Title	Desig	gn of IIR filter					
2	2 Course Outcomes Design and Implementation of IIR filter							
3	Aim	Desig	gn and Imple	mentation of	IIR filter			
4	Material /	Lab N	Manual					
	Equipment							
	Required							
5	Theory, Formula,	For G	liven specific	ations				
	Principle. Concept							

	D 1								
6	Procedure,	Step1: Start the mat lab software							
	Program, Activity,	n, Activity, Step2: Assign the variable for pass band ripple ,stop band ripple, pass band and							
	Algorithm, Pseudo	Pseudostop band frequency							
	Code	le Step3: Determine the order of filter using the required formula.							
		Step4: Find the filter co-efficient a and b							
		Step5: Assign the time and amplitude							
		Step6: Plot the magnitude and phase angle.							
		tep7: Give the x label and y label and title it							
		Step8: Save and run the program							
7	Block Circuit	%I DE%							
/	Model Diagram	$r_{0} = 1.70$							
	Dooction Equation	re-input/enter the stap band ripple/,							
	Eveneted Craph	is-input/enter the pass hand frequency'							
	Expected Graph	wp=input/enter the ster hand frequency),							
		ws=input(enter the stop band frequency),							
		rs=input(enter the sampling frequency);							
		W1=2 (Wp/fs);							
		W2=2 (WS/TS);							
		[n,wn]=cheb1ord(w1,w2,rp,rs);							
		lb,a]=cheby1(n,rp,wn);							
		w=0:0.01/pi:pi;							
		[h,om]=freqz(b,a,w);							
		m=20*log10(abs(h));							
		an=angle(h);							
		subplot(2,2,1);							
		plot((om/pi),m);							
		xlabel('time');							
		ylabel('amplitude');							
		title('magnitude plot of lpf');							
		subplot(2,2,2);							
		plot((om/pi).an):							
		xlabel('time'):							
		vlabel('amplitude') [,]							
		title('angle plot of lof');							
0	Observation Table								
0									
	Look-up Table,								
	Output								
9	Sample								
	Calculations								
10	Graphs, Outputs	magnitude plot of lpf angle plot of lpf							
		2							
		튭 -200 / · · · · · · · · · · · · · · · · · ·							
		-400							
		U U.S ï U U.S 1 time time							
1		une une							
11	Results & Analysis								
12	Application Areas								
13	Remarks	Quantum mechanics and electrodynamics							
14	Faculty Signature								
L	with Date								

Experiment 12 / Design and Implementation of FIR filter

-	Experiment No.:	1	Marks		Date Planned		Date Conducted	
1	Title	Solut	ion of a give	n difference e	equation.			
2	Course Outcomes	Desig	gn and Imple	mentation of	FIR filter			
3	Aim	Desig	gn and Imple	mentation of	FIR filter			
4	Material /	Lab N	Manual					
	Equipment							
	Required							
5	Theory, Formula Principle, Concept	,Winc	low Techniqu	le				
6	Procedure,	Step	1: Assign the	variable for	bass band rip	ple ,stop ba	and ripple, pa	ss band and
	Algorithm Psoudo	Stop	2 'hand frequ	Incv Detern	ning the orde	r of filtor usiv	na the require	ad formula
	Code	Step	3 :Find the fil	ter co-efficie	nt b		ig the require	eu lonnuta.
		Step	4 :Assign the	e time and ar	nplitude Plot	the magnit	ude and pha	se angle for
		LPF.H	IPF,BPF&BSF	Ξ.				-
		Step	<u>5 : Give the x</u>	label and y l	abel and title	it		
7	Block, Circuit	, %Har	nming windo)W%				
	Poaction Equation	rp=in	put(enter the	PB ripple);				
	Expected Graph	fn=ini	out('enter PR	frequency')				
		fs=in	out('enter SB	frequency');				
		f=inp	ut('enter sam	pling frequer	ncy');			
		wp=2	*(fp/f);					
		WS=2	*(fs/f);					
		num=	=-20"log10(sc	(rt(rp*rs))-13;				
		n=cei	14.0 (15-10)/1, 1(num/den) [,]					
		n1=n+	·1:					
		if(ren	-; n(n,2)~=0);					
		n1=n;						
		n=n-1	-,					
		end;						
		y=nar	nming(n1);					
		h=fir1	(n wn v) [.]					
		[h.o]=	freaz(b.1.256);				
		M=20	*log10(abs(h));				
		subp	lot(2,2,1);					
		plot(c	o∕pi,M);					
		ylabe	el('gain indB')					
		XIADE %HPF	=	requency);				
		b=fir1	(n.wp.'high'.v):				
		[h,o]=	freqz(b,1,256);				
		m=20	*log10(abs(h));				
		subp	lot(2,2,2);					
		plot(o∕pi,m);	λ.				
		ylabe	ell gain in dB); froquopov');				
		%RPF		пециенсу /,				
		wn=[\	wp,ws];					
		b=fir1	(n,wn,y);					
		[h,o]=	freqz(b,1,256);				
		m=20)*log10(abs(h));				
		subp	lot(2,2,3);					
		plot(o/pi,m);	١.				
		xlabe	el('(c) normal	, frequencv') [,]				

		%BSF b=fir1(n,wn,'stop',y); lh,o]=freqz(b,1,256); m=20*log10(abs(h)); subplot(2,2,4); plot(o/pi,m); ylabel('gain in dB') Enter the PB ripple: 0.05 Enter the SB ripple: 0.04 Enter PB frequency: 1200
		Enter SB frequency: 1700
		Enter sampling frequency: 9000
8	Observation Table, Look-up Table, Output	
9	Sample Calculations	
10	Graphs, Outputs	
11	Results & Analysis	
12	Application Areas	
13	Remarks	Quantum mechanics and electrodynamics
14	Faculty Signature with Date	

F. Content to Experiment Outcomes

1. TLPA Parameters

Table 1: TLPA – Example Course

		-			-		
Expt-	Course Content or Syllabus	Content	Blooms'	Final	Identified	Instructi	Assessment
#	(Split module content into 2 parts which	Teachin	Learning	Bloo	Action	on	Methods to
	have similar concepts)	g Hours	Levels	ms'	Verbs for	Methods	Measure

			for	Level	Learning	for	Learning
			Content			Learning	
A	В	С	D	E	F	G	Н
1	Verification of Sampling Theorem both in time and frequency domains	3	-L3 -L4	L4	-Apply -Analyze	Demons tration	- Slip Test
2	Evaluation of impulse response of a system	3	-L3 -L4	L4	-Apply -Analyze	Demons tration	- Slip Test
3	To perform linear convolution of given sequences	3	-L3 -L4	L4	-Apply -Analyze	Demons tration	- Slip Test
4	To perform circular convolution of given sequences using (a) the convolution summation formula (b) the matrix method and (c) Linear convolution from circular convolution with zero padding.	3	-L3 -L4	L4	-Apply -Analyze	Demons tration	- Slip Test -
5	Computation of N–point DFT and to plot the magnitude and phase spectrum.	3	-L3 -L4	L4	-Apply -Analyze	Demons tration	- Slip Test
6	Linear and circular convolution by DFT and IDFT method.	3	-L3 -L4	L4	-Apply -Analyze	Demons tration	Slip Test
7	Solution of a given difference equation.	3	-L3 -L4	L4	-Apply -Analyze	Demons tration	Slip Test
8	Calculation of DFT and IDFT by FFT	3	-L3 -L4	L4	-Apply -Analyze	Demons tration	Slip Test
9	Design and implementation of IIR filters to meet given specification (Low pass, high pass, band pass and band reject filters)	3	-L3 -L4	L4	-Apply -Analyze	Demons tration	Slip Test
10	Design and implementation of FIR filters to meet given specification (Low pass, high pass, band pass and band reject filters) using different window functions	3	-L3 -L4	L4	-Apply -Analyze	Demons tration	Slip Test
11	Design and implementation of FIR filters to meet given specification (Low pass, high pass, band pass and band reject filters) using frequency sampling technique.	3	-L3 -L4	L4	-Apply -Analyze	Demons tration	Slip Test
12	Realization of IIR and FIR filters	3	-L3 -L4	L4	-Apply -Analvze	Demons tration	Slip Test

2. Concepts and Outcomes:

Table 2: Concept to Outcome – Example Course

Expt	Learning or	Identified	Final Concept	Concept	CO Components	Course Outcome
- #	Outcome	Concepts		Justification	(1.Action Verb,	
	from study	from		(What all Learning	2.Knowledge,	
	of the	Content		Happened from the	3.Condition /	Student Should be
	Content or			study of Content /	Methodology,	able to
	Syllabus			Syllabus. A short	4.Benchmark)	
				word for learning or		
				outcome)		
A	1	J	K	L	М	N
1	Verification	-	sampling	Under sampling	- Understand	Verification of
	of Sampling	verificatio		uniquest sampling	- Analyze	sampling theorem
	Theorem	n		and over sampling		
	both in time	-sampling		conditions were		
	and			understood		
	frequency					
	domains					
2	Evaluation	LTI	LTI response	Impulse response	- Evaluate	Impulse response of

	of impulse response of a system	response -Impulse response		of LTI system were evaluated and analyzed	- Analyze	first order and second order system
3	To perform linear convolution of given sequences	Convoluti on -linear	convolution	Linear convolution between two sequence were analyzed	- Perform - Analyze	Linear convolution of two sequences
4	To perform circular convolution of given sequences using (a) the convolution summation formula (b) the matrix method and (c) Linear convolution from circular convolution with zero padding.	-System analysis -circular convoluti on	System analysis	circular convolution between two sequence were analyzed	- Evaluate -Analyze	Circular convolution of two sequences
5	Computatio n of N-point DFT and to plot the magnitude and phase spectrum.	Frequenc y Response - magnitud e and phase spectra	Frequency Response	Phase spectra and magnitude spectra were analyzed	- Calculate -Analyze	N–point DFT and to plot the magnitude and phase spectrum.
6	Linear and circular convolution by DFT and IDFT method.	- Frequenc y Response -Fourier transform	Frequency Response	Convolution of DFT and IDFT were analyzed	- calculate -Analyze	Solution of a given difference equation
7	Solution of a given difference equation.	Frequenc y Response - Difference equation	Frequency Response	Solution of differene equation can be analyzed	- calculate -Analyze	Calculation of DFT and IDFT by FFT
8	Calculation of DFT and IDFT by FFT	Fast fourier transform	Fast fourier transform	From FFT analysis of time domain signal can be done	-calculate - Analyze	Design and implementation of IIR filter to meet given specifications
9	Design and implementa tion of IIR filters to meet given specification (Low pass, high pass, band pass and band reject filters)	IIR Filter	IIR Filter	Design and implementation of IIR filter can be understood	-implement - Design	Design and implementation of FIR filter to meet given specifications

Design and implementa tion of FIR filters to meet given specification (Low pass, high pass, band pass and band reject filters) using different window functions	FIR Filter	FIR Filter	Design and implementation of FIR filter can be understood	-Analyze	Design and implementation of FIR filters using different window
Design and implementa tion of FIR filters to meet given specification (Low pass, high pass, band pass and band reject filters) using frequency sampling technique.	Frequen cy samplin g	Frequency sampling		-Analyze	Design and implementation of FIR filters using frequency sampling technique.
Realization of IIR and FIR filters	Realizati on	Realization	Realization of filters can be Analyze	Analyze	Realization of IIR and FIR filters