Ref No:

< Sri Krishna Institute of Technology, Bangalore>

Academic Year -2018- 19

Program:	B E – Electrical and Electronics Engineering
Semester :	6
Course Code:	15EEL67
Course Title:	Control System Laboratory
Credit / L-T-P:	2 / 0-0-2
Total Contact Hours:	42
Course Plan Author:	Shravanthi A

Academic Evaluation and Monitoring Cell

 < Sri Krishna Institute of Technology #29, Hesaraghatta Main Road
 Chimney Hills, Chikkabanavara Post>
 <Bangalore- 560090,Katakana, India.>
 <Phone / Fax :+91-STD-080 >
 <Web: skit.org.in , e-mail: >

INSTRUCTIONS TO TEACHERS

- Classroom / Lab activity shall be started after taking attendance.
- Attendance shall only be signed in the classroom by students.
- Three hours attendance should be given to each Lab.
- Use only Blue or Black Pen to fill the attendance.
- Attendance shall be updated on-line & status discussed in DUGC.
- No attendance should be added to late comers.
- Modification of any attendance, over writings, etc is strictly prohibited.
- Updated register is to be brought to every academic review meeting as per the COE.

Table of Contents

A. LABORATORY INFORMATION	4
<u>1. Laboratory Overview</u>	4
2. Laboratory Content	4
3. Laboratory Material	
<u>4. Laboratory Prerequisites:</u> 5. Content for Placement, Profession, HE and GATE	
B. Laboratory Instructions.	<u>6</u>
<u>1. General Instructions</u>	<u>6</u>
2. Laboratory Specific Instructions	6
C. OBE PARAMETERS	
<u>1. Laboratory Outcomes</u>	
2. Laboratory Applications	7
<u>3. Mapping And Justification</u>	<u>8</u>
4. Articulation Matrix	
5. Curricular Gap and Experiments	9
<u>6. Experiments Beyond Syllabus</u>	<u>9</u>
D. COURSE ASSESSMENT.	
1. Laboratory Coverage	<u>10</u>
2. Continuous Internal Assessment (CIA)	<u>10</u>
E. EXPERIMENTS	
Experiment 01 : Structure of C program	
Experiment 02 : Keywords and identifiers	
Experiment 03 :	<u>13</u>
Experiment 04 :	
F. Content to Experiment Outcomes	14
<u>1. TLPA Parameters</u>	14
2. Concepts and Outcomes:	15

Note : Remove "Table of Content" before including in CP Book

Each Laboratory Plan shall be printed and made into a book with cover page Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

A. LABORATORY INFORMATION

1. Laboratory Overview

Degree:	B.Tech	Program:	EE
Year / Semester :	3/6	Academic Year:	2019
Course Title:	Control system Lab	Course Code:	15EEL67
Credit / L-T-P:	2 / 0-1-2	SEE Duration:	180 Minutes
Total Contact Hours:	42 Hrs	SEE Marks:	80 Marks
CIA Marks:	20	Assignment	-
Lab. Plan Author:	Mrs. Shravanthi A	Sign	Dt :
Checked By:		Sign	Dt :

2. Laboratory Content

		1		DL
Expt.	Title of the Experiments	Lab	Concept	Blooms
		Hours		Level
1	Experiment to draw the speed torque characteristics of (i) AC	3	AC and DC	L3
	servo motor (ii) DC servo motor		servomotor	
			S	
2	Experiment to draw synchro pair characteristics	3	Synchro	L3
		•	transmitter.	-
3	Experiment to determine the frequency response of a second-	3	second-	L3
	order system.	5	order	_5
			system.	
4	(a)To design a passive RC lead compensating network for the	3	RC lead	L5
4	given specifications, viz., the Maximum phase lead and the		compensati	L0
	frequency at which it occurs and to obtain the frequency		ng network	
	Response.		IIG HELWOIK	
	(b) To determine experimentally the transfer function of the lead			
	compensating network.			
			DOlas	
5	(a)To design a passive RC lag compensating network for the given		RC lag	L5
	specifications., viz., the maximum Phase lag and the frequency at		compensati	
	which it occurs, and to obtain the frequency response.		ng network	
	(b) To determine experimentally the transfer function of the lag			
	compensating network.			
6	Experiment to draw the frequency response characteristic of a		Lag-Lead	L5
	given lag- lead compensating network ad determination of its		compensati	
	transfer function		ng network	
			_	
7	(a) To Simulate a typical second order system and determination	3	Second	L5
. ·		~	1	-

	of step response and evaluation of time- domain specifications. (b) Evaluation of the effect of additional poles and zeroes on time response of second order system. (c) Evaluation of the effect of additional poles and zeroes on time response of second order system. (d) Effect of loop gain of a negative feedback system on stability		order system	
8	To simulate a second order system and study the effect of (a) P, (b) PI, (c) PD and (d) PID controller on the step response.	3	Controller	L5
9	 (a)To simulate a D. C. position control system and obtain its step response. b) To verify the effect of the input wave form, loop gain system type on steady state errors. c) To perform a trade-off study for lead compensation d) To design a PI controller and study its effect on steady state error. 	3	DC position control system	L5
10	 a) To examine the relationships between open-loop frequency response and stability, open loop frequency and closed loop transient response. (b) To study the effect of open loop gain on transient response of closed loop system using root locus. 	3	Root Locus	L4
11	 (a) To study the effect of open loop poles and zeros on root locus contour. (b) To estimate the effect of open loop gain on the transient response of closed loop system by using Root locus. c) Comparative study of Bode, Nyquist and Root locus with respect to Stability. 	3	Bode, Nyquist and Root locus	L3

3. Laboratory Material

Books & other material as recommended by university (A, B) and additional resources used by Laboratory teacher (C).

Expt.	Details	Expt. in book	Availability
Α	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
1, 2, 3,	Anand Kumar , "Control Systems" PHI 2nd Edition, 2014	In Lib	Anand Kumar , "Control
4, 5			Systems" PHI 2nd Edition, 2014
В	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
1, 2	Farid Golnaraghi, Benjamin C. Kuo , "Automatic Control Systems", Wiley, 9th Edition, 2010		dept
1, 2	Norman S. Nise, "Control Systems Engineering", Wiley, 4th Edition, 2004.		In dept
3, 4, 5	Norman S. Nise, "Control Systems, Principles and Design ", Wiley, 4th Edition, 2012.		
С	Concept Videos or Simulation for Understanding	-	-
C1	https://nptel.ac.in/courses/108107115/13		
C2	https://nptel.ac.in/courses/108105064/30		
	Convright @2017.c		hts record

C3	https://nptel.ac.in/courses/112107242/20		
C4	https://www.youtube.com/watch?v=XgrgAA0RnSo		
C5	https://nptel.ac.in/courses/108103008/20		
C6	https://nptel.ac.in/courses/108106098/35		
C7			
C7 C8	https://nptel.ac.in/courses/112107242/20 :http://nptel.ac.in/courses/108106098/27		
C9	:http://nptel.ac.in/courses/108106098/27		
	11112.77 HPLEL.ac.117 COULSES/ 1001000907 27		
C10	https://nptel.ac.in/courses/108101037/30		
C11	https://nptel.ac.in/courses/108101037/39		
	https://nptel.ac.in/courses/108101037/41		
D	Coffinian Toolo for Dooinn		
	Software Tools for Design	-	-
	MATLAB SIMULINK/ SCILAB		
E	Recent Developments for Research	-	-
	We recommend taking MATLAB		
	Onramp: https://www.mathworks.com/learn/tutorials/matl		
	<u>ab-onramp.html</u> >		
L		?	In lib
F	Others (Web, Video, Simulation, Notes etc.)	-	-
L			

4. Laboratory Prerequisites:

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Students must have learnt the following Courses / Topics with described Content

Expt.	Lab.	Lab. Name	Topic / Description	Sem	Remarks	Blooms
	Code					Level
1	15EE61		Time Domain Analysis Root locus technique Frequency Response analysis Bode plots Nyquist plot Design of Control Systems	6		Understa nd L2
-						
-						

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Expt.	Topic / Description	Area	Remarks	Blooms
				Level
11	Root locus concepts, Bode plot, Nyquist	New		L3,L4
	stability	Software		
		Tools,		
-				

B. Laboratory Instructions

1. General Instructions

SNo	Instructions	Remarks
1	Observation book and Lab record are compulsory.	
2	Students should report to the concerned lab as per the time table.	
	After completion of the program, certification of the concerned staff in- charge in the observation book is necessary.	
4	Student should bring a notebook of 100 pages and should enter the readings /observations into the notebook while performing the experiment.	
5	The record of observations along with the detailed experimental procedure of the experiment in the Immediate last session should be submitted and certified staff member in-charge.	
6	Should attempt all problems / assignments given in the list session wise.	
	It is responsibility to create a separate directory to store all the programs, so that nobody else can read or copy.	
8	When the experiment is completed, should disconnect the setup made by them, and should return all the components/instruments taken for the purpose.	
9	Any damage of the equipment will be viewed seriously either by putting penalty or by dismissing the total group of students from the lab for the semester/year	
10	Completed lab assignments should be submitted in the form of a Lab Record in which you have to write the algorithm, program code along with comments and output for various inputs given	

2. Laboratory Specific Instructions

SNo	Specific Instructions	Remarks
1	Enter the command window of the MATLAB.	
2	Create a new M – file by selecting File - New – M – File	
3	Type and save the program in the editor window.	
4	Execute the program by pressing Tools – Run.	
5	View the results.	

C. OBE PARAMETERS

1. Laboratory Outcomes

Expt.	Lab Code #	COs / Experiment Outcome	Teach. Hours	Concept	Instr Method	Assessment Method	Blooms Level
-	-	At the end of the experiment, the student should be able to	-	-	-	-	-
1	15EEL67.1	Determine the performance characteristics of ac and dc servomotors		AC and DC Servomotors	Black Board + Executio n	Slip Test + Viva	L3
2		Determine the performance characteristics of synchro- transmitter receiver pair		Synchro transmitter.	Black Board + Executio n	Slip Test + Viva	L3
3	15EEL67.3	Determine the frequency response of a second-order system	03	second- order system.	Black Board + Executio n		L3
4	15EEL67.4	Design and analyze RC lead compensating network for given specifications		RC lead compensatin g network	Black Board + Executio n	Slip Test + Viva	L5
5	15EEL67.5	Design and analyze RC lag compensating network for given specifications		RC lag compensatin g network	Black Board + Executio n	Slip Test + Viva	L5
6	15EEL67.6	Design and analyze Lag- Lead compensating network for given specifications	-	Lag- Lead compensatin g network	Black Board + Executio n	Slip Test + Viva	L5
7		Use MATLAB software package in assessing the time domain response of a given second order system.		Second order system	Black Board + Executio n	Slip Test + Viva	L5
8		To study the effect of P, PI, PD and PID controller on the step response of a feedback control system (using control engineering trainer/process control simulator) and Verifying the same by simulation.		Controller	Black Board + Executio n	Slip Test + Viva	L5
9		Simulate a DC position control system using MATLAB and obtain its step response and to design PI controller and study its effect on steady state error.		DC position control system	Black Board + Executio n	Slip Test + Viva	L5
10		To analyse the relationship between open-loop frequency response and stability, open-loop frequency and closed loop transient response and to study the effect of open loop gain using root locus		Root Locus	Black Board + Executio n	Slip Test + Viva	L4
11	15EEL67.11	Write a script files to plot root locus, bode plot, Nyquist plots to study the stability of the system using a software		Bode, Nyquist and Root locus	Black Board + Executio n	Slip Test + Viva	L3
-		Total	60	-	-	-	-

Note: Identify a max of 2 Concepts per unit. Write 1 CO per concept. 15EEL67 Co

2. Laboratory Applications

Expt.	Application Area	CO	Level
1	AC servomotor are widely used in remote positioning devices, process control systems, self balancing recorders, computers, tracking and recording systems, robotics, machine tools etc DC servomotor are widely used in air craft control systems, electrochemical actuators, robotics, machine tools etc.	CO1	L3
2	In a control system, a synchro will provide a voltage for conversion to torque through an amplifier and a servomotor. Control type synchros are used in applications that require large torques or high accuracy such as follow-up links and error detectors in servo, automatic control systems (such as an autopilot system).	CO2	L3
3	Stability analysis and design	CO3	L3
4	Lead and lag compensators are used quite extensively in control. A lead compensator can increase the stability or speed of reponse of a system; a lag compensator can reduce (but not eliminate) the steady-state error	CO4	L5
5	Lead and lag compensators are used quite extensively in control. A lead compensator can increase the stability or speed of reponse of a system; a lag compensator can reduce (but not eliminate) the steady-state error	CO5	L5
6	Lead–lag compensators influence disciplines as varied as robotics, satellite control, automobile diagnostics, and laser frequency stabilization. They are an important building block in analog control systems, and can also be used in digital control.	CO6	L5
7	Step response and evaluation of time- domain specifications.	CO7	L5
8	Controllers improve steady state accuracy by decreasing the steady state errors. As the steady state accuracy improves, the stability also improves. They also help in reducing the offsets produced in the system. Maximum overshoot of the system can be controlled using these controllers. They also help in reducing the noise signals produced in the system. Slow response of the over damped system can be made faster with the help of these controllers.	CO8	L5
9	D.C. position control system it is required to keep the position of the load constant. Such a system where output position is kept constant is called as position control system. The output position is sensed and feedback to the potentiometer used as an error detector.	CO9	L5
10	Root Locus is a technique used as a stability criterion in the field of classical control theory developed by Walter R. Evans which can determine stability of the system. The root locus plots the poles of the closed loop transfer function in the complex s-plane as a function of a gain parameter.	CO10	L4
11	Root Locus is a technique used as a stability criterion in the field of classical control theory developed by Walter R. Evans which can determine stability of the system. The root locus plots the poles of the closed loop transfer function in the complex s-plane as a function of a gain parameter. A Bode Plot is a useful tool that shows the gain and phase response of a given LTI system for different frequencies. Bode Plots are generally used with the Fourier Transform of a given system. An example of a Bode magnitude and phase plot set. A Nyquist plot is a parametric plot of a frequency response used in automatic control and signal processing. The most common use of Nyquist plots is for assessing the stability of a system with feedback. In Cartesian coordinates, the real part of the transfer function is plotted on the X axis.	CO11	L3

Note: Write 1 or 2 applications per CO.

3. Mapping And Justification

CO – PO Mapping with mapping Level along with justification for each CO-PO pair.

To attain competency required (as defined in POs) in a specified area and the knowledge & ability required to accomplish it.

Expt Mapping Mapping	Justification for each CO-PO pair	Lev
15EEL67	Copyright ©2017. cAAS. All rights reserved.	

			Level		el
-	со	PO	-	'Area': 'Competency' and 'Knowledge' for specified 'Accomplishment'	-
1	CO1	PO1	2.77	Knowledge on servomotors.	L2
1	CO1	PO2	2.77	Analyzing the performance characteristics of ac and dc servomotors.	L4
2	CO2	PO1	2.77	Knowledge on synchro motor	 L2
2	CO2	PO2	2.77	To analyze the performance characteristics of synchro-transmitter receiver pair.	
3	CO3	PO1	2.77	Knowledge on frequency response analysis	L2
3	CO3	PO2	2.77	To analyse the frequency domain reposes of a given second order system using discrete components.	L4
4	CO4	PO1	2.77	Knowledge on design of control systems	L2
4	CO4	PO2	2.77	To analyze Lead compensators for given specifications.	L4
4	CO4	PO3	2.5	Design and analyze Lead compensators for given specifications.	L6
4	CO4	PO9	2.5	Projects or internship on Lead compensator.	L3
5	CO5	PO1	2.77	Knowledge on design of control systems	L2
5	CO5	PO2	2.77	To analyze Lag compensators for given specifications.	L4
5	CO5	PO3	2.5	Design and analyze Lag compensators for given specifications.	L6
5	CO5	PO9	2.5	Projects or internship on Lag compensator.	L3
6	CO6	PO1	2.77	Knowledge on design of control systems	L2
6	CO6	PO2	2.77	To analyze Lag lead compensators for given specifications.	L4
6	CO6	PO3	2.5	Design and analyze Lag lead compensators for given specifications.	L6
6	C06	PO9	2.5	Projects or internship on Lag Lead compensator.	L3
7	C07	PO1	2.77	Knowledge on time domain analysis	L2
7	CO7	PO2	2.77	To analyse the time domain reposes of a given second order system using software package or discrete components.	L4
7	CO7	PO5	2.8	To determine frequency domain reposes of a given second order system using software package.	L3
8	CO8	PO1	2.77	Knowledge on design of control systems	L2
8	CO8	PO2	2.77	To analyze the effect of P, PI, PD and PID controller on the step response of a feedback control system (using control engineering trainer/process control simulator) and Verifying the same by simulation.	
8	CO8	PO5	2.8	To simulate a second order system and study the effect of (a) P, (b) PI, (c) PD and (d) PID controller on the step response using software package.	L3
8	CO8	PO9	2.5	Projects or internship on Controllers.	L3
9	CO9	PO1	2.77	Knowledge on DC Position control system.	L2
9	CO9	PO2	2.77	Analyze DC position control system using MATLAB and obtain its step response.	L5
9	CO9	PO3	2.5	Design PI controller and study its effect on steady state error.	L6
9	CO9	PO5	2.8	Simulate DC position control system using MATLAB and obtain its step response.	L3
9	CO9	PO9	2.5	Projects or internship on PI Controllers.	L3
10	CO10	PO1	2.77	Knowledge on Root locus	L2
10	CO10	PO2	2.77	To analyse the relationship between open-loop frequency response and stability, open-loop frequency and closed loop transient response and to study the effect of open loop gain using root locus	-
10	CO10	PO5	2.8	To study the effect of open loop gain on transient response of closed loop system using root locus with the help of software package.	L3
11	CO11	PO1	2.77	Knowledge on Root locus, Bode Plot and Nyquist Plots	L2
11	CO11		2.77	To Analyze the stability of the system using root locus, bode plot, Nyquist plots.	L4
11	CO11	PO5	2.8	To Analyze the stability of the system using software package by writing a script files to plot root locus, bode plot, Nyquist plots.	L3

4. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	-	Experiment Outcomes	Program Outcomes	-		
Expt.	CO.#	At the end of the experiment	POPOPOPOPOPOPOPOPOPOPOPOPOPSPSPSL			
15EEL6	57		Copyright ©2017. cAAS. All rights reserved.			

		LABORATORY PLAN - CAY 2018-19
		student should be able to 1 2 3 4 5 6 7 8 9 10 11 12 01 02 03 el
1		Determine the performance 2.7 2.7 L L2 characteristics of ac and dc 7 7 servomotors
2		Determine the performance 2.7 2.7 characteristics of synchro-7 7 transmitter receiver pair
3		Determine the frequency 2.7 2.7 response of a second-order 7 7 system
4	15EEL67.4	Design and analyze RC lead 2.7 2.7 2.52.5compensating network for given 7 7specifications
5		Design and analyze RC lag 2.7 2.7 2.5 compensating network for given 7 7 7 Lagrandian 2.5 Lagrandian Lagrandia
6		Design and analyze Lag- Lead 2.7 2.7 2.52.5L2compensating network for given 7 77specifications
7		Use MATLAB software package 2.7 2.7 2.8 in assessing the time domain 7 7 response of a given second order system.
8		To study the effect of P, PI, PD 2.7 2.7 2.7 2.8 2.5 And PID controller on the step 7 7 response of a feedback control system (using control engineering trainer/process control simulator) and Verifying the same by simulation.
9		Simulate a DC position control 2.7 2.7 2.5 2.8 2.5 system using MATLAB and 7 7 obtain its step response and to design PI controller and study its effect on steady state error.
10	15EEL67.10	To analyse the relationship 2.7 2.7 2.7 between open-loop frequency 7 7 response and stability, open-loop frequency and closed loop transient response and to study the effect of open loop gain using root locus
11		Write a script files to plot root 2.7 2.7 locus, bode plot, Nyquist plots to study the stability of the system using a software2.8
		Average attainment (1, 2, or 3)
		1.Engineering Knowledge; 2.Problem Analysis; 3.Design / Development of Solutions, 4.Conduct Investigations of Complex Problems; 5.Modern Tool Usage; 6.The Engineer and Society; 7.Environment and Sustainability; 8.Ethics; 9.Individual and Teamwork, 10.Communication; 11.Project Management and Finance; 12.Life-long Learning, S1.Software Engineering; S2.Data Base Management; S3.Web Design

5. Curricular Gap and Experiments

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.ExptGap TopicActions PlannedSchedule PlannedResources PersonPO Mapping

1			
2			
3			
4			
5			

Note: Write Gap topics from A.4 and add others also.

6. Experiments Beyond Syllabus

Topics & contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Expt	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					

D. COURSE ASSESSMENT

1. Laboratory Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Unit	Title	Teachi	1				n in Exa	am		CO	Levels
		ng	CIA-1	CIA-2	CIA-3	Asg-1	Asg-2	Asg-3	SEE		
1	Experiment to draw the speed torque characteristics of (i) AC servo motor (ii) DC servo motor		1	-	-	-	-	-	1	CO1	L5
2	Experiment to draw synchro pair characteristics	03	1	-	-	-	-	-	1	CO2	L5
3	Experiment to determine the frequency response of a second- order system.	U U	1	-	-	-	-	-	1	CO3	L5
4	(a)To design a passive RC lead compensating network for the given specifications, viz., the Maximum phase lead and the frequency at which it occurs and to obtain the frequency Response. (b) To determine experimentally the transfer function of the lead compensating network.		1	-	-	-	-	-	1	CO4	L5
5	(a)To design a passive RC lag compensating network for the given specifications., viz., the maximum Phase lag and the frequency at which it occurs, and to obtain the frequency response. (b) To determine experimentally the transfer function of the lag compensating network.		-	1	-	-	-	-	1	CO5	L5
6	Experiment to draw the frequency response characteristic of a given lag- lead compensating network		-	1	-	-	-	-	1	CO6	L5

	ad determination of its transfer function										
7	 (a) To Simulate a typical second order system and determination of step response and evaluation of time- domain specifications. (b) Evaluation of the effect of additional poles and zeroes on time response of second order system. (c) Evaluation of the effect of additional poles and zeroes on time response of second order system. (d) Effect of loop gain of a negative feedback system on stability 	03	-	1	-	_	_	_	1	CO7	L5
8	To simulate a second order system and study the effect of (a) P, (b) PI, (c) PD and (d) PID controller on the step response.	03	-	-	1	-	-	_	1	CO8	L5
9	 (a)To simulate a D. C. position control system and obtain its step response. b) To verify the effect of the input wave form, loop gain system type on steady state errors. c) To perform a trade-off study for lead compensation d) To design a PI controller and study its effect on steady state error. 	03	_	_	1		_	_	1	CO9	L5
10	 a) To examine the relationships between open-loop frequency response and stability, open loop frequency and closed loop transient response. (b) To study the effect of open loop gain on transient response of closed loop system using root locus. 	03	-	-	1	-	-	-	1	CO10	L5
11	 (a) To study the effect of open loop poles and zeros on root locus contour. (b) To estimate the effect of open loop gain on the transient response of closed loop system by using Root locus. c) Comparative study of Bode, 										

-	Total	4	3	3	5	5	5	20	-	-
	Nyquist and Root locus with respect to Stability.									

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Evaluation	Weightage in Marks	СО	Levels
CIA Exam – 1	30	CO1, CO2, CO3, CO4	L1, L2, L3,L4
CIA Exam – 2	30	CO5, CO6, CO7,	L5, L6, L7
CIA Exam – 3	30	CO8, CO9,C010	L8, L9, L10
Assignment - 1	05	CO1, CO2, CO3, CO4	L1, L2, L3,L4
Assignment - 2	05	CO5, CO6, CO7,	L5, L6, L7
Assignment - 3	05	CO8, CO9,C010	L8, L9, L10
Seminar - 1			
Seminar - 2			
Seminar - 3			
Other Activities – define –			
Slip test			
Final CIA Marks	40	-	-

SNo	Description	Marks
1	Observation and Weekly Laboratory Activities	05 Marks
2	Record Writing	10 Marks for each Expt
3	Internal Exam Assessment	25 Marks
4	Internal Assessment	15 Marks
5	SEE	80 Marks
-	Total	100 Marks

E. EXPERIMENTS

_

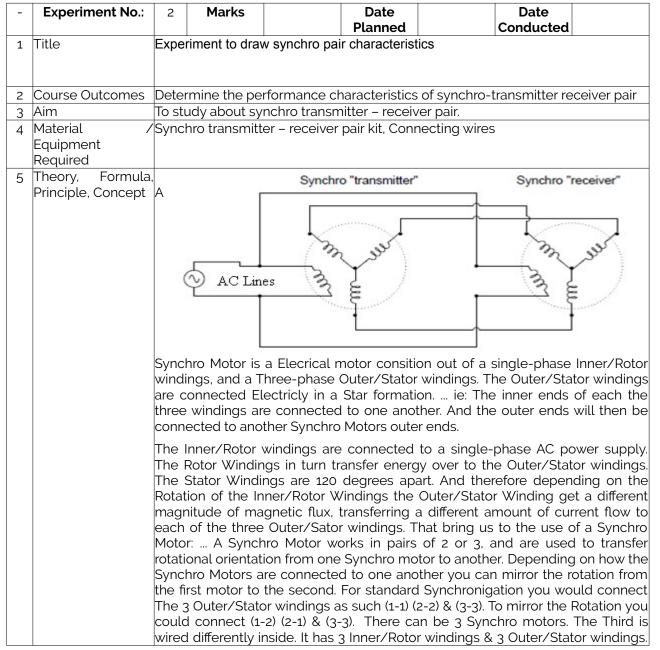
Experiment 01 : (i)TORQUE- SPEED CHARACTERISTICS OF AC SERVO MOTOR (ii) TORQUE- SPEED CHARACTERISTICS OF DC SERVO MOTOR

-	Experiment No.:	1	Marks		Date		Date	
	-	(i)			Planned		Conducted	
1	Title	Expe	eriment to d	raw the spee	ed torque cha	aracteristics o	of (i) AC servo	motor
2	Course Outcomes	Dete	ermine the p	erformance	characteristi	cs of ac serve	omotor.	
3	Aim		Obtain the torque - speed characteristics of ac servo motor with the following control voltages:					
15EEL67 Copyright ©2017. cAAS. All rights reserved.						reserved.		

		 Rated value (100%) 70% of the rated voltage 50% of the rated voltage
	aterial / Equipment quired	AC Servomotor unit, voltmeter (MI)0-250V, Voltmeter (MC) 0-15V.
5 The	eory, Formula, nciple, Concept	Servo motors are called control motors and have high torque capabilities. Unlike large industrial motors they are not used for continuous energy conversion but only used for precise speed and precise position control at high torque. Their power rating varies from a fraction of a watt up to a few 100w. Due to their low inertia they have high speed of response. These motors are designed to have linear torque/speed characteristics with negative slope. The negative slope serves the purpose of providing viscous damping for the servo motor drive
		An AC servo motor is essentially a two phase induction motor consisting of two stator windings separated by 90 deg. Electrical in space and a squirrel cage rotor
		Construction wise it is similar to an induction motor except for a special design features. In servomechanism an IM is required to produce rapid acceleration from standstill. Therefore the rotor diameter is kept as small as possible in order to reduce inertia and get good acceleration. Balanced voltages applied to the two stator winding which differ in time phase by 90 deg. One phase is known as reference phase which is excited by a constant voltage and the other is known as control phase which is energized by a variable voltage and polarity
		To find torque developed by the ac servomotor : Electrical power developed Pg = Egla watts Mechanical power developed = ωT = 2πnT watts where n in rps = N/60 According to Newton's law of conservation of energy both the powers are equal and hence ωT = Egla or T=Pg/ω = Pg / (2πn) = Pg / 2π(N/60) T = 60Pg/(2πN) Nm
Act	ocedure, Program, tivity, Algorithm, eudo Code	 Connections are made as per the circuit diagram shown in the figure. Connect a voltmeter across the control winding of ac servomotor to measure control voltage. With the load switch in off position and auto transformer knob at minimum position, the main supply is switched on and then servomotor switch is made on. Vary the auto transformer knob from minimum position and the motor starts running. Vary the auto-transformer knob until the voltmeter connected across control winding reads rated value.(200V). Note down the corresponding values of induced Emf Eg, no-load current and no-load speed. Now load is switched on and the load is applied gradually in suitable steps. For each load the readings of induced Emf Eg, load current and speed are noted down. These readings give the torque-speed characteristics of ac servomotor at rated voltage. To obtain the torque - speed characteristics for 70% of the rated voltage (140V), adjust the auto-transformer till the voltmeter across the control windings reads 140Vand the same procedure is repeated. To obtain the torque - speed characteristics for 50% of the rated voltage (100V), adjust the auto-transformer till the voltmeter across the control windings reads 100Vand the same procedure is repeated.
	ole Circuit Madel	
7 Blo 15FFI 67	ock, Circuit, Model	Conviriant @2017 cAAS All rights reserved

	Diagram, Reaction					
	Equation, Expected Graph	ſ	Re	ference Winding		
		Supply	Control			đ
		т	Forque		% ∖ → Speed	
8	Observation Table,		%(or rated value)) of the control v	oltage=200volts	;
	Look-up Table, Output	Speed N(rpm)	Load current	Induced EMF Eg(Volts)	Power developed	Torque
			(Amps)		P=Eg x I (Watts)	
		• For 70%	of the control v	dtade = 140		
		Speed N(rpm)	Load current	Induced EMF Eg(Volts)	Power developed	Torque
			(Amps)		P=Eg x I (Watts)	
		• For 50%	of the control v	oltage=100volts		
		Speed N(rpm)	Load current	Induced EMF Eg(Volts)	Power developed	Torque
			(Amps)		P=Eg x I (Watts)	

r	1							
9	Sample Calculations							
10	Graphs, Outputs							
11	Results & Analysis	 Families of torque /speed characteristics of the AC servo motor are plotted for 100%, 70% and 50% of the control voltage. All these torque /speed curves have negative slope. On the low speed region the curves are nearly linear and equidistant, that is, the torque varies linearly with the speed and control voltages. The AC servomotors have good accelerating char due to high torque / inertia ratio 						
12	Application Areas	C servomotor are widely used in remote positioning devices, process control ystems, self balancing recorders, computers, tracking and recording systems, obotics, machine tools etc						
13	Remarks							
	Faculty Signature							
4	with Date							


-	Experiment No.:	1 Marks	Date Planned		Date Conducted				
	T '11								
	Title	xperiment to draw the speed torque characteristics of (i) DC servo motor Determine the performance characteristics of dc servomotor.							
2	Course Outcome								
3	Aim	Obtain the torque speed o	characteristics	of dc servo	motor with t	he following			
		control voltages:							
		Rated value (100%)							
		60% of the rated voltage							
		40% of the rated voltage							
4	Material / Equipment Required	DC Servomotor cum Brake	Drum load arr	angement u	nit, Voltmetei	r 0-50V			
5	Theory, Formula, Principle, Concept	 40% of the rated voltage DC Servomotor cum Brake Drum load arrangement unit, Voltmeter 0-50V The mechanism in which the control variable is adjusted by the error served comparing output and input is called servomechanism. Any quantity examp voltage, speed, temperature, position, torque, etc. be controlled by providi appropriate feedback. The motor which respond to the error signal abrup and actuate the load quickly are called servomotors. These are specificat designed and built primarily for use in feedback control systems as outpactuators. The power ratings can vary from a fraction of a watt upto a from thurdred watts. They have high speed response which requires low ro inertia. These motors are therefore smaller in diameter and longer in length. DC servomotors are used in high power applications. Some DC motors w relatively small power rating are used in instruments and computer relationstruments. Other applications are CNC machines, robot systems, radamachine tools, etc. most important among the characteristics of the servomotor is the maximum acceleration. The operation of this motor is sar as normal DC motor. The DC servomotors generally used are of permanent magnet DC motors at their speed is controlled by armature voltage. These motors have high torque 							

 Pseudo Code V DC on the motor) to measure the control voltage. 3. With no-load on the motor and the speed regulator at minimum position, the main supply is switched on and then servo motor switch is put on. 4. The speed regulator knob is gradually varied from minimum position to the maximum position until the voltmeter reads the rated control voltage (24 V) and the corresponding no-load current and no-load speed is noted down. 5. Now the load is applied on the motor by rotating the wheel of the brake drum load arrangement and the current speed, spring balance readings w1 and w2 are noted down for every 25gms or 50 gms of load. 6. Release the load gradually. 7. These readings give the torque -speed characteristics of dc servo motor at rated control voltage. 8. To obtain the torque - speed characteristics for 60% of the control voltage , adjust the speed regulator knob till the voltmeter reads required value and the same procedure is repeated. 9. To obtain the torque - speed characteristics for 40% of the control 			
8 Observation Targue - KW R Where K-1- Constant R-Radius of the pully in cms W-Total weight gms. 6 Procedure, Program Activity, Algorithm 1. Connections are made as per the circuit diagram shown in the figure. 7 Discource an voltmeter across the motor armature terminals (Marked 2x VDC on the motor to measure the control voltage. 8 With no-load on the motor and the speed regulator at minimum position, the main supply is switched on and then servo motor switch is put on. 9 The speed regulator knob is gradually varied from minimum position to the maximum position until the voltmeter reads the rated control voltage (24 V) and the corresponding no-load current and no-load speed is noted down. 9 Now the load is applied on the motor by rotaling the wheel of the brake drum load arrangement and the current speed, spring balance readings wt and w2 are noted down for every 25gms or 50 gms of load. 9 Release the load gradually. 10 The speed regulator knob till the voltmeter reads required value and the same procedure is repeated. 9 To obtain the torque - speed characteristics for 60% of the control voltage , adjust the speed regulator knob till the voltmeter reads required value and the same procedure is repeated. 9 Block, Circuit, Model Diagram, Reaction Equation, Expected Image: speed regulator who till the voltmeter reads required value and the same procedure is repeated. 10 Image: speed regulator is repeated.			
Where K-a-Constant R-Radius of the publy in cms W-Total weight gms 6 Procedure, Program Activity, Algoritim Pseudo Code 1. Connections are made as per the circuit diagram shown in the figure. 2 Connect an voltmeter across the motor armature terminals (Marked 24 V DC on the motor to measure the control voltage. 3 With no-load on the motor and the speed regulator at minimum position, the main supply is switched on and then serve motor switch is put on. 4 The speed regulator knob is gradually varied from minimum position to the maximum position until the voltmeter reads the rated control voltage (24 V) and the corresponding no-load current and no-load speed is noted down. 5 Now the load is applied on the motor by rotating the wheel of the brake drum load arrangement and the current speed, spring balance readings wit and var are noted down for every 25gms or 50 gms of load. 6 Retease the load gradually. 7 These readings give the torque -speed characteristics of the control voltage, adjust the speed regulator knob till the voltmeter reads required value and the same procedure is repeated. 7 Block, Circuit, Model Diagram, Reaction Equation, Expected Graph Speed Regulator Break Down Loa Integer (gm.cm) Integer (gm.cm) Integer (gm.cm) Integer (gm.cm) Integer (gm.cm)			
Where K-a-Constant R-Radius of the publy in cms W-Total weight gms 6 Procedure, Program Activity, Algoritim Pseudo Code 1. Connections are made as per the circuit diagram shown in the figure. 2 Connect an voltmeter across the motor armature terminals (Marked 24 V DC on the motor to measure the control voltage. 3 With no-load on the motor and the speed regulator at minimum position, the main supply is switched on and then serve motor switch is put on. 4 The speed regulator knob is gradually varied from minimum position to the maximum position until the voltmeter reads the rated control voltage (24 V) and the corresponding no-load current and no-load speed is noted down. 5 Now the load is applied on the motor by rotating the wheel of the brake drum load arrangement and the current speed, spring balance readings wit and var are noted down for every 25gms or 50 gms of load. 6 Retease the load gradually. 7 These readings give the torque -speed characteristics of the control voltage, adjust the speed regulator knob till the voltmeter reads required value and the same procedure is repeated. 7 Block, Circuit, Model Diagram, Reaction Equation, Expected Graph Speed Regulator Break Down Loa Integer (gm.cm) Integer (gm.cm) Integer (gm.cm) Integer (gm.cm) Integer (gm.cm)			
 R-Radius of the pully in cms W-Total weight gms. Procedure, Program. Connections are made as per the circuit diagram shown in the figure. Connect an voltmeter across the motor armature terminals (Marked 24 VDC on the motor to measure the control voltage. With no-load on the motor and the speed regulator subthis put on. The speed regulator knob is gradually varied from minimum position to the maximum position until the voltmeter reads the rated control voltage (24 V) and the corresponding no-load current and no-load speed is noted down. Now the load is applied on the motor by rotating the wheel of the brake drun load arrangement and the current speed, spring balance readings wit and w2 are noted down for every 25gms or 50 gms of load. Release the load gradually. These readings give the forque -speed characteristics of dc servo motor at rated control voltage. To obtain the torque - speed characteristics for 60% of the control voltage, adjust the speed regulator knob till the voltmeter reads required value and the same procedure is repeated. Block, Circuit. Model Block, Circuit. Model AC supply - U and the same procedure is repeated. Torque (gm.cm) Torque (gm.cm) Speed (npm) 			•
 W-Total weight gms Connections are made as per the circuit diagram shown in the figure. Connect an voltmeter across the motor armature terminals (Marked 24 V DC on the motor) to measure the control voltage. With no-load on the motor and the speed regulator at minimum position. The speed regulator knob is gradually varied from minimum position to the maximum position until the voltmeter reads the rated control voltage (24 V) and the corresponding no-load current and no-load speed is noted down. Now the load is applied on the motor aby rotating the whell of the brake drum load arrangement and the current speed, spring balance readings w1 and w2 are noted down for every zggms or 50 gms of load. Release the load gradually. These readings give the torque -speed characteristics of dc servo motor at rated control voltage. To obtain the torque - speed characteristics for 40% of the control voltage - adjust the speed regulator knob till the voltmeter reads required value and the same procedure is repeated. Block, Circuit, Model Diagram, Reaction Expected regulator knob till the voltmeter reads required value and the same procedure is repeated. Block, Circuit, Model Diagram, Reaction Equation, Expected Graph Block, Circuit, Model Diagram, Reaction Expected Complex to the same procedure is repeated. Torque (gm.cm) Torque (gm.cm) Speed (rgm.) Block are Table.			
 Procedure. Program. Activity Algorithm. Pseudo Code Connections are made as per the circuit diagram shown in the figure. Connect an voltmeter across the motor amature terminals (Marked 24 V DC on the motor and the speed regulator at minimum position the main supply is switched on and then servo motor switch is put on. The speed regulator knob is gradually varied from minimum position to the maximum position until the voltmeter reads the rated control voltage (24 V) and the corresponding no-load current and no-load speed is noted down. New the load is applied on the motor by rotating the wheel of the brake drum load arrangement and the current speed, spring balance readings wit and w2 are noted down for every zggms or 50 gms of load. Release the load gradually. These readings give the torque -speed characteristics of the control voltage. To obtain the torque - speed characteristics for 60% of the control voltage. To obtain the torque - speed characteristics for 40% of the control voltage adjust the speed regulator knob till the voltmeter reads required value and the same procedure is repeated. Block, Circuit, Model Diagram, Reaction Equiped value and the same procedure is repeated. Block, Circuit, Model Diagram, Reaction Equiped value and the same procedure is repeated. To rotatin the torque - speed regulator knob till the voltmeter reads required value and the same procedure is repeated. Torque (gm.cm) Torque (gm.cm) Soltiz AC Supply - U = 0.000000000000000000000000000000000			
 Block, Circuit, Model Biagram. Reaction Equation, Expected Graph Freed Regulator Speed Regulator Break Down Loa I - φ Sol-Iz AC Supply Torque (gm.cm) Torque (gm.cm) Speed (rpm) 8 Observation Table For voltage=	6	Activity, Algorithm,	 Connections are made as per the circuit diagram shown in the figure. Connect an voltmeter across the motor armature terminals (Marked 24 V DC on the motor) to measure the control voltage. With no-load on the motor and the speed regulator at minimum position, the main supply is switched on and then servo motor switch is put on. The speed regulator knob is gradually varied from minimum position to the maximum position until the voltmeter reads the rated control voltage (24 V) and the corresponding no-load current and no-load speed is noted down. Now the load is applied on the motor by rotating the wheel of the brake drum load arrangement and the current speed, spring balance readings w1 and w2 are noted down for every 25gms or 50 gms of load. Release the load gradually. These readings give the torque -speed characteristics of dc servo motor at rated control voltage. To obtain the torque - speed characteristics for 60% of the control voltage , adjust the speed regulator knob till the voltmeter reads required value and the same procedure is repeated. To obtain the torque - speed characteristics for 40% of the control voltage , adjust the speed regulator knob till the voltmeter reads
Diagram, Reaction Equation, Expected Graph Speed Regulator Break Down Loa 1-φ SOHz AC Supply Torque (gm.cm) 1/2 3 Speed (rpm) 8 Observation Table			
8 Observation Table, • For voltage=V(100%)	7	Diagram, Reaction Equation, Expected	Speed Regulator Break Down Loa
8 Observation Table, • For voltage=V(100%)			Torque (gm.cm)
			3
	-	Obconvetien T-1-1	
			101 VottageV(10076)

Look-up Table Output	à,									
Output	Speed N (rpm)	l Control Voltage	Load Current(A	Load W_1	Load W ₂	W ₁ -W ₂	Torque			
		100%)	(gms)	(gms)	(Gms)	(gm-cm)			
							T=(W1- W2)R			
	• Fo	voltage=	V(605	%)						
	Speed N (rpm)	-	Load Current(A	Load W ₁	Load W_2	W ₁ -W ₂	Torque			
		100%)	(gms)	(gms)	(Gms)	(gm-cm)			
							W2)R			
	For voltage=V(40%)									
	Speed N (rpm)	l Control Voltage	Load Current(A	Load W_1	Load W ₂	W ₁ -W ₂	Torque			
		100%)	(gms)	(gms)	(Gms)	(gm-cm)			
							T=(W1- W2)R			
<u>9</u> Sample Calculations0 Graphs, Outputs										
1 Results & Analysis	2. Th	otted for 10 le speed o	torque spee 0%, 60% and f a dc serve trol voltage.	l 40% of cor	ntrol voltage	Ð.				

		 All these torque speed curves have negative slopes. In low speed region the curves are nearly linear and equidistant, that is the torque varies linearly with speed and control voltages. A servomotor normally operates at low speed in control applications. Eg: Position control system PMDC servomotor have much higher torque/inertia ratio giving good accelerating characteristics and higher operating efficiency as pmdc servomotors have no losses. A much lower inertia is achieved by placing the winding on a non magnetic cylinder.
12		DC servomotor are widely used in air craft control systems, electrochemical actuators, robotics, machine tools etc.
13	Remarks	
14	Faculty Signature with Date	

Experiment 02 : Study of Synchro Transmitter

		Synchr	he Rotor & Stator winding are connected in a star formation. The third ynchromotor bring about a difference in rotation. You could add or subtract otational orientations.								
		Synchr & clos advanc in turn	o Motor 3. A+B=C or ing valves from the ced system of the S can control the rude	chro Motor 1. B = Synchro Motor 2 (with 3 Stator & 3 Rotor windings). C = Motor 3. A+B=C or A-B=C. Synchro motors are used in ships, for opening ng valves from the bridge to for instance the Engine room. A more ed system of the Synchro technology integrates with a Servo Motor that can control the rudder of the ship. Other uses are in Analog computers & nic Weapon Guidance Systems							
	Procedure, Program, Activity,	 Connect the mains supply to the synchro Transmitter – Receivent with the help of the given mains cord. 									
	Algorithm, Pseudo Code		Connect the stato	r terminals of transmitter	S_{1} , S_{2} and S_{3} with Stator						
					the help of patch cords						
		3.	Switch on the mair transmitter and rec		o the rotor's supply of both						
		4.	Now at zero angul receiver and tabula	•	smitter, note down that of						
		5.		ositions of rotor of transmiti nding angular positions of 1	ter in steps by 30° and note rotor of receiver.						
		6.	Plot a graph betw angular positions o		f rotor of transmitter and						
		7.	Switch off the mair transmitter and rec		o the rotor's supply of both						
	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph										
8	Observation Table, Look-up Table, Output		SI. No.	Angular positions of transmitter	Angular positions of receiver						
		1		0							
		2		30							
		3		60							
		4		90							
		5		120							
		6		150							
		7		180							
		8		210							
		9		240							
		10		270							
		11		300							
		12		330							

		13	360 or 0	
9	Sample			
	Calculations			
10	Graphs, Outputs			
11	Results & Analysis			
12	Application Areas	Thus the characteristics of	synchro transmitter – recei	ver pair were studied.
13	Remarks			
14	Faculty Signature with Date			

Experiment 03: FREQUENCY RESPONSE OF A SECOND-ORDER SYSTEM

-	Experiment No.:	3	Marks		Date Planned		Date Conducted		
1	Title	Expe	Experiment to determine frequency response of a second order system						
2	Course Outcomes	Detei	Determine the frequency response of a second-order system						
3	Aim				ermine the fr Jency domaii			econd-order	
	Material /						CB-1No., Mul	timotor 1No	
4	Equipment Required	Gene			0., DRB-1110.,			LIITIELEI-IINO.	
5		semil frequ wr at be w ratio (1) Bc angle for st comp the k obtai relati meth appli order step volta It is s Spec Gain	log sheet tak lency domain which it occurs ithin 1 to 1.4 of ξ = 0.707, the ode plot (2)Po plot. Freque ability analys puter simulat nowledge of ned experim ve stability od applicab cable to the sable to the system. The response of ge across cal imilar to the s C(s)/R(s) imen calcula ad/sec = 2πf A _v = V ₀ / V ₁ = in dB = 20 log	king frequent n specification urs and band or o to 3dB a re is no Mr i plar plot (Roce ency response is and design ion. Advanta the TF, the file entally (2) Wr of the systement le to only ling systems having C circuit car e voltage acr any second pacitor as our Vo(s)/Vice standard form $1 = \omega_n^2 / (s^2 - s^2)$ ation for one $s = s^2$ (Av) =	cy in the x-a ons are reson l width. For si nd ξ value be n the output. ot locus) (3) N se methods v n, as compar ges of freque req. response e can use the em. The disa near system ng time cons n be used to ross the capa	xis and mag ant peak Mi atisfactory o etween 0.4 a The freque lyquist plot vere used ea red to root lo ency domain of a stable ese methods advantage o s (2) metho stants a few r study the tir acitor to a st h. The TF of by (s2+(R/L)s+1/ a second oro) ng :	gnitude in the r, the resonal peration, Mr and 0.707. Wh ncy domain in and (4) Magr arlier than oth ocus method n approach a open loop sy s for finding a of these sys d is time co minutes. me response tep input is a f a series RLC /LC]	nt frequency value should nen damping methods are nitude-phase her methods ls and digital are (1)without rstem can be absolute and tems are (1) onsuming (3) of a second analogous to	
		1.	Natural fre	equency (r/s)	ωn = 1 / √ (LC)			

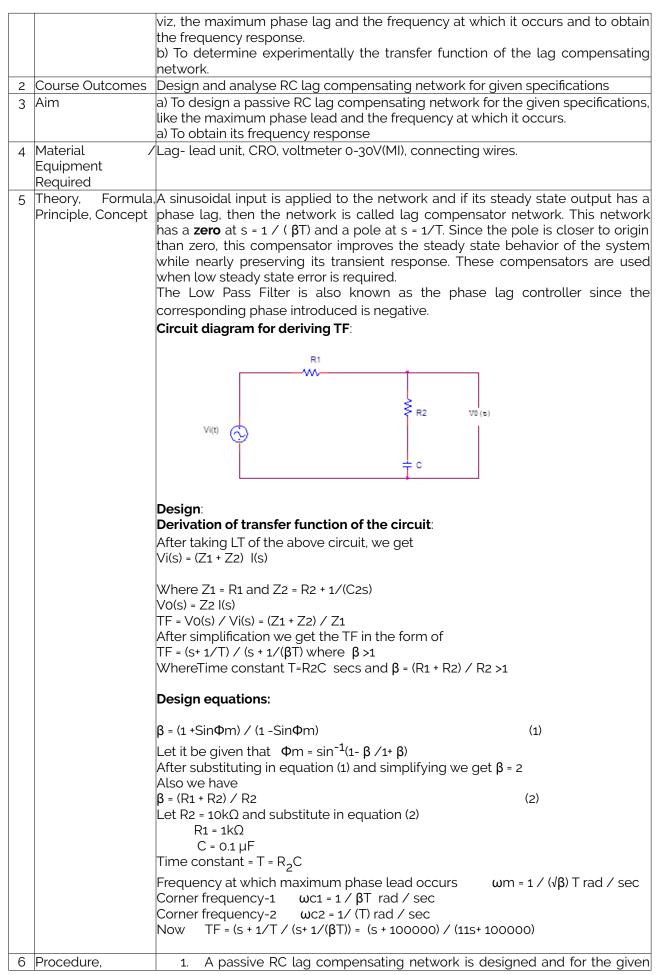
LABORATORY PLAN - CAY 2018-19

				PLAN - CAY 2018	0					
		2. Dar	mping ratio ξ = I	R wn / 2						
		3. Dar	mping frequenc	cy (r/s) w _d = ($\omega_n \sqrt{(1-\xi^2)}$					
		4. Res	4. Resonant peak (dB) $M_r = 1/[2\xi \sqrt{(1-\xi^2)}]$							
		5. Res	sonant frequen	cy(r/s) ω _r = ω	n√(1 – 2ξ ²)					
		6. Bar	nd width W _d	= ω _n √[1 - 2ξ2	+√(2-4ξ ² +4ξ ⁴))]				
	Procedure, Program, Activity, Algorithm, Pseudo Code	2. In t zero	up the circuit a he signal gener o position and xes, keep all the	ator, keep pov pressing swite	wer switch in ches in out p					
			decade boxes bacitance to the				uctance and			
		pos mu	tch ON signa sition and sele ltimeter. Then put rms voltage	ect SIN wave connect the	Note input	rms voltage	e Vi using a			
		ran frec ma: Tak the	5. In signal generator, select the frequency from lower range to higher range and vary in steps. Note down the corresponding readings of frequency and Vo at each step. During record of readings, note maximum Vo and the frequency at which maximum phase angle occurs. Take few readings after second corner frequency and stop. Switch off the power switch of signal generator and switch off the supply to the circuit.							
		sen	culate ωn, ξ, α ni-log sheet. Ν ify with simulat	1ark Mp, <mark>w</mark> r, c	orner frequer	ncies, band w				
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph		g,SIN	R(DRB) L(DIE 	0.5uf	V0,Multimeter C(DCB)				
8	Observation Table, Look-up Table,									
	Output	SL No	F(Hz)	ω (rad)	V _o (volts)	A _v =V _i /V _o				
L	1	L				-	-			

9	Sample Calculation			
10	Graphs, Outputs			
11	Results & Analysis			
12	Application Areas			
	Remarks			
14	Faculty Signature with Date			
	with Date			

Experiment 04: RC lead compensating network

-	Experiment No.:	4	Marks		Date Planned		Date Conducted	
1	Title	speci occu	fications, viz rs and to obt determine e	., the Maxir ain its freque	RC lead co num phase ency Respons	lead and th se.	network fo e frequency	r the given at which it ompensating
2 3	Course Outcomes Aim	1. a) speci occui b) To	esign and analyze RC lead compensating network for given specifications a) To design a passive RC lead compensating network for the given pecifications, viz., the Maximum phase lead and the frequency at which it ccurs and to obtain its frequency Response. To determine experimentally the transfer function of the lead compensating etwork.					
·	Material / Equipment Required	Lag-	lead unit, CF	20, voltmete	r 0-30V (MI), c	connecting w	ires.	
5	Theory, Formula Principle, Concept	has a netwo origin increa error dynau The h phase	phase lead. ork has a ze than pole ases the man constant to mic response igh pass filt	This type of ro at s=1/T this comp gin of stabil a limited e is required er is often re ed to the sys	network is c and a pole a ensator spe- ty of a syster extent. These ferred to as tem over sor	alled lead co t s=1/(αT). Si eds up the m. It also help e compensat a phase lead	ompensator r nce zero is c transient re os to increase cors are use controller, s	state output network. This closer to the sponse and e the system d when fast ince positive


٦

	Design: Derivation of transfer function of the circuit:
	After taking LT of the above circuit, we getVi(s) = (Z1 + Z2) I(s)Where Z1 = R1//C and Z2 = R2
	Vo(s) = Z2 I(s) TF = Vo(s) / Vi(s) = Z2 / (Z1 + Z2) After simplification we get the TF in the form of TF = (s + 1/T) / (s+ 1/αT) where α < 1
	Where, Time constant T=R1C secs and α = R2 / (R1 + R2)
	Design equations: 1. $\alpha = (1 - \sin\Phi m) / (1 + \sin\Phi m)$ (1)
	Let it be given that Φ m = sin ⁻¹ (1- $\alpha/1+\alpha$) After substituting in equation (1) and simplifying we get α = 0.0909
	Also we have 2. $\alpha = R2 / (R1 + R2)$ (2) Let us select R1 = 10k Ω and substitute in equation (2) R2 = 1k Ω
	C = 0.01 μF 3. Time constant = T = R ₁ C 4. Frequency at which maximum phase lead occurs ωm = 1 / (√α) T rad / sec Fm= ωm/2∏
	5. Corner frequency-1 ω c1 = 1 / T rad / sec
	6. Corner frequency-2 ωc2 = 1/ (αT) rad / sec Now TF = (s + 1/T) / (s+ 1/αT) =>> TF = (s + 10000) / (s+ 110000)
6 Procedure, Program, Acti Algorithm, Pse Code	 A passive RC lead compensating network is designed for the given specifications. udoConnections are made as per the circuit diagram. 2. The output voltage of sine generator is set to 10 V (peak to peak) and is
	 a rine output to the RC lead compensator. 3. A CRO is connected at the output of the lead compensator. 4. The input frequency of the circuit is varied in steps and the corresponding output voltage is tabulated from CRO in every steps. 5. In addition to this, the phase angle is calculated in every step using Lissajous figures in CRO. 6. The voltage gain is calculated using the formula as given in the table. 7. The plots of gain in dB Vs frequency and phase angle Vs frequency are plotted in semi log sheet
7 Block, Cirv Model Diagr Reaction Equat Expected Graph 15EEL67	tion,

			LADORATC)RY PLAN - CA	47 2010-19						
			Phase deg	Frequ							
8	Observation Table,	Input volta	ae V: =		volts (Pe	ak-Peak)					
U	Look-up Table,	Input voltage V _i = volts (Peak-Peak)									
	Output	S. No.	Frequenc y (Hz)	Output Voltage V _o (PP) volts	Gain in dB = 20*log(Vo ∕Vi)	۲	Y ₂	Phase angle f (degrees)			
9	Sample Calculation										
	Graphs, Outputs										
	Results & Analysis	specification		aximum pha	ase lead and	the frequen	-	or the giver it occurs and			
12	Application Areas										
13	Remarks										
	Faculty Signature with Date										

Experiment 05: DESIGN OF LAG NETWORK

-	Experiment No.:	5	Marks		Date Planned		Date Conducted	
1	Title	a) To) To design a passive RC lag compensating network for the given specifications,					
15EE	L67	Copyright ©2017. cAAS. All rights reserved.						
				D // + 0	10.			

Copyright ©2017. cAAS. All rights reserved.

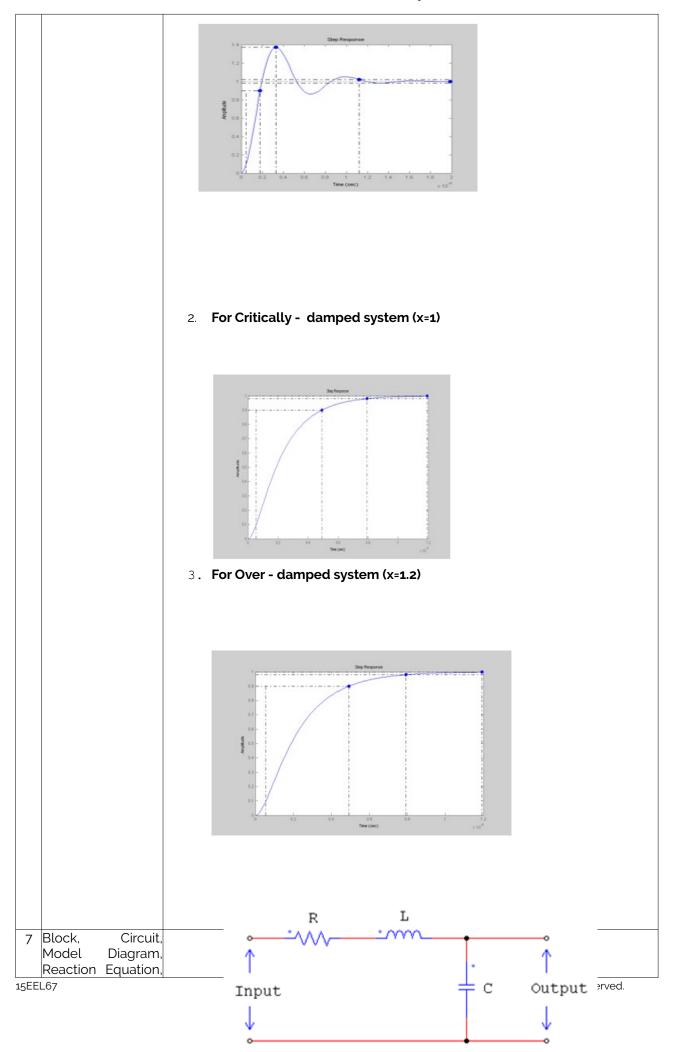
	Program, Activity, Algorithm, Pseudo Code	 2. Cor 3. The sup 4. A C 5. The cor 6. In a CR0 7. The 8. The 	plied as inp RO is conne e input fre responding addition to th D. e voltage ga	tage of sine ut to the RC ected at the equency of output volta nis, the phase in is calcula ain in dB Vs	e generator C lag compe output of th the circu age is tabula se angle is o ted using th	is set to 10 ensator. he lag com lit is var ated using calculated he formula	DV (peak ipensator. ied in st CRO in ev using List as given i	teps and the very steps. sajous figure in
	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	Phase deg 0 0 0 0 0 0 0 0 0 0		R2 Vo	JAT			
	Observation Table, Look-up Table, Output		ge V _i = Frequenc y (Hz)	Output VoltageV o (PP) volts	volts (Peal Gain in dB = 20*log(Vo /Vi)	k-Peak) Y ₁	Y ₂	Phase angle f (degrees)
-	Sample Calculation Graphs, Outputs							
	Results & Analysis	specificatio		maximum	phase lea	d and the	e frequen	for the given cy at which it

12	Application Areas	
13	Remarks	
	Faculty Signature with Date	

Experiment o6: DESIGN OF LAG - LEAD NETWORK

-	Experiment No.:	6	Marks		Date Planned		Date Conducted	
1	Title			aw the freque work and det	uency respo		eristics of the lag – lead	
2	Course Outcomes	Desig	n and analy:	ze Lag- Leac	compensati	ng network	for given specifications	
3	Aim			riment to dra sating netwo		ncy respons	se characteristic of a giver	
4	Material / Equipment Required	Lag- l	ag- lead unit, CRO, voltmeter 0 - 30V , connecting wires.					
5		comp the ric zero i: requir A con phase Phase freque A lead to dec Lag c stead due to advar	ensator. The ght of zero. s to the righ e improvem npensator h ensator. In e lag and ph e lag occurs ency region. d compensatir compensatir y state accu o reduced l itages of lag	e lag section The lead section The lead section t of the pole autor the cha a lead - lag ase lead occ in the lower ator basically haximum over g increases tracy of the size band width. g and lead co or deriving T	has one reaction also has been both ead compen- aracteristic of network wh urs in the ou- frequency re- increases ba- brshoot for the lower freq ystem, but s Lag - lead of mpensation.	I pole and o s one real por steady sta sator is requ of lag-lead r nen sinusoic tiput but in o egion and ph andwidth an e step respo uency gain peed of the compensatio	network is called lag-lead lal signal is applied, both different frequency region hase lead occurs in higher nd speed up the response	
6	Procedure, Program, Activity, Algorithm, Pseudo Code	L <u>C</u> .	The o/p terminals The o/p connecte	voltage of t and with refe of sine ge d to CRO to c	he sine gen erence to pha nerator and observe wave	erator is co ase meter the o/p eforms simu	ag, lead, lag-lead case. onnected to the n/w i/p of the n/w terminals is ltaneously. nd the frequency is varied	
15EE	L67	, ,		Page # 20	C		cAAS. All rights reserved.	

	 in steps. For a lead n/w vary the frequency of sine generator from 10Hz to 10KHz, For lag n/w, from 1Hz to 1KHz and For a lag-lead n/w from 1HZ to 10KHz respectively. 5. The o/p voltage Vo and i/p voltage Vi are noted down from CRO and corresponding phase angle from phase meter. 6. The magnitude in decibels is calculated as 20Log 10 (Vo/Vi). 7. The magnitude and the phase angle plot (bode plot) is plotted on the semilog sheet. 8. Obtain the TF from the Bode plot drawn as follows: Note down corner frequencies w1, w2, w3 and w4
	$TF=(s+\omega_2)(s+\omega_3)/(s+\omega_4)(s+\omega_4)$
Tr	ransfer Function:
	The selector switch on the n/w is set either at lag, lead, lag-lead case.
	 The o/p voltage of the sine generator is connected to the n/w i/p terminals and with reference to phase meter The o/p of sine generator and the o/p of the n/w terminals is connected to CRO to observe waveforms simultaneously. The input voltage is set to the desired value and the frequency is varied in steps. For a lead n/w vary the frequency of sine generator from 10Hz to 10KHz, For lag n/w, from 1Hz to 1KHz and For a lag-lead n/w from 1HZ to 10KHz respectively. The o/p voltage Vo and i/p voltage Vi are noted down from CRO and corresponding phase angle from phase meter. The magnitude in decibels is calculated as 20Log 10 (Vo/Vi). The magnitude and the phase angle plot (bode plot) is plotted on the semilog sheet. Obtain the TF from the Bode plot drawn as follows: Note down corner frequencies w1, w2, w3 and w4 TF= (s+w₂)(s+w₃)/(s+w₁)(s+w₄)
Z	ransfer Function: $Z_1 = \frac{R_1 \frac{1}{C_1 S}}{R_1 + \frac{1}{C_1 S}} = \frac{R_1}{R_1 C_1 S + 1}$
Z	$Z_2 = R_2 + \frac{1}{C_2 s} = \frac{R_2 C_2 S + 1}{C_2 s}$
	$\frac{E_{O}(s)}{E_{1}(s)} = \frac{Z_{2}}{Z_{1} + Z_{2}} = \frac{\frac{R_{2}C_{2}S + 1}{C_{2}s}}{\frac{R_{2}C_{2}S + 1}{C_{2}S} + \frac{R_{1}}{R_{1}C_{1}S + 1}}$


			ABORATORY PLAN -	0, (1 2010 19		
		$(R_2C_2S+$	$(1)(R_1C_1S+1)$			
		$(R_2C_2S+1)(1)$	$R_1C_1S+1)+R_1C_1$	$\Sigma_2 S$		
		$R_1 R_2 C_1 C_1$	$C_2 S^2 + (R_1 C_1 + R_1)$	$_{2}C_{2})S+1$		
		$\overline{R_1R_2C_1C_2S^2}$	$\frac{C_2 S^2 + (R_1 C_1 + R_1)}{+ (R_1 C_1 + R_2 C_2)}$	$+R_1C_2)S+1$		
		1 2 1 2		1 2/		
		$TF = \frac{S^2 + 110}{S^2 + 210}$	$KS + 10^9$			
		$1F - \frac{1}{S^2 + 210}$	$KS + 10^9$			
7	Block, Circuit,					
	Model Diagram,					
	Reaction Equation, Expected Graph	, ,	C1=0.luF			
			R1=10k <			
			R1=10k R2=1k	l vo		
		vi 🗘	* C2=1uF	ľ		
				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
			1	1		
8	Observation Table,	Frequency	Phase Angle	I/P Voltage	O/P voltage	Gain =
	Look-up Table, Output		(Degrees)	Vi(Volts)		20log(Vo/Vi)
	Output	(Hz)			Vo (Volts)	(db)
		<u> </u>				
9	Sample Calculation					
	Graphs, Outputs Results & Analysis					
	Application Areas					
	Remarks					
	Faculty Signature					
	with Date					
	1					

## Experiment 07: STEP RESPONSE OF A SECOND-ORDER SYSTEM

-	Experiment No.:	7	Marks		Date		Date	
					Planned		Conducted	
1	Title	a) To	To simulate a typical second order system and determine step response and					
		evalu	valuate time response specifications.					
		(b) To	b) To evaluate the effect of additional poles and zeros on time response of					

		second order system. (c) To evaluate the effect of pole location on stability (d) To evaluate the effect of loop gain of a negative feedback system on stability.
2	Course Outcomes	Use MATLAB software package in assessing the time domain response of a given second order system.
3	Aim	<ol> <li>Using MATLAB/SCILAB</li> <li>Simulation of a typical second order system and determination of step response and evaluation of time- domain specifications.</li> <li>Evaluation of the effect of additional poles and zeroes on time response of second order system.</li> <li>Evaluation of effect of pole location on stability.</li> <li>Effect of loop gain of a negative feedback system on stability.</li> </ol>
	Material / Equipment Required	PC loaded with MAT Lab
-		The total time response c(t) of control system consists of two parts. (i) Transient response Ctr(t) and (ii) Steady state response css(t). i.e., C(t) = Ctr(t) + Css(t). Most of the control systems use time as its independent variable. Analysis of response means to see the variation of output with respect to time. The output of the system takes some finite time to reach its final value. Every system has a tendency to oppose the oscillatory behavior of the system which is called damping. It is measured by a factor called damping ratio ( $\xi$ ) of the system. If the damping is very high, then there will not be any oscillations in the output. The output is purely exponential. Such system is called an over damped ( $1 < \xi < \infty$ ) system is called a critically damped ( $\xi$ =1) system. If the damping is very less, then the system is called under damped( $0 < \xi < 1$ ) system. With no damping, the system is un damped( $\xi$ =0).
		FORMULA USED:
		i) <u>For under - damped system (x=0.2)</u>
		Assumption: ξ = 0.2, L= 200mH, C= 0.1uF
		R=2 ξ√(L/C), L=CR ² /4 ξ ² , C=4 ξ ² L/R ² ,
		, √(1- ξ ² )
		Mp = e ^{(-Π ξ ∕ √(1- ξ2))}
		$t_d$ =(1+0.7 ξ)/ $t_p$ = Π / where = √(1- ξ ² )
		tr = $\Pi - \beta$ / where $\beta = \cos^{-1} \xi$ or $\beta = \tan^{-1} / \xi$

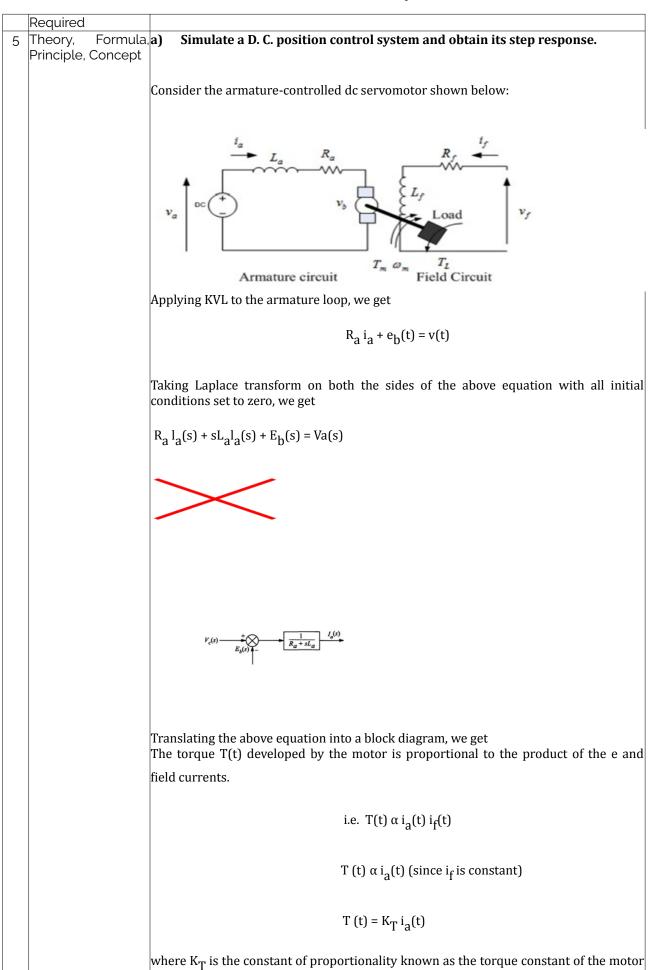
			$t_{S} = 4/(\xi)$						
6	Procedure,		Common Procedure to all sub questions: -						
	Program,	Activity,							
	Algorithm, Code	Pseudo	<ol> <li>Open the MATLAB command window. Click on New M-File to open the MATLAB editor window and and type the program.</li> </ol>						
			2. Save and run the program The graph is displayed.						
			3. Right click on the figure window and select grid to set grids on the curve.						
			4. Again right click on the figure window and select characteristics and click on peak response. We will get its value.						
			5. Again right click on the figure window and select characteristics and click on settling time.We will get its value.						
			6. Again right click on the figure window and select characteristics and click on rising time.We will get its value.						
			7. Tabulate the simulated value beside theoretical values and compare.						
			8. Repeat steps 5 to 9 for $\xi$ = 0.1 (under damped), $\xi$ = 1 (critically damped), $\xi$ = 1.5 (over damped), $\xi$ = 0 (un damped) and observe the time response.						
			a) Simulation of a typical second order system and determination of s response and evaluation of time- domain specifications.						
			For under - damped system (x=0.2)						
			PROGRAM: -						
			num = [0 0 50°10^6]						
			den = [1 2828.42 50*10^6] step(num,den)						
			grid						
			title(' Unit step response of second order system')						
			Ø Perform the calculation and write the program for $\xi$ = 0.1 (under damped), $\xi$ = 1 (critically damped), $\xi$ = 1.5 (over damped), $\xi$ = 0 (un damped) and observe the time response.						
		1. For under - damped system (x=0.2)							

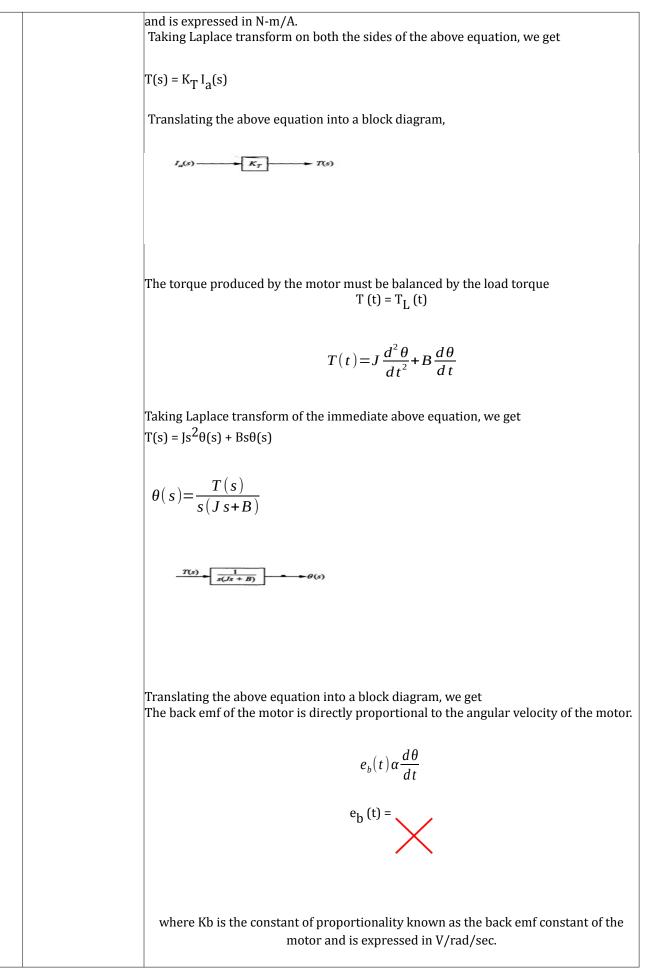


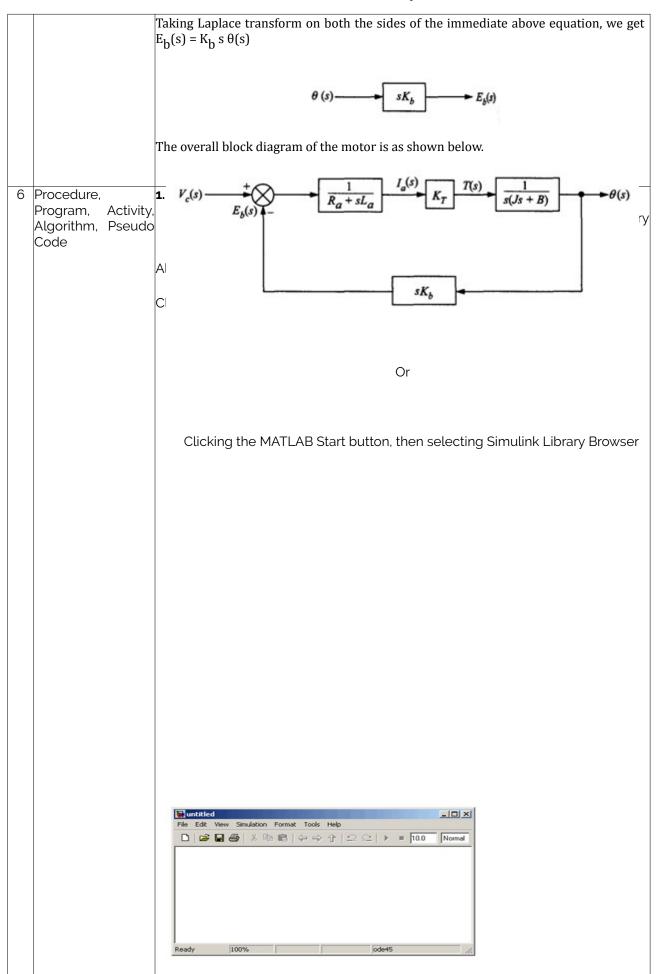
	Expected Graph							
8	Observation Table, Look-up Table, Output		Time domain specifications	Theoretical values	Simulated values			
		1	tr (secs)					
		2	tp (secs)					
		3	ts (secs)					
		4	td (secs)					
		5	%Mp					
	Sample Calculation							
	Graphs, Outputs							
		Simulation of a typic	cal second order syst	tem is simulated, th	e step response is			
	-		•					
		determined and time-domain specifications are evaluated. It is seen that the simulated time-domain specifications are compared with theoretical values. Also it is observed that when $\xi$ = 0 the oscillations will not die down. But as the damping ratio increases, the oscillations decreases and also time taken by the						
	response decreases to reach its steady state value.							
12	Application Areas							
	Remarks							
14	Faculty Signature							
	with Date							

# Experiment 08: PID CONTROLLERS

-	Experiment No.:	8	Marks		Date Planned		Date Conducted	
1	1 Title		To simulate a second order system and study the effect of (a) P, (b) PI, (c) PD and (d) PID controller on the step response.					
2	Course Outcomes	To study the effect of P, PI, PD and PID controller on the step response of a feedback control system (using control engineering trainer/process control simulator) and Verifying the same by simulation.						
3	3 Aim		To simulate a second order system and study the effect of (a) P, (b) PI, (c) PD and (d) PID controller on the step response.					
4	Material /	′Set p	oint generat	or, PID contro	oller unit, syst	em simulato	r second ord	er system.
15EE	L67	Copyright ©2017. cAAS. All rights reserved.						


	Equipment	PC loaded with MAT I	_ab				
	Required						
5	Theory, Formula Principle, Concept	PID controllers are commercially successful and widely used in industries. For example, in a typical paper mill, there may be about 1500 controllers. Out of these 1500, 90% would be PID controllers. The PID controller consists of Proportional controller, Integral controller and Derivative controller. Depending upon the application, one or more combination of the controllers is used. Example: In a liquid control system, where we want zero steady state error, a PI controller can be used. In a temperature control system, where where we do not want zero steady state reeor, a simple P controller can be used. The output m(t) of the PID controller in time domain is given by; m(t) = Kp e(t) + Ki/Ti ∫ e(t) dt + KdTdde(t)/dt Where Kp, Ki, Kd = Proportional, integral, differential gains Ti, Td= Integral, derivative times of PID controller e(t) = r(t) – c(t) Where e(t), r(t), c(t)= error, reference, output signals <b>The characteristics of P, I and D controllers:</b> Effect of each of controllers Kp, Ki and Kd on a closed loop system are summarized in the following table.					
		CL Response	Rise time	Overshoot	Settling time		
		Кр	Decrease	Increase	Small change		
		Ki	Decrease	Increase	Increase		
		Kd	Small change	Decrease	Decrease		
6	<ul> <li>6 Procedure, Program, Activity, Algorithm, Pseudo Code</li> <li>6 Connect the speed sensor to the socket provided.</li> <li>1. Connect the motor to corresponding terminals.</li> <li>2. Switch on P controller.</li> <li>3. Set required speed using set pointer. This is displaced it tachometer.</li> <li>4. Now load the motor in steps of 50gms upto 250 gms using the load on the loading arrangement.</li> <li>5. Observe the speed of the motor and take the reading.</li> <li>6. Now switch on P &amp; I controller.</li> <li>7. Repeat step 4 &amp; 6.</li> <li>8. Now switch ON P,I &amp; D controller.</li> <li>9. Plot the graph of load vs speed on the graph sheet for PID controller.</li> </ul>						
		clear all Num=input('The Numerator co-efficients of the given transfer function are ='); Den= input('The Denominator co-efficients of the given transfer function are ='); G=tf(Num,Den)					


	step(G);		
Block, Circuit, Model Diagram, Reaction Equation, Expected Graph			
Observation Table, Look-up Table, Output	SET SPEED	WEIGHT	RUN SPEED
	PLCONTROLLER		
	PI CONTROLLER SET SPEED PID CONTROLLER:	WEIGHT	RUN SPEED


9	Sample Calculation	
	Graphs, Outputs	
	Deputto 9 Applyria	
11		The effect of P, PI, PD and PID controllers on the step response of a
		feedback control system was studied and the response curves of them were
		drawn respectively.
12	Application Areas	
	Remarks	
14	Faculty Signature with Date	

## Experiment og: POSITION CONTROL SYSTEM: DC SERVOMOTOR

-	Experiment No.:	9	Marks		Date		Date	
					Planned		Conducted	
1	Title	(a)To	simulate a D	. C. position d	control syster	n and obtain	ı its step resp	onse.
		b) To	verify the et	fect of the ir	nput wave fo	rm, loop gai	n system typ	e on steady
		state	errors.					
				ade-off study				
		d) To	design a Pl o	controller and	d study its eff	ect on stead	y state error.	
2	Course Outcomes	Simu	late a DC p	position cont	trol system	using MATL	AB and obt	tain its step
		respo	onse and to c	lesign Pl con	troller and st	udy its effect	t on steady st	tate error.
3	Aim	Using	MATLAB/S	CILAB				
		-	a) Sim	ulate a D.	C. position (	control syste	em and obt	ain its step
			response	).				
				. 'f 11				
						ut wave form	n, loop gain	system type
			onstead	y state errors				
			c) To p	erform a trac	de-off studv f	or lead com	pensation	
					j			
			d) To d	esign a PI co	ntroller and s	study its effec	ct on steady s	state error
							-	
4	Material /	PC lo	aded with M	ATLAB				
	Equipment							







#### 3. To open an existing model:

Select File à Open in the Simulink Library Browser. The Open dialog box appears.

Select the model (.mdl file) you want to open, and then click Open. The software opens the selected model in the model window.

4. Simulink® Library Browser:

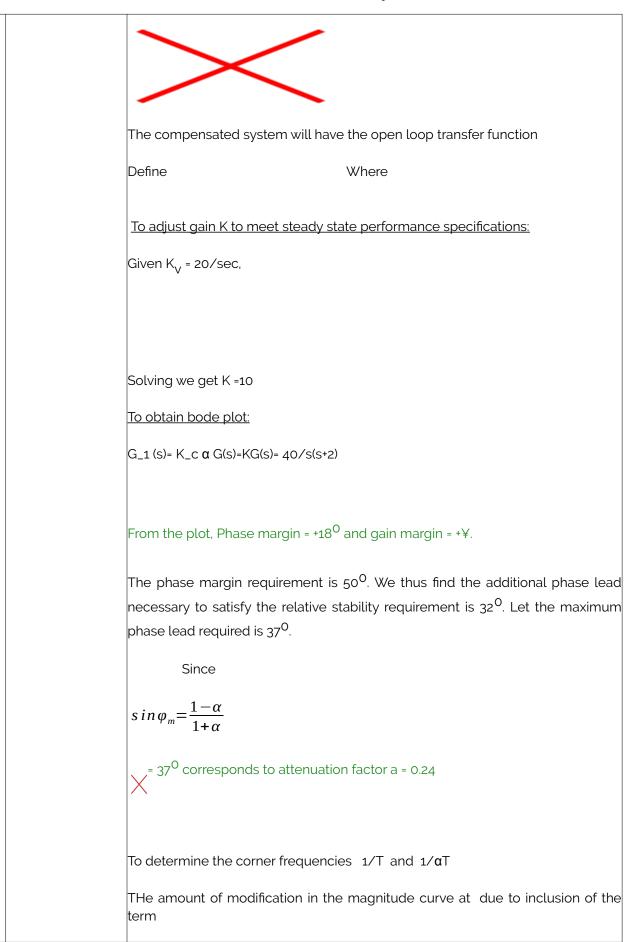
The Library Browser displays the Simulink® block libraries installed on your system. You build models by copying blocks from a library into a model window.

• To view the blocks in a library, select the library name on the left side of the Library Browser, or double-click on the library.

When you select a block, a description of that block appears at the bottom of the browser.

For more information on a block, select the block, then select Help à Help on the Selected Block to display the help page for the block.

To view the parameters for a block, right-click the block, then select Block Parameters.


To search for a specific block, enter the name of the block in the block search field and then click on the Find block icon

 a) To verify the effect of the input wave form, loop gain system type on steady state errors.

% G1(s)=1/s^3 + 3 s^2 + 7 s + 1

% G2(s)=1/s(s+1)(s+2)

% G3(s)=1/s^2(s+0.2)
num1=[2];
num2=[1];
num3=[100];
den1=[1 3 7 2 ];
den2=[1 3 2 1];
den3=[1 10 0 100]
h1=tf(num1,den1)
h2=tf(num2,den2)
h3=tf(num3,den3)
hold
step(h1,h2)
% step(h3)
legend('Type 0 system','Type 1 system ','Type 2 system')
% axis([0 18 0 1.4])
b) To perform a trade-off study for lead compensation
Consider a system with OLTF
It is desired to design a lead compensator for the system so that the static velocity error constant Kv = 20/sec, the phase margin is at least 50 ⁰ and the gain
margin is at least 10dB.



$$|\frac{T s+1}{\alpha T s+1}| = |\frac{j \omega T+1}{j \omega \alpha T+1}|_{\omega = \frac{1}{\sqrt{\alpha}\tau}} = |\frac{1+j \frac{1}{\sqrt{\alpha}}}{1+j \alpha \frac{1}{\sqrt{\alpha}}}| = \frac{1}{\sqrt{\alpha}}$$

$$\frac{1}{\sqrt{\alpha}} = \frac{1}{\sqrt{0.24}} = i i -6.2 dB$$
and  $|G_i(j \omega)| = -6.2 dB$  corresponds to  $\omega = 9 rad / sec.$  this is the new gain crossover frequency or
$$\omega_c = \frac{1}{\sqrt{\alpha}T} = 9$$
hence
$$\frac{1}{T} = \sqrt{\alpha} \omega_c = 4.41$$

$$\frac{1}{\alpha T} = \frac{\omega_c}{\sqrt{\alpha}} = 18.4$$
The lead compensator thus determined is
$$G_c(s) = K_c \frac{s+4.41}{s+18.4}$$
Where  $K_c = \frac{K}{\alpha} = \frac{10}{0.24} = 41.7$ 
Thus the transfer function of compensator becomes
$$G_c(s) = 41.7 \frac{s+4.41}{s+18.4}$$
And the open loop transfer function of compensated system is
$$G_c(s) \cdot G(s) = 41.7 \frac{s+4.41}{s+18.4} \frac{4}{s(s+2)}$$

LABORATORY PLAN - CAY 2018-19
Program 1:
num1=[4];
den1=[1 2 4];
h1=tf(num1,den1);
num2=[166.8 735.588];
den2=[1 20.4 203.6 735.588];
h2=tf(num2,den2);
step(h1,h2)
legend('uncompensated system','compensated system')
Program 2:
num1=[4];
den1=[1 2 4 0];
h1=tf(num1,den1);
num2=[166.8 735.588];
den2=[1 20.4 203.6 735.588 0];
h2=tf(num2,den2);
step(h1,h2)
legend('uncompensated systen','compensated system')
axis([0 5 0 5])
title('Unit ramp responses of uncompensated and compensated system')
d) To design a PI controller and study its effect on steady state error
Program 1:
% Kp=1;

LABORATORY PLAN - CAY 2018-19
% G=1/s(s+1.4),
H=1, Kp∗Ki∕s
clc;clear;
ki1=0.1;ki2=0.2;ki3=0.3;
num1=[1 ki1];
num2=[1 ki2];
num3=[1 ki3];
den1=[1 1.4 1 ki1];
den2=[1 1.4 1 ki2];
den3=[1 1.4 1 ki3];
h1=tf(num1,den1);
h2=tf(num2,den2);
h3=tf(num3,den3);
step(h1,h2, h3);
legend('ki=0.1', 'ki=0.2', 'ki=0.5')
Program 2:
% Kp=1;
% G=1/s(s+1.4), H=1, Kp+Ki/s
clc;
clear;
t=0:0.01:30;
kp=1
kv=[0.1 0.2 0.3];
yv=[];
for i=1:3
ki=kv(i);

		TF=tf([kp ki],[1 1.4 kp ki])
		[y,x]=step(TF,t);
		step(TF,t)
		hold on
		yv=[yv,y];
		end
		legend('ki=0.1', 'ki=0.2', 'ki=0.3');
7	Block, Circuit,	
	Model Diagram, Reaction Equation,	<b>Given:</b> J=3.2284e-6; B=3.5077e-6; Kt=0.0274; Kb=0.0274; La=2.75e-6; Ra=4;
	Expected Graph	Open Loop:
		Closed Loop:
		Subsystam
		Subsystem:

	Observation Table,	
	Look-up Table,	
	Output	
	Sample Calculation	
10	Graphs, Outputs	
11	Results & Analysis	
12	Application Areas	
13	Remarks	
	Faculty Signature	
	with Date	

## Experiment 10: Root Locus

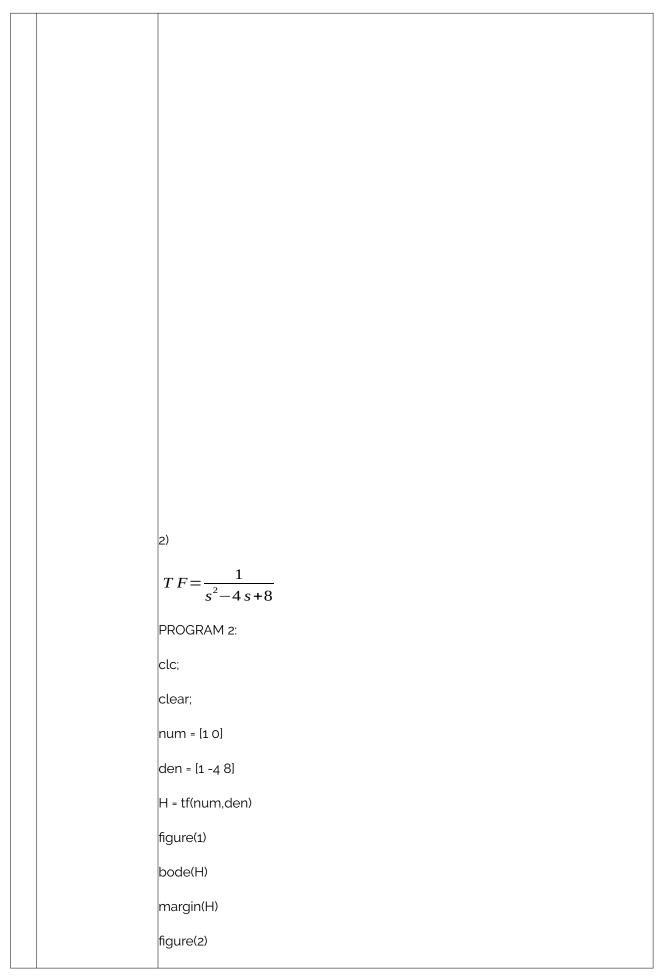
-	Experiment No.:	10	Marks		Date Planned		Date Conducted	
1	Title	1)		he the relation ity, open loop				
		2)		he effect of o em using root		n on transie	nt response c	of closed
		stabilit the eff	o analyse the relationship between open-loop frequency response and ability, open-loop frequency and closed loop transient response and to study an effect of open loop gain using root locus					
3	Aim	Using 1.		ne the relatior				
		2.	To study t	ity, open loop he effect of o em using root	pen loop gai			
4	Material / Equipment Required	PC Loa	aded with N	IATLAB				
5	Theory, Formula, Principle, Concept	,						
	Procedure, Program, Activity, Algorithm, Pseudo Code		Click on n 3. Sav	1ATLAB 7.6 to new file and gi ve and run the	ve the file na		e the prograr	n.
			PROGR	AM1:				
		cl	C;					
		cl	clear;					
		zv	/=[0.5 1 2 10	inf];				

t=[0:0.1:5];
omega_n=1;
zeta=0.7;
yv=[];
for i=1:5
z=zv(i);
G=tf([omega_n^2/z omega_n^2],[1 2*zeta*omega_n omega_n^2]);
[y,x]=step(G,t);
yv=[yv,y];
end
plot(t,yv(:,1),t,yv(:,2),t,yv(:,3),t,yv(:,4),t,yv(:,5));
grid;
legend('z=0.5','z=1','z=2','z=10','z=\infty');
PROGRAM2:
clc;
clear;
clear; zv=[0.5 1 2 10 inf];
zv=[0.5 1 2 10 inf];
zv=[0.5 1 2 10 inf]; t=[0:0.1:15];
zv=[0.5 1 2 10 inf]; t=[0:0.1:15]; omega_n=1;
zv=[0.5 1 2 10 inf]; t=[0:0.1:15]; omega_n=1; zeta=0.3;
zv=[0.5 1 2 10 inf]; t=[0:0.1:15]; omega_n=1; zeta=0.3; yv=[];
zv=[0.5 1 2 10 inf]; t=[0:0.1:15]; omega_n=1; zeta=0.3; yv=[]; for i=1:5
$zv=[0.5 \ 1 \ 2 \ 10 \ inf];$ t=[0:0.1:15]; $omega_n=1;$ zeta=0.3; yv=[]; for i=1:5 z=zv(i);
$zv=[0.5 1 2 10 inf];$ $t=[0:0.1:15];$ omega_n=1; zeta=0.3; yv=[]; for i=1:5 z=zv(i); G=tf([omega_n^2/z omega_n^2],[1 2*zeta*omega_n omega_n^2]);

end
plot(t,yv(:,1),t,yv(:,2),t,yv(:,3),t,yv(:,4),t,yv(:,5));
grid;
legend('z=0.5','z=1','z=2','z=10','z=\infty');
PROGRAM3:
<pre>clc; clear; zv=[-0.5 -1 -2 -10 -inf]; t=l0:0.1:15]; omega_n=1; zeta=0.3; yv=[]; for i=1:5 z=zv(i); G=tf((omega_n^2/z omega_n^2].[1 2*zeta*omega_n omega_n^2]); [y,x]=step(G,t); yv=[yv,y]; end plot(t,yv(:,1),t,yv(:,2),t,yv(:,4),t,yv(:,5)); grid; legend('z=-0.5','z=-1','z=-2','z=-10','z=\-infty');</pre>
PROGRAM4:
clc;
clear;
zv=[-0.5 -1 -2 -10 -inf];
t=[0:0.1:5];
omega_n=1;
zeta=0.7;

yv=[];
for i=1:5
Z=ZV(i);
G=tf([omega_n^2/z omega_n^2],[1 2*zeta*omega_n omega_n^2]);
[y,x]=step(G,t);
уv=[уv,y];
end
plot(t,yv(:,1),t,yv(:,2),t,yv(:,3),t,yv(:,4),t,yv(:,5));
grid;
legend('z=-0.5','z=-1','z=-2','z=-10','z=-\infty');
i) The effect of an additional closed loop pole
PROGRAM1:
clc; clear;
pv=[0.1 .5 2 10 inf];
t=[0:.3:15];
omega_n=1;
zeta=0.7;
yv=[];
for i=1:5
p=pv(i);
G=tf(omega_n^2,conv([1/p 1],[1 2*zeta*omega_n omega_n^2]));
[y,x]=step(G,t);
yv=[yv,y];
end
plot(t,yv(:,1),t,yv(:,2),t,yv(:,3),t,yv(:,4),t,yv(:,5));

g	rid;
le	gend('p=0.1','p=0.5','p=2','p=10','p=\infty');
	PROGRAM2:
с	lc; clear;
p	v=[0.1 .5 2 5 inf];
t=	[0:.01:15];
0	mega_n=1;
Z	eta=0.3;
У	v=[];
fc	or i=1:5
	p=pv(i);
	G=tf(omega_n^2,conv([1/p 1],[1 2*zeta*omega_n omega_n^2]));
	[y,x]=step(G,t);
	yv=[yv,y];
е	nd
p	lot(t,yv(:,1),t,yv(:,2),t,yv(:,3),t,yv(:,4),t,yv(:,5));
g	rid;
le	gend('p=0.1','p=0.5','p=2','p=10','p=\infty');


	Block, Circuit,	
	Model Diagram,	
	Reaction Equation,	
	Expected Graph	
8	Observation Table,	
	Look-up Table,	
	Output	
	Sample Calculation	
	Graphs, Outputs	The responses of a demain anthe assessed evolution and the speed we be an additional
11	-	The response of a dominantly second order system is sped up by an additional
		zero and is slowed down by an additional pole. In the dominantly second-order
		system the added closed loop zero also has the important effect of increasing
		the amount of oscillation in the system while an added closed loop pole has the
		effect of decreasing the amount of oscillation. Added forward path zeros and
		added forward path poles have an opposite effect on the overshoot. A forward
		path pole which is too close to the origin may turn the closed loop system
		unstable.
		A right half-plane zero also causes a `wrong way' response. All effects
		become more pronounced as the additional zero or pole approach the origin
		and become dominant.
12	Application Areas	
	Remarks	
	Faculty Signature	
	with Date	

# Experiment 11: STABILITY STUDY

-	Experiment No.:	11	Marks	Date Planned	Date Conducted		
1	Title	<ol> <li>To study the effect of open loop poles and zeros on root locus contour</li> <li>To estimate the effect of open loop gain on the transient response of closed loop system using root locus.</li> <li>Comparative study of Bode, Nyquist and root locus with respect to stability.</li> </ol>					
2	Course Outcomes	Write a script files to plot root locus, bode plot, Nyquist plots to study the stability of the system using a software					
3	Aim	Using MATLAB/SCILAB a. Effect of open loop poles and zeroes on root locus contour					
				stimate the effect of open loop system by using Root	loop gain on the transient response Locus		

		c. Comparative study of Bode, Nyquist and Root locus with respect to Stability.
4	Material /	
	Equipment	
	Required Theory, Formula,	
	Principle, Concept	
	Procedure,	1. Click on the MATLAB7.1icon on monitor to start the program
	Program, Activity, Algorithm, Pseudo	
	Code	3. Save and run the programs
		a) Effect of open loop poles on root locus contour
		Consider the energies transfer function
		Consider the open loop transfer function
		C() $U()$ $K$
		$G(s)H(s) = \frac{K}{s(s+a)}$
		The closed loop transfer function will be
		$\frac{C(s)}{R(s)} = \frac{K}{s^2 + a s + K}$
		$R(s)  s^2 + a s + K$
		or
		$G(s)H(s) = \frac{as}{s^2 + as + K}$
		Program:
		clc;
		clear;
		kv= [1 4 9 16] for i=1:4
		k=kv(i)
		num=[1 0];
		den=[1 0 k]; rlocus(num,den)
		hold on
		end
		Program:
		clc; clear;
		kv= [1 4 9 16]
		for i=1:4
		k=kv(i) num=[1 0];
		den=[1 0 k];

rlocus(num,den) hold on
end
a) Comparative study of Bode, Nyquist and Root locus with respect to Stability.
$TF = \frac{1}{s^2 + 3s + 2}$
PROGRAM clc;
clear;
num = [1]
den = [1 3 2]
H = tf(num,den)
figure(1)
bode(H)
margin(H)
figure(2)
rlocus(H)
figure(3)
nyquist(H)



		rlocus(H)
		figure(3)
		nyquist(H)
7	Block, Circuit,	
	Model Diagram,	
	Reaction Equation,	
	Expected Graph Observation Table,	
	Look-up Table,	
	Output	
	Sample Calculation	
10	Graphs, Outputs	
11	Results & Analysis	
12	Application Areas	
13	Remarks Faculty Signature	
14	with Date	
L		

# F. Content to Experiment Outcomes

### **1. TLPA Parameters**

<b>Table</b>	1: TLPA –	<b>Example</b>	Course

Event							
Expt-	Course Content or Syllabus					Instructi	Assessment
#	(Split module content into 2 parts which	Teachin	Learning	Bloo		on	Methods to
	have similar concepts)	g Hours		ms'	Verbs for	Methods	Measure
			for	Level	Learning	for	Learning
			Content			Learning	
A	В	С	D	Ε	F	G	Н
1	Write a C++ program to read series of	3	- L2	L4	-	-	- Slip Test
	names, one per line, from standard input		- L3		-	Lecture	-
á	and write these names spelled in reverse		- L4			-	-
	order to the standard output using I/O					-	
	redirection and pipes. Repeat the exercise						
	using an input file specified by the user						
	instead of the standard input and using an						
	output file specified by the user instead of						
t	the standard output.						
	Write a C++ program to read and write		- L2	L4	-	-	-
	student objects with fixed length records		- L3		-		Assignment
	and the fields delimited by " ". Implement		- L4			- Tutorial	-
	pack ( ), unpack ( ), modify ( ) and search ( )					-	-
	methods.						
	Write a C++ program to read and write		- L2	L4	-	-	-
	student objects with Variable - Length		- L3		-	Lecture	Assignment
	records using any suitable record structure.		- L4			-	-
	Implement pack ( ), unpack ( ), modify ( ) and						
	search ( ) methods.						
	Write a C++ program to write student		- L2	L4	-	-	- Slip Test
	objects with Variable - Length records using		- L3		-	Lecture	-
	any suitable record structure and to read		- L4			-	
	from this file a student record using RRN.						
	Write a C++ program to implement simple		- L2	L4	-	-	- Slip Test
	index on primary key for a file of student		- L3		-	Lecture	-
	objects. Implement add ( ), search ( ), delete		- L4			-	
	( ) using the index.						

6	Write a C++ program to implement index on secondary key, the name, for a file of student objects. Implement add ( ), search ( ), delete ( ) using the secondary index.		- L2 - L3 - L4	L4	-	- Lecture - Tutorial -	- Assignment - -
7	Write a C++ program to read two lists of names and then match the names in the two lists using Co Sequential Match based on a single loop. Output the names common to both the lists.	-	- L2 - L3 - L4	L4	-	- Lecture - Tutorial -	- Assignment - -
8	Write a C++ program to read k Lists of names and merge them using k-way merge algorithm with k = 8.		- L2 - L3 - L4	L4	-	- Lecture - Tutorial -	- Assignment - -
9	Student should develop mini Project on the topics mentioned below or similar applications Document processing, transaction management, indexing and hashing, buffer management, configuration management. Not limited to these.		- L2 - L3 - L4	L4	-	- Lecture - -	- Assignment - -

### 2. Concepts and Outcomes:

#### Table 2: Concept to Outcome – Example Course

-						
Expt			Final Concept		CO Components	Course Outcome
- #	Outcome	Concepts		Justification	(1.Action Verb,	
	from study	from		(What all Learning	2.Knowledge,	
	of the	Content		Happened from the		Student Should be
	Content or			study of Content /	Methodology,	able to
	Syllabus			Syllabus. A short	4.Benchmark)	
				word for learning or		
				outcome)		
A	1	J	K	L	М	N
1	-	-	Klystron	Comprehend the	- Understand	Understand the
	-	-	oscillator	working of Klystron	- Klystron Oscillator	working of Klystron
				oscillator	-	Oscillator.
					-	
2	-	-	Microwave	Examine the	- Analyze	Analyze the
	-	-	transmission	transmission lines	- Transmission Lines	transmission lines
			lines	using graphical	- Graphical Methods	using Graphical
				methods		methods.
3	-	-	Multiport	Implement the Z, Y		Analyze the Z, Y and
	-	-	networks	and S parameters	- Multiport Networks	S parameters for a
				to Multiport		Multiport network.
				networks		-
4	-	-	Microwave	Understand the	- Understand	Understand the
	-	-	passive	working of	- Microwave Passive	working of different
			devices	microwave passive	Devices	microwave passive
				devices		devices.
5	-	-	Striplines	Have knowledge of	- Understand	Understand micro,
	-	-		micro, parallel and	- Types of Stripline	parallel and
				shielded striplines		shielded striplines.
6	-	-	Antenna	Compute the	- Apply	Describe antenna
	-	-	parameters	antenna design	- Design	working using the
				characteristics	Characteristics	given parameters.
				using the	-	
				parameters	-	
7	-	-	Array of point	Extend the antenna	- Apply	Describe the
	-		sources	parameters to the	- Array of Point	working of point
				array of point	Sources	sources.
				sources		
	1					

Copyright ©2017. cAAS. All rights reserved.

#### LABORATORY PLAN - CAY 2018-19

8	-	-	Electric	Examine the field	- Analyze	Analyze the working
	-	-	dipole	parameters of	- Electric Dipole	of electric dipole
			antennas	electric dipole	Antenna	antenna.
				antennas		
9	-	-	Loop and	Explain the working	- Understand	Explain the working
	-	-	horn	of horn and loop	- Horn and Loop	of horn and loop
			antennas	antennas	Antenna	antennas.