Ref No:

Sri Krishna Institute of Technology, Bangalore

COURSE PLAN

Academic Year 2019-2020

Program:	B.E
Semester :	VI
Course Code:	17EE63
Course Title:	Digital Signal Processing.
Credit / L-T-P:	4/4-0-0
Total Contact Hours:	50
Course Plan Author:	M.Nagaraja

Academic Evaluation and Monitoring Cell

Sri Krishna Institute of Technology #29,Chimney hills,Hesaraghata Main road, Chikkabanavara Post

Bangalore – 560090, Karnataka, INDIA

Phone / Fax :08023721477/28392221/23721315 Web: www.skit.org.in , e-mail: <u>skitprinci@gmail.com</u>

Table of Contents

A. COURSE INFORMATION	2
1. Course Overview	2
2. Course Content	3
<u>3. Course Material</u>	
<u>4. Course Prerequisites</u>	3
5. Content for Placement, Profession, HE and GATE	4
B. OBE PARAMETERS.	4
<u>1. Course Outcomes</u>	4
2. Course Applications	4
3. Articulation Matrix	4
<u>4. Curricular Gap and Content</u>	5
C. COURSE ASSESSMENT.	5
<u>1. Course Coverage</u>	5
2. Continuous Internal Assessment (CIA)	5
D1. TEACHING PLAN - 1	5
Module - 1	5
Module – 2	<u>6</u>
E1. CIA EXAM – 1.	7
a. Model Question Paper - 1	7
<u>b. Assignment -1</u>	7
D2. TEACHING PLAN - 2	7
Module – 3	7
Module – 4	8
E2. CIA EXAM – 2.	9
a. Model Question Paper - 2	9
b. Assignment – 2	
D3. TEACHING PLAN - 3	
Module – 5	
E3. CIA EXAM – 3	11
a. Model Question Paper - 3	
b. Assignment – 3	
F. EXAM PREPARATION	11
1. University Model Question Paper	11
2. SEE Important Questions	

A. COURSE INFORMATION

1. Course Overview

Degree:	B.E	Program:	UG
Semester:	VI	Academic Year:	2019-20
Course Title:	DSP	Course Code:	17EE63
Credit / L-T-P:	4/4-0-0	SEE Duration:	180 minutes
Total Contact Hours:	50	SEE Marks:	60
CIA Marks:	30	Assignment	10
Course Plan Author:	M.Nagaraja	Sign	
Checked By:		Sign	
CO Targets	CIA Target :20	SEE Target:	65

Note: Define CIA and SEE % targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute.

Mod	Content	Teaching Hours	Blooms Learning
ule			Levels
1	Discrete Fourier Transforms: Definitions, properties-linearity, shift, symmetry Properties- circular convolution – periodic convolution, use of tabular arrays, circular arrays, Stock ham's method, linear convolution – two finite duration sequence, one finite & one infinite duration, overlap add and save methods	10	L2
2	Fast Fourier Transforms Algorithms: Introduction, decimation in time algorithm, first decomposition, number of computations, continuation of decomposition, number of multiplications, computational efficiency, decimation in frequency algorithms, Inverse radix – 2 algorithms.	10	L2
3	Design of IIR Digital Filters : Introduction, impulse invariant transformation, bilinear transformations, All pole analog filters- Butterworth & Chebyshev filters, design of digital Butterworth filter by impulse invariant transformation and bilinear transformation, Frequency transformations.	10	L5
4	Design of IIR Digital Filters (Continued): Design of digital Chebyshev –type 1filter by impulse invariant transformation and bilinear transformation, Frequency transformations. Realization of IIR digital systems : direct form, cascade form and parallel form, Ladder structures for equal degree polynomial.	10	L5
5	Design of FIR Digital Filters : Introduction, windowing, rectangular, modified rectangular. Hamming, Hanning, Blackman window, design of FIR digital filters by use of windows, Design of FIR digital filters-frequency sampling techniques. Realization of FIR systems : direct form, cascade form, linear phase form	10	L5
-	Total		

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C). 17EE63

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 - 30 minutes

Design: Simulation and design tools used – software tools used ; Free / open source
 Research: Recent developments on the concepts – publications in journals; conferences etc.

3. Nese	alch. Recent developments on the concepts – publications in journals, co		seic.
Modul es	Details	Chapters in book	Availability
Α	Text books (Title, Authors, Edition, Publisher, Year,)	-	-
	Introduction to Digital Signal Processing Jhonny R. Jhonson Pearson 1 st Edition, 2016		
В	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
1	Digital Signal Processing – Principles, Algorithms, and Applications Jhon G. Proakis Dimitris G. Manolakis Pearson 4 th Edition, 2007.		
2	Digital Signal Processing A.NagoorKani McGraw Hill 2 nd Edition, 2012		
3	Digital Signal Processing Shaila D. Apte Wiley 2 nd Edition, 2009		
4	Digital Signal Processing Ashok Amberdar Cengage 1 st Edition, 2007		
5	Digital Signal Processing Tarun Kumar Rawat Oxford 1 st Edition, 2015		
С	Concept Videos or Simulation for Understanding	_	_
1	Introduction to DSP		
	https://www.youtube.com/watch?v=6dFnpz_AEvA		
2	DFT https://www.youtube.com/watch?v=GDFTb-BwA0o		
3	Introduction to FFT https://www.youtube.com/watch?v=L4gpMr_OHnA		
4	IIR filter design procedure https://www.youtube.com/watch?v=N1eraFmDw1M		
5	FIR filter design by window method https://www.youtube.com/watch?v=nsK7mmRSTDY		
6	Realization of IIR and FIR Filter		
D	Software Tools for Design	_	_
	MATLAR SCILAR		
F	Pecent Developments for Desearch	_	
-	The breakthroughs in DSD include various advances and	-	_
	Ine breakthroughs in DSP include various advances and		
	extensions from old techniques to new techniques. For example,		
	signal processing lechniques have moved from single-rate to		
	from frequency, domain (the traditional Fourier transform, as we		
	know it) to time, frequency applying and from linear to non-linear		
	right brocksing. Decent developments in these areas have not		
	signal processing. Recent developments in these areas have not		
	also resulted in new tools that find applications in various		
	domains. For instance, multirate signal processing has triggered		
	recent advances in modern technology and speech /audio		
	coding; adaptive filtering has made echo cancellation and noise suppression possible; time-frequency analysis has found its way into various applications in radar and medical signal processing:		
	and non-linear processing has made engineers rethink various		
	problems in speech recognition and image analysis		
F	Others (Web, Video, Simulation. Notes etc.)	-	_

1	DSP Notes	
	https://mrcet.com/downloads/digital_notes/ECE/III%20Year/DIGITAL	
	%20SIGNAL%20PROCESSING.pdf	
2	vidyarthiplus.com/vp/Thread-CS2403-Digital-Signal-Processing-	
	Scanned-Lecture-Notes-All-Units	

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Mod	Course	Course Name	Topic / Description		Remarks	Blooms					
ules	Code					Level					
1	15EC44	Signals &	Module1 Elementary signals,	4		L1,L2					
		Sytems	operations on signals								
2	15EC44	Signals &	Module2 TD representation of LTI	4		L1,L2					
		Sytems	s/m								
3	15EC44	Signals &	Module4 Fourier Transforms	4		L1,L2					
		Sytems									

Students must have learnt the following Courses / Topics with described Content

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Mod	Topic / Description	Area		Blooms		
ules						Level
1	DFT	Digital	Required fo	r Higher	Education,	L2
		System	Entrepreneu	rship		
2	FFT	Real Time	Industry	&	profession	L3
			requirements	5		
3	FFT	Real Time	Industry	&	profession	L3
			requirements	S		
4	FIR Filter	Communica	Industry	&	profession	L2
		tion	requirements	5		
5	IIR filter	Communica	Industry	&	profession	L3
		tion	requirements	S	-	

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs.

Mod	Course	Course Outcome	Teach. Hours	Instr Method	Assessme	Blooms'
ules	Code.#	At the end of the course, student			nt	Level
		should be able to			Method	
1	17EE63.1	Compute the DFT of various signals	10	Lecture	Slip Test	L2
		using its properties and linear				Understand
		filtering of two sequences				
2	17EE63.2	Apply fast and efficient algorithms	10	Lecture	Assignme	L4
		for computing DFT and inverse DFT			nt	
		of a given sequence				
3	17EE63.3	Design infinite impulse response	10	Lecture	Assianme	L5
	_, 3.3	Butterworth digital filters using			nt and	Understand
		impulse invariant / bilinear			Slip Test	
		transformation technique.				
4	17EE63.4	Realize a digital IIR filter by direct,	10	Lecture and	Assignme	L4

		cascade, parallel and ladder methods ofrealization		Tutorial	nt	Apply
5	17EE63.5	Design FIR filters by use of window function or by frequency sampling method	10	Lecture	Slip test	L5 Apply
-	-	Total	50	-	-	-

2. Course Applications

Write 1 or 2 applications per CO.

Students should be able to employ / apply the course learnings to

Mod	Application Area	CO	Level
ules	Compiled from Module Applications.		
1	Analog to Digital Conversion	CO1	L2
1	Digital to Analog conversion	CO1	L4
2	Ease of DFT Computation	CO2	L2
2	Real time Processing	CO2	L3
3	Filter Design in communication	CO3	L2
4	Realizing filters	CO4	L3
5	Design of FIR filter where linear phase is not a constraint	CO5	L3

3. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	-	Course Outcomes	Program Outcomes											-				
Mod	CO.#	At the end of the course	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	Lev
ules		student should be able to	1	2	3	4	5	6	7	8	9	10	11	12	O1	02	О3	el
1	17EE63.1	Compute the DFT of various	3	3							2			1				
		signals using its properties and																
		linear filtering of two sequences																
2	17EE63.2	Apply fast and efficient	3	3							2			1				
		algorithms for computing DFT																
		and inverse DFT of a given																
		sequence																
3	17EE63.3	Design infinite impulse response	3	3							2			1				
		Butterworth digital filters using																
		impulse invariant / bilinear																
		transformation technique.																
1	17EE62.4	Realize a digital IIR filter by	2	2							2			1				
4	1/2203.4	direct cascade parallel and	5	5							~			-				
		ladder methods of realization																
5	17EE63.5	Design FIR filters by use of	3	3							2			1				
	_,	window function or by frequency									-			-				
		sampling method																
-	17EE63.	Average	3	3							2			1				-
-	PO, PSO	1.Engineering Knowledge; 2.Prob	lem	Ar	naly	sis;	3.L	Desi	ign	/	De	velc	pm	ent	of	Sc	luti	ons;
		4.Conduct Investigations of Compl	lex .	Prol	bler	ns;	5.M	lode	ern '	Тоо	l Us	sage	e; 6.	The	e En	igin	eer	and
		Society; 7.Environment and Su	usto	aina	bilit	ty;	8.E	thic	S;	9.lt	ndiv	vidu	al	an	d	Теа	тx	ork;
		10.Communication; 11.Project N	1an	age	eme	ent	ar	nd	Fir	and	ce;	12	.Lif€	e-lo	ng	Le	earr	ning;
		S1.Software Engineering; S2.Data Base Management; S3.Web Design																

4. Curricular Gap and Content

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Mod	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
ules					
1	Circular Convolution and	Seminar	2 nd week March	Faculty	
	correlation		2020		

2	Frequency Domain Analysis	Seminar	3 ^d week March 2020	Faculty	
3	Decimation Concepts	Seminar	Sept 19 second week	Faculty	
4	Analog Filter Design	Seminar	Oct 19 First week	Faculty	
5	Digital Filter Design	Seminar	Oct 19 second week	Faculty	

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation.

Mod	Title	Teach.		No. o	f quest	tion in	Exam		CO	Levels
ules		Hours	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE		
							Asg			
1	Discrete Fourier Transforms:	10	2	-	-	1	1	2	CO1, CO2	L1, L2
2	Fast Fourier Transforms Algorithms	10	2	-	-	1	1	2	CO3, CO4	L2, L3
3	Design of IIR Digital Filter	10	-	2	-	1	1	2	CO5, CO6	L2, L3
4	Realization of IIR digital systems	10	-	2	-	1	1	2	CO7, C08	L2, L3
5	Design and realization of FIR	10	-	-	4	1	1	2	CO9, CO10	L2, L3
	Digital Filters									
-	Total	50	4	4	4	5	5	10	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Mod	Evaluation	Weightage in	CO	Levels
ules		Marks		
1, 2	CIA Exam – 1	30	CO1,CO2	L1,L2, L3
3, 4	CIA Exam – 2	30	CO3,CO4	L2, L3
5	CIA Exam – 3	30	CO5	L2, L3
1, 2	Assignment - 1	10	CO1,CO2	L1,L2, L3
3, 4	Assignment - 2	10	CO3,CO4	L2, L3
5	Assignment - 3	10	CO5	L2, L3
1, 2	Seminar - 1		-	-
3, 4	Seminar - 2		-	-
5	Seminar - 3		-	-
1, 2	Quiz - 1		-	-
3, 4	Quiz - 2		-	-
5	Quiz - 3		-	-
1 - 5	Other Activities – Mini Project	-		
	Final CIA Marks		-	-

D1. TEACHING PLAN - 1

Module - 1

Title:	Discrete Fourier Transform (DFT)	Appr	10 Hrs
		Time:	
a	Course Outcomes	СО	Blooms
	Compute the DFT of various signals using its properties and linear filtering of	CO1	L2
17EE63	Copyright ©2017. cAAS. All righ	nts reserv	ed.

	two sequences		
b	Course Schedule	-	-
Class No	Portion covered per hour	-	-
1	Definitions,	CO1	L2
2	properties-linearity, shift,	CO1	L2
3	symmetry Properties- circular convolution – periodic convolution,	CO1	L2
4	use of tabular arrays, circular arrays,	CO1	L2
5	Stock ham's method,	CO1	L2
6	Linear Convolution- definition and procedure	CO2	L2
7	linear convolution – two finite duration sequence,	CO2	L2
8	Linear convolution- one finite & one infinite duration,	CO2	L2
9	overlap and add method	CO2	L2
10	Overlap and save method	CO2	L2
С	Application Areas		
-	Students should be able employ / apply the Module learnings to		
1	Analog to digital conversion and vice versa	CO1	L2
2	All Digital signal processing Applications	CO1	L2
d	Review Questions		
-			
1	Find the 4 point DFT of the sequence x(n)=(0, 1, 2, 3) plot IX(k)I and angle of X(k)	CO1	L3
2	Find the DFT of the sequence $x(n)=0.5^n U(n)$ for $0 \le n \le 3$ by evaluating $x(n)=a^n$ for	CO1	L3
	0 ≤ n ≤ N-1		
3	Find the relation between DFT and Z transformation	CO1	L3
4	Find the 4 point DFT of the sequence $x(n)=6 + \cos(2\pi/N n)$	CO1	L3
5	Find the 8 point DFT of the sequence x(n)=(1,1,1,1,1,1,0,0)	CO1	L3
6	Define N point DFT and IDFT of a sequence.	CO1	L3
7	An analog signal is sampled at 10KHZ and the DFT of 512 samples is	CO1	L3
	computed Determine the frequency sampling between the spectral samples		
	of DFT		
8	Compute the DFT of the sequence $x(n)=cos(n\pi/4)$ for N=4 and plot IX(k)I and	CO1	L3
	angle of X(k)		
9	Find the IDFT of X(K)=(4,-2j, 0, 2j)	CO1	L3
10	Explain Linearity property of DFT with an example.	CO1	L3

Title:	Fast Fourier Transform Igorithms	Appr	10 Hrs
		Time:	
a	Course Outcomes	со	Blooms
-		CO2	L3
	Apply fast and efficient algorithms for computing DFT and inverse DFT of a	CO2	L4
	given sequence		
b	Course Schedule	-	-
Class	Portion covered per hour	-	-
No			
11	Introduction to FFT	CO2	L4
12	decimation in time algorithm, first decomposition, number of computations,	CO2	L4
	continuation of decomposition, number of multiplications,		
13	computational efficiency,	CO2	L4

14	decimation in frequency algorithms, first decomposition, number of	CO2	L4
15	computations, continuation of decomposition, number of multiplications	<u> </u>	
15	Computational eniciency	<u> </u>	
10	Dadiva DIT FET, algorithm to compute DET	<u> </u>	
1/	Radix2 DIT FFT algorithm to compute DFT	<u> </u>	
18	Radix2 DIT FFT algorithm to compute IDFT	<u>CO2</u>	L4
19	Radix2 DIF FFT algorithm to compute DFT	002	L4
20	Radix2 DIF FFT algorithm to compute IDFT	CO2	L4
C	Application Areas		_
	Students should be able employ / apply the Module learnings to		_
1	Deal time, filtering	CO_2	
			L4
d	Review Questions	-	
-			L3
1	Explain with necessary diagrams and equations the concept of overlap - save	CO2	L3
	method for linear filtering		
2	Write a note on Goertzel algorithm	CO2	
3	What is in-place computation? What is the total number of complex additions and multiplications required for $N = 64$ point if DET is computed directly and if	CO2	L3
	FFT is used? Also find the number of stages required and its memory		
	requirement.		
4	First five points of the 8 - point DFT of a real valued sequence is given by x(0) =	CO2	L3
	0, $x(1) = 2 + 2j$, $x(2) =4j$, $x(3) = 2 - 2j$, $x(4) = 0$. Determine the remaining points.		0
	Hence find the original sequence x(n) using DIT - FFT algorithm.		
5	Find the 4 - pt circular convolution of x(n) = { 1, 1, 1, 1} and h(n) = {1, 0, 1, 0} using	CO2	L3
	radix 2 DIF - FFT algorithm.		_
6	In the direct computation of N-point DFT of x(n), how many i) Complex	CO2	L3
	multiplications, ii) Complex additions iii) Real multiplications iv) Real additions		
	and v) Trigonometric function evaluations are required		
7	Find the output $y(n)$ of a filter whose impulse response $h(n) = \{1, 2\}$ and input	CO2	L3
	signal x(n) = {1, 2, -1, 2, 3, - 2, - 3, -1,1,1, 2, -1} using overlap save method		
8	Develop 8-point DIT-FFT radix-2 algorithm to compute DFT and draw the signal	CO2	L3
	flow graph.		
9	Develop 8-point DIT-FFT radix-2 algorithm to compute IDFT and draw the	CO2	L3
L	signal flow graph.		
10	Develop 8-point DIF-FFI radix-2 algorithm to compute DFT and draw the signal	CO2	L3
	TLOW graph.	00.5	1 -
11	Develop 8-point DIF-FFT radix-2 algorithm to compute IDFT and draw the	CO2	L3
	signal flow graph.		

E1. CIA EXAM – 1

a. Model Question Paper - 1

Crs		17EE63	Sem:	VI	Marks:	30	Time:	90 minutes		
Code	e:									
Cour	'se:	DSP								
-	-	Note: Answ	ver all ques	tions, each c	arry equal ı	marks. Modu	ıle : 1, 2	Marks	СО	Level
1	а	Prove that t	he samplin	g of DTFT of	a sequence	x(n) result i	n N-point DF	Т 3	CO1	L2
	b	Find the 4 p of X(k)	point DFT o	f the sequer	1Ce x(n)=(0, 1	., 2, 3) plot IX	((k)I and ang	jle 4	CO1	L2
	С	Find the DI	FT of the s	equence x(r	n)=0.5 ⁿ U(n)	for 0≤ n ≤3	by evaluati	ng 4	CO1	L2

		x(n)=a ⁿ for 0 ≤ n ≤ N-1			
	d	Find the relation between DFT and Z transformation	4	CO1	L2
2	а	Find the 4 point DFT of the sequence $x(n)=6 + \cos(2\pi/N n)$	6	CO1	L2
	b	Find the 8 point DFT of the sequence x(n)=(1,1,1,1,1,1,0,0)	5	CO1	L2
	С	Define N point DFT and IDFT of a sequence	4	CO1	L2
3	а	What is in-place computation? What is the total number of complex additions and multiplications required for N = 64 point, if DFT is computed directly and if FFT is used? Also find the number of stages required and its memory requirement.	6	CO2	L3
	b	First five points of the 8 - point DFT of a real valued sequence is given by x(0) = 0, x(1) = 2 + 2j, x(2) =4j, x(3) = 2 - 2j, x(4) = 0. Determine the remaining points. Hence find the original sequence x(n) using DIT - FFT algorithm.	9	CO2	L3
4	а	Develop 8-point DIT-FFT radix-2 algorithm to compute DFT and draw the signal flow graph.	6	CO2	L3
	b	Develop 8-point DIT-FFT radix-2 algorithm to compute IDFT and draw the signal flow graph.	5	CO2	L3

b. Assignment -1

			Мс	del Assignmen	t Questic	ons			
Crs Code:	17EC62	Sem:	VI	Marks:	30	Time: g	0 minut	es	
Course:	ARM Mic	crocontrolle	er & Embeo	dded System					
SN	10		A	ssignment Des	cription		Marks	СО	Level
1	L	Find the 4 and angle	point DFT of X(k)	of the sequen	ce x(n)=((D, 1, 2, 3) plot IX(k)	I 7	CO1	L2
2	2	Find the I evaluating	DFT of the x(n)=a ⁿ for	e sequence x(r r 0 ≤ n ≤ N-1	i)=0.5 ⁿ U	(n) for 0≤ n ≤3 by	8	CO1	L2
3	3	Find the re	elation bet	ween DFT and 2	Z transfo	rmation	7	CO1	L2
4	1	Find the 4	point DFT	of the sequence	e x(n)=6 ·	+ cos(2π/N n)	8	CO1	L2
5	5	Find the 8	point DFT	of the sequence	:e x(n)=(1,	1,1,1,1,1,0,0)	7	CO1	L2
6	6	Define N p	oint DFT a	nd IDFT of a se	quence.		8	CO1	L2
7	7	An analog signal is sampled at 10KHZ and the DFT of 512 samples is computed Determine the frequency sampling between the spectral samples of DFT						CO1	L2
8	3	Compute plot IX(k)I a	the DFT of and angle	f the sequence of X(k)	x(n)=cos	(nπ/4) for N=4 and	8 k	CO1	L2
g)	Find the ID	OFT of X(K)	=(4,-2j, 0, 2j)			7	CO1	L2
10	С	Explain Lir	nearity pro	perty of DFT wi	th an exa	imple.	8	CO1	L2
1	1	Explain wi of overlap	th necess - save me	ary diagrams a thod for linear f	nd equa iltering	tions the concep	t 7	CO2	L3
12	2	Write a no	te on Goer	tzel algorithm			8	CO2	L3
1;	3	What is ir complex a point, if DF the numbe	n-place cc additions T is comp er of stage	mputation? Wi and multiplica outed directly a s required and	nat is the tions rec nd if FFT ts memo	e total number o quired for N = 62 is used? Also finc pry requirement.	f 7 1 1	CO2	L3
14	4	First five p	oints of th	e 8 - point DFT	of a real	l valued sequence	8	CO2	L3

	is given by x(0) = 0, x(1) = 2 + 2j, x(2) =4j, x(3) = 2 - 2j, x(4) = 0. Determine the remaining points. Hence find the original sequence x(n) using DIT - FFT algorithm.			
15	Find the 4 - pt circular convolution of x(n) = { 1, 1, 1, 1} and h(n) = {1, 0, 1, 0} using radix 2 DIF - FFT algorithm.	7	CO2	L3
16	In the direct computation of N-point DFT of x(n), how many i) Complex multiplications, ii) Complex additions iii) Real multiplications iv) Real additions and v) Trigonometric function evaluations are required	8	CO2	L3
17	Find the output y(n) of a filter whose impulse response h(n) ={1, 2} and input signal x(n) = {1, 2, -1, 2, 3, - 2, - 3, -1,1,1, 2, -1} using overlap save method	7	CO2	L3
18	Develop 8-point DIT-FFT radix-2 algorithm to compute DFT and draw the signal flow graph.	8	CO2	L3
19	Develop 8-point DIT-FFT radix-2 algorithm to compute IDFT and draw the signal flow graph.	7	CO2	L3
20	Develop 8-point DIF-FFT radix-2 algorithm to compute DFT and draw the signal flow graph.	8	CO2	L3
21	Develop 8-point DIF-FFT radix-2 algorithm to compute IDFT and draw the signal flow graph.	7	CO2	L3

D2. TEACHING PLAN - 2

Title:	Design of IIR Digital Filters:	Appr	10 Hrs
		l ime:	
a	Course Outcomes		Blooms
-	At the end of the topic the student should be able to	-	Level
	Design infinite impulse response Butterworth digital filters using impulse	CO3	L5
	invariant / bilinear transformation technique.		
b	Course Schedule		
Class No	Portion covered per hour	-	-
21	Introduction to IIR filter,	CO3	L2
22	impulse invariant transformation,	CO3	L2
23	bilinear transformations,	CO3	L2
24	All pole analog filters- Butterworth Filter	CO3	L2
25	Chebyshev filters,	CO3	L2
26	Frequency transformations.	CO3	L2
27	design of digital Butterworth filter by impulse invariant transformation	CO3	L2
28	Problems	CO3	L2
29	design of digital Butterworth filter by bilinear transformation,	CO3	L2
30	Problems	CO3	L2
		L	
С	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	Design of IIR filter where linear phase is not a constraint	CO3	L2
2	Communication Application.	CO3	
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	Obtain direct form-I, direct form - II, cascade and parallel form realization for	CO3	L5
	the following t t system: y(n) = 0.75y(n -1) - 0.125y(n - 2) + 6x(n) + 7x(n -1) + x(n - 2)		
2	Design an analog Chebyshev filter with the following specifications : Passband	CO3	L5
	ripple : 1 dB for 0 Q 10 rad/sec Stopband attenuation : -60 dB for Q 50 rad/sec.	L	
3	Derive the expressions of order and cutoff frequency of a analog butter worth	CO3	L5

	filt		
4	Obtain Direct form I and II , Cascade and Parallel form realization for the following system	CO3	L5
	Y(n)=0.75y(n-1)-0.125y(n-2) + 6x(n) + 7x(n-1) + x(n-2)		
5	Design a Chebyshev analog filter (low pass) that has a -3dB cutoff frequency of 100 rad/sce .9., O and a stopband attenuation 25dB or greater for all radian frequencies past 250 rad/sec	CO3	L5
6	Compare Butterworth and Chebyshev filters.	CO3	L5
7	Let H(s) = 2 1 represent the transfer function of LPF with a passband of 1 s + s +1 frequency transformation (Analog to Analog) to find the transfer function of fitter with passband 10 rad/sec and a centre frequency of 100 rad/sec	CO3	L5
8	Obtain block diagram of the direct form I and direct form II realization for a digital IIR fitter described by the system function. $8z_3 - 4z_2+11z - 2 H(z) = (10 Marks) (z - 1)(z_2-z_1 + 12)$	CO3	L5
9	Design a Chebyshev filter to meet the following specifications: i) Pass band ripple 2 db ii) Stop band attenuation 20 db iii) Pass band edge : 1 rad/sec iv) Stop band edge : 1.3 rad/sec	CO3	L5
10	Derive an expression for order of a low pass Butterworth filter.	CO3	L5
11	Explain how an analog filter is mapped on to a digital filter using impulse invariance method. What are the limitations of the method?	CO3	L5
12	Obtain direct form - I and lattice structure for the system described by the difference equation $y(n) = x(n) + 2 x(n - 1) + 3 x(n - 2) + 1 x(n-3)$.	CO3	L5

a Course Outcomes CO Blooms - At the end of the topic the student should be able to Level Realize a digital IIR filter by direct, cascade, parallel and ladder methods of CO4 L4 realization - Level b Course Schedule - Class No Portion covered per hour - 31 Design of digital Chebyshev -type 1 filter by impulse invariant transformation CO4 L3 32 and bilinear transformation, CO4 L3 33 Frequency transformations CO4 L3 34 Realization of IIR digital systems: direct form, CO4 L3 35 cascade form CO4 L3 36 parallel form CO4 L3 37 Cascade and parallel form CO4 L3 38 Ladder structures for equal degree polynomial. CO4 L3 39 Problems CO4 L3 40 Problems CO4 L3 40 Problems - - - Students should be able employ / apply the Module learnings to	Title:	Design of IIR Digital Filters	Appr	10 Hrs
a Course outcomes CO Biooms - At the end of the topic the student should be able to - Level Realize a digital IIR filter by direct, cascade, parallel and ladder methods of CO4 L4 realization - Level b Course Schedule - - Class No Portion covered per hour - - 31 Design of digital Chebyshev -type 1 filter by impulse invariant transformation CO4 L3 32 and bilinear transformation, CO4 L3 33 Frequency transformations CO4 L3 34 Realization of IIR digital systems: direct form, CO4 L3 35 cascade form CO4 L3 36 parallel form CO4 L3 37 Cascade and parallel form CO4 L3 38 Ladder structures for equal degree polynomial. CO4 L3 39 Problems CO4 L3 40 Problems - - - Students should be able employ / apply the Module learnings to - -		Courses Outroanses		Disamo
- At the end of the table the student should be able to - - Levet Realize a digital IIR filter by direct, cascade, parallel and ladder methods of cO4 L4 realization - - b Course Schedule - - Class No Portion covered per hour - - - 31 Design of digital Chebyshev -type 1 filter by impulse invariant transformation CO4 L3 32 and bilinear transformation, CO4 L3 33 Frequency transformations CO4 L3 34 Realization of IIR digital systems: direct form, CO4 L3 35 cascade form CO4 L3 36 parallel form CO4 L3 37 Cascade and parallel form CO4 L3 38 Ladder structures for equal degree polynomial. CO4 L3 39 Problems CO4 L3 40 Problems CO4 L3 6 Application Areas - - - Students should be able employ / apply the Module learnings to - - <th>d</th> <th>At the and of the tonic the student should be able to</th> <th>0</th> <th>Loval</th>	d	At the and of the tonic the student should be able to	0	Loval
Realize a digital link link by direct, cascade, paratilet and tadder methods of CO4 L4 realization - b Course Schedule Class No Portion covered per hour - 31 Design of digital Chebyshev -type 1 filter by impulse invariant transformation CO4 L3 32 and bilinear transformation, CO4 L3 33 Frequency transformations CO4 L3 34 Realization of IIR digital systems: direct form, CO4 L3 35 cascade form CO4 L3 36 parallel form CO4 L3 37 Cascade and parallel form CO4 L3 38 Ladder structures for equal degree polynomial. CO4 L3 39 Problems CO4 L3 40 Problems - - - Students should be able employ / apply the Module learnings to - 1 CO4 L4 - d Review Questions - - - The attainment of the module learning assessed through following questions - -<	-	At the end of the topic the student should be able to Dealize a digital JID filter by direct caseade, parallel and ladder methods of	-	Level
realization Image: Construct the second		realize a digital fir filler by direct, cascade, parallel and ladder methods of	004	L4
b Course Schedule - Class No Portion covered per hour - 31 Design of digital Chebyshev -type 1 filter by impulse invariant transformation CO4 L3 32 and bilinear transformation, CO4 L3 33 Frequency transformations CO4 L3 34 Realization of IIR digital systems: direct form, CO4 L3 35 cascade form CO4 L3 36 parallel form CO4 L3 37 Cascade and parallel form CO4 L3 38 Ladder structures for equal degree polynomial. CO4 L3 39 Problems CO4 L3 40 Problems CO4 L3 6 Application Areas - - - Students should be able employ / apply the Module learnings to - - 1 CO4 L4 - - - The attainment of the module learning assessed through following questions - - - The attainment of the module learning assessed through following following foll s t s t1 <		realization		
b Course Schedule - Class No Portion covered per hour - 31 Design of digital Chebyshev -type 1 filter by impulse invariant transformation CO4 L3 32 and bilinear transformation, CO4 L3 33 Frequency transformations CO4 L3 34 Realization of IIR digital systems: direct form, CO4 L3 35 cascade form CO4 L3 36 parallel form CO4 L3 37 Cascade and parallel form CO4 L3 38 Ladder structures for equal degree polynomial. CO4 L3 39 Problems CO4 L3 40 Problems CO4 L3 41 - - - - Students should be able employ / apply the Module learnings to - - 1 CO4 L4 - - - Students should be able employ / apply the Module learnings to - - 1 CO4 L4 - - - -				
Class No Portion covered per hour - - 31 Design of digital Chebyshev -type 1 filter by impulse invariant transformation CO4 L3 32 and bilinear transformation, CO4 L3 33 Frequency transformations CO4 L3 34 Realization of IIR digital systems: direct form, CO4 L3 35 cascade form CO4 L3 36 parallel form CO4 L3 37 Cascade and parallel form CO4 L3 38 Ladder structures for equal degree polynomial. CO4 L3 39 Problems CO4 L3 40 Problems CO4 L3 6 Application Areas - - - Students should be able employ / apply the Module learnings to - - 1 CO4 L4 - - - The attainment of the module learning assessed through following questions - - - The attainment of the module learning assessed through following questions - - 1 Compare	b	Course Schedule		
31 Design of digital Chebyshev -type 1 filter by impulse invariant transformation CO4 L3 32 and bilinear transformation, CO4 L3 33 Frequency transformations CO4 L3 34 Realization of IIR digital systems: direct form, CO4 L3 35 cascade form CO4 L3 36 parallel form CO4 L3 37 Cascade and parallel form CO4 L3 38 Ladder structures for equal degree polynomial. CO4 L3 39 Problems CO4 L3 40 Problems CO4 L3 c Application Areas - - - Students should be able employ / apply the Module learnings to - - 1 CO4 L4 - - c Application Areas - - - - Students should be able employ / apply the Module learnings to - - 1 CO4 L4 - - - - - - -	Class No	Portion covered per hour	-	-
32 and bilinear transformation, CO4 L3 33 Frequency transformations CO4 L3 34 Realization of IIR digital systems: direct form, CO4 L3 35 cascade form CO4 L3 36 parallel form CO4 L3 37 Cascade and parallel form CO4 L3 38 Ladder structures for equal degree polynomial. CO4 L3 39 Problems CO4 L3 40 Problems CO4 L3 6 Application Areas - - - Students should be able employ / apply the Module learnings to - - 1 CO4 L4 - - - The attainment of the module learning assessed through following questions - - - The attainment of the module learning assessed through following questions - - 1 Compare Butterworth and Chebyshev filters. CO4 L4 2 Let H(s) = 2.1 represent the transfer function of LPE with a passband of 1.5 + 5 +1 CO4 L4	31	Design of digital Chebyshev –type 1 filter by impulse invariant transformation	CO4	L3
33 Frequency transformations CO4 L3 34 Realization of IIR digital systems: direct form, CO4 L3 35 cascade form CO4 L3 36 parallel form CO4 L3 37 Cascade and parallel form CO4 L3 38 Ladder structures for equal degree polynomial. CO4 L3 39 Problems CO4 L3 40 Problems CO4 L3 c Application Areas - - - Students should be able employ / apply the Module learnings to - - 1 CO4 L4 - - - The attainment of the module learning assessed through following questions - - 1 Compare Butterworth and Chebyshev filters. CO4 L4 2 Let H(s) = 2.1 represent the transfer function of LPE with a passband of 1.5 + 5.4 CO4 L4	32	and bilinear transformation,	CO4	L3
34 Realization of IIR digital systems: direct form, CO4 L3 35 cascade form CO4 L3 36 parallel form CO4 L3 37 Cascade and parallel form CO4 L3 38 Ladder structures for equal degree polynomial. CO4 L3 39 Problems CO4 L3 40 Problems CO4 L3 6 Application Areas - - - Students should be able employ / apply the Module learnings to - - 1 CO4 L4 - - - The attainment of the module learning assessed through following questions - - 1 Compare Butterworth and Chebyshev filters. CO4 L4 2 Let H(s) = 2.1 represent the transfer function of LPE with a passband of 1.5 + 5 +1 C04 L4	33	Frequency transformations	CO4	L3
35 cascade form CO4 L3 36 parallel form CO4 L3 37 Cascade and parallel form CO4 L3 38 Ladder structures for equal degree polynomial. CO4 L3 39 Problems CO4 L3 40 Problems CO4 L3 - C Application Areas - - Students should be able employ / apply the Module learnings to - - 1 CO4 L4 - - Students should be able employ / apply the Module learnings to - - 1 CO4 L4 - - - The attainment of the module learning assessed through following questions - - 1 Compare Butterworth and Chebyshev filters. CO4 L4 2 Let H(s) = 2.1 represent the transfer function of LPE with a passband of 1.5 + 5.41 CO4 L4	34	Realization of IIR digital systems: direct form,	CO4	L3
36 parallel form CO4 L3 37 Cascade and parallel form CO4 L3 38 Ladder structures for equal degree polynomial. CO4 L3 39 Problems CO4 L3 40 Problems CO4 L3 - Application Areas - - - Students should be able employ / apply the Module learnings to - - 1 CO4 L4 - - Students should be able employ / apply the Module learnings to - - 1 CO4 L4 - - - The attainment of the module learning assessed through following questions - - - The attainment of the module learning assessed through following questions - - 1 Compare Butterworth and Chebyshev filters. CO4 L4 2 Let H(s) = 2.1 represent the transfer function of LPE with a passband of 1.5 + 5.41 CO4 L4	35	cascade form	CO4	L3
37 Cascade and parallel form CO4 L3 38 Ladder structures for equal degree polynomial. CO4 L3 39 Problems CO4 L3 40 Problems CO4 L3 6 CO4 L3 CO4 L3 6 CO4 L3 CO4 L3 7 Problems CO4 L3 6 CO4 L3 CO4 L3 7 Students should be able employ / apply the Module learnings to - - 1 CO4 L4 - - 1 Compare Butterworth and Chebyshev filters. CO4 L4 2 Let H(s) = 2.1 represent the transfer function of LPE with a passband of 1.5 + 5 +1 CO4 L4	36	parallel form	CO4	L3
38 Ladder structures for equal degree polynomial. CO4 L3 39 Problems CO4 L3 40 Problems CO4 L3 6 CO4 L3 CO4 L3 6 CO4 L3 CO4 L3 7 CO4 L3 CO4 L3 6 Application Areas - - - 1 CO4 L4 - - 1 Compare Butterworth and Chebyshev filters. CO4 L4 2 Let H(s) = 2.1 represent the transfer function of LPE with a passband of 1.5 + 5.41 CO4 L4	37	Cascade and parallel form	CO4	L3
39 Problems CO4 L3 40 Problems CO4 L3 c Application Areas - - - Students should be able employ / apply the Module learnings to - - 1 CO4 L4 - CO4 L4 - CO4 L4 - - - 1 CO4 L4 - - - - The attainment of the module learning assessed through following questions - 1 Compare Butterworth and Chebyshev filters. CO4 L4 2 Let H(s) = 2.1 represent the transfer function of LPE with a passband of 1.5 + 5.+1 CO4 L4	38	Ladder structures for equal degree polynomial .	CO4	L3
40 Problems CO4 L3 c Application Areas - - - Students should be able employ / apply the Module learnings to - - 1 CO4 L4 - CO4 L4 - CO4 L4 - - - - The attainment of the module learning assessed through following questions - - The attainment of the module learning assessed through following questions - 1 Compare Butterworth and Chebyshev filters. CO4 L4 2 Let H(s) = 2.1 represent the transfer function of LPE with a passband of 1.5 + 5.+1 CO4 L4	39	Problems	CO4	L3
c Application Areas - - - Students should be able employ / apply the Module learnings to - - 1 CO4 L4 - - - - 1 CO4 L4 - - - - d Review Questions - - - The attainment of the module learning assessed through following questions - 1 Compare Butterworth and Chebyshev filters. CO4 L4 2 Let H(s) = 21 represent the transfer function of LPE with a passband of 1 s + s +1 CO4 L4	40	Problems	CO4	L3
c Application Areas - - - Students should be able employ / apply the Module learnings to - - 1 CO4 L4 - - - - 1 CO4 L4 - - - - - - - - - - - - - - - - - The attainment of the module learning assessed through following questions - - The attainment of the module learning assessed through following questions - 1 Compare Butterworth and Chebyshev filters. CO4 L4 2 Let H(s) = 2.1 represent the transfer function of LPE with a passband of 1.5 + 5 +1 CO4 L4				
 Students should be able employ / apply the Module learnings to CO4 L4 CO4 <li< td=""><td>С</td><td>Application Areas</td><td>-</td><td>-</td></li<>	С	Application Areas	-	-
1 CO4 L4 d Review Questions - - The attainment of the module learning assessed through following questions - 1 Compare Butterworth and Chebyshev filters. CO4 L4 2 Let H(s) = 2.1 represent the transfer function of LPE with a passband of 1.5 + 5 +1 CO4 L4	-	Students should be able employ / apply the Module learnings to	-	-
d Review Questions - - - The attainment of the module learning assessed through following questions - - 1 Compare Butterworth and Chebyshev filters. CO4 L4 2 Let H(s) = 2.1 represent the transfer function of LPE with a passband of 1.5 + 5 +1 CO4 L4	1		CO4	L4
d Review Questions - - - The attainment of the module learning assessed through following questions - - 1 Compare Butterworth and Chebyshev filters. CO4 L4 2 Let H(s) = 2.1 represent the transfer function of LPE with a passband of 1.5 + 5 +1 CO4 L4				
a Review Questions - - - The attainment of the module learning assessed through following questions - - 1 Compare Butterworth and Chebyshev filters. CO4 L4 2 Let H(s) = 2.1 represent the transfer function of LPE with a passband of 1.5 + 5 +1 CO4 L4				
I ne attainment of the module learning assessed through following questions - - Compare Butterworth and Chebyshev filters. CO4 L4 L4 Let H(s) = 2.1 represent the transfer function of LPE with a passband of 1.5 + 5 +1 CO4 L4	a	Review Questions	-	-
1 Compare Butterworth and Chebyshev filters. CO4 L4 2 Let $H(s) = 2.1$ represent the transfer function of LPE with a passband of $1.5 + 5 + 1$ CO4 L4	-	I ne attainment of the module learning assessed through following questions	-	-
$1 = 2$ $e_i H(s) = 2.1$ represent the transfer function of LPE with a bassband of 1.s + s +1 ($(i)A = 1.A$		Compare Butterworth and Chebysnev Tilters.	<u>CO4</u>	L4
frequency transformation (Angles to Angles) to find the transfor function of	2	Let H(s) = 2.1 represent the transfer function of LPF with a passband of 1.5 + 5 +1	CO4	L4
fitter with passband 10 rad/sec and a centre frequency of 100 rad/sec		fitter with passband 10 rad (see and a centre frequency of 100 rad (see		
2 Obtain block diagram of the direct form L and direct form II realization for a CO4 L 4	2	Obtain block diagram of the direct form I and direct form II realization for a	COA	

	digital IIR fitter described by the system function. 8z3— 4z 2+11z — 2 H(z) = (10 Marks) (z— 1)(z2—z+ 1 2)		
4	Design a Chebyshev filter to meet the following specifications: i) Pass band ripple 2 db ii) Stop band attenuation 20 db iii) Pass band edge : 1 rad/sec iv) Stop band edge : 1.3 rad/sec	CO4	L4
5	Derive an expression for order of a low pass Butterworth filter.	CO4	L4
6	Explain how an analog filter is mapped on to a digital filter using impulse invariance method. What are the limitations of the method?	CO4	L4
7	Obtain direct form - I and lattice structure for the system described by the difference equation y(n) = x(n) + 2 x(n -1) + 3 x(n - 2) + 1 x(n-3).	CO4	L4
8	How to convert Analog High pass filter to analog low pass filter,write the frequency transformation.	CO4	L4
9	How to convert Analog Low pass filter to analog low pass filter, write the frequency transformation.	CO4	L4
10	How to convert Analog Band pass filter to analog low pass filter, write the frequency transformation.	CO4	L4
11	How to convert Analog Band elimination filter to analog low pass filter, write the frequency transformation.	CO4	L4
12	What are the characteristics of Butterworth analog filter	CO4	L4
13	Write the design steps for design of IIR filter using Bilinear transformation.	CO4	L4
14	Write the design steps for design of IIR filter using Backward difference method	CO4	L4
15	Write the design steps for design of IIR filter using Impulse invariant method	CO4	L4
16	List the number of Adders required for direct form-1,direct form 2 method of IIR filter implementation.	CO4	L4
17	Compare direct form-1, direct form 2 method of IIR filter implementation.	CO4	L4
е	Experiences	-	-
1		CO7	L2
2			

E2. CIA EXAM – 2

a. Model Question Paper - 2

Crs		17EE63	Sem:	VI	Marks:	30	Time 90	90 minutes		
Code	e:									
Cou	purse: DSP									
-	-	Note: Answ	ver all que	estions, ea	ch carry equa	marks.	Module : 3, 4	Marks	СО	Level
1	a	Obtain bloc	k diagran	n of the dir	ect form I and	direct for	m II realization for a	a 10	CO3	L1
		digital IIR fit	ter descri	bed by the	e system functi	on. 8z³—	4Z∕Z²+11Z — 2			
	b	Obtain bloc	:k diagran	n of the dir	ect form I and	direct for	m II realization for a	a 5	CO3	L2
		digital IIR fit	ter descri	bed by the	e system functi	on H(z) (z	z— 1)/(z²—z+ 12)			
2	a	Obtain dire	ct form - I	and lattice	e structure for	he syste	m described by the	e 10	CO3	L2
		difference e	equation y	(n) = x(n) +	2 x(n -1) + 3 x(n	- 2) + 1 X(n-3).			
	b	Obtain Direct form I and II , Cascade and Parallel form realization for the						5	CO3	L4
		following sy	/stem							
		Y(n)=0.75y(n	-1)-0.125y(n-2) + 6x(n)	+7x(n-1) + x(n-2)	2)				
3	а	Derive the worth filter	expressio	ns of orde	r and cutoff fr	equency	of a analog butte	r 10	CO4	L2
	b	Compare B	utterwort	h and Che	byshev filters.			5	CO4	L2
4	a	Explain hov	v an analo	og filter is	mapped on to	a digital	filter using impulse	÷ 5	CO4	L3
		invariance r	nethod. V	/hat are th	e limitations of	the met	hod?			
	b	Explain the	arm deve	lopment t	ools in detail.			7	CO4	L3

b. Assignment – 2

	Model Assignment Questions			
Crs Code:	Sem: Marks: Time:			
Course:				
SNo	Assignment Description	Marks	0	
3110		1411 NS	co	Level
1	Obtain direct form-I, direct form - II, cascade and parallel form realization for the following t t system: y(n) = 0.75y(n -1) - 0.125y(n - 2) + 6x(n) + 7x(n -1) + x(n - 2)	7	CO3	L5
2	Design an analog Chebyshev filter with the following specifications : Passband ripple : 1 dB for 0 Q 10 rad/sec Stopband attenuation : -60 dB for Q 50 rad/sec.	8	CO3	L5
3	Derive the expressions of order and cutoff frequency of a analog butter worth filt	7	CO3	L5
4	Obtain Direct form I and II , Cascade and Parallel form realization for the following system Y(n)=0.75y(n-1)-0.125y(n-2) + 6x(n) + 7x(n-1) + x(n-2)	18	CO3	L5
5	Design a Chebyshev analog filter (low pass) that has a -3dE cutoff frequency of 100 rad/sce .9., O and a stopband attenuation 25dB or greater for all radian frequencies past 250 rad/sec	8 7	CO3	L5
6	Compare Butterworth and Chebyshev filters.	8	CO3	L5
7	Let H(s) = 2 1 represent the transfer function of LPF with a passband of 1 s + s +1 frequency transformation (Analog to Analog) to find the transfer function of fitter with passband 10 rad/sec and a centre frequency of 100 rad/sec	a 5	CO3	L5
8	Obtain block diagram of the direct form I and direct form I realization for a digital IIR fitter described by the system function. 8z3— 4z 2+11z — 2 H(z) = (10 Marks) (z— 1)(z2—z+ 1 2)	6	CO3	L5
9	Design a Chebyshev filter to meet the following specifications i) Pass band ripple 2 db ii) Stop band attenuation 20 db iii) Pass band edge : 1 rad/sec iv) Stop band edge : 1.3 rad/sec	7	CO3	L5
10	Derive an expression for order of a low pass Butterworth filter.	8	CO3	L5
11	Explain how an analog filter is mapped on to a digital filter using impulse invariance method. What are the limitations of the method?	7 f	CO3	L5
12	Obtain direct form - I and lattice structure for the system described by the difference equation $y(n) = x(n) + 2 x(n - 1) + 3 x(n - 2) + 1 x(n-3)$.	n 8 3	CO3	L5
13	Compare Butterworth and Chebyshev filters.	7	CO4	L4
14	Let H(s) = 2 1 represent the transfer function of LPF with a passband of 1 s + s +1 frequency transformation (Analog to Analog) to find the transfer function of fitter with passband 10 rad/sec and a centre frequency of 100 rad/sec	8	CO4	L4
15	Obtain block diagram of the direct form I and direct form I realization for a digital IIR fitter described by the system function. $8z_3 - 4z 2+11z - 2 H(z) = (10 \text{ Marks}) (z-1)(z_2-z_1 1 2)$	7 	CO4	L4
16	Design a Chebyshev filter to meet the following specifications i) Pass band ripple 2 db ii) Stop band attenuation 20 db iii) Pass band edge : 1 rad/sec iv) Stop band edge : 1.3 rad/sec	8	CO4	L4
17	Derive an expression for order of a low pass Butterworth filter.	7	CO4	L4
18	Explain how an analog filter is mapped on to a digital filter using impulse invariance method. What are the limitations o the method?	f 8	CO4	L4
19	Obtain direct form - I and lattice structure for the system described by the difference equation $y(n) = x(n) + 2 x(n - 1) + 3 x(n - 2) + 1 x(n-3)$.	7	CO4	L4

20	How to convert Analog High pass filter to analog low pass filter,write the frequency transformation.	8	CO4	L4
21	How to convert Analog Low pass filter to analog low pass filter, write the frequency transformation.	7	CO4	L4
22	How to convert Analog Band pass filter to analog low pass filter,write the frequency transformation.	8	CO4	L4
23	How to convert Analog Band elimination filter to analog low pass filter, write the frequency transformation.	7	CO4	L4
24	What are the characteristics of Butterworth analog filter	8	CO4	L4
25	Write the design steps for design of IIR filter using Bilinear transformation.	7	CO4	L4
26	Write the design steps for design of IIR filter using Backward difference method	8	CO4	L4
27	Write the design steps for design of IIR filter using Impulse invariant method	7	CO4	L4
28	List the number of Adders required for direct form-1,direct form 2 method of IIR filter implementation.	8	CO4	L4
29	Compare direct form-1, direct form 2 method of IIR filter implementation.	7	CO4	L4

D3. TEACHING PLAN - 3

Title:	Design and Realization of FIR Digital Filters	Appr	10 Hrs
		l ime:	
a	Course Outcomes	CO	Blooms
-	At the end of the topic the student should be able to	-	Level
	Design FIR filters by use of window function or by frequency sampling		L5
	method .		
b	Course Schedule	-	-
Class No	Portion covered per hour	-	-
41	Introduction to FIR filter	CO5	L3
42	windowing, rectangular, modified rectangular. Hamming, Hanning,	CO5	L3
	Blackman window,		
43	design of FIR digital filters by use of windows,	CO5	L3
44	Problem	CO5	L3
45	Design of FIR digital filters-frequency sampling techniques.	CO5	L3
46	Problem	CO5	L3
47	Realization of FIR systems: direct form	CO5	L3
48	cascade form realization	CO5	L3
49	linear phase form realization	CO5	L35
50	Problems	CO5	L3
С	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	Design of FIR filter where linear phase is a requirement.	CO5	L3
2	Communication application.	CO5	L4
	Daview Overtiene		
a	Review Questions	-	-
-	The automment of the module learning assessed through following questions Dealize the linear phase EID filter for the impulse response $h(r) = \frac{1}{2} (r) + \frac{1}{2} (r)$	-	-
	1)- $\frac{1}{2}$ (n-1)+ $\frac{1}{4}$ (n-3)+ $\frac{1}{2}$ (n-4) using direct form	005	L5

2	Describe the frequency sampling realization of FIR filter.	CO5	L5
3	Determine the filter coefficients of an FIR filter for the desired frequency response Hd(ω)=e ^{-j2w} w <pi ,="" 4="" h<sub="">d(w)=0 otherwise Use rectangular window function. Find the frequency response H(ω) of the filter</pi>	CO5	L5
4	Consider an FIR lattice filter with coefficients K1=0.65, K2=-0.34 and K3=0.8. Find its impulse response and draw the direct form structure.	CO5	L5
5	Determine the impulse response of an FIR filter to meet the specifications: Passband edge frequency of 1.5 KHz, Stopband edge frequency of 2 KHz, Sampling frequency of 8 KHz. Use the Hamming window function	CO5	L5
6	Compare the different window functions used in FIR filter design	CO5	L5
7	Design a normalized linear phase FIR filter having the phase delay of T 40 dB attenuation in the stopband. Also obtain the magnitude /frequency response Use rectangular window.	CO5	L5
8	Determine the frequency response of the FIR if Hamming window is used with N = 8.	CO5	L5
9	Compare IIR filter and FIR filters	CO5	L5
10	A FIR filter is given by, y(n) = x(n) + 2 x(n -1) + 3 x(n - 2) + x(n - 3). Draw the direct form I and lattice 4 structure .	CO5	L5
11	Design a linear phase low pass FIR filter with 7 taps and cutoff frequency of W_c , = 0.3pi rad, using the frequency sampling method.	CO5	L5
е	Experiences	-	-
1		CO10	L2
2		CO9	

E3. CIA EXAM – 3

a. Model Question Paper - 3

Crs	0'	17EE63	Sem:	VI	Marks:	30	Time:	75 minutes					
Cou	e. rse:	DSP											
-	-	Note: Ans	wer any 2	questions	each carry ea	gual marl	KS .	Marks CO L					
1	а	Consider an impulse res	Consider an FIR Lattice filter with coefficients k1=0.65, k2=-0.34, k3=0.8. Find its mpulse response and the direct form structure							L1			
	b	Realize the form	Realize the FIR filter H(Z)= ½ + 1/3 Z ⁻¹ +Z ⁻² + ¼ Z ⁻³ +Z ⁻⁴ + 1/3 Z ⁻⁵ +1/2 Z ⁻⁶ in Direct form										
2	a	Compare th	ne different v	vindow fun	ctions Used in Fl	R filter des	sign	8	CO5	L2			
	b	Detremine the filter co-efficients of a FIR filter for the desired frequency response Hd(w)= e^{-j_3w} , $ w < 0.3\pi/4 < w < \pi$ Determine the frequency response of the FIR filter if Hamming window is used with N=7						ncy 7 nse	CO5	L4			
3	a	Determine the Impulse response of an FIR filter to meet the specifications a) Pass band edge frequency of 1.5KHZ, b) stop band edge frequency of 2KHz c) Sampling frequency of 8KHz. Use the Hamming window function					he 8 ge ng	CO5	L1				
	b	The frequency response of an FIR filter is given by $H(w)=e^{-j3w}(1+1.8\cos 3w + 1.2\cos 2w + 0.5\cos w)$. Determine the coefficient of the impulse response of the FIR filter.		7 the	CO5	L2							
		Desculture			!: !:				<u> </u>				
4	b	Describe to Determine response Use recta the filter.	ne frequer e the filter Hd(ω)=e ^{-jzw} angular wir	icy sampli coefficient w <pi ,<br="" 4="">ndow func</pi>	ng realization s of an FIR filt H _d (w)=0 other tion. Find the	of FIR filte er for the wise frequence	er. e desired frequer cy response Η(ω)	ncy 7 of	CO5	L2 L2			

b. Assignment – 3

	Model Assignment Questions			
Crs Code:	17EE63 Sem: 6 Marks: Time:			
Course:	Digital Signal Processing			
SNo	Assignment Description	Marks	CO	Level
1	Consider an FIR Lattice filter with coefficients k1=0.65, k2=-0.34, k3=0.8. Find its impulse response and the direct form structure	5	CO5	L5
2	Realize the FIR filter H(Z)= $\frac{1}{2}$ + 1/3 Z ⁻¹ +Z ⁻² + $\frac{1}{4}$ Z ⁻³ +Z ⁻⁴ + 1/3 Z ⁻⁵ +1/2 Z ⁻⁶ in Direct	5	CO5	L5
2	IOTTI Compare the different window functions Lload in EIR filter design		COF	15
3	Compare the different window functions used in FIR filter design			L-5
5	response Hd(w)=e ^{-j3w} , $ w < 0.3\pi/4< w < \pi$ Determine the frequency response of the FIR filter if Hamming window is used with N=7 Determine the Impulse response of an FIR filter to meet the specifications a) Pass band edge frequency of 1.5KHZ, b) stop band	10	CO5	L5 L5
	edge frequency of 2KHz c) Sampling frequency of 8KHz. Use the Hamming window function.			
6	The frequency response of an FIR filter is given by	10	CO5	L5
	H(w)=e ^{-j3w} (1+1.8cos3w + 1.2cos2w + 0.5cosw).Determine the coefficient of the impulse response of the FIR filter.			
7	Describe the frequency sampling realization of FIR filter.	10	CO5	L5
8	Determine the filter coefficients of an FIR filter for the desired frequency response Hd(ω)=e ^{-j2w} w <pi ,="" 4="" h<sub="">d(w)=0 otherwise Use rectangular window function. Find the frequency response H(ω) of the filter.</pi>	10	CO5	L5
9	Determine the filter coefficients of an FIR filter for the desired frequency response Hd(ω)=e ^{-j2w} w <pi 4,="" h<sub="">d(w)=0 otherwise Use Barlet window function. Find the frequency response H(ω) of the filter.</pi>	10	CO5	L5
10	Determine the filter coefficients of an FIR filter for the desired frequency response Hd(ω)=e ^{-jzw} w <pi ,="" 4="" h<sub="">d(w)=0 otherwise Use Blackman window function. Find the frequency response H(ω) of the filter.</pi>	10	CO5	L5
11	Determine the filter coefficients of an FIR filter for the desired frequency response Hd(ω)=e ^{-j2w} w <pi ,="" 4="" h<sub="">d(w)=0 otherwise Use Hamming window function. Find the frequency response H(ω) of the filter.</pi>	10	CO5	L5
12	Determine the filter coefficients of an FIR filter for the desired frequency response Hd(ω)=e ^{-j2w} w <pi ,="" 4="" h<sub="">d(w)=0 otherwise Use Hanning window function. Find the frequency response H(ω) of the filter.</pi>	10	CO5	L5
13	Determine the filter coefficients of an FIR filter for the desired frequency response Hd(ω)=e ^{-j2w} w <pi ,="" 4="" h<sub="">d(w)=0 otherwise Use Kaiser window function. Find the frequency response H(ω) of the filter.</pi>	10	CO5	L5
14	Write the Rectangular window sequence and plot its magnitude and phase response	5	CO5	L5
15	Write the Barlet window sequence and plot its magnitude and phase response	5	CO5	L5
16	Write the Blackman window sequence and plot its magnitude and phase response	5	CO5	L5
17	Write the Hanning window sequence and plot its magnitude and phase response	5	CO5	L5

18	Write the Hamming window sequence and plot its magnitude and phase response	5	CO5	L5
19	Write the Kaiser window sequence and plot its magnitude and phase response	5	CO5	L5
20	Write the design steps to design FIR filter using rectangular window when window function is not given.	5	CO5	L5
21	Write the design steps to design FIR filter using rectangular window when window function is given.	5	CO5	L5
22	Explain lattice structure of FIR Filter realization.	5	CO5	L5
23	State and explain condition required for design of linear phase FIR filter.	5	CO5	L5
24	Realize the Linear phase FIR filter having the following impulse response $h(n)=\delta(n)+1/4 \delta(n-1)-1/8\delta(n-2)+1/4\delta(n-3)$	10	CO5	L5
25	Determine the filter coefficients of an FIR filter for the desired frequency response Hd(ω)=e ^{-j2w} w <pi 4,="" h<sub="">d(w)=0 otherwise Use rectangular window function. Find the frequency response H(ω) of the filter.</pi>	10	CO5	L5
26	Determine the filter coefficients of an FIR filter for the desired frequency response Hd(ω)=e ^{-j2w} w <pi 4,="" h<sub="">d(w)=0 otherwise Use Barlet window function. Find the frequency response H(ω) of the filter.</pi>	10	CO5	L5
27	Determine the filter coefficients of an FIR filter for the desired frequency response Hd(ω)=e ^{-j2w} w <pi 4,="" h<sub="">d(w)=0 otherwise Use Blackman window function. Find the frequency response H(ω) of the filter.</pi>	10	CO5	L5
28	Determine the filter coefficients of an FIR filter for the desired frequency response Hd(ω)=e ^{-j2w} w <pi 4,="" h<sub="">d(w)=0 otherwise Use Hamming window function. Find the frequency response H(ω) of the filter.</pi>	10	CO5	L5
29	Determine the filter coefficients of an FIR filter for the desired frequency response Hd(ω)=e ^{-j2w} w <pi 4,="" h<sub="">d(w)=0 otherwise Use Hanning window function. Find the frequency response H(ω) of the filter.</pi>	10	CO5	L5
30	Determine the filter coefficients of an FIR filter for the desired frequency response Hd(ω)=e ^{-j2w} w <pi 4,="" h<sub="">d(w)=0 otherwise Use Kaiser window function. Find the frequency response H(ω) of the filter.</pi>	10	CO5	L5
31	Write the Rectangular window sequence and plot its magnitude and phase response	5	CO5	L5
32	Determine the filter coefficients of an FIR filter for the desired frequency response Hd(ω)=e ^{-j2w} w <pi 4,="" h<sub="">d(w)=0 otherwise Use Kaiser window function. Find the frequency response H(ω) of the filter.</pi>	10	CO5	L5
33	Consider an FIR Lattice filter with coefficients k1=0.65, k2=-0.34, k3=0.8. Find its impulse response and the direct form structure	5	CO5	L5
34	Realize the FIR filter H(Z)= $\frac{1}{2}$ + 1/3 Z ⁻¹ +Z ⁻² + $\frac{1}{4}$ Z ⁻³ +Z ⁻⁴ + 1/3 Z ⁻⁵ +1/2 Z ⁻⁶ in Direct form	5	CO5	L5
35	Compare the different window functions Used in FIR filter design		CO5	L5
36	Detremine the filter co-efficients of a FIR filter for the desired frequency	5	CO5	L5
	response Hd(w)= e^{-j3w} , $ w < 0 3\pi/4 < w < \pi$ Determine the frequency response of the FIR filter if Hamming window is used with N=7	_		_
37	Determine the Impulse response of an FIR filter to meet the specifications a) Pass band edge frequency of 1.5KHZ, b) stop band edge frequency of 2KHz c) Sampling frequency of 8KHz. Use the Hamming window function.	10	CO5	L5
38	The frequency response of an FIR filter is given by	10	CO5	L5
	$H(w)=e^{-j3w}(1+1.8\cos 3w + 1.2\cos 2w + 0.5\cos w)$. Determine the coefficient of the impulse response of the FIR filter.			
1			1	

39	Describe the frequency sampling realization of FIR filter.	10	CO5	L5
40	Determine the filter coefficients of an FIR filter for the desired frequency response Hd(ω)=e ^{-j2w} w <pi 4,="" h<sub="">d(w)=0 otherwise Use rectangular window function. Find the frequency response H(ω) of the filter.</pi>	10	CO5	L5
41	Determine the filter coefficients of an FIR filter for the desired frequency response Hd(ω)=e ^{-j2w} w <pi 4,="" h<sub="">d(w)=0 otherwise Use Barlet window function. Find the frequency response H(ω) of the filter.</pi>	10	CO5	L5
42	Determine the filter coefficients of an FIR filter for the desired frequency response Hd(ω)=e ^{-j2w} w <pi 4,="" h<sub="">d(w)=0 otherwise Use Blackman window function. Find the frequency response H(ω) of the filter.</pi>	10	CO5	L5
43	Determine the filter coefficients of an FIR filter for the desired frequency response Hd(ω)=e ^{-j2w} w <pi 4,="" h<sub="">d(w)=0 otherwise Use Hamming window function. Find the frequency response H(ω) of the filter.</pi>	10	CO5	L5
44	Determine the filter coefficients of an FIR filter for the desired frequency response Hd(ω)=e ^{-j2w} w <pi ,="" 4="" h<sub="">d(w)=0 otherwise Use Hanning window function. Find the frequency response H(ω) of the filter.</pi>	10	CO5	L5
45	Determine the filter coefficients of an FIR filter for the desired frequency response Hd(ω)=e ^{-j2w} w <pi 4,="" h<sub="">d(w)=0 otherwise Use Kaiser window function. Find the frequency response H(ω) of the filter.</pi>	10	CO5	L5
46	Write the Rectangular window sequence and plot its magnitude and phase response	5	CO5	L5

Course Outcome Computation

Academic Year:

Odd / Even semester													
INTERNAL TEST					T1	T2							
Course Outco	me	CO1		CO2		CO3		CO4		CO5		CO6	
QUESTION NO)	Q1	LV	Q2	LV	Q3	LV	Q1	LV	Q2	LV	Q3	LV
MAX MARKS		10	-	10	-	10	-	10	-	10	-	10	-
USN-1		5	2	10				10	3	9	3	4	1
USN-2		5	2	8	3								
USN-3		7	3	7	3	10	3	8	3	8	3	5	2
USN-4						4	1	10	3	8	3	6	2
USN-5		8	3	6	2	9	3	10	3	8	3		
USN-6								10	3	9	3	4	1
Average Attainment	CO		2.5		2.75		2.33		3		3		1.5

LV Threshold : 3:>60%, 2:>=50% and <=60%, 1: <=49%

CO1 Computation :(2+2+2+3)/4 = 10/4=2.5

PO Computation

0			-	~		~		~		_	D O		
Program Outcome	PO1	PO1 P		D3 P0		03	PO1		PO12		PO12		
Weight of CO - PO	3	3		1	3		2		2		3		
Course Outcome	CO1		CO2		CO3		CO4		CO5		CO6		
Test/Quiz/Lab			T1	L					Т	2			
QUESTION NO	Q1	LV	Q2	LV	Q3	LV	Q1	LV	Q2	LV	Q3	LV	(
MAX MARKS	10	-	10	-	10	-	10	-	10	-	10	-	
USN-1	5	2	10	3			10	3	9	3	4	1	
USN-2	5	2	8	3									
USN-3	7	3	7	3	10	3	8	3	8	3	5	2	
USN-4					4	1	10	3	8	3	6	2	
USN-5	8	3	6	2	9	3	10	3	8	3			
USN-6							10	3	9	3	4	1	
Average CO Attainment		2.5		2.75		2.33		3		3		1.5	
17EE63	Copyright ©2017. cAAS. All rights reserved.												