Ref No:

Sri Krishna Institute of Technology, Bangalore

COURSE PLAN

Academic Year 2019-20

Program:	B E – Electrical & Electronics Engineering					
Semester :	6					
Course Code:	17EE662					
Course Title:	Sensors and Transducers					
Credit / L-T-P:	3 / 3-0-0					
Total Contact Hours:	40					
Course Plan Author:	Chaitra A S					

Academic Evaluation and Monitoring Cell

Sri Krishna Institute of Technology #29,Chimney hills,Hesaraghata Main road, Chikkabanavara Post Bangalore – 560090, Karnataka, INDIA Phone / Fax :08023721477/28392221/23721315 Web: www.skit.org.in , e-mail: <u>skitprinci@gmail.com</u>

Table of Contents

A. COURSE INFORMATION	4
1. Course Overview	4
2. Course Content	
<u>3. Course Material</u>	
<u>4. Course Prerequisites</u>	6
<u>4. Course Prerequisites</u>	6
B. OBE PARAMETERS.	
1. Course Outcomes	
2. Course Applications	7
<u>3. Mapping And Justification</u>	7
<u>4. Articulation Matrix</u>	<u>8</u>
<u>5. Curricular Gap and Content</u>	<u>8</u>
6. Content Beyond Syllabus	9
C. COURSE ASSESSMENT	9
1. Course Coverage	9
2. Continuous Internal Assessment (CIA)	
D1. TEACHING PLAN - 1	
Module - 1	
Module – 2	
E1. CIA EXAM – 1	
a. Model Question Paper - 1	
b. Assignment -1	
D2. TEACHING PLAN - 2	
Module – 3.	
Module – 4	
E2. CIA EXAM – 2	
a. Model Question Paper - 2	
<u>b. Assignment – 2</u>	<u></u> 19
D3. TEACHING PLAN - 3	
Module – 5.	
E3. CIA EXAM – 3	
a. Model Question Paper - 3	
b. Assignment – 3	
F. EXAM PREPARATION	
<u>1. University Model Question Paper</u>	26
2. SEE Important Questions	
<u>G. Content to Course Outcomes</u>	
<u>1. TLPA Parameters</u>	
2. Concepts and Outcomes:	

Note : Remove "Table of Content" before including in CP Book Each Course Plan shall be printed and made into a book with cover page Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	EE
Semester:	6	Academic Year:	2019-20
Course Title:	Sensors and Transducers	Course Code:	17EE662
Credit / L-T-P:	3/ 3-0-0	SEE Duration:	180 Minutes
Total Contact Hours:	40 Hours	SEE Marks:	80 Marks
CIA Marks:	20 Marks	Assignment	1 / Module
Course Plan Author:	Chaitra A S	Sign	Dt:
Checked By:		Sign	Dt:
CO Targets	CIA Target : 80 %	SEE Target:	100.00%

Note: Define CIA and SEE % targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute.

Mod	Content	Teachi	Blooms
ule		ng	Learning
		Hours	Levels
1	Sensors and Transducers: Introduction, Classification of Transducers, Advantages and Disadvantages of Electrical Transducers, Transducers Actuating Mechanisms, Resistance Transducers, Variable Inductance Transducers, Capacitive Transducers, Piezoelectric Transducers, Hall Effect Transducers, Thermoelectric Transducers, Photoelectric Transducers.		L2 Understand L2 Understand
2	Sensors and Transducers (continued): Stain Gages, Load Cells, Proximity Sensors, Pneumatic Sensors, Light Sensors, Tactile Sensors, Fiber Optic Transducers, Digital Transducers, Recent Trends – Smart Pressure Transmitters, Selection of Sensors, Rotary – Variable Differential Transformer, Synchros and Resolvers, Induction Potentiometers, Micro Electromechanical Systems		L2 Understand L2 Understand
3	 Signal Condition: Introduction, Functions of Signal Conditioning Equipment, Amplification, Types of Amplifiers, Mechanical Amplifiers Fluid Amplifiers, Optical Amplifiers, Electrical and electronic Amplifiers Data Acquisition Systems and Conversion:: Introduction, Objectives and Configuration of Data Acquisition Systems, Data Acquisition Systems, Data Conversion 		L2 Understand L2 Understand
4	Data Transmission and Telemetry: Data/Signal Transmission, Telemetry. Measurement of Non – Electrical Quantities: Pressure Measurement.		L2 Understand L2 Understand
5	Measurement of Non – Electrical Quantities (continued):Temperature Measurement, Flow Measurement – Introduction, Electromagnetic Flow meters, Ultrasonic Flow Meters, Thermal Metes, Wire Anemometers. Measurement of Displacement, Measurement of Velocity/ Speed, Measurement of Acceleration, Measurement of Force, Measurement of Torque, Measurement of Shaft Power, Measurement of Liquid Level, Measurement of Viscosity		L2 Understand L2 Understand
-	Total	50	-

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 – 30 minutes

2. Design: Simulation and design tools used – software tools used ; Free / open source

3. Research: Recent developments on the concepts – publications in journals; conferences etc.

	arch. Recent developments on the concepts – publications in journals, co		1
Modul es	Details	Chapters in book	Availability
Α	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
1, 2, 3, 4, 5	Electrical and Electronic Measurements and instrumentation ,R.K Rajput S.Chand,3rd Edition, 2013.	16,17,18 ,19,20,2 1,22	
В	Reference books (Title, Authors, Edition, Publisher, Year.)		
1,2	A course in electronics and electrical measurement and	-	In Lib / In Dept
1,2	instrumentation, J.B Gupta, Katson books, 13 th edition,2008		
3,4,5	A course in electronics and electrical measurement and instrumentation, A.K Sawheny, Dhanpat Rai, 2015	6,8,10,1 2,14	In Lib / In Dep
С	Concept Videos or Simulation for Understanding	-	-
C1	Basics of transducers		
	https://nptel.ac.in/courses/112107242/25		
C2	Working of various transducers		
	https://nptel.ac.in/courses/103105064/41		
	<u> https://www.youtube.com/watch?v=1uPTyjxZzyo</u>		
C2	Basics of sensors		
	https://www.youtube.com/watch?v=1uPTyjxZzyo		
C2	Working of various sensors, load cell		
	https://nptel.ac.in/courses/108105064/5		
	https://nptel.ac.in/courses/108105064/34		
C3	Signal conditioning		
	https://nptel.ac.in/courses/108105062/8		
C3	Data aquaistion		
	https://nptel.ac.in/courses/108105088/7		
	https://nptel.ac.in/courses/108105062/10		
C4	Data transmission and telemetry		
	https://nptel.ac.in/courses/106105082/		
C4	Measurement of pressure		
	https://nptel.ac.in/courses/106105082/		
C5	Measurement of temperature		
	https://nptel.ac.in/courses/103105130/31		
C5	Measurement of flow		
	https://nptel.ac.in/courses/108105064/15		
	Lab : <u>https://www.youtube.com/watch?v=Pge7hUNPGVs</u> -		
D	Software Tools for Design	-	-
E	Recent Developments for Research	-	
	Aerospace sensors		
	https://ieeexplore.ieee.org/abstract/document/6891996		

F	Others (Web, Video, Simulation, Notes etc.)	-	-
1	Strain Gauges		
	https://nptel.ac.in/courses/108105064/4		

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Students must have learnt the following Courses / Topics with described Content

Mod	Course	Course Name	Topic / Description	Sem	Remarks	Blooms
ules	Code					Level
1	15EE46	OP-Amp and	Signal processing circuits and A/D	4	-	L3
		LIC	& D/A Converters			

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Mod	Topic / Description	Area	Remarks	Blooms
ules				Level
1	Avanced type of thermal sensors	Higher	Gap	
		Study	A Seminar on advanced type of	
			thermal sensors.	
2	Smart sensors	Higher	Gap	Understa
		Study	A seminar on Applications of	nd L2
			smart sensors.	

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs. Identify a max of 2 Concepts per Module. Write 1 CO per Concept.

Mod	Course	Course Outcome	Teach.	Instr	Assessme	Blooms'			
ules	Code.#	At the end of the course, student	Hours	Method	nt	Level			
		should be able to			Method				
1	15EE662.1	Discuss need of transducer, their	10	Lecture/	Test				
		classification, advantages and		PPT	and	L2			
		disadvantages.			Assignme	Understand			
					nt				
2	15EE662.2	Understanding of working and	10	Lecture/	Test	L2			
		recent trends of various transducer		PPT	and	Understand			
		and sensors.			Assignme				
					nt				
3	15EE662.3	Discuss the basics of Signal	10	Lecture/	Test	L2			
		conditioning and Signal		PPT	and	Understand			
		conditioning equipment.			Assignme				
					nt				
4	15EE662.4	Discuss configuration of Data		Lecture/	Test	L2			
		Acquisition system and data		PPT	and	Understand			
		conversion.			Assignme				

					nt	
5		Understand the different type of	7	Lecture/	Test	L2
		data transmission and telemetry.		PPT	and	Understand
					Assignme	
					nt	
6	15EE662.6	Understand temperature, Pressure	7	Lecture/	Test	L2
		and flow measurement using		PPT	and	Understand
		various transducer.			Assignme	
					nt	
-	-	Total	51	-	-	L2-L4

2. Course Applications

Write 1 or 2 applications per CO. Students should be able to employ / apply the course learnings to

Mod	Application Area	CO	Level
ules	Compiled from Module Applications.		
1	Local oscillators in radar receivers and modulators in microwave transmitters	CO1	L2
1	Propagation and transmission of high microwave frequency signals	CO1	L4
2	Conventional Radio Resources for phase control	CO2	L3
2	Services medical, security, home, entertainment, and communication industries	CO2	L2
3	Printed circuit boards of radio receivers, mother boards	CO3	L2
3	Transmission and reception of signals of any frequency	CO3	L3
	Mathematical modeling of light, electromagnetic radiation, sound, heat, fluid pollution	CO4	L3
	A driven element used in feeding the elaborate directional antennas like horn, yagi- uda antennas	CO4	L4
	Horn-Transmission in wider bandwidth, increasing the directivity and reduces the spurious responses of the parabolic reflector, short range radar system(speed enforcement cameras), Loop- Finding directions in radars, aircraft and radio receivers	CO5	L2
	Helical-Circularly polarized radio waves for satellite communication, Parabolic- direct the radio waves in radio telescopes, Yagi-Uda-high directivity for log distance communication, Log-Periodic-Wide bandwidth UHF terrestrial TV	CO5	L2

4. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	_	Course Outcomes		Program Outcomes						-								
Mod	CO.#	At the end of the course	PO	PO	PO	PO	PO	PO	PO	PO							-	Lev
ules		student should be able to			3	4	5	6	7	8	9	10	11	12	O1	02	03	el
1		Discuss need of transducer, their classification, advantages and disadvantages.		2											3			L2
2		Understanding of working and recent trends of various transducer and sensors.			1										2			L2
3		Discuss the basics of Signal conditioning and Signal conditioning equipment.		2											2			L2
4		Discuss configuration of Data Acquisition system and data conversion.		2											2			L2
5		Understand the different type of data transmission and telemetry.		2											2			L2
6	-	Understand temperature, Pressure and flow measurement using various transducer.	-	2											2			L2
-	15EE662.	Average																-

Copyright ©2017. cAAS. All rights reserved.

-	PO, PSO	1.Engineering Knowledge; 2.Problem Analysis; 3.Design / Development of Solutions;
		4.Conduct Investigations of Complex Problems; 5.Modern Tool Usage; 6.The Engineer and
		Society; 7.Environment and Sustainability; 8.Ethics; 9.Individual and Teamwork;
		10.Communication; 11.Project Management and Finance; 12.Life-long Learning;
		S1.Software Engineering; S2.Data Base Management; S3.Web Design

5. Curricular Gap and Content

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Mod	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
ules					
1	Avanced type of thermal	Seminar	2 nd week / date	Dr XYZ, Inst	List from B4
	sensors				above
2	Smart sensors	Seminar	3 rd Week		

6. Content Beyond Syllabus

Topics & contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Mod ules	Gap Topic	Area	Actions Planned	Schedule Planned	Resources Person	PO Mapping
2	Aerospace Sensors,Sensors for environmental monitoring		students & Mini Project	3 rd week / date		List from B4 above
3	Radiation Sensors like X-ray and nuclear radiation sensors		Presentation	4 th week	Self	List from B4 above
2						

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

	Mod Title Teach. No. of question in Exam									
Mod	Title	Teach.		No. of	f quest	ion in	Exam		CO	Levels
ules		Hours	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE		
							Asg			
1	Sensors and Transducers	10	2	-	-	1	-	2	CO1, CO2	L2, L2
2	Sensors and	10	2	-	-	1	-	2	CO1, CO2	L2, L2
	Transducers(continued)									
3	Signal Condition	10	-	2	-	1	1	2	CO3, CO4	L2, L2
	Data Acquisition Systems and									
	Conversion									
	Data Transmission and Telemetry	10	-	2	-	1	1	2	CO3, CO4	L2, L2
	Measurement of Non – Electrical									
	Quantities									
5	Measurement of Non – Electrical	10	-	-	4	1	1	2	CO5	L2, L2
	Quantities (continued)									
-	Total	50	4	4	4	5	5	10	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

COURSE PLAN - CAY 2019-20

Mod	Evaluation	Weightage in	СО	Levels
ules		Marks		
1, 2	CIA Exam – 1	15	CO1, CO2,	L2, l2, l2, l2
3, 4	CIA Exam – 2	15	CO3, CO4	L2, L2, L2, L2
5	CIA Exam – 3	15	CO5	L2, L2
1, 2	Assignment - 1	05	CO1, CO2,	L2, l2, l2, l2
3, 4	Assignment - 2	05	CO3, CO4	L2, L2, L2, L2
5	Assignment - 3	05	CO5	L2, L2
1, 2	Seminar - 1		-	-
3, 4	Seminar - 2		_	-
5	Seminar - 3		-	-
	Quiz - 1		-	-
3, 4	Quiz - 2		-	-
5	Quiz - 3		-	-
1 - 5	Other Activities – Mini Project	-		L2,L2
	Final CIA Marks	20	-	-

D1. TEACHING PLAN - 1

Module - 1

Title:	Sensors and Transducers	Appr Time:	10 Hrs
a	Course Outcomes	CO	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Discuss need of transducer, their classification, advantages and disadvantages.	CO1	L2
b	Course Schedule	-	-
Class No	o Portion covered per hour	-	-
1	Introduction	C01	L2
2	Classification of Transducers, Advantages and Disadvantages of Electrical Transducers	C01	L2
3	Transducers Actuating Mechanisms	C01	L2
4	Resistance Transducers	C02	L2
5	Variable Inductance Transducers	C02	L2
6	Capacitive Transducers, Piezoelectric Transducers	C02	L2
7	Hall Effect Transducers	C02	L2
8	Thermometric Transducers, Photoelectric Transducers	C02	L2
9	Single Stub Matching using Smith chart	CO2	L4
10	Numericals in Single Stub Matching using Smith chart	CO2	L4
С	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	Use in Measuring instruments	CO1	L2
2	Resistance Transducers – used to sense temperature for the measurement and control eg: oven, Variable Inductance Transducers – use in accelerometers, Capacitive Transducers – use to measure both linear and angular displacements, Piezoelectric Transducers – to measure acceleration, Hall Effect Transducers – determing carrier concentration in semiconductors, Thermoelectric Transducers – use in control engineering, Photoelectric Transducers – use in PV cell and photoelevtric tachometer.	CO2	L2

d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	Define the term "instrumentation".	CO1	L1
2	Enumerate the elements of a measurement system.	CO1	L1
3	What is transducer?	CO1	L1
4	What are the functions of a transducer in an electronic instrumentation	CO1	L2
5	How transducers are classified?	CO1	L1
6	Explain briefly with diagrams important transducer actuating mechanisms.	CO1	L2
7	Describe briefly the following: 1) Thermistors and resistance thermometers	CO1	L2
	 1) I nermistors and resistance thermometers 2) wire resistance strain gauge 		
0	Give the classification of variable inductance transducer.	CO1	
8			L2
9	Explain briefly any two of the following transducer: 1) Self – generating variable inductance transducer-Electromagnetic type	CO1	L2
	2) Variable reluctance transducer		
	3) Mutual inductance transducer		
	4) LVDT		
10	What is the principal on which a capacitive transducer works?	CO1	L1
11	What are the advantages and disadvantages of capacitive transducer?	CO1	L1
12	Give the applications of capacitive transducer.	CO1	L2
13	What is piezoelectric transducer? List the advantages and disadvantages of piezoelectric transducer.	CO1	L2
14	How are piezoelectric transducer are classified?	CO1	L2
15	Explain briefly the following:	CO1	L2
	1) Photoemissive cell		
	2) Photocunductive cell		
	3) Photoelectric cell		
16	Define the followings:	CO1	L2
	1) sensitivity 2)linearity 3)Resolution 4)Hysteresis 5)Accuracy 6)Precision		
е	Experiences	-	-
1	•	CO1	L2
2			

Module – 2

Title:	Sensors and Transducers(continued)	Appr	10 Hrs
		Time:	
a	Course Outcomes	СО	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Understanding of working and recent trends of various transducer and sensors.	CO2	L2
b	Course Schedule	-	-
Class No	Portion covered per hour	-	-
11	Stain Gages	CO2	L2
12	Stain Gages	CO2	L2
13	Stain Gages	CO2	L2
14	Stain Gages	CO2	L2
15	Load Cells	CO2	L2
16	Proximity Sensors, Pneumatic Sensors, Light Sensors	CO2	L2
17	Tactile Sensors, Fiber Optic Transducers, Digital Transducers	CO2	L2
18	Recent Trends – Smart Pressure Transmitters, Selection of Sensors	CO2	L2
19	Rotary – Variable Differential Transformer, Synchros and Resolvers	CO2	L2
20	Induction Potentiometers, Micro Electromechanical Systems	CO2	L2
		CO2	

С	Application Areas	CO2	-
-	Students should be able employ \checkmark apply the Module learnings to	CO2	-
1	Wheastone bridge is most commonly used in strain gauges. Proximity Sensors- used in counting moving objects and counting of objects, Pneumatic Sensors - used for measurment of displacements of fraction of mm in ranges, Light Sensors – used in controlling of outdoor, street lights and home appliances, Tactile Sensors – used in robotics and medical field, Fiber Optic Transducers – fibre optic telecommunication, Digital Transducers – Robotics	CO2	L2
2	Apply in developing more intelligent devices.	CO2	2
2		CO2	
d	Review Questions	CO2	_
-	The attainment of the module learning assessed through following questions	CO2	-
1	What is strain gauge?	CO2	L2
2	Explain briefly with neat diagrams, any two of the following: 1) Wire wound strain gauge 2)Foil type strain gauge 3) Semiconductor strain gauge 4) Capacitive strain gauge	CO2	L2
3	What is a load cell?	CO2	L1
4	Explain briefly any two of the following: 1) Hydraulic load cell 2) Pneumatic load cell 3) Strain gauge load cell	CO2	L2
5	Describe briefly the following sensors: 1) Eddy current proximity sensor. 2) Capacitance proximity sensor.	CO2	L2
6	Write a short notes on "Pneumatic sensor"	CO2	L2
		CO2	
е	Experiences	-	-
1		CO3	L2
2			

E1. CIA EXAM – 1

a. Model Question Paper - 1

Crs Code:		17EE662	Sem:6	Ι	Marks:	20	Time:	75 minute	S	
Cour	se:	Sensors an	d Transduce	ers	÷	Ť.				
-	-	Note: Answ	ver all quest	tions, each d	arry equal	marks. M	10dule : 1, 2	Marks	СО	Level
1	а			fine the follo 3)Resolution	0	/		05	CO1	L1
	b	Describe bi 1) Thermist	riefly the fol	lowing: stance thern	·			05	CO2	L2
	С	room temp	perature. Th	e flux densi	ty in the Ha	ll mode	o be 0.00912Ωm l was 0.48Wb/r - ⁻⁴ m ³ /coloumb	n ² .	CO2	L3
					OR					
1	а	Explain LVI	DT with adva	intages and	disadvantag	jes.		05	CO2	L2
	b	are separat a)Calcı a perm	parallel plate capacitive transducer uses plates of area 250mm ² which re separated by a distance 0.2mm. a)Calculate the value of capacitance when the dielectric is air having a permittivity of 8.85 x 10 ⁻² F/m.						CO2	L3
		reduce	es the dista	nce betwee	n the plates	to 0.18	iear displaceme mm.Also calcula per unit change	ate		

	с	displacement. If a mica sheet 0.01mm thick is inserted in the gap , calculate the value of original capacitance and change in capacitance for the same displacement. Also calculate the ratio of per unit change of capacitance to per unit change of displacement. The dielectric constant of mica is 8. Explain Hall effect with neat diagram and expression	04	CO2	L2
		Explain hall effect with heat diagram and expression	04	002	LZ
2	а	What is strain gauge?Explain briefly with neat diagrams, any two of the following: 1) Wire wound strain gauge 2)Foil type strain gauge	6	CO3	L2
	b	What is a load cell? Explain briefly two of the following: 1) Hydraulic load cell 2) Pneumatic load cell	5	CO2	L2
	С	A simple electrical strain gauge of resistance 120Ω and having a gauge factor of 2 bonded to steel having an elastic limit stress of 400MN/m2 and modulus of elasticity is 200 GN/m2. Calculate the change in resistance, 1) due to change in stress equal to 1/10 of the elastic range 2)due to chane of temperature of 20°C if the material is advance alloy. The resistance temperature coefficient of advance alloy is 20 x 10 ⁻⁶ /°C.	4	CO2	L3
		OR			
2	а	Describe briefly the following sensors: 1) Eddy current proximity sensor. 2) Capacitance proximity sensor.	6	CO2	L2
	b	Write a short notes on "Pneumatic sensor"	4	CO2	L2
	С	A strain gauge is bonded to a beam which is 12cm long and has a cross sectional area of 3.8cm ² . The unstrained resistance and gauge factor of the strain gauge are 220Ω and 2.2 respectively. On the application of load the resistance of the gauge changes by 0.015Ω. If the modulus of elasticity for steel is 207GN/m ² , calculate: 1) The change in length of the steel beam. 2) The amount of force applied to the beam.	5	CO1	L3

b. Assignment -1

Sem:	6 Ma	arks:	5 / 10	Time:	90 - 120	minute		
SNo	As	ssignme	nt Descrij	otion		Marks	со	Level
1	Define the term "instr	rumenta	tion".			2	CO1	L1
2	Enumerate the eleme	ents of a	measure	ment syste	m.	3	CO1	L1
3	What is transducer?					1	CO1	L1
4	What are the function	tions of	a transo	ducer in a	n electronic	3	CO1	L2
5	How transducers are	classifie	ed?			4	CO1	L1
6	Explain briefly with o mechanisms.	diagrams	s importai	nt transduc	er actuating	4	CO1	L2
	Describe briefly the f 1) Thermistors and re 2) wire resistance stra	sistance	thermom	neters		6	CO2	L2
8	Give the classificatior	n of varia	ble induc	tance trans	ducer.	2	CO2	L2
	Explain briefly any tw 1) Self – generai Electromagnetic type 2) Variable reluctance 3) Mutual inductance	ting va e e transdu	riable in ucer			6	CO2	L2

	4) LVDT			
10	What is the principal on which a capacitive transducer works?	5	CO2	L2
11	What are the advantages and disadvantages of capacitive transducer?	4	CO2	L2
12	Give the applications of capacitive transducer.	4	CO2	L2
13	What is piezoelectric transducer? List the advantages and disadvantages of piezoelectric transducer.	5	CO2	L2
14	How are piezoelectric transducer are classified?	3	CO2	L2
15	Explain briefly the following: 1) Photoemissive cell 2) Photocunductive cell 3) Photoelectric cell	6	CO2	L2
16	Define the followings: 1) sensitivity 2)linearity 3)Resolution 4)Hysteresis 5)Accuracy 6)Precision	5	CO1	L2
17	A linear resistance potentiometer is 50mm long and is uniformly wound with a wire having a resistance of 10000 Ω . Under normal conditions, the slider is at the centre of the potentiometer. (1) Find the linear displacements when the resistance of the potentiometer are measured by a Wheatstone bridge for two cases are:(a) 3800 Ω and (b) 7500 Ω (2) If it is possible to measure a minimum value of 12 Ω resistance with the above arrangement, find the resolution of the potentiometer.	5	CO2	L3
18	In a linear voltage differential transformer the output voltage is 2V at maximum displacement. At a certain load, the deviation from linearity is maximum and it is ±0.0004V from straight line through origin, find the linearity at the given load.	5	CO2	L3
19	The output of LVDT is connected to a 5V voltmeter through an amplifier whose amplification factor is 250. An output of 2mv appears across the terminals of LVDT when the core moves through a distance of 0.5mm. If the multimeter has 100 divisions and the scale can be read to a 1/5 of a division. Calculate: 1) The sensitivity of LVDT 2) The resolution of the instrument at mm	5	CO2	L3
20	A parallel plate capacitive transducer uses plates of area	5	CO2	L3
	 250mm² which are separated by a distance 0.2mm. a)Calculate the value of capacitance when the dielectric is air having a permittivity of 8.85 x 10⁻² F/m. b)Calculate the change in capacitance if a linear displacement reduces the distance between the plates to 0.18mm.Also calculate the ratio of per unit change of capacitance to per unit change of displacement. If a mica sheet 0.01mm thick is inserted in the gap , calculate the value of original capacitance and change in capacitance for the same displacement. Also calculate the ratio of per unit change of displacement. 			
21	A capacitive transducer uses two quartz diaphragm of area 675mm ² separated by a distance of 3.8mm. A pressure of 850KN/m ² when applied to the top diaphragm produces a	5	CO2	L3
	deflection of 0.55mm. The capacitance is 330pF when no pressure is applied to the diaphragms. Determine the value of capacitance after the application of a pressure of 850 KN/m ² .			

	0.28mm of the diaphragm of the transducer. A transducer which has a capacitance of 250pF before the application of pressure is connected in an oscillation circuit having a frequency of 120kHZ. Determine the change in frequency of oscillator after the application of pressure to the transducer.			
23	A 2mm thick quartz piezoelectric crystal having a voltage intensity of 0.055Vm/N is subjected to a pressure of 1.8 MN/ m ² .Calculate the voltage output and charge density of the crystal . Take the permittivity of quartz as 40.6x10 ⁻¹² F/m.	3	CO2	L3
24	A piezoelectric material measuring 5mm x 5mm x 1.5mm is used to measure a force. Its voltage sensitivity is 0.055Vm/N. Calculate the force if voltage developed is 110v.	5	CO2	L3
25	What is strain gauge?	1	CO3	L1
26	Explain briefly with neat diagrams, any two of the following: 1) Wire wound strain gauge 2)Foil type strain gauge 3) Semiconductor strain gauge 4) Capacitive strain gauge	6	CO3	L2
27	What is a load cell	1	CO3	L1
28	Explain briefly any two of the following: 1) Hydraulic load cell 2) Pneumatic load cell 3) Strain gauge load cell	6	CO4	L2
29	Describe briefly the following sensors: 1) Eddy current proximity sensor. 2) Capacitance proximity sensor.	5	CO4	L2
30	Write a short notes on "Pneumatic sensor"	4	CO4	L2
31	A simple electrical strain gauge of resistance 120Ω and having a gauge factor of 2 bonded to steel having an elastic limit stress of 400MN/m2 and modulus of elasticity is 200 GN/m2. Calculate the change in resistance, 1) due to change in stress equal to 1/10 of the elastic range 2)due to change of temperature of 20°C if the material is advance alloy. The resistance temperature coefficient of advance alloy is 20 x 10 ⁻⁶ /°C.		CO3	L3
32	A strain gauge is bonded to a beam which is 12cm long and has a cross sectional area of 3.8cm ² . The unstrained resistance and gauge factor of the strain gauge are 220Ω and 2.2 respectively. On the application of load the resistance of the gauge changes by 0.015Ω. If the modulus of elasticity for steel is 207GN/m ² , calculate: 1) The change in length of the steel beam. 2) The amount of force applied to the beam.		CO3	L3

D2. TEACHING PLAN - 2

Module – 3

Signal Condition	Appr	10 Hrs
Data Acquisition Systems and Conversion	Time:	
Course Outcomes	СО	Blooms
At the end of the topic the student should be able to	-	Level
Discuss the basics of Signal conditioning and Signal conditioning equipment.	CO3	L2
Discuss configuration of Data Acquisition system and data conversion.	CO4	L2
Course Schedule		
Portion covered per hour	-	-
	Course Outcomes At the end of the topic the student should be able to Discuss the basics of Signal conditioning and Signal conditioning equipment. Discuss configuration of Data Acquisition system and data conversion.	Data Acquisition Systems and ConversionTime:Course OutcomesCOAt the end of the topic the student should be able toDiscuss the basics of Signal conditioning and Signal conditioning equipment.CO3Discuss configuration of Data Acquisition system and data conversion.CO4Course Schedule

21	Introduction	CO3	L2
22	Functions of Signal Conditioning Equipment	CO3	L2
23	Amplification, Types of Amplifiers, Mechanical Amplifiers Fluid Amplifiers, Optical Amplifiers	CO3	L2
24	Electrical and electronic Amplifiers	CO3	L2
25	Electrical and electronic Amplifiers	CO3	L2
26	Introduction	CO4	L2
27	Objectives and Configuration of Data Acquisition System	CO4	L2
28	Data Acquisition Systems	CO4	L2
29	Data Conversion	CO4	L2
30	Data Conversion, Numerical on antenna parameters	CO4	L2
с	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	DC signal conditioning is used in potentiometers and resistance strain gauges and in data acquisition systems. AC signal conditioning is used for systems where signals have to be transmitted long via cables.		L3
2	Data acquisition systems are used in power plants, solar applications, and places where temperature and pressure is to be measured. Converters are used in data acquisition systems.	CO4	L4
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	Explain general measurement system with a block diagram.	CO3	L2
2	State the limitation of mechanical amplification.	CO3	L2
3	What are the advantages of electrical signal conditioning?	CO3	L1
4	Explain briefly the following functions of signal conditioning equipment 1)Amplification 2) Modification or modulation 3) Impedance matching 4) Data processing 5) Data transmission.	CO3	L2
5	Explain briefly any two of the following amplifiers 1) Mechanical amplifiers 2) Fluid amplifiers 3) Electrical and Electronics amplifiers.	CO3	L2
6	State the generalities that can be listed for an ideal electronic amplifier.	CO3	L2
7	What are DC and AC amplifiers? Explain briefly.	CO3	L2
8	What do you mean by modulated and unmodulated signals?	CO3	L2
9	What is an OP-Amp ? State its limitations as well.	CO3	 L2
9 10	Explain briefly the term "Common Mode Rejection Ratio"	-	 L2
		CO3	
11		CO3	L2
12	Enumerate some of the commonly used OP-Amp circuits.	CO3	L1
13	Explain briefly the following: 1) Buffer amplifier 2) Differential amplifier	CO3	L2
14		CO3	L1
15	What is an attenuator? How are the attenuators are classified?	CO3	L2
16	What do you mean by the terms "filtering" and "filter"? How are	-	L2
10	filters classified?	003	
17	What is a data acquisition system ?Eplain analog data acquisition system with suitable block diagram.	CO4	L2
18	Draw the block diagram of a generalised data acquisition system and explain it briefly.	CO4	L2

2			
1		CO6	L2
е	Experiences	-	-
31	Explain briefly the followings: PAM ii) PWM	CO4	L2
	2) R-2R ladder D/A conveter.		
	1) Weighted resistor D/A converter.		
30	Explain briefly the following:	CO4	L2
	2) Flash A/D converter.		
29	Explain briefly the following: 1) successive approximation A/D converter.	CO4	LC
	Describe briefly the components use in A/D conversion.	CO4	 L2
28	1) Quantizing 2) Coding	CO4	12
27	Define the following terms:	CO4	L2
26	Explain briefly the procedure of analog to digital conversion.	CO4	L2
25	Give application of data acquisition system.	CO4	L2
	acquisition system		
24	Explain with a neat diagram the working of a single channel data	CO4	L2
23	Explain briefly a digital acquisition system.	CO4	L2
22	Write a note on "Automated data acquisition system".	CO4	L2
21	Explain single channel and multichannel analog multiplexed data acquisition system.	CO4	L2
20	What are the factors that decide the configuration of a data acquisition system?		L2

Module – 4

Title:	Data Transmission and Telemetry	Appr	10 Hrs
	Measurement of Non – Electrical Quantities	Time:	
a	Course Outcomes	CO	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Understand the different type of data transmission and telemetry.	CO5	L2
2	Understand temperature, Pressure and flow measurement using various transducer.	CO6	L2
b	Course Schedule		
Class No	Portion covered per hour	-	-
31	Data/Signal Transmission	CO5	L2
32	Telemetry	CO5	L2
33	Telemetry	CO5	L2
34	Telemetry	CO5	L2
35	Telemetry	CO5	L2
36	Pressure Measurement	CO6	L2
37	Pressure Measurement	CO6	L2
38	Pressure Measurement	CO6	L2
39	Pressure Measurement	CO6	L2
40	Pressure Measurement	CO6	L2
с	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to \ldots	-	-
1	Data transmission and telemetry is used in remote environmental monitoring, automatic meter reading.	CO5	L2
2	Use in hydraulic press, press fitting , die casting machine and so on	CO7	L2

d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	Define the terms "Data transmission" and "telemetry".	CO5	L2
2	What is the difference between "transmitter" and "telemeter"	CO5	L2
3	Explain any two of the following:	CO5	L2
	1) Mechanical transmission		
	2) Hydraulic transmission		
	3) pneumatic transmission		
	4) Magnetic transmission		
4	Discuss briefly the working of a general telemetering system , with the help of	CO5	L2
	a block diagram.		
5	How are the telemetry systems classified?	CO5	L1
6	List the advantages and disadvantages of land line telemetry system.	CO5	L2
7	Explain briefly the followings:	CO5	L2
	i) Voltage Telemetry System ii) Current Telemetry System.	-	
8	Discuss the working of a position telemetry system with the help of a neat	CO5	L2
	diagram.	•	
9	Write a short notes on RF telemetry system.	CO5	L2
10	What do you mean by the term "modulation" and "demodulation"	CO5	L2
11	Explain briefly the following:	CO5	L2
	1) Amplitude modulation	Ũ	
	2) Frequency modulation.		
12	Explain briefly the followings:	CO5	L1
	i) PAM ii) PWM iii) PPM iv) PCM	Ũ	
13	What is modem? Explain	CO5	L2
14	Explain briefly the following telemetry system:	CO5	L2
	1) Frequency modulation (FM) telemetry system	Ũ	
	2) pulse amplitude modulation telemetry system.		
15	Define the following terms: i) Pressure ii) Atmospheric Pressure iii) Gauge	CO6	L1
	Pressure iv) Absolute Pressure v) Static Pressure.		
16	Describe the construction and working of hot – filament ionization gauge.	CO6	L2
17	Describe the construction and working of "Dead Weight Tester".	CO6	L2
18	Explain any two electric pressure transducers	CO6	L2
	i)Resistance type transducer ii) Reluctance type transducer iii)Photoelectric		
	transducer		
19	Explain pirani vacuum gauge with neat diagram.	CO6	L2
20	Explain Bridgeman gauge with neat diagram	CO6	L2
е	Experiences	-	-
1		CO7	L2
2			

E2. CIA EXAM – 2

a. Model Question Paper - 2

Crs		17EE662	Sem:	6	Marks:	30	Time:	75 minutes			
Code	e:										
Cou	Course: Sensors and Transducers										
-	-	Note: Answ	ver all quest	ions, each c	arry equal	marks. <mark>Mo</mark> d	ule : 3, 4	Mar	ks	СО	Level
1	а	Explain ger	neral measui	rement syste	em with a bl	ock diagran	ז.	5		CO3	L1
			Explain briefly the following amplifiers							CO3	L2
		1) Mechanic	1) Mechanical amplifiers 2) Fluid amplifiers								
		Explain briefly the following:						5		CO3	L2
		1) Buffer am	Buffer amplifier 2) Differential amplifier								
					OR						

1	а	Draw the block diagram of a generalized data acquisition	5	CO4	L2
		system and explain it briefly.			
	b	Explain briefly the following:	5	CO4	L2
		1) successive approximation A/D converter.			
		2) Flash A/D converter.			
	С	Explain briefly the following:	5	CO4	L2
		1) Weighted resistor D/A converter.			
		2) R-2R ladder D/A converter.			
2	а	Define the terms "Data transmission" and "telemetry".Explain the following:	5	CO4	L2
		1) Hydraulic transmission			
		2) pneumatic transmission			
	b	Explain briefly the followings:	5	CO4	L2
		i)Voltage Telemetry System ii) Current Telemetry System.			
	С	Explain briefly the following telemetry system:	5	CO4	L2
		1) Frequency modulation (FM) telemetry system			
		2) pulse amplitude modulation telemetry system.			
		OR			
2	a	Define the following terms:	5	CO5	L2
		i) Pressure ii) Atmospheric Pressure iii) Gauge Pressure iv) Absolute			
		Pressure v) Static Pressure.			
	b	Describe the construction and working of hot – filament ionization gauge.	5	CO5	L2
	С	Explain pirani vacuum gauge with neat diagram.	5	CO5	L2

b. Assignment – 2

Note: A distinct assignment to be assigned to each student.Sem:5Marks:5 / 10Time:90 – 120 minutes

Sem	5	Marks:	5 / 10	l'ime:	90 – 120	minute		
SNo		Assianm	nent Descript	ion		Marks	со	Level
1	Explain general m	-			aaram.	5	CO5	L2
2	State the limitatio				5	3	CO5	L1
3	What are the adv				ning?	4	CO5	L2
4	Explain briefly th equipment						CO5	L2
	1)Amplification 2 matching 4) Data			-	pedance			
5	Explain briefly any 1) Mechanical arr Electronics ampli	plifiers 2			rical and	6	CO5	L2
6	State the general amplifier.		can be listed t	for an ideal e	lectronic	5	CO5	L2
7	What are DC and	AC ampli	fiers? Explain	briefly.		5	CO5	L2
8	What do you mea	an by moc	lulated and ur	nmodulated :	signals?	4	CO5	L2
9	What is an OP-An	np ? State	its limitations	as well.		4	CO5	L2
10	Explain briefly the	e term "Co	mmon Mode	Rejection Ra	tio"	2	CO5	L2
11	State applications	s of OP-Ar	np.			5	CO5	L2
	Enumerate some			OP-Amp circ	cuits.	5	CO5	L2
13	Explain briefly the 1) Buffer amplifier					6	CO5	L2
14	state the advanta	ges of diff	erential ampl	fier		4	CO5	L2
15	What is an attenu	ator? How	v are the atter	nuators are cl	assified?	5	CO5	L2
16	What do you me are filters classifie		e terms "filter	ing" and "filte	er"? How		CO5	L2
17	A three stage am stage voltage gai						CO5	L3

			1 1	
40	Find the voltage gain in dB.		005	
18	A multistage amplifier employs five stages each of which has a power gain of 30. What is the total gain of the amplifier in dB?	3	CO5	L3
19	What is a data acquisition system ?Eplain analog data acquisition system with suitable block diagram.	5	CO6	L2
20	Draw the block diagram of a generalized data acquisition system and explain it briefly.	5	CO6	L2
21	What are the objectives of a data acquition system?	5	CO6	L2
22	What are the factors that decide the configuration of a data acquisition system?	5	CO6	L2
23	Explain single channel and multichannel analog multiplexed data acquisition system.	6	CO6	L2
24	Write a note on "Automated data acquisition system".	5	CO6	L2
25	Explain briefly a digital acquisition system.	5	CO6	L2
26	Explain with a neat diagram the working of a single channel data acquisition system	5	CO6	L2
27	Give application of data acquisition system.	3	CO6	L2
28	Explain briefly the procedure of analog to digital conversion.	5	CO6	L2
29	Define the following terms: 1) Quantizing 2) Coding	2	CO6	L2
30	Describe briefly the components use in A/D conversion.	5	CO6	L2
31	Explain briefly the following: 1) successive approximation A/D converter. 2) Flash A/D converter.	6	CO6	L2
32	Explain briefly the following: 1) Weighted resistor D/A converter. 2) R-2R ladder D/A conveter.	6	CO6	L2
33	Explain briefly the followings: PAM ii) PWM	4	CO6	L2
34	Define the terms "Data transmission" and "telemetry".	2	CO7	L2
<u>35</u> 36	 What is the difference between "transmitter" and "telemeter" Explain any two of the following: 1) Mechanical transmission 2) Hydraulic transmission 3) pneumatic transmission 4) Magnetic transmission 	2	CO7 CO7	L2 L2
37	Discuss briefly the working of a general telemetering system , with the help of a block diagram.	5	CO7	L2
38	How are the telemetry systems classified?	4	C07	L2
39	List the advantages and disadvantages of land line telemetry system.	3	CO7	L2
40	Explain briefly the followings: i)Voltage Telemetry System ii) Current Telemetry System.	6	CO7	L2
41	Discuss the working of a position telemetry system with the help of a neat diagram.	5	CO7	L2

42	Write a short notes on RF telemetry system.	3	CO7	L2
43	What do you mean by the term "modulation" and		CO7	 L2
	"demodulation"	0		
44	Explain briefly the following:	6	CO7	L2
	1) Amplitude modulation			
	2) Frequency modulation.			
45	Explain briefly the followings:	4	CO7	L2
	i) PAM ii) PWM iii) PPM iv) PCM			
41	What is modem? Explain	5	CO7	L2
42	Explain briefly the following telemetry system:	5	CO7	L2
	1) Frequency modulation (FM) telemetry system			
	2) pulse amplitude modulation telemetry system.			
43	Define the following terms:	5	CO8	L2
	i) Pressure ii) Atmospheric Pressure iii) Gauge Pressure iv)			
	Absolute Pressure v) Static Pressure.			
44	Describe the construction and working of hot – filament	5	CO8	L2
	ionization gauge.			
45	Describe the construction and working of "Dead Weight	5	CO8	L2
	Tester".			
46	Explain any two electric pressure transducers	6	CO8	L2
	i)Resistance type transducer ii) Reluctance type transducer			
	iii)Photoelectric transducer		000	
	Explain pirani vacuum gauge with neat diagram.	5	CO8	L2
_ 48	Explain Bridgman gauge with neat diagram	5	CO8	L2

D3. TEACHING PLAN - 3

Module – 5

Title:	Loop and Horn Antenna and Antenna Types	Appr Time:	10 Hrs
а	Course Outcomes	СО	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Understand temperature, Pressure and flow measurement using various transducer.	CO6	L2
b	Course Schedule	-	_
Class N	o Portion covered per hour	-	-
41	Temperature Measurement	CO9	L2
42	Temperature Measurement	CO9	L2
43	Temperature Measurement	CO9	L2
44	Flow Measurement – Introduction	CO10	L2
45	Electromagnetic Flow meters, Ultrasonic Flow Meters, Thermal Metes	CO10	L2
46	Measurement of Velocity/ Speed, Measurement of Acceleration	CO10	L2
47	Measurement of Displacement	CO10	L2
48	Measurement of Force, Measurement of Torque	CO10	L2
49	Wire Anemometers., Measurement of Shaft Power	CO10	L2
50	Measurement of Liquid Level, Measurement of Viscosity	CO10	L2
С	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	Use in thermometer, resistance temperature detector, thermocople and so on	CO9	L2
2	Use in rotameter, elbow meter, ultrasonic flow meter, anemometer,DC and AC tachometer	CO10	L2
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	What is temperature? How are temperature measuring instruments classified?	CO9	L2

2	Explain briefly the construction and working of a resistance thermometer.	CO9	L2
3	What are the adv and disadvantages of resistance thermometer?	CO9	L2
4	What are thermistors? What are their advantages ?	CO9	L2
5	Give a comparision between "thermistor" and "metal resistors"	CO9	L2
6	List the factors which should be considered while selecting resistance thermometers.	CO9	L2
7	What is a "seeback effect"?	CO9	L2
8	Explain with a neat diagram the construction and working of a thermoelectric pyrometer.		L2
9	What are the desirable properties of thermoelectric materials?	CO9	L2
10	Explain briefly the working of radiation pyrometer.	CO9	L2
11	State the advantages and disadvantages of thermocouples.	CO9	L2
12	State the advantages and disadvantages of radiation pyrometer.	CO9	L2
13	Describe with a neat sketch the working of an optical pyrometer.	CO9	L2
14	State the advantages and disadvantages of an optical pyrometer.	CO9	L2
15	List the applications of flow measurments.	CO10	L2
16	How are the flow measurments are classified?	CO10	L2
17	Describe briefly the following: 1) Rotameter 2) Elbowmeter.	CO10	L2
18	Explain with a neat sketch the working of any electromagnetic flow meter.	CO10	L2
19	What are hot wire anemometers?	CO10	L2
20	Explain briefly how small displacement can be measured by linear or differential transformers.		
21	Explain with a neat diagram the method of measuring linear velocity with the use of moving magnet type transducer.	CO10	
22	What is tachometer? How are tachometers are classified?	CO10	
23	Why are electrical tachometers preferred to mechanical tachometers?	CO10	
24	Explain briefly any two of the following electrical tachometers: 1) DC tachometer generator 2) AC tachometer generator 3) Photoelectric tachometer.	CO10	
25	Explain briefly any two of the following torque measrment methods: 1) Gravity balance method 2) Mechanical torsion meter. 3) Electrical torsion meter.	CO10	
26	What is a dynamometer? How are dynamometers are classified?	CO10	
27	Explain briefly the following: 1) Prony brake dynamometer 2) Rope brake dynamometer.	CO10	
е	Experiences	-	-
1		CO10	L2
2		CO9	

E3. CIA EXAM – 3

a. Model Question Paper - 3

Crs (Code	e 15EE662 Sem: 6 Marks: 30 Time:							75	75 minutes				
Cou	rse:	Sensors an	d Transduo	cers			·							
-	-	Note: Answ	ver all que	stions, ea	ch carry equa	l marks.	Modul	e:5		Marks	СО	Level		
1		What is to classified?	emperatur	nents	5	CO9	L2							
	b	Give a com	parison b		5	CO9	L2							
		Explain wi thermoeled	of a	5	COg	L2								
					OR									
2	а	What are th	ne desirabl	e propert	ies of thermo	electric n	naterial	.s?		5	CO9	L2		
	b	Explain brie	efly the wo	rking of r	adiation pyron	neter.				5	CO9	L2		
	С	Describe w	rith a neat s	sketch the	e working of ar	n optical j	oyrome	eter.		5	CO9	L2		

3	a	Describe briefly the following:	5	CO10	L2
		1) Rate meter 2) Quantity meter.			
	b	Explain with a neat sketch the working of any electromagnetic flow meter.	5	CO10	L2
	С	Explain briefly how small displacement can be measured by linear or differential transformers.	5	CO10	L2
4		Explain with a neat diagram the method of measuring linear velocity with the use of moving magnet type transducer.	5	CO10	L2
	b	Explain briefly the following electrical tachometers: 1) DC tachometer generator 2) AC tachometer generator	5	CO10	L2
	С	What is a dynamometer? How are dynamometers are classified?	5	CO10	L2

b. Assignment – 3

Sem:	6 Marks: 5 / 10 Time: 90 – 120	minute	S	
SNo	Assignment Description	Marks	со	Level
1	What is temperature? How are temperature measuring instruments classified?		CO9	L2
2	Explain briefly the construction and working of a resistance thermometer.	5	CO9	L2
3	What are the adv and disadvantages of resistance thermometer?	4	CO9	L2
4	What are thermistors? What are their advantages ?	4	COg	L2
5	Give a comparison between "thermistor" and "metal resistors"	0	CO9	L2
6	List the factors which should be considered while selecting resistance thermometers.	4	CO9	L2
7	What is a "seeback effect"?	2	CO9	L2
8	Explain with a neat diagram the construction and working of a thermoelectric pyrometer.		CO9	L2
9	What are the desirable properties of thermoelectric materials?	4	CO9	L2
11	Explain briefly the working of radiation pyrometer.	5	COg	L2
12	State the advantages and disadvantages of thermocouples.	4	COg	L2
13	State the advantages and disadvantages of radiation pyrometer.	5	CO9	L2
14	Describe with a neat sketch the working of an optical pyrometer.	5	CO9	L2
15	State the advantages and disadvantages of an optical pyrometer.	4	CO9	L2
16	List the applications of flow measurements.	4	CO9	L2
17	How are the flow measurements are classified?	4	CO9	L2
18	Describe briefly the following: 1) Rate meter 2) Quantity meter.	5	CO9	L2
19	Explain with a neat sketch the working of any electromagnetic flow meter.	5	CO9	L2
20	What are hot wire anemometers?	2	CO10	L2
21	Explain briefly how small displacement can be measured by linear or differential transformers.	5	CO10	L2
22	Explain with a neat diagram the method of measuring linear velocity with the use of moving magnet type transducer.	5	CO10	L2
23	What is tachometer? How are tachometers are classified?	4	CO10	L2
24	Why are electrical tachometers preferred to mechanical tachometers?	5	CO10	L2
25	Explain briefly any two of the following electrical tachometers: 1) DC tachometer generator 2) AC tachometer generator 3) Photoelectric tachometer.	6	CO10	L2
26	Explain briefly any two of the following torque measurement	6	CO10	L2

methods: 1) Gravity balance method 2) Mechanical torsion meter. 3) Electrical torsion meter.			
What is a dynamometer? How are dynamometers are classified?	4	CO10	
Explain briefly the following: 1) Prony brake dynamo meter 2) Rope brake dynamometer.	6	CO10	L2

F. EXAM PREPARATION

1. University Model Question Paper

Cours			/ Year		
		17EE662 Sem: 6 Marks: 80 Time:		180 m	
Mod ule	Note	Answer all FIVE full questions. All questions carry equal marks.	Marks	со	Leve
1		What is transducer .Define the followings: 1) sensitivity 2)linearity 3)Resolution 4)Accuracy 5) Precision	6	CO1	L2
	b	Describe briefly the following: 1) Thermistors and resistance thermometers 2) wire resistance strain gauge	6	CO1	L2
	С	The resistivity of semiconductor material was known to be 0.00912 Ω m a	it 4	CO1	L2
		room temperature. The flux density in the Hall model was 0.48Wb/m	2.		
		Calculate the hall angle for a Hall co efficient of $3.55 \times 10^{-4} \text{ m}^3/\text{coulomb}$.			
				000	
-		Explain LVDT with advantages and disadvantages.	6	CO2	L2
		A parallel plate capacitive transducer uses plates of area 250mm ² whic are separated by a distance 0.2mm. a)Calculate the value of capacitance when the dielectric is air havin		CO2	L2
		a permitivity of 8.85 x 10 ⁻² F/m. b)Calculate the change in capacitance if a linear displacemer reduces the distance between the plates to 0.18mm.Also calculat the ratio of per unit change of capacitance to per unit change of displacement. If a mica sheet 0.01mm thick is inserted in the gap , calculate the value of	e of		
		original capacitance and change in capacitance for the sam displacement. Also calculate the ratio of per unit change of capacitanc			
		to per unit change of displacement. The dielectric constant of mica is 8.		001	
	С	Explain Hall effect with neat diagram and expression	5	CO2	L2
2		What is strain gauge?Explain briefly with neat diagrams, any two of th following: 1) Wire wound strain gauge 2)Foil type strain gauge	e 6	C03	L2
	b	What is a load cell? Explain briefly two of the following: 1) Hydraulic load cell 2) Pneumatic load cell	5	CO3	L2
		A simple electrical strain gauge of resistance 120Ω and having a gaug factor of 2 bonded to steel having an elastic limit stress of 400MN/m and modulus of elasticity is 200 GN/m2. Calculate the change i resistance, 1) due to change in stress equal to 1/10 of the elastic range 2)due to change of temperature of 20°C if the material is advance allo The resistance temperature coefficient of advance alloy is 20 x 10 ⁻⁶ /°C.	2 n	CO3	L2
		OR			

		1) Eddy current proximity sensor.			
		2) Capacitance proximity sensor.		00	
	b	Write a short notes on "Pneumatic sensor"	5	CO4	
	С	A strain gauge is bonded to a beam which is 12cm long and has a cross sectional area of 3.8cm ² . The unstrained resistance and gauge factor of the strain gauge are 220Ω and 2.2 respectively. On the application of load the resistance of the gauge changes by 0.015Ω. If the modulus of elasticity for steel is 207GN/m ² , calculate: 1) The change in length of the steel beam. 2) The amount of force applied to the beam.	5	CO4	L2
3	а	Explain general measurement system with a block diagram.	5	CO5	L2
	b	Explain briefly the following amplifiers 1) Mechanical amplifiers 2) Fluid amplifiers	6	CO5	L2
	С	Explain briefly the following: 1) Buffer amplifier 2) Differential amplifier	5	CO5	L2
		OR			
-	а	Draw the block diagram of a generalized data acquisition system and explain it briefly.	4	CO6	L2
	b	Explain briefly the following: 1) successive approximation A/D converter. 2) Flash A/D converter.	6	CO6	L2
	С	Explain briefly the following: 1) Weighted resistor D/A converter. 2) R-2R ladder D/A converter.	6	CO6	L2
				0.0-	
4	а	Define the terms "Data transmission" and "telemetry".Explain the following: 1) Hydraulic transmission 2) pneumatic transmission	5	CO7	L2
	b	Explain briefly the followings: i)Voltage Telemetry System ii) Current Telemetry System.	5	CO7	L2
	С	Explain briefly the following telemetry system: 1) Frequency modulation (FM) telemetry system 2) pulse amplitude modulation telemetry system.	6	CO7	L2
		OR			
-	а	Define the following terms: i) Pressure ii) Atmospheric Pressure iii) Gauge Pressure iv) Absolute Pressure v) Static Pressure.	5	CO8	L2
	b	Describe the construction and working of hot – filament ionization gauge.	6	CO8	L2
	С	Explain pirani vacuum gauge with neat diagram.	5	CO8	L2
5	а	Give a comparision between "thermistor" and "metal resistors"	5	CO9	L2
	b	Explain with a neat diagram the construction and working of a thermoelectric pyrometer.	6	CO9	L2
	С	Explain briefly the working of radiation pyrometer	5	CO9	L2
		OR			
	а	Explain with a neat sketch the working of any electromagnetic flow meter.	5	CO10	L2
	b	Explain with a neat diagram the method of measuring linear velocity with the use of moving magnet type transducer.	5	CO10	L2
	С	Explain briefly the following electrical tachometers: 1) DC tachometer generator 2) AC tachometer generator	6	CO10	L2

2. SEE Important Questions

Cours			th / Year		
Crs C		15EE662 Sem: 6 Marks: 80 Time	9:	180 m	Inutes
		Answer all FIVE full questions. All questions carry equal marks.	-	-	
Mod ule	Qno.	Important Question	Marks	CO	Yea
1		What is transducer .Define the followings: 1) sensitivity 2)linearity 3)Resolution 4)Accuracy	5	CO1	2018
		Describe briefly the following: 1) Thermistors and resistance thermometers 2) wire resistance strain gauge	6	CO2	2018
	3	The resistivity of semiconductor material was known to be 0.00912Ωm room temperature. The flux density in the Hall model was 0.48Wb/r Calculate the hall angle for a Hall co efficient of 3.55x 10 ⁻⁴ m ³ /coulomb	n ² .	CO2	2018
	4	Explain LVDT with advantages and disadvantages.	6	CO2	2018
	5	A parallel plate capacitive transducer uses plates of area 250mm ² wh are separated by a distance 0.2mm. a)Calculate the value of capacitance when the dielectric is air hav a permitivity of 8.85 × 10 ⁻² F/m. b)Calculate the change in capacitance if a linear displacement reduces the distance between the plates to 0.18mm.Also calcul the ratio of per unit change of capacitance to per unit change displacement. If a mica sheet 0.01mm thick is inserted in the gap, calculate the value original capacitance and change in capacitance for the said displacement. Also calculate the ratio of per unit change of capacitance to per unit change of displacement. The dielectric constant of mica is 8	ing ent ate of e of me nce	CO2	2018
	6	Explain Hall effect with neat diagram and expression	5	CO2	2018
2	1	What is strain gauge?Explain briefly with neat diagrams, any two of 1 following: 1) Wire wound strain gauge 2)Foil type strain gauge	he 6	CO3	2018
	2	What is a load cell? Explain briefly two of the following: 1) Hydraulic load cell 2) Pneumatic load cell	6	CO3	2018
	3	A simple electrical strain gauge of resistance 120Ω and having a gau factor of 2 bonded to steel having an elastic limit stress of 400MN/ and modulus of elasticity is 200 GN/m2. Calculate the change resistance, 1) due to change in stress equal to 1/10 of the elastic range 2)due to change of temperature of 20°C if the material is advance all The resistance temperature coefficient of advance alloy is 20 x 10 ⁻⁶ /°C.	in .oy.	CO3	2018
		Describe briefly the following sensors: 1) Eddy current proximity sensor. 2) Capacitance proximity sensor.	6	CO4	2018
	5	Write a short notes on "Pneumatic sensor"	5	CO4	2018
	-	A strain gauge is bonded to a beam which is 12cm long and has a crossectional area of 3.8cm ² . The unstrained resistance and gauge factor the strain gauge are 220 Ω and 2.2 respectively. On the application of lot the resistance of the gauge changes by 0.015 Ω . If the modulus elasticity for steel is 207GN/m ² , calculate: 1) The change in length of the steel beam. 2) The amount of force applied to the beam.	oss 5 of oad	CO4	2018
				1	
3	1	Explain general measurement system with a block diagram.	5	CO5	2018

		1) Mechanical amplifiers 2) Fluid amplifiers			
	3	Explain briefly the following:	6	CO5	2018
	3	1) Buffer amplifier 2) Differential amplifier	0	005	2010
	4	Draw the block diagram of a generalized data acquisition	5	CO6	2018
		system and explain it briefly.			
	5	Explain briefly the following:	6	CO6	2018
		1) successive approximation A/D converter.			
		2) Flash A/D converter.			
	6	Explain briefly the following:	6	CO6	2018
		1) Weighted resistor D/A converter.			
		2) R-2R ladder D/A converter.			
4	1	Define the terms "Data transmission" and "telemetry".Explain the	6	CO7	2018
4	-	following:	0	007	2010
		1) Hydraulic transmission			
		2) pneumatic transmission			
	2	Explain briefly the followings:	6	CO7	2018
		i)Voltage Telemetry System ii) Current Telemetry System.			
	3	Explain briefly the following telemetry system:	6	C07	2018
		1) Frequency modulation (FM) telemetry system			
		2) pulse amplitude modulation telemetry system.		600	0010
	4	Define the following terms: i) Pressure ii) Atmospheric Pressure iii) Gauge Pressure iv) Absolute	5	Co8	2018
		Pressure v) Static Pressure.			
	5	Describe the construction and working of hot – filament ionization gauge.	5	C08	2018
	6	Explain pirani vacuum gauge with neat diagram.	5	CO8	2018
5	1	Give a comparison between "thermistor" and "metal resistors"	6	C09	2018
	2	Explain with a neat diagram the construction and working of a	7	C09	2018
		thermoelectric pyrometer.	,		
	3	Explain briefly the working of radiation pyrometer	7	C09	2018
	4	Explain with a neat sketch the working of any electromagnetic flow meter.	7	CO10	
	5	Explain with a neat diagram the method of measuring linear velocity with	7	CO10	2018
		the use of moving magnet type transducer.		001-	
	6	Explain briefly the following electrical tachometers:	6	CO10	2018
		1) DC tachometer generator 2) AC tachometer generator			

Course Outcome Computation

Academic Year:

Odd / Even semester

INTERNAL TEST				T1					1	[2			
Course	CO1		CO2		CO3		CO4		CO5		CO6		C07
Outcome QUESTION NO	Q1	LV	Q2	LV	Q3	LV	Q1	LV	Q2	LV	Q3	LV	Q1
MAX MARKS USN-1													10
USN-2 USN-3													4 6
USN-4 17EE662					Page # 2	F / 26	Сору	right ©2	017. cAAS.	All right	s reserved.		4

USN-5 USN-6 Average CO Attainment

LV Threshold : 3:>60%, 2:>=50% and <=60%, 1: <=49% CO1 Computation :(2+2+2+3)/4 = 10/4=2.5

PO Computation

Program	PO	1	P	03	P	03	P	D1	PC	D12	PC	012	P	D6	
Outcome Weight of CO - PO	3			1		3	ź	2		2		3		3	
Course Outcome	CO1		CO1 CO2		CO3		CO4		CO5		CO6		CO7		
Test/Quiz/				T1					Т	2				Т	3
Lab QUESTION NO	Q1	LV	Q2	LV	Q3	LV	Q1	LV	Q2	LV	Q3	LV	Q1	LV	Q
MAX MARKS USN-1														-	10
USN-2														1	5
USN-3														2	10
USN-4														1	
USN-5 USN-6														3 3	10 10
Average CO Attainment														2	

10

9