ΗA

Ref No:

< Sri Krishna Institute of Technology, Bangalore>

COURSE PLAN

Academic Year -2019- 20

Program:	B E – Electrical and Electronics Engineering		
Semester :	6		
Course Code:	17EE61		
Course Title:	Control system		
Credit / L-T-P:	4 / 4-0-0		
Total Contact Hours:	50		
Course Plan Author:	Arun Kumar R		

Academic Evaluation and Monitoring Cell

Sri Krishna Institute of Technology #29,Chimney hills,Hesaraghata Main road, Chikkabanavara Post Bangalore – 560090, Karnataka, INDIA Phone / Fax :08023721477/28392221/23721315 Web: www.skit.org.in , e-mail: <u>skitprinci@gmail.com</u>

Table of Contents

A. COURSE INFORMATION	4
1. Course Overview	
2. Course Content	
3. Course Material	
4. Course Prerequisites	6
5. Content for Placement, Profession, HE and GATE	6
B. OBE PARAMETERS	6
1. Course Outcomes	6
2. Course Applications	7
3. Mapping And Justification	7
4. Articulation Matrix	8
5. Curricular Gap and Content	
6. Content Beyond Syllabus	9
C. COURSE ASSESSMENT	9
1. Course Coverage	9
2. Continuous Internal Assessment (CIA)	10
D1. TEACHING PLAN - 1	10
Module - 1	
Module – 2	
E1. CIA EXAM – 1	
a. Model Question Paper - 1	
b. Assignment -1	
D2. TEACHING PLAN - 2	16
Module – 3	
Module – 4	
E2. CIA EXAM – 2	
a. Model Question Paper - 2	
b. Assignment – 2	
D3. TEACHING PLAN - 3	22
Module – 5	
E3. CIA EXAM – 3	24
a. Model Question Paper - 3	24
b. Assignment – 3	24
F. EXAM PREPARATION	26
1. University Model Question Paper	
2. SEE Important Questions	
G. Content to Course Outcomes	
1. TLPA Parameters	
2. Concepts and Outcomes:	

Note : Remove "Table of Content" before including in CP Book Each Course Plan shall be printed and made into a book with cover page Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

A. COURSE INFORMATION

BE

1. Course Overview

Degree:

EE

Semester:	6	Academic Year:	2019-20
Course Title:	Control system	Course Code:	17EE61
Credit / L-T-P:	4 / 4-0-0	SEE Duration:	180 Minutes
Total Contact Hours:	50 Hours	SEE Marks:	100 Marks
CIA Marks:	30 Marks	Assignment	1 / Module
Course Plan Author:	Arun kumar R	Sign	Dt:
Checked By:		Sign	Dt:
CO Targets	CIA Target : %	SEE Target:	68%

Note: Define CIA and SEE % targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute. Identify 2 concepts per module as in G.

Mod	Content	Teachi	Identified Module	Blooms
ule		ng	Concepts	Learning
		Hours		Levels
1	Introduction to control systems: Introduction, classification	10	Classification	L2
	of control systems.			Understandi
	Mathematical models of physical systems: Modelling of			ng,
	mechanical system elements, electrical systems, Analogous		Mathematical	
	systems, Transfer function, Single input single output		Modelling	L3
	systems, Procedure for deriving transfer functions,			Apply
	servomotors, synchros, gear trains			
2	Block diagram: Block diagram of a closed loop system,	10	block diagram	L3
	procedure for drawing block diagram and block diagram		reduction	Apply
	reduction to find transfer function.			1 -
	Signal flow graphs: Construction of signal flow graphs, basic			L3
	properties of signal flow graph, signal flow graph algebra,		signal flow graph	Арріу
	construction of signal flow graph for control systems.		Construction	
2	Time Domain Analysis: Standard test signals, time response	10	time response	12
5	of first order systems time response of second order	10		Apply
	systems, steady state errors and error constants, types of			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	control systems. Routh Stability criterion: BIBO stability,			L4
	Necessary conditions for stability, Routh stability criterion,		stability criterion	Analyze
	difficulties in formulation of Routh table, application of Routh		-	-
	stability criterion to linear feedback systems, relative stability			
	analysis.			
4	Root locus technique: Introduction, root locus concepts,	10	root loci	L2
	construction of root loci, rules for the construction of root		construction	Understandi
	locus. Frequency Response analysis: Co-relation between			ng
	time and frequency response – 2nd order systems only.		bode plots	
	Bode plots: Basic factors G(IW)/H(JW), General procedure for		construction	L3
	constructing bode plots, computation of gain margin and			Арріу
5	Nvauist nlat: Principle of argument Nvauist stability	10	Nyquist criterion	2
5	criterion, assessment of relative stability using Nyquist	10		Understandi
	criterion.		Controller	na
	Design of Control Systems: Introduction, Desian with the PD		Design	
	Controller, Design with the PI Controller, Design with the PID			L4
	Controller, Design with Phase-Lead Controller, Design with			Analyze
	Phase - Lag Controller, Design with Lead-Lag Controller			-
-	Total	50	-	-

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 – 30 minutes

2. Design: Simulation and design tools used – software tools used ; Free / open source

2 Research' Recent devielo	nments on the conce	nts – nublications in	iournals' conterences etc
		pls publications in	

Modul	Details	Chapters	Availability
Δ	Text books (Title Authors Edition Publisher Year)	-	-
1-5	Anand Kumar "Control Systems" PHI 2nd Edition 2014	1-5	In Lib/In dept
B	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
1.	Farid Golnaraghi, Benjamin C. Kuo , "Automatic Control Systems", Wiley, 9th Edition, 2010	1-3	In Lib
2.	Norman S. Nise, "Control Systems, Principles and Design ", Wiley, 4th Edition, 2012.	5	In lib
3.	Modern Control Systems: Richard C Dorf et al , Pearson , 11th Edition, 2008	2,3	In lib
4.	Control Systems, Principles and Design: M.Gopal, McGaw Hill, 4th Edition, 2012	1-5	In lib
5.	Control Systems Engineering S. Salivahanan et al, Pearson, 1st Edition, 2015	1,2,3,4	In lib
С	Concept Videos or Simulation for Understanding	-	-
C1	Modelling of mechanical system elements, electrical systems, Analogous systems, http://nptel.ac.in/courses/108106098/1 -30 mins, : http://nptel.ac.in/courses/108106098/2 - 15 Mins http://nptel.ac.in/courses/108106098/3 Transfer function, Single input single output systems, Procedure for deriving transfer functions http://nptel.ac.in/courses/108106098/4 http://nptel.ac.in/courses/108106098/5 http://nptel.ac.in/courses/108106098/6		
C2	This lecture introduces the concepts of transfer function of a system. and the block diagram representation of a system. http://nptel.ac.in/courses/108106098/7 http://nptel.ac.in/courses/108106098/8 The videos can be downloaded in four formats (VIDEO DOWNLOADS) using the link : http://nptel.ac.in/courses/108106098/10 This tutorial covers solving of problems related to block diagram reduction, signal flow graphs and determining transfer functions. The videos can be downloaded in four formats (VIDEO DOWNLOADS) using the link : http://nptel.ac.in/courses/108106098/10		
C3	This lectures details on analyzing the time response of systems to various standard test inputs.		
	The videos can be downloaded in four formats (VIDEO DOWNLOADS) using the link : <u>http://nptel.ac.in/courses/108106098/12</u> This lecture introduces the specifications which describe the time response of a system.		
	The videos can be downloaded in four formats (VIDEO DOWNLOADS) using the link : <u>http://nptel.ac.in/courses/108106098/13</u> This is a tutorial which covers examples related to Time response analysis and specifications.		
	The videos can be downloaded in four formats (VIDEO DOWNLOADS) using the link : <u>http://nptel.ac.in/courses/108106098/14</u>		
	The lecture introduces the concept of stability and explains the relationship between stability and pole-zeros of a system.		

	The videos can be downloaded in four formats (VIDEO DOWNLOADS) using the link : <u>http://nptel.ac.in/courses/108106098/15</u> This lecture illustrate Routh Hurwitz criterion and determining stability of a system using the criterion.	
	The videos can be downloaded in four formats (VIDEO DOWNLOADS) using the link <u>http://nptel.ac.in/courses/108106098/16</u> In this lecture the advantages and usefulness of closed loop systems are explained. Also, how do we determine relative stability of a system using Routh-Hurwitz criterion is shown.	
	The videos can be downloaded in four formats (VIDEO DOWNLOADS) using the link <u>:http://nptel.ac.in/courses/108106098/17</u>	
C4	In this lecture the concept of root locus is introduced. Starting with the relationship between system parameters and poles of a system the importance of root locus is shown.	
	The videos can be downloaded in four formats (VIDEO DOWNLOADS) using the link : <u>http://nptel.ac.in/courses/108106098/19</u> his lecture highlights Evan's conditions and the first three rules for constructing root locus plot.	
	The videos can be downloaded in four formats (VIDEO DOWNLOADS) using the link : <u>http://nptel.ac.in/courses/108106098/20</u> In this lecture construction rule 4, 5 and 6 for plotting root locus is taught.	
	The videos can be downloaded in four formats (VIDEO DOWNLOADS) using the link : <u>http://nptel.ac.in/courses/108106098/21</u>	
	In this lecture the last three construction rules for plotting root locus of a system is explained with examples	
	The videos can be downloaded in four formats (VIDEO DOWNLOADS) using the link : <u>http://nptel.ac.in/courses/108106098/22</u> The concept of frequency response is introduced in this lecture.	
	The videos can be downloaded in four formats (VIDEO DOWNLOADS) using the link : <u>http://nptel.ac.in/courses/108106098/23</u>	
	Lecture discusses about Bode Plot analysis. The videos can be downloaded in four formats (VIDEO DOWNLOADS) using the link : <u>http://nptel.ac.in/courses/108106098/26</u>	
C5	In this lecture, the polar plot and Nyquist stability criterion is discussed	
	The videos can be downloaded in four formats (VIDEO DOWNLOADS) using the link : <u>http://nptel.ac.in/courses/108106098/24</u> The lecture comprises of special cases of Nyquist stability, Gain and Phase Margin and Relative Stability concepts.	
	The videos can be downloaded in four formats (VIDEO DOWNLOADS) using the link : <u>http://nptel.ac.in/courses/108106098/25</u> This lecture introduces the action of Proportional, Derivative and Integral Controllers on control systems.	
	The videos can be downloaded in four formats (VIDEO DOWNLOADS) using the link : <u>http://nptel.ac.in/courses/108106098/27</u>	
	This lecture introduces the action of Proportional, Derivative and Integral Controllers on control systems.	

	The videos can be downloaded in four formats (VIDEO DOWNLOADS) using the link : <u>http://nptel.ac.in/courses/108106098/28</u> Problems on PID Controllers			
	The videos can be downloaded in four formats (VIDEO DOWNLOADS) using the link : <u>http://nptel.ac.in/courses/108106098/29</u>			
	This lecture covers the basics of control design in relation to PID Controllers. The videos can be downloaded in four formats (VIDEO DOWNLOADS) using the link :http://nptel.ac.in/courses/108106098/30			
_	Lab : <u>https://www.youtube.com/watch?v=P9e7hUNPGVs</u> -			
		-	-	
E	Recent Developments for Research	_	-	
	We recommend taking MATLAB Onramp: <u>https://www.mathworks.com/learn/tutorials/matlab-</u> onramp.html>			
F	Others (Web, Video, Simulation, Notes etc.)	-	-	
1	MathWorks has courseware available for Control Tutorials: https://www.mathworks.com/academia/courseware/control- tutorials.html The material provided includes tutorials, lectures, problem sets, quizzes and exams so students can explore material in more detail. To request the material, make sure you use the email used when creating your MathWorks account.			
?				

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Mod	Course	Course Name	Topic / Description	Sem	Remarks	Blooms
ules	Code					Level
1	17MAT	Engineering	1,2,4 Laplace Transformation	2		L3
	21	mathematics-II				
-						

Students must have learnt the following Courses / Topics with described Content ...

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Mod	Topic / Description	Area	Remarks	Blooms
ules				Level
1	Transformation of mathematical	Control	Required for higher education	L2
	modeling using MATLAB	engineering		
3	Transient response analysis using	Control	Required for higher education	L2
	MATLAB	engineering		
4	Root-Locus Techniques using MATLAB	Control	Required for higher education	L2
		engineering		

5	Transformation of system models using	Control	Required for higher education	L2
	MATLAB	engineering		

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs. Identify a max of 2 Concepts per Module. Write 1 CO per Concept.

Modul	Course	Course Outcome	Teach.	Instr Method	Assessment	Blooms'
es	Code.#	At the end of the course, student	Hours		Method	Level
		should be able to				
1.	17EE61.1	Apply mathematical modelling to	10	Lecture	CIA /	L3
		determine the transfer function of			Assignment	
		a system.				
2.	17EE61.2	Apply block diagram reduction	10	Lecture	CIA /	L3
		technique and signal flow graph			Assignment	
		reduction methods to determine				
		the transfer function of a system.				
3.	17EE61.3	Analyze system behavior in time	10	Lecture	CIA /	L4
		domain for 1 st and 2 nd order			Assignment	
		systems and analyse system				
		stability using R-H criteria.				
4.	17EE61.4	Analyze system stability using	10	Lecture	CIA /	L4
		Root locus technique and Bode			Assignment	
		Plot technique.				
5.	17EE61.5	Analyze stability system using	10	Lecture	CIA /	L4
		Nyquist criteria and Design the			Assignment	
		PID controllers.				
-	-	Total	50	-	-	L2-L4

2. Course Applications

Write 1 or 2 applications per CO.

Students should be able to employ / apply the course learnings to ...

Mod	Application Area	\sim	
IMOU	Application Area	CO	Level
ules	Compiled from Module Applications.		
1	Used in single-input single-output filters in the fields of signal processing	CO1	L2
1	1.In robotics.	CO1	L4
	2.Traffic system.		
	3.Modelling of system(to check whether it is economical and reliable).		
	4.For radar tracking system		
2	SFGs are most commonly used to represent signal flow in a physical system and	CO2	L3
	its controller(s), forming a cyber-physical system. Among their other uses are the		
	representation of signal flow in various electronic networks and amplifiers, digital		
	filters, state-variable filters and some other types of analog filters. In nearly all		
	literature, a signal-flow graph is associated with a set of linear equations.		
2	Physical dimensions of appropriate products of the variables of the two types must	CO5	12
_	be consistent. For the systems in which these conditions are satisfied, it is possible	001	
	to draw a linear graph isomorphic with the dynamical properties of the system as		
	described by the chosen variables		
		00-	
3	Used to design the damping ratio (ζ) and natural frequency (ωn) of a feedback	CO3	L2
	system.		
3	The plot can be used to interpret how the input affects the output in both	CO3	L3
	magnitude and phase over frequency.		
4	The steady state error is a measure of system accuracy. These errors arise from	CO3	L3
-	the nature of the inputs, system type and from nonlinearities of system	-	-
	components such as static friction, backlash, etc.		

4	These are generally aggravated by amplifiers drifts, aging or deterioration. The	CO4	L4
	steady-state performance of a stable control system is generally judged by its		
	steady state error to step, ramp and parabolic inputs.		
5	A control system manages, commands, directs, or regulates the behavior of other devices	CO5	L2
	or systems using control loops. It can range from a single home heating controller using a		
	thermostat controlling a domestic boiler to large Industrial control systems which are used		
	for controlling processes or machines.		
5	Helical-Circularly polarized radio waves for satellite communication, Parabolic-	CO5	L2
	direct the radio waves in radio telescopes, Yagi-Uda-high directivity for log		
	distance communication, Log-Periodic-Wide bandwidth UHF terrestrial TV		

3. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	-	Course Outcomes					Ρ	rog	ram	n Ot	utco	ome	es					-
Mod	CO.#	At the end of the course	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	Lev
ules		student should be able to	1	2	3	4	5	6	7	8	9	10	11	12	O1	02	О3	el
1	17EE61.1	Apply mathematical modelling	3	3	2									3	3		1	L3
		to determine the transfer																
		function of a system.																
2	17EE61.2	Apply block diagram reduction	3	3	2									3	3		1	L3
		technique and signal flow																
		graph reduction methods to																
		determine the transfer function																
		of a system.																
3	17EE61.3	Analyze system behavior in	3	3	2									3	3		1	L4
		time domain for 1 st and 2 nd																
		order systems and analyse																
		system stability using R-H																
		criteria.																
4	17EE61.4	Analyze system stability using	3	3	2	2								3	3		1	L4
		Root locus technique and Bode																
		Plot technique.																
5	17EE61.5	Analyze stability system using	3	3	2	2								3	3		1	L4
		Nyquist criteria and Design																
		the PID controllers.																
-	17EE61	Average attainment (1, 2, or 3)	3	3	2	2								3	3		1	-
-	PO, PSO	1.Engineering Knowledge; 2.Prob	lem	A	naly	sis;	<u>3</u> .[Desi	ign	/	De	velo	pm	ent	of	Sc	luti	ons;
		4. Conduct Investigations of Compl	lex I	Prol	bler	ns;	5.M	ode	ern T	Тоо	l Us	sage	e; 6.	The	e En	gine	eer	and
		Society; 7.Environment and Su	ustc	iina	bilit	ty;	8.E	thic	S;	9.lr	ndiv	idu	al	and	d	Теа	тx	ork;
		10.Communication; 11.Project N	Лап	age	eme	ent	ar	nd th C	Fin	nano	ce;	12	Life	e-lo	ng	Le	earr	ning;
	S1.Software Engineering; S2.Data Base Management; S3.Web Design																	

4. Curricular Gap and Content

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Mod	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
ules					
1	Transformation of	Seminar	3 nd week of March	Concerned faculty	PO5
	mathematical modeling		2020		
	using MATLAB				
3	Transient response	Seminar	3 nd week of	Concerned faculty	PO5
	analysis using MATLAB		April 2020		
4	Root-Locus Techniques	Seminar		Concerned faculty	PO5
	using MATLAB		2 nd week of May		
			2020		
5	Transformation of	Seminar	4 th week of May	Concerned faculty	PO5

system models usir	g	2020	
MATLAB			

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Mod	Title	Teach.		No. o	f quest	ion in	Exam		C	C	Levels
ules		Hours	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE			
							Asg				
1	Introduction to control systems:	10	2	-	-	1	1	2	CO1,	CO2	L2, L3
	Mathematical models of physical										
	systems:										
2	Block diagram: Signal flow graphs,	10	2	-	-	1	1	2	CO3,	CO4	L3,L3
3	Time Domain Analysis:	10	-	2	-	1	1	2	CO5,	CO6	L4, L4
	Routh Stability criterion										
4	Root locus technique:	10	-	2	-	1	1	2	CO7,	C08	L2, L2
	Frequency Response analysis:										
	Bode plots:										
5	Nyquist plot:	10	-	-	4	1	1	2	CO9, (CO10	L4, L2
	Design of Control Systems										
-	Total	50	4	4	4	5	5	10	-		-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Mod	Evaluation	Weightage in	СО	Levels
ules		Marks		
1, 2	CIA Exam – 1	30	CO1, CO2	L3,L3
3, 4	CIA Exam – 2	30	CO3, CO4	L3, L2,
5	CIA Exam – 3	30	CO5	L3
1, 2	Assignment - 1	10	CO1, CO2	L3,L3
3, 4	Assignment - 2	10	CO3, CO4	L3, L2,
5	Assignment - 3	10	CO5	L3
1, 2	Seminar - 1		-	-
3, 4	Seminar - 2		-	-
5	Seminar - 3		-	-
1, 2	Quiz - 1		-	-
3, 4	Quiz - 2		-	-
5	Quiz - 3		_	-
1 - 5	Other Activities – Mini Project	-		
	Final CIA Marks	40	-	-

D1. TEACHING PLAN - 1

Module - 1

Title:	Introduction to control systems:	Appr	10hrs
	Mathematical models of physical systems:	Time:	

а	Course Outcomes	00	Bloome
	At the end of the topic the student should be able to		
1	Apply mathematical modelling to determine the transfer function of a system	 (1	
	Apply mathematical modelling to determine the transfer function of a system.	COI	L3
h	Course Schodule		
	Course Schedule	-	-
Class No	Portion covered per nour	-	-
1	Introduction,	<u>C01</u>	L2
2	classification of control systems.	<u>C01</u>	L3
3	Mathematical models of physical systems:	C01	L3
	Modelling of mechanical system elements		
4	Modelling of mechanical system elements	C01	L2
5	Modelling of electrical systems	C01	L3
6	Analogous systems	C01	L3
7	Transfer function	C01	L2
8	Single input single output systems, Procedure for deriving transfer functions	C01	L3
9	servomotors,	C01	L3
10	synchros, gear trains,	C01	L3
			_
c	Application Areas		-
-	Students should be able employ / apply the Module learnings to		
1	Variables of the first type must above a mesh law, analogous to Kirchhoff's	CO_1	12
	voltage law, whereas variables of the second type must satisfy an incidence	COI	_ ∟ 3
	volidge law, whereas validbles of the second type must satisfy an incidence		
	General and the second second second second second for the second	CO1	10
2	suctom and its controller(s) forming a suber physical suctom. Among their	COI	L3
	system and its controller(s), forming a cyber-physical system. Among their		
	other uses are the representation of signal flow in various electronic networks		
	and amplifiers, digital illers, state-variable illers and some other types of		
	analog inters. In hearly all inerature, a signal-now graph is associated with a		
	set of tinear equations.	<u> </u>	
	Physical dimensions of appropriate products of the variables of the two types	CO1	L3
	must be consistent. For the systems in which these conditions are satisfied, it		
	is possible to draw a linear graph isomorphic with the dynamical properties of		
	the system as described by the chosen variables.	001	
	1. The techniques [] can be applied directly to these linear graphs as well as to	CO1	L3
	electrical networks, to obtain a signal flow graph of the system.		
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1.	Define Control system? What are the requirements of a good control system?	CO1	L1
2.	Define and compare open loop and closed loop control systems and give one	CO1	L3
	practical example of each.		
	Write an explanatory		
3.	Write an explanatory note on gear trains?	CO1	L3
4.	Briefly explain the requirements of a good control system?	CO1	L3
5.	List the features of transfer function.	CO1	L3
6.	Define the term transfer function of a linear time invariant system. Derive the	CO1	L3
	expression for the transfer function of a closed loop negative feedback		
	system.		
	·		
7.	Explain AC and DC servo motor	CO1	L3
. 8.	For the mechanical system shown in below Fig.	CO2	La
	(i)Obtain its mathematical model (ii)Write the performance equation (iii)Obtain		
	its Force-Voltage and Force-current analogous circuits		
	→x ₁		
	Fe) KI Kz.		
	Mr record M2 record		
15EE61	Bi ht ©2017. cAAS. All rights re	eserved.	
	Faye # iv / 31		

9.	Distinguish closed loop control system from open loop control system with suitable examples.	CO2	L4
10.	Obtain the transfer function of the system shown in below Fig.	CO1	L2
11.	Explain linear and non-linear control system.	CO1	L3
12.	For the mechanical system shown in Fig.Q1(b): i) Draw the mechanical network. ii) Obtain equations of motion. H.) Draw an electrical network based on force current analogy. $ K_3 \\ K_1 \\ K_2 \\ K_1 \\ K_2 \\ K_1 \\ K_2 \\ K_2 \\ K_2 \\ K_1 \\ K_2 \\ K_2 \\ K_2 \\ K_2 \\ K_1 \\ K_2 \\ K_2 \\ K_2 \\ K_2 \\ K_2 \\ K_1 \\ K_2 \\ K_2 \\ K_2 \\ K_2 \\ K_1 \\ K_2 \\ K_2 \\ K_2 \\ K_1 \\ K_2 \\ K_2 \\ K_2 \\ K_1 \\ K_2 \\ K_2 \\ K_2 \\ K_2 \\ K_1 \\ K_2 \\ K_2 \\ K_2 \\ K_2 \\ K_1 \\ K_2 \\ K_2 \\ K_2 \\ K_2 \\ K_2 \\ K_1 \\ K_2 \\ K_2 \\ K_2 \\ K_2 \\ K_1 \\ K_2 \\ K_2 \\ K_2 \\ K_1 \\ K_2 \\ K_2 \\ K_2 \\ K_1 \\ K_2 \\ K_2 \\ K_2 \\ K_2 \\ K_1 \\ K_2 \\ K_2 \\ K_1 \\ K_2 \\ K_2 \\ K_1 \\ K_2 \\ K_1 \\ K_1 \\ K_2 \\ K_1 \\ K_1 \\ K_1 \\ K_2 \\ K_1 \\ K_2 \\ K_1 $		
14.	Problems on obtaining transfer function for given electrical/ mechanical system.	CO1	L3
15.	Distinguish between open loop and closed loop control system. Describe two examples for each	CO2	L4
16.	Write the differential equations for the mechanical system shown in fig. 1(b) and obtain F-V and F-I analogous electrical circuits.	CO2	L3
17.	Mention merits and demerits of open loop and closed loop control systems and give an example for each.	CO2	L4
18.	Obtain the transfer function of an armature controlled DC servomotor.	CO1	L1
e	Experiences	_	_
1		CO1	L2
2			
3			
4		CO2	L3
5			
e 1 2 3 4 5	Experiences	- CO1 CO2	L2 L3

Module – 2

Title:	Block diagram: Signal flow graphs:	Appr Time:	10hrs
a	Course Outcomes	СО	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Apply block diagram reduction technique and signal flow graph reduction methods to determine the transfer function of a system	CO2	L3
h	Course Schedule		_
Class No	Portion covered per hour	-	-
1	Block diagram of a closed loop system	CO2	3
2	procedure for drawing block diagram and block diagram reduction to find transfer function.	CO2	L3
3	block diagram reduction to find transfer function.	CO2	L3
4	block diagram reduction to find transfer function.	CO2	L3
5	Signal flow graphs: Construction of signal flow graphs,	CO2	L3
6	Basic properties of signal flow graph, signal flow graph algebra,	CO2	L3
7	Construction of signal flow graph for control systems.	CO2	L3
8	Construction of signal flow graph for control systems.	CO2	L3
9	Construction of signal flow graph for control systems.	CO2	L3
10	Construction of signal flow graph for control systems.	CO2	L3
С	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	A signal-flow graph or signal-flow graph, invented by Claude Shannon, but often called a Mason graph after Samuel Jefferson Mason who coined the term, is a specialized flow graph, a directed graph in which nodes represent system variables, and branches represent functional connections between pairs of nodes.	CO3	L3
2	application of a negative feedback system is an electronic amplifier based on an operational amplifier	CO4	L4
	Masons rule is less important today than in the past. However, there are some derivations that rely on the concepts embodied by the rule, so it still has a role in the control designers toolbox	CO4	L3
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	Apply Block diagram reduction technique to find the transfer function C(S)/ R(s) for the system shown $\xrightarrow{R(s)} \bigoplus_{-} \underbrace{G_1} \bigoplus_{-} \underbrace{G_2} \bigoplus_{-} \underbrace{G_3} \underbrace{C(s)}_{-}$	CO3	L1
	H_3 H_2 H_1		
2	What is signal flow graph representation? Briefly explain the properties of signal flow graph.	CO4	L3
3	1 Define the following terms.(i) Self loop (ii) Node (iii) Branch (iv) feedback loop	CO3	L2
4	Define the term transfer function of a linear time invariant system. Derive the expression for the transfer function of a closed loop negative feedback system.	CO4	L4
5	Explain the basic elements of block diagram?	CO4	L2
6	What are the advantages and disadvantages of block diagram reduction	CO3	L5

E1. CIA EXAM – 1

a. Model Question Paper - 1

Crs Code: 15EE61 Sem: VI	Marks: 30	Time: 75 minutes
--------------------------	-----------	------------------

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

D2. TEACHING PLAN - 2

Module – 3

Title:	Time Domain Analysis: Routh Stability criterion::	Appr Time:	10 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Analyze system behavior in time domain for 1 st and 2 nd order systems and analyse system stability using R-H criteria.	CO3	L2
b	Course Sebedule		
	Course Schedule Module Content Covered	0	
	Standard test signals		
2	Time response of first order systems	$\frac{CO_3}{CO_2}$	
		<u> </u>	L3
3	Time response of second order systems	<u> </u>	L2
4	Steady state errors and error constants	<u> </u>	L3
5	Types of control systems.	03	L2
6	Routh Stability criterion: BIBO stability, Necessary conditions for stability	CO3	L3
7	Routh stability criterion	CO3	L2
8	Difficulties in formulation of Routh table	CO3	L3
9	Application of Routh stability criterion to linear feedback systems	CO3	L3
10	Relative stability analysis	CO3	L3
С	Application Areas	СО	Level
1	Models which we have consist of differential equations so some integration is being done to determine time response. For simple linear system, analysis is being done easily by analytical solutions. However, for nonlinear systems or those which have complicated inputs, their integration is carried out numerically or by using MATLAB	CO3	L2
2	In time domain analysis, the time response of a linear dynamic system to an input is denoted as time's function c(t). We can calculate the time response if the input and model of system is known.	CO3	L3
3	The time response of linear system is the addition of transient response which depend on preliminary conditions and the steady-state response which is based on input of system.	CO3	L2
d	Review Questions	-	-
1	State and explain the Routh's- Harwitz stability criterion.	CO3	L2
2	What are stable and unstable systems? What is the difference between absolute and relative stable system.	CO3	L3
3	Derive the expression for peak time tp for a second order system for step input.	CO3	L4
4	Draw the transient response characteristics of a control system to a unit step input and define the following (i) Delay time (ii) Rise time(iii) Peak time (iv) Maximum overshoot (iv) settling time.	CO3	L2
5	With a neat sketch explain all the time domain specifications.	CO3	L2
6	Obtain the expression for time response of the first order system subjected to	CO3	L2

	unit step input.		
7	What is the necessary and sufficient condition for a system to be stable according to RH criteria.	CO3	L3
8	Explain R-H criterion for determine the stability of the system and mention its limitations.	CO3	L2
9	Using R-H Criterion determine the stability of the system having the characteristic equation, S ⁴ + 10S ³ + 36S ² + 70S + 75 = 0 has roots more negative than S = -2.	CO3	L3
10	Explain Routh-Hurwitz's criterion for determining the stability of a system and mention any three limitations of R-H criterion. (10 Marks, June 2012)	CO3	L2
11	Define: i) Marginally stable systems; ii) absolutely stable system; iii) conditionally stable systems. (06 Marks, June 2012)	CO3	L3
12	Using Routh's stability criterion determine the stability of the following systems: i) Its open loop transfer function has poles at s = 0, s= -1, s = -3 and s = -5. Gain K = 10. ii) It's a type 1 system with an error constant of 10/sec and poles at s = -3 and s = -6 (8 Marks, Dec 2012)	CO3	L2
13	Find stability of the following system given by G (s)= K/ S(S+1) and H(S)= 1 using Routh Hurwitz stability criterion	CO3	L3
14	Find stability of the following system given by G (s)= K/ S(S+2) (S+4) and H(S)= 1 using Routh Hurwitz stability criterion	CO3	L2
е	Experiences	_	_
1		CO6	L2

Module – 4

T:41		A	10 1 1 10
Title:	Root locus technique: Frequency Response analysis:	Appr	10 Hrs
	Bode plots:	Time:	
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Analyze system stability using Root locus technique and Bode Plot	CO4	L3
	technique.		
b	Course Schedule		
Class No	Module Content Covered	co	Level
1	Introduction, root locus concepts,	CO4	L3
2	Construction of root loci.	CO4	L3
3	Rules for the construction of root locus.	CO4	L3
4	Construction of root loci-Problems.	CO4	L2
5	Construction of root loci-Problems.	CO4	L3
6	Frequency Response analysis: Co-relation between time and frequency	CO4	L3
	response – 2 nd order systems only.		
7	Bode plots: Basic factors G(iw)/H(jw),	CO4	L3
8	General procedure for constructing bode plots,	CO4	L3
9	Computation of gain margin and phase margin.	CO4	L3
10	Bode plot-Numericals	CO4	L3
С	Application Areas	СО	Level
1	The steady state error is a measure of system accuracy. These errors arise	CO4	L3
	from the nature of the inputs, system type and from nonlinearities of system		
	components such as static friction, backlash, etc.		
2	These are generally aggravated by amplifiers drifts, aging or deterioration. The	CO4	L3
	steady-state performance of a stable control system is generally judged by its		
	steady state error to step, ramp and parabolic inputs.		

d	Review Questions	-	-
1	What is root locus? Discuss the various rules for construction of root locus	CO4	L2
2	List the advantages of root locus method.	CO4	L2
3	The open loop transfer function of a feedback control system is given by K/(S(S+2)(S+1)). Construct the root locus and find the range of K for which the closed loop system is stable.	CO4	L3
4	Discuss the procedure to evaluate gain margin and phase margin using bode plots	CO4	L2
5	What are the necessary and sufficient conditions for a system to be stable according to RH criteria?	CO4	L2
6	Define the following as applied to bode plot (i) Gain margin (ii) Phase margin (iii) Gain and phase cross over frequency.	CO4	L2
7	Draw the root-locus of the feedback system whose open-loop transfer function is given by G (s)H(S)= K $/$ S(S+2) (S+4)	CO4	L3
8	Draw the root-locus of the feedback system whose open-loop transfer function is given by G (s)H(S)= K / S^2 (S+1)	CO4	L3
9	Draw the root-locus of the feedback system whose open-loop transfer function is given by G (s)H(S)= K / S ⁴ + $5S^3$ + $8S^2$ + $6S$	CO4	L3
10	Draw the Bode magnitude and phase plot of the following open-loop transfer function and determine gain margin, phase margin and absolute stability? G (s)H(S)= 1 / S(S+1)	CO4	L3
11	Draw the Bode magnitude and phase plot of the following open-loop transfer function and determine gain margin, phase margin and absolute stability? G (s)H(S)= 1 / S(S+2)(S+4)	CO4	L3
12	Draw the Bode magnitude and phase plot of the following open-loop transfer function and determine gain margin, phase margin and absolute stability? G (s)H(S)= $1/S^2(S+1)$	CO4	L3
13	Draw the Bode magnitude and phase plot of the following open-loop transfer function and determine gain margin, phase margin and absolute stability? G (s)H(S)= 1 / S ⁴ + 5S ³ + 8S ² + 6S	CO4	L3
е	Experiences	-	-
1			

E2. CIA EXAM – 2

a. Model Question Paper - 2

Crs	Code:	17EE61	Sem:	VI	Marks:	30	Time:	75	minute	S	
Cou	rse:	Control sy	stem		·	·					
-	-	Note: Answer all questions, each carry equal marks. Module : 3, 4						Marks	СО	Level	
				Ν	10DULE 1						
1	a	The chara	acterisitic ed	quation of	a control sy	stem is s	⁶ +4s ⁵ +3s ⁴ —	16s² —	8	CO3	L3
		64s —48 -	= 0. Find the	e number	of roots of t	his equa	ition real par	t, zero			
		real part and negative real part using RH criterion.									
	b	For a unity	y feedback	control sys	stem with G(s	5) = 64/	(s(s + 9.6)) Wr	ite the	7	CO3	L3
		output res	sponse to a	unit step ir	nput. Determ	ine: i) The	e response at	t = 0.1			
		sec. ii) Set	tling time fo	r ± 2% of ste	eady state.						
					OR						

2	a	For the system shown in Fig. Find the : i) system type ii) static error constants kp, k _v and ka and iii) the steady state error for an input r(t) = 3 + 2t.	7	CO3	L3
	b	Derive the expression of rise time and maximum overshoot for second order underdamped control system.	8	CO3	L3
		MUDULE 2			
3	a	The open loop transfer function of a unity gain feedback is given by- G(s) = k(s+2)/(s4+3s3+4s2+2s) , k>=0 (a) Determine all the poles & zeros of G(s). (b) Draw the root locus.	7	CO4	L3
	b	Construct the Bode plot for the system with open loop transfer function $\frac{K}{S(S+1)(1+0.1S)}$ Determine the value of K such that (a) gain margin = 10db (b) Phase margin = 50°	8	CO4	L3
		a) gain margin = 1000 (b) Phase margin = 50 .			
		UK Draw, the reat locus of the foodback system whose open loop transfer	0	<u> </u>	
4	d	function is given by G (s)H(S)= K / S ⁴ + $5S^3$ + $8S^2$ + $6S$	0	004	Lკ
	b	Determine the transfer function of a system whose asymptotic Bode plot is as shown in fig	7	CO4	L3

b. Assignment – 2

	Model Assignment Questions								
Crs Code	: 17EE61	Sem:	6	Marks:	10	Time: g	90 – 120 minutes		
Course:	Control S	ystems							
SNo			Assign	ment Descripti	on		Marks	со	Level
1.	For the syst	em shown	in Fig. Fir	nd the : i) system	n type ii)	static error	10	CO3	L3
	constants k	p, k_v and ka	i and III) th	ie steady state	error for	an input r(t) = 3 +			
	2t.								
		5)							
	2	RUSI O	2-1-	5 7		cus)			
		- 1	F- 5	(S+1)(S+2)					
		ł	Lte	171					
		1	13						
		L			4				

2.	Find the step-response, C(t) for the system described by	10	CO3	L3
	C(s) / R(s) = 4/(s + 4)			
	Also find the time constant, rise time and settling time.			
3.	Derive the expression for unit step response for 1 st order control system	10	CO3	L3
<u>J</u> .	with closed loop transfer function $K/(S+1/t)$			-5
4.	Derive the expression for unit step response for 2 nd order control system	10	CO3	L3
-	with closed loop transfer function K/(S+1/t)			-
5.	List the standard test inputs used in control system and write their	10	CO3	L3
	Laplace transform.			
6.	Find Kp, Kv, Ka and steady state error for a system with open loop	10	CO3	L3
	(10(5 + 2)(5 + 3)) / (5(5 + 1)(5 + 4)(5 + 5))			
7.	For the system shown in Fig. obtain closed loop transfer function,	10	CO3	L3
_	damping ratio natural frequency and expression for the output response		_	_
	if subjected to unit step input.			
	R(s) 0 20 1			
	- Conversit			
	X- (5+1)(5+4)			
		•	<u> </u>	
8.	Derive the expression for rise time and maximum overshoot. For a given system $G(s) \in H(s) = 2K ((s + 2)(s + 2))$. Find the value of K to	8 10		<u> </u>
9.	limit steady state error to 10 when input to system is 1+10t + 20t ² .	10	003	L3
10.	For a unity feedback control system with $G(s) = 64/(s(s + 9.6))$ Write the	10	CO3	L3
	output response to a unit step input. Determine: i) The response at t = 0.1			-5
	sec. ii) Settling time for ± 2% of steady state.			
11.	A control system with open loop transfer function $K(S+2)/(S^2+10S+20)$	10	CO3	L3
	produces 20% steady state error with unit step input. Determine the value			
	of constant K.		<u> </u>	
12.	Derive the expression for unit step response for 1 st order control system	10	CO3	L3
12	With closed loop transfer function $K/(S+1/1)$	10	CO2	12
<u>-</u> .	with closed loop transfer function $K/(S+1/t)$	10	003	L3
14.	Sketch the root locus plot for a negative feedback control system whose open	10	CO4	L4
-	loop transfer function is given by $G(s)H(s) = K / (s(s+3)(s^2+2s+2))$		_	-
	for all values of K ranging from 0 to infinity. Also find the value of K for a			
	damping ratio of 0.5			
15.	Sketch the rough nature of the root locus of a certain control system whose C.E	10	CO4	L4
16	Is given by $s^2 + 9s^2 + Ks + K = 0$, comment on the stability. Explain Poutha Harwitz stability aritarian	10	CO4	14
10.	Explain Routis-Halwitz stability clitcholl. $s^{6} + 4s^{5} + 3s^{4} - 16s^{2} - 64s - 48 = 0$ Find the number of roots of this equation	10		4 / ∧
±/.	real part, zero real part and negative real part using RH criterion	10		-4
18.	The open loop transfer function of a system is $G(s) = K/(s(1+s)(1+0.1s))$	10	CO4	L4
	Determine the values of K such that (i) gain margin = 10 dB ii) phase margin =			•
	24°. Use Bode plot.			
19.	Derive the expression for resonant peak 'Mr' and corresponding resonant	10	CO4	L4
	frequency `Wr' for a second—order under-damped system in frequency response			
				.
20.	For a closed loop control system $G(s) = 100 / (s (s+8), H(s) = 1)$. Determine the	10	004	L4
21	Explain lag-lead compensator network and briefly discuss the affects of load lag	10	CO4	
Z J.	compensator	10		∟4
22.	For a unity feedback system $G(s) = 242((s+5))/(s(s+1)(s^2+5s+121))$ Sketch	10	CO4	L4

the bode plot and find gain crossover freq, phase crossover freq, gain margin			
23. Construct the Bode plot for the system with open loop transfer function $\frac{K}{S(S+1)(1+0.1S)}$ Determine the value of K such that (a) gain margin = 10db (b) Phase margin = 50 ⁰ .	10	CO4	L4
24. Determine the transfer function of a system whose asymptotic Bode plot as shown in fig $\frac{db}{1 - \frac{20 db}{3tc}} \frac{20 db}{1 - \frac{1}{2} - \frac{1}{4t}} \frac{db}{8tc} \frac{1}{2t} \frac{db}{4t} \frac{b}{4t} $	is 10	CO4	L4
25. Determine the ranges of K such that the characteristic equation : $S^3 + 3(K + 1)S^2 + (7K + 5)S + (4K + 7) = 0$, has roots more negative than S = 1.	- 8	CO3	L3
26. Find the range of K for which the system with closed loop transfer function $(S(S+2)(S^2+S+1))$ is stable. For what value of K the system oscillates and what the corresponding frequency of oscillation.	K / 8 t is	CO3	L3
27. Check the; & ability of the given characteristic equation using Routh's method. + $2S^5 + 8S^4 + 12S^3 + 20S^2 + 16S + 16 = 0.$	S ⁶ 8	CO3	L3
28. Mention few limitations of Routh's criterion	8	CO3	L3
29. Explain Rouths-Harwitz stability criterion.	8	CO3	L3
30. $s^{6} + 4s^{5} + 3s^{4} - 16s^{2} - 64s - 48 = 0$. Find the number of roots of this equation real part, zero real part and negative real part using RH criterion.	8	CO3	L3

D3. TEACHING PLAN - 3

Module – 5

Title:	Nyquist plot:	Appr	10 Hrs
	Design of Control Systems:	Time:	
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Analyze stability system using Nyquist criteria and Design the PID controllers.		L3
b	Course Schedule		
Class No	Module Content Covered	СО	Level
41.	Principle of argument.	CO5	L3
42.	Nyquist stability criterion.	CO5	L3
43.	Nyquist stability criterion.	CO5	L3
44.	Nyquist stability criterion.	CO5	L3
45.	Assessment of relative stability using Nyquist criterion.	CO5	L3
46.	Design of Control Systems: Introduction, Design with the PD Controller.	CO5	L3
47.	Design with the PI Controller,	CO5	L3

48.	Design with the PID Controller,	CO5	L3
49.	Design with Phase-Lead Controller,	CO5	L3
50.	Design with Phase - Lag Controller, Design with Lead-Lag Controller	CO5	L3
c 1	Application Areas PID regulators provide reasonable control of most industrial processes, provided that the performance demands is not too high. PID control are generally ok if dominant plant dynamics are of 2nd-order.	CO 5	Level
2	PI control are generally adequate when plant/process dynamics are essentially of 1st-order.•More elaborate control strategies needed if process has long time delays, or lightly-damped vibrationalmodes	CO5	L4
d	Review Questions	-	-
1	State the Nyquist stability criterion.	COF	14
2	Explain proportional +integral+differential controller and effect on stability.	005	L1
3	Explain the step by step design procedure of lead compensation network.	CO5	L3
4	What is controller? Explain the effect of PI and PD controller on second order system.	CO5	L2
5	Explain the principle of Argument in Nyquist stability criteria.	CO5	L4
6	Write a note on lead, lag and lead-lag compensator.	CO5	L2
7	List the limitation of lag and lead compensator.	CO5	L4
8	Problems on plotting Nyquist plot	CO5	L2
9	Sketch the Nyquist Plot for a unity feedback system having open-loop transfer function given by- G(s) = k/s(1+s)(1+2s)(1+3s) Determine the range of values of k for which the system is stable	CO5	L4
10	How many roots does each of the following polynomials have in the right half of the s-plane. (i) s4+2s3+4s2+8s+15 (ii) s6+4s5+11s4+12s3+26s2+84s+16	CO5	L2
11	Using Nyquist criterion, determine the stability of a feedback systemwhose open-loop transfer function is given by G (s)H(S)= 55 / S(S+2)(S+4)	CO5	L4
12	Sketch the nyquist plot for the open loop transfer function C (s)/ R(S)= 40 / S(S+1)(S+4)	CO5	L2
14	Consider the unity feedback system of Fig. Let Kp=20 and J=50. Determine the equation of response for a unit step input and determine the steady-state error. $\frac{R(s)}{K_{p}} - \frac{1}{J_{s}^{2}} - \frac{C(s)}{J_{s}^{2}}$	CO5	L2

15	Consider the unity feedback system of Figure 3. Let Kp=20 and J=50. Determine the equation of response for a unit step input and determine the steady-state error. Here, K p =20, T d =1 and J=50. $\frac{R(s) + K_p(1+T_ds) + \frac{1}{3s^2} + C(s)}{K_p(1+T_ds) + \frac{1}{3s^2} + C(s)}$	CO5	L4
16	(g)List the advantages and disadvantages of carrying frequency analysis with Nyquist plot.	CO5	L2
17	(h) State the Zeigler-Nichols tuning Rules for PID Controller.	CO5	L4
18	i) Give all the properties of a minimum phase transfer function.	CO5	L2
19	Explain with sketch the use of drag cup rotor in servo application	CO5	L4
20	Explain drawing a neat diagram, the principle of operation of a position servo using a synchro system as error transducer.	CO5	L2
21	State the use of Nichol's Chart.	CO5	L2
22	State the merits and demerits of PI Controller.	CO5	L4
23	Explain drawing a neat diagram, the principle of operation of a position servo using a synchro system as error transducer.	CO5	L2
24	Draw the schematic diagram of a DC closed loop position control system consisting of (I) a pair of Potentiometers (II)Amplifier (III)Armature controlled DC Servomotor (IV)Gear Train as major component and explain the operation of this system	CO5	L4
е	Experiences	-	-
1			
2			

E3. CIA EXAM - 3

a. Model Question Paper - 3

Crs C	Code:	17EE61	Sem:	VI	Marks:	30	Ti	me: 75	; minute	S	
Cour	se:	Control syste	em								
-	-	Note: Answe	ər all qu	estions,	each carry ea	qual marks	s. Module	e:5	Marks	СО	Level
1	а	Explain the network.	step k	oy step	design proc	edure of	lead co	ompensatior	n 8	CO5	L1
	b	What is controller? Explain the effect of PI and PD controller on second order system.							1 7	CO5	L2
					OR						
2	а	Sketch the I transfer func G(s) = k/s(1+s Determine th	Nyquist tion give s)(1+2s)(1 ne range	Plot for en by - +3s) e of value	a unity feedt	back syste	m having tem is sta	g open-loop able	8	CO5	L2
	b	How many r half of the s- (i) s4+2s3+4s (ii) s6+4s5+11:	oots doe plane. 2+8s+15 54+12s3+	es each 26s2+84	of the followir s+16	ng polynon	nials have	e in the righ	t 7	CO5	L4
3	а	Write a note	on lead	, lag anc	l lead-lag con	npensator.			7	CO5	L2

	b	List the limitation of lag and lead compensator	8	CO5	L4
		OR			
4	а	Explain proportional +integral+differential controller and effect on stability.	7	CO5	L2
	b	Explain the principle of Argument in Nyquist stability criteria.	8	CO5	L2

b. Assignment – 3

Note: A distinct assignment to be assigned to each student.

Model Assignment Questions										
Crs Code	e: 17EE61 Sem: VI Marks: 5 / 10 Time: 90) – 120 I	minute	S						
Course:	Control system									
Note: Ea	ch student to answer 2-3 assignments. Each assignment carries equal mar	k.								
SNo	Assignment Description	Marks	СО	Level						
1	Explain drawing a neat diagram, the principle of operation of a position servo using a synchro system as error transducer.	5	CO5	L2						
2	2 State the use of Nichol's Chart. 5 CO5 L3									
3	State the merits and demerits of PI Controller.	6	CO5	L4						
4	Explain drawing a neat diagram, the principle of operation of a position servo using a synchro system as error transducer.	5	CO5	L3						
5	Draw the schematic diagram of a DC closed loop position control system 6 CO5 L2 consisting of (I) a pair of Potentiometers (II)Amplifier (III)Armature controlled DC 6 CO5 L2 Servomotor (IV)Gear Train as major component and explain the operation of this 6 CO5 L2									
6	Explain drawing a neat diagram, the principle of operation of a position servo using a synchro system as error transducer.	7	CO5	L3						
7	State the use of Nichol's Chart.	5	CO5	L4						
8	State the merits and demerits of PI Controller.	5	CO5	L3						
9	Sketch the Nyquist Plot for a unity feedback system having open-loop transfer function given by - G(s) = k/s(1+s)(1+2s)(1+3s) Determine the range of values of k for which the system is stable	5	CO5	L2						
10	How many roots does each of the following polynomials have in the right half of the s-plane. (i) s4+2s3+4s2+8s+15 (ii) s6+4s5+11s4+12s3+26s2+84s+16	6	CO5	L3						
11	Write a note on lead-lag compensator.	5	CO5	L4						
12	List the limitation of lag and lead compensator.	6	CO5	L3						
13	Write a note on lead, lag and lead-lag compensator.	7	CO5	L2						
14	Explain proportional +integral+differential controller and effect on stability.	5	CO5	L3						
15	Explain the principle of Argument in Nyquist stability criteria.	5	CO5	L4						
16	Sketch the Nyquist Plot for a unity feedback system having open-loop transfer function given by - G(s) = k/s(1+s)(1+2s)(1+3s) Determine the range of values of k for which the system is stable	5	CO5	L3						

F. EXAM PREPARATION

1. University Model Question Paper

Course:		Control system Month /							2018
Crs C	ode:	17EE61 Sem:	VI	Marks:	100	Time:		180 m	inutes
Mod	Note	Answer all FIVE full qu	estions. All que	stions carry e	qual marks.		Marks	со	Level
ule									
1	а	Draw the equivalent m the set of equilibrium circuit using F-V analog	echanical syste equation for gy.	em of the give it and obtair	n system. Hend electrical and	ce write alogous	8	CO1	L3
			Fig.C	$\begin{array}{c} \overbrace{f(b)}^{\downarrow} \\ \overbrace{f(b)}^{I} \\ \overbrace{f(b)} \atop \overbrace{f(b)} \\ \overbrace{f(b)} \atop \overbrace{f(b)} \\ \overbrace{f(b)} \atop f(b$					
	b	For the mechanical sy describing its behavior	vstem shown ir	n fig, write th	e differential e	quation	8	CO1	L3
			K2 M2 Br	K₁ 	E(t)				
	С	Explain open loop & examples & also highli	closed loop c ghts their merit	control syster is & demerits.	ns by giving s	suitable	4	CO1	L3
			OF	ર					
2	а	Obtain the transfer fur	nction of an arm	nature control	ed DC servom	otor.	10	CO1	L3
	b	For the mechanical sys	stem shown :				10	CO1	L3
		i) Draw the mechanical	. network.						
		ii) Obtain equations of 1	motion.						
		H.) Draw an electrical r	etwork based o	on force curre	nt analogy.				
		1 K3							
		- 0000 - B	1M3	4 Ba					
		Ki	M, K2 M2	2 + (t.)					
		1	And a	0	1			001	
3	а	Using Mason's guin rorm	unu, mu une frich	system	shown in Fig		10	CU2	∟3
		Rcs) -H	91 - 52 651 - 66 63 - 64 63 - 64		(s)				

	b	Reduce the block diagram shown in Fig.Q2(c) using reduction rules and obtain $C(s)/R(s)$.	10	CO2	L3
		RUI GIL GIL GIL (4)			
		Home			
4	а	For the circuit shown in below Fig 'IC' is the gain of an ideal amplifier. Determine the transfer function I(s) / V (s)	10	CO2	L3
		Victor C, T K ictor			
	b	For the mechanical system shown in below Fig. (i)Obtain its mathematical model .(ii)Write the performance equation (iii)Obtain its Force-Voltage and Force-current analogous circuits	10	CO2	L3
		$\frac{1}{1}$			
5	а	Derive the expression for unit step response for 2^{nd} order control system with closed loop transfer function K/(S+1/t)	10	CO3	L3
		Find the step-response, C(t) for the system described by	10	CO3	L3
		C(s) / R(s) = $4/(S+4)$ Also find the time constant, rise time and settling time.			
		OR			
6	a	With the help of Routh Hurwitz criterion comments upon the stability of the system having the following characteristic equation S6+s5-2s4-3s3-7s2-4s-4=0	10	CO3	L3
	b	Derive the expression of rise time and maximum overshoot for second order underdamped control system.	10	CO3	L3
7	а	The open loop transfer function of a unity gain feedback is given by-	10	CO4	2
	u	G(s) = k(s+2)/(s4+3s3+4s2+2s), k>=0 (a) Determine all the poles & zeros of $G(s)$. (b) Draw the root locus.	10	004	<u></u> гэ
	b	Construct the Bode plot for the system with open loop transfer function K	10	CO4	L3
		$\frac{K}{S(S+1)(1+0.1S)}$ Determine the value of K such that			
		(a) gain margin = 10db (b) Phase margin = 50 ⁰ .			
8	а	Draw the root-locus of the feedback system whose open-loop transfer	10	CO4	L3
		function is given by G (s)H(S)= $K / S^4 + 5S^3 + 8S^2 + 6S$	10		
		petermine the transfer function of a system whose asymptotic	10	CU4	∟3

		Bode plot is as shown in fig			
		$\frac{db}{2} = \frac{20 db}{sec} = \frac{1}{2} = \frac{1}{2}$			
9	а	Explain and stop by stop assign procedure or toda compensation	10	CO5	L3
		network.			
	b	What is controller? Explain the effect of PI and PD controller on second	10	CO5	L3
		order system.			
		OR			
10	а	Sketch the Nyquist Plot for a unity feedback system having open-loop transfer function given by - G(s) = k/s(1+s)(1+2s)(1+3s)	10	CO5	L3
		Determine the range of values of k for which the system is stable			
	b	Explain proportional +integral+differential controller and effect on stability.	10	CO5	L3

2. SEE Important Questions

Course:		Control system	1				Month	/ Year	June /	2020
Crs C	ode:	17EE61	Sem:	VI	Marks:	100	Time:		180 mi	nutes
	Note	Answer all FIVE	E full question	ns. All questic	ons carry equ	al marks.		-	-	
Mod	Qno.	Important Ques	stion					Marks	CO	Year
ule										
1	1	Define Control	system? Wl	hat are the	requirements	of a good	control	8	CO1	2014
		system.								
	2	Draw the equiv the set of equ circuit using F-	ralent mecha uilibrium equ V analogy.	nical system lation for it	of the given s and obtain e	system. Hendelectrical and	ce write alogous	10	CO1	2015
15EE61	3	For the mecha describing its b	hanical system behavior.	M2 Br	g, write the k_1	ht ©2017. cAf	quation	10	CO1	2013
100001				B	2	nt ©2017. CAP	.ə. Au nyı	103103011	cu.	

	1				
1	1	Obtain the transfer function of an armature controlled DC servomotor. (6 Marks),	10	CO1	July 2009, Dec 2010
2	3	For the system described by the signal flow graph shown in fig. Q2(c), obtain the closed loop transfer function C(s) / R(s), using Mason's gain formula. (6 Marks, Dec 2010)	10	CO2	2012
					2210
2	1	the block diagram shown in fig. Q2(b) using block diagram reduction technique.(10 Marks, June 2012)	10	CO2	2016
	2	the overall transfer function (C/R) of the system shown in figure by block dia (b) result by	10	CO2	2010
		Obtain the closed loop transfer function C(s)/ R(s) for the signal flow graph of a system shown in fig. Q2(b) using Mason's gain formula.	10 Marks	CO2	, June 2012)
2	1	Draw signal flow graph for the following equations- (i) $y_2 = a_1^dy_1/dt$ (ii) $y_3 = d_2y_2/dt_2 + d_1/dt - y_1$ (iii) $d_2y/dx_2 + 2/3 + d_2/dx + 11/2 + y = x$	10	CO2	2017
	2	A servo system for the position control of a rotable mass is stabilized by	10	CO3	2014

		viscous friction damping which is three-quarters of that is needed for critical damping. The undamped natural frequency of the system in 12Hz. Derive an expression for the output of the system, if the input control is suddenly moved to a new position, being initially at rest. Hence, find the maximum overshoot.			
3	1	Measurements conducted on a servomechanism show the system response to be C(t) = 1+0.2 e-60t – 1.2 e-10t, when subjected to a unit step input, obtain the expression for closed loop transfer function, the damping ratio & undamped natural frequency of oscillations.	10	CO3	2017
	2	The transfer function of a control system is given by $G(s) = 1/(1+sT)2$. Show that if the input is a step displacement, the output will complete 98.26% of the step in 6T seconds for critical damping.	10	CO3	2014
4	1	Draw the root-locus of the feedback system whose open-loop transfer function is given by $G(s)H(S) = K / S^4 + 5S^3 + 8S^2 + 6S$	10	CO4	2014
	2	Determine the transfer function of a system whose asymptotic Bode plot is as b 1 20 db/sec 1 0 db/	10	CO4	2015
	3	The open loop transfer function of a unity gain feedback is given by- G(s) = $k(s+2)/(s_4+3s_3+4s_2+2s)$, k>=0 (a) Determine all the poles & zeros of G(s). (b) Draw the root locus.	10	CO4	2012
	4	Construct the Bode plot for the system with open loop transfer function $\frac{K}{S(S+1)(1+0.1S)}$ Determine the value of K such that	10	CO4	2011
		(a) gain margin = 10db (b) Phase margin = 50 ⁰ .			
5	1	State the use of Nichol's Chart.	5	CO5	2004
	2	State the merits and demerits of PI Controller.	5	CO5	2005
	3	Sketch the Nyquist Plot for a unity feedback system having open-loop transfer function given by - G(s) = k/s(1+s)(1+2s)(1+3s) Determine the range of values of k for which the system is stable			

Course Outcome Computation

Academic Year:									
Odd / Even semester									
INTERNAL TEST Course Outcome	Τ1	Τ2	Тз						

QUESTION NO
MAX MARKS
USN-1
USN-2 USN-3
USN-4
USN-5
USIN-0
Average CC Attainment
I V Threshol

LV Threshold : 3:>60%, 2:>=50% and <=60%, 1: <=49% CO1 Computation :(2+2+2+3)/4 = 10/4=2.5

PO Computation

Program Outcome	PO1	PO3	PO3	PO1	PO12	PO12	PO6	PO1
Weight of CO - PO	3	1	3	2	2	3	3	1
Course Outcome								
Test/Quiz/		T1			T2		T;	3
Lab QUESTION NO								
MAX MARKS								
USN-1								
USN-2								
USN-3								
USN-4								
USN-5								
USN-6								
Average CO Attainment								