Ref No:

SRI KRISHNA INSTITUTE OF TECHNOLOGY, BANGALORE

COURSE PLAN

Academic Year 2018-19

Program:	BS
Semester :	4
Course Code:	18MAT41
Course Title:	COMPLE ANALYI,PROBABILITY&TATITICAL METHODS
Credit / L-T-P:	3 / 2:2:0
Total Contact Hours:	50
Course Plan Author:	PUJITHA G

Academic Evaluation and Monitoring Cell

No.29, Chimney Hills, Hesaragatta Road, Chikkabanavara Bangalore -560090, Karnataka, India Phone/ Fax: +91-08023721315/23721477 Web: www.skitorg.in

Table of Contents

A. COURSE INFORMATION	
1. Course Overview	•
2. Course Content	
3. Course Material	
4. Course Prerequisites	
5. Content for Placement, Profession, HE and GATE	
B. OBE PARAMETERS	
1. Course Outcomes	
2. Course Applications	6
3. Mapping And Justification	
4. Articulation Matrix	
5. Curricular Gap and Content	
6. Content Beyond Syllabus	
C. COURSE ASSESSMENT	
1. Course Coverage	
2. Continuous Internal Assessment (CIA)	
D1. TEACHING PLAN - 1	
Module - 1	
Module – 2	-
E1. CIA EXAM – 1	
a. Model Question Paper - 1	
b. Assignment -1	
D2. TEACHING PLAN - 2	
Module – 3	
Module – 4	
E2. CIA EXAM – 2	19
a. Model Question Paper - 2	-
b. Assignment – 2	
D3. TEACHING PLAN - 3	
Module – 5	
E3. CIA EXAM – 3	22
a. Model Question Paper - 3	
b. Assignment – 3	
F. EXAM PREPARATION	24
1. University Model Question Paper	
2. SEE Important Questions	
G. Content to Course Outcomes	27
1. TLPA Parameters	
2. Concepts and Outcomes:	

Note : Remove "Table of Content" before including in CP Book Each Course Plan shall be printed and made into a book with cover page

Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

All rights reserved. A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	ME/CV/ECE/CSE/ ISE/EEE
Year / Semester :	IV	Academic Year:	2019-20
	Complex		
Course Title:	analyi,probability&tatitical	Course Code:	18MAT41
	methods		
Credit / L-T-P:	3/ 2:2:0	SEE Duration:	180 Minutes
Total Contact Hours:	50	SEE Marks:	60 Marks
CIA Marks:	40	Assignment	1 / Module
Course Plan Author:	PUJITHA G	Sign	Dt: 10-02-2020
Checked By:		Sign	Dt:

Note: Define CIA and SEE % targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute. Identify 2 concepts per module as in G.

Mod	Content	1	Identified Module	
ule		ng	Concepts	Learning Levels
1	Complex Variables: Review of a function of a complex variable, limits, continuity, differentiability. Analytic functions-Cauchy-		Analytic functions	Levels L3
	Riemann equations in cartesian and polar forms. Properties and construction of analytic functions.			
2	Conformal transformations, discussion of transformations W= (z^2) W= e^z and bilinear transformations-problems.Complex line integrals-Cauchy's theorem andCauchy's integral formula, Residues.poles.Cauchy's Residue theorem (without proof) and problems.	10	Integrals and complex analysis	L4
3	Probability Distributions: Random variables (discrete and continuous), probability mass/density functions. Binomial distribution, Poisson distribution. Exponential and normal distributions, problems.	10	Random variables	L3
4	curve fitting ,Statistical methods, lines of regression, correlation ,rank correlation.	10	Data analyzing	L3
5	Joint probability distribution: Joint Probability distribution for two discrete random variables, expectation, covariance, correlation coefficient. Sampling Theory: Sampling, Sampling distributions, standard error, test of hypothesis for means and proportions, confidence limits for means, student's t-distribution, Chi- square distribution as a test of goodness of fit.		Discrete random variables. Sampling distribution in accepting or rejecting the hypothesis.	L3 - 3
-	Total	50	-	-

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 – 30 minutes

2. Design: Simulation and design tools used – software tools used ; Free / open source

3. Research: Recent developments on the concepts – publications in journals; conferences etc.

Modul	Details	Chapters	Availability
es		in book	,
Α	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
1	B.S.Grewal: Higher Engineering Mathematics, Khanna publishers, 43 rd Ed.,2015.		In Dept
2	E.Kreyszig: Advanced Engineering Mathematics, John Wiley & Sons, 10 th Ed.(Reprint),2016.		In Dept
В	Reference books (Title, Authors, Edition, Publisher, Year.)		
1	C Ray Wylie, Louis C Barrett: "Advanced Engineering Mathematics",6th Edition, 2.McGraw-Hill Book Co.,New york,1995.		Not Available
2	James Stewart:"Calculus- Early Transcendentals", Cengage Learning India Private Ltd.,2017.		Not Available
3	B.V.Ramana:"Higher Engineering Mathematics" 11 th Edition Tata McGraw- Hill,2010.		In Dept
4	Srimanta Pal & Subobh C Bhunia: "Engineering Mathematics", Oxford UniversityPress, 3 rd Reprint, 2016.	-	Not Available
5	Gupta C B, Singh S R and Mukesh Kumar:"Engineering Mathematics for SemesterI and II, Mc-Graw Hill Education(India)Pvt.Ltd., 2015.		Not Available
D	Software Tools for Design	-	-
E	Recent Developments for Research	-	-
F	Others (Web, Video, Simulation, Notes etc.)	-	-
1	01. <u>https://youtu.be/fOGaD2p-x3c</u>		
	02. https://youtu.be/AvFs2zi3450		
	03. <u>https://youtu.be/pB41_cA8zck</u>		
	04. <u>https://youtu.be/lskNRQdSWXo</u>		
	05. https://youtu.be/EVPb2GWb-Rc		
	06. <u>https://youtu.be/5WCDuGkj_Fw</u>		
	07. <u>https://youtu.be/XJYdcNiHHxo</u>		
	08. <u>https://youtu.be/6ZCWdyrRRKw</u>		
	09. <u>https://youtu.be/CFBYX-gywlw</u>		
2	1. <u>https://nptel.ac.in/courses/111107056/</u>		
3	1. https://nptel.ac.in/courses/111105041/		
	2. <u>https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/</u>		
	<u>text/105105045/lec7.pdf</u>		
	3.https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/		
	Sincess / nptetaean / content/ storagez/ nptet_aata3/ nand mina/ let/		
	text/103106112/lec5.pdf		
4			
4	text/103106112/lec5.pdf		
4	text/103106112/lec5.pdf https://www.youtube.com/watch?v=AzroLr1XS5E		
	text/103106112/lec5.pdf https://www.youtube.com/watch?v=AzroLr1XS5E https://www.youtube.com/watch?v=0WejW9MiTGg		
	text/103106112/lec5.pdf https://www.youtube.com/watch?v=AzroLr1XS5E https://www.youtube.com/watch?v=0WejWgMiTGg https://www.youtube.com/watch?v=LSIgQH06j74		
5	text/103106112/lec5.pdf https://www.youtube.com/watch?v=AzroLr1XS5E https://www.youtube.com/watch?v=0WejWgMiTGg https://www.youtube.com/watch?v=LSIgQH06j74 https://www.youtube.com/watch?v=TvCzRW1hfUk		

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Students must have learnt the following Courses / Topics with described Content

All righ	ts reserved.		COURSE FLAN - CAT 2010-19			
Mod ules	Course Code	Course Name	Topic / Description	Sem	Remarks	Blooms Level
1	18MAT41	Complex analysis,proba bility&stastistial methods	Calculus of complex function	M3	Knowledge of analytic functions.	L2
2	18MAT41		Conformal transformation&complex integration	er	Knowledge of Integrals&complex Analysis.	L3
3	18MAT41	Complex analysis,proba bility&stastistial methods	probability	Low er stan dard s	Knowledge of Random Variables	L2
4	18MAT41	Complex analysis,proba bility&stastistial methods	Curve fitting&staistical methods		Knowledge of Data Analyzing	L2
5	18MAT41	Complex analysis,proba bility&stastistial methods	Joint probability&sampling theory	M4	Knowledge of Dicrete Random Variables&sample Distributing in Accepting the Hypothesis	L3

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Mod	Topic / Description	Area	Remarks	Blooms
ules				Level
1	Calculus of complex function	HE		L4
2	Conformal transformation&complex	HE		L4
	integration			
3	probability	HE		L6
4	Curve fitting&staistical methods	HE		L4
5	Joint probability&sampling theory	HE		L4
-				

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs. Identify a max of 2 Concepts per Module. Write 1 CO per Concept.

Mod	Course	Course Outcome	Teach.	Concept	Instr	Assessme	Blooms'
ules	Code.#	At the end of the course, student	Hours		Method	nt	Level
		should be able to				Method	
1	18MAT41	Apply the knowledge of complex	10	Analytic	Lecture	Assignme	L3
		analysis its properties and		functions		nt and	
		construction of analytical functions.				slip test	
2,4	18MAT41	Analyze various transformations to	10	Integrals	Lecture	Assignme	L3 &L4
		convert one plane to another		and		nt and	

		COURSE PLAN -	CAY 201	18-19			
All righ	ts reserved.	evaluate complex integral and finding the bet relation between the variables.		complex analysis		slip test	
3	18MAT41	Learn different probability measures ,distribution function and its properties and also apply various inequalities in statistical analysis.	10	Random variables, Discrete random variables &Statistical Methods,	Lecture	Assignme nt and slip test	L3
5	18MAT41	Solve the problem of statistical inference problems,of testing of hypothesis.	10	Sampling distribution in accepting or rejecting the hypothesis.		Assignme nt and slip test	L3
-	-	Total	50	-	-	-	L3-L4

2. Course Applications

Write 1 or 2 applications per CO.

Students should be able to employ / apply the course learnings to ...

Mod	Application Area	СО	Level
ules	Compiled from Module Applications.		
1	To study the nature of electromagnetic wave in conductors	CO1	L3
2	To study the nature of complex potential in field theory Curve fitting is the process	C02	L3&L4
	of constructing a curve that has the best fit to a series of data points.		
3	To analyze problems associated with optimization of digital circuits	co3	L3
4	To solve problems related to information and coding theory&To smoothen and	CO4	L3
	prediction of discrete data in digital computers & cruise control system in motor		
	vehicles.		

3. Mapping And Justification

CO – PO Mapping with mapping Level along with justification for each CO-PO pair.

To attain competency required (as defined in POs) in a specified area and the knowledge & ability required to accomplish it.

iequ	ieu ic	acco	<u>mpusnit.</u>		
Mod	Мар	ping	Mapping	Justification for each CO-PO pair	Lev
ules			Level		el
-	CO	PO	-	'Area': 'Competency' and 'Knowledge' for specified 'Accomplishment'	-
1	CO1	PO1		Apply the knowledge of Complex Variables in finding the solution to complex engineering problems.	L3
1	CO1	PO2	3	Formulate engineering problems using first principles of Complex Variables .	L3
1	CO1	PO8	2	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	L3
1	CO1	PO9	3	Function effectively as an individual in multidisciplinary settings using Complex Variables .	L3
1	CO1	PO10		Communicate effectively on complex engineering activities with the engineering community and with society at large such as being able to comprehend and write effective reports and design documentation make effective presentation and give and receive clear instructions.	L3
1	CO1	PO12		Recognize the need for life- long learning with practical applications in engineering field using Complex Variables .	L3
2,4	CO2	PO1	-	Apply the knowledge of Statistical methods in finding the solution to complex engineering problems.	L3& L4
2,4	CO2	PO2	3	Formulate and review engineering problems using first principles of	L3&

All rights reserved.	Il rights reserved.
----------------------	---------------------

<u>All rigi</u>	nts rese	erved.			
				Statistical methods.	L4
2,4	CO2	PO3	2	Develop and Design solutions for complex engineering problems using Statistical methods	L3& L4
2,4	CO2	PO8	2	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	L3& L4
2,4	CO2	PO9	3	Function effectively as an individual in multidisciplinary settings using Statistical methods .	L3& L4
2,4	CO2	PO10	3	Communicate effectively on complex engineering activities with the engineering community and with society at large such as being able to comprehend and write effective reports and design documentation make effective presentation and give and receive clear instructions.	L3& L4
2,4	CO2	PO12	3	Recognize the need for life- long learning with practical applications in engineering field using Statistical methods .	L3& L4
3	CO3	PO1	3	Apply the knowledge of Probability Distributions in finding the solution to complex engineering problems.	L3
3	CO3	PO2	2	Formulate engineering problems using first principles of Probability Distributions .	L3
3	CO3	PO8	3	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	L3
3	CO3	PO9	3	Function effectively as an individual in multidisciplinary settings using Probability Distributions .	L3
3	CO3	PO10	3	Communicate effectively on complex engineering activities with the engineering community and with society at large such as being able to comprehend and write effective reports and design documentation make effective presentation and give and receive clear instructions.	L3
3	CO3	PO12	3	Recognize the need for life- long learning with practical applications in engineering field using Probability Distributions .	L3
5	CO4	PO1	3	Apply the knowledge of Sampling Theory in finding the solution to complex engineering problems.	L3
5	CO4	PO2	3	Formulate engineering problems using first principles of Sampling Theory	L3
5	CO4	PO8	3	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	L3
5		PO9	2	Function effectively as an individual in multidisciplinary settings using Sampling Theory .	L3
5		PO10	3	Communicate effectively on complex engineering activities with the engineering community and with society at large such as being able to comprehend and write effective reports and design documentation make effective presentation and give and receive clear instructions.	
5	CO4	PO12	4	Recognize the need for life- long learning with practical applications in engineering field using Sampling Theory .	L3

4. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

		<u> </u>			,						<u> </u>					
-	-	Course Outcomes					P	rog	ram	η Οι	utco	ome	es			-
Mod	CO.#	At the end of the course	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO		Lev
ules		student should be able to	1	2	3	4	5	6	7	8	9	10	11	12		el
1		Apply the knowledge of complex analysis its properties and construction of analytical functions.	2.5	2.5						2.5	2.5	2.5		2.5		L3
2,4		Analyze various transformations to convert one plane to another evaluate complex integral and finding the bet relation between the variables.	2.5	2.5	2.5					2.5	2.5	2.5		2.5		L3& L4
3	18MAT41.3	Learn different probability	2.5	2.5						2.5	2.5	2.5		2.5		L3
		· · ·	•									·		· · · ·		

All righ	ts reserved.					(, ,											
		measures ,distribution function and its properties and also apply																
		various inequalities in statistical analysis.																
5	18MAT41.4	Solve the problem of statistical inference problems,of testing of hypothesis.	2.5	2.5						2.5	2.5	2.5		2.5				L3
-	CS501PC	Average attainment (1, 2, or 3)																-
-		1.Engineering Knowledge; 2.Prob 4.Conduct Investigations of Compl Society; 7.Environment and Su 10.Communication; 11.Project N S1.Software Engineering; S2.Data E	ex l ustc 1an	Prol aina age	oleri bilit eme	ns; ; ;y; ent	5.Ma 8.Ei an	odei thic: d	rn 7 s; Fin	00 9.lr	l Us ndiv ce;	sagi vidu 12	e; 6. al 2.Life	The and	En d	gine Fear	er o nw	and ork;

5. Curricular Gap and Content

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Mod	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
ules					

6. Content Beyond Syllabus

Topics & contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Mod ules	Gap Topic	Area	Actions Planned	Schedule Planned	Resources Person	PO Mapping

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Mod	Title	Teach.			f quest				CO	Levels
ules		Hours	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE		
							Asg			
1	Calculus of complex function	10	2	-	-			2	CO1	L3
	Conformal	10	2	-	-			2	CO2	L4
	transformation&complex									
	integration									
3	probability	10	-	2	-			2	CO3	L3
4	Curve fitting&staistical methods	10	-	2	-			2	CO2	L3
5	Joint probability&sampling theory	10	-	-	4			2	CO5	L3
-	Total	50	4	4	4			10	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Mod	Evaluation	Weightage in	СО	Levels
ules		Marks		
1, 2	CIA Exam – 1	30	CO2,CO3,	L3,L3

		COURSE PLAN - CAY	2018-19	
	hts reserved.			
3, 4	CIA Exam – 2	30	CO1,co4	L3 ,L3
5	CIA Exam – 3	30	CO2	L4
1.2	Accianment 1	10	CO2,CO3,	
	Assignment - 1	10		L3,L3
3, 4	Assignment - 2	10	CO1,co4	L3 ,L3
5	Assignment - 3	10	CO2	L4
	Seminar - 1		-	-
3, 4	Seminar - 2		-	-
5	Seminar - 3		-	-
1.0				
	Quiz - 1		-	-
3, 4	Quiz - 2		-	-
5	Quiz - 3		-	-
1 - 5	Other Activities – Mini Project	-		
	Final CIA Marks	20	-	-

D1. TEACHING PLAN - 1

Module - 1

Title:	Calculu of complex functions:	Appr Time:	12 Hrs
a	Course Outcomes	СО	Blooms
-	The student should be able to:	-	Level
1	Apply the knowledge of complex analysis its properties and construction of analytical functions	CO1	L3
b	Course Schedule	-	_
-	o Portion covered per hour	-	-
1	Complex Variables: Review of a function of a complex variable, limits, continuity, differentiability. Analytic functions-Cauchy-Riemann equations in cartesian and polar forms. Properties and construction of analytic functions	C01	L3
2	Function of a complex variables	C01	L3
3	Analytic functions problems& theorems	C01	L3
4	Cauchy-Riemann equations in cartesian form	C01	L3
5	Cauchy-Riemann equations in polar forms	C01	L3
6	Harmonic property	C01	L3
7	Cauchy' theorems	C01	L3
8	Consequence of cauchy's theorem	C01	L3
9	Construction of analytic function	C01	L3
10	Milne thomon method problems	C01	L3
С	Application area;		
1	To study the nature of electromagnetic wave in conductors	C01	L3
d	REVIEW QUESTIONS:		
1	Derive the Cauchy Riemanns equation in the Cartesian form.	C01	L3
2	Derive Cauchy Riemann equations in Polar form. (OR)	C01	L3
	Derive the necessary conditions for $f(z)=u(r,\theta)+iv(r,\theta)$ to be analytic in a		

All rights r	COURSE PLAN - CAY 2018-19 eserved.		
0	regio		
3	Show that Z ⁿ is analytic .Hence find its derivative	C01	L3
4	If $w=z^3$ find dw/dz.	C01	L3
5	If $f(z)=u+iv$ is analytic and hence find $f(z)$ if $u-v=(x-y)(x^2+4xy+y^2)$.	C01	L3
6	Find the analytic function u+iv where u is given to be $u=e^{x}((x^{2}-y^{2})\cos y-2xy\sin y)$	C01	L3
7	If f(z)=u+iv is analytic prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial x^2}\right) f(z) ^2 = 4 f^I(z) ^2$	C01	L3
8	If $f(z)=u+iv$ is analytic function ,show that $\left[\frac{\partial}{\partial x} f(Z) \right]^2 + \left[\frac{\partial}{\partial y} f(Z) \right]^2 = f^I(Z) ^2.$	C01	L3
9	Find the analytic function $f(z)=u+iv$ given that $u=\widetilde{a} + \frac{x}{(x^2+y^2)}$.	C01	L3
10	If $f(z) = u(r, \theta) + iv(r, \theta)$ is an analytic function, show that u and v satisfy yhe equation $\frac{\partial^2 \phi}{\partial r^2} + \frac{1}{r} \frac{\partial \phi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \phi}{\partial \theta^2} = 0$	CO1	L3
11	Find the analytic function $f(z)=u+iv$ whose real part is $y+e^x cosy$.	C01	L3
е	Experiences		

Module – 2

Title:	Conformal tranformation & comple integration:	Appr Time:	7 Hrs
а	Course Outcomes	CO	Blooms
d	The student should be able to:	CO	Level
1	Analyze various transformations to convert one plane to another evaluate	- CO2	L3 &L4
T	complex integral and finding the bet relation between the variables.	02	
b	Course Schedule	-	-
Class N	o Portion covered per hour	-	-
1	Conformal transformation introduction	C02	L3 &L4
2	Discussion of transformations:W=z^2	CO2	L3 &L4
3	Discussion of transformations:W=e^Z	C02	L3 &L4
4	Discussion of transformations:W=Z+1/Z	CO2	L3 &L4
5	Bilinear transformation problems	C02	L3 &L4
6	Complex integration introduction	C02	L3 &L4
7	Line function integral of a complex	C02	L3 &L4
8	cauchy's theorem	CO2	L3 &L4
9	cauchy's integral formmula	C02	L3 &L4
10	Baed on problems	C02	L3 &L4
с	Application Areas	-	-
1	To study the nature of complex potential in field theory Curve fitting is the process of constructing a curve that has the best fit to a series of data points.	CO2	L3&L4
d	Review Questions		
- -		-	-
1	Discussion of transformations:W=z^2	CO2	L4
2	Discussion of transformations:W=e^Z	C02	L4
3	Discussion of transformations:W=Z+1/Z	CO2	L4

COORSE PLAN - CAT 2018-19		
eserved.		
	CO2	L3
w=1,i,-1 respectively.		
Find the bilinear transformation that maps the points 1,i,-1 onto the points i,0,-1	C02	L3
respectively		
Find the bilinear transformation that transforms the points z1=1,z2=i,z3=-1 onto	CO2	L3
the points w1=2,w2=i,w3=-2 find the fixed points of the transformation.		
Line function , complex line integrals	CO2	L3
cauchy's theorem	CO2	L3
cauchy's integral formmula	CO2	L3
Baed on problems	C02	L3
Experiences	-	-
	 Find the bilinear transformation that maps the points z=-1,i,1 on to the points w=1,i,-1 respectively. Find the bilinear transformation that maps the points 1,i,-1 onto the points i,0,-1 respectively Find the bilinear transformation that transforms the points z1=1,z2=i,z3=-1 onto the points w1=2,w2=i,w3=-2 find the fixed points of the transformation. Line function , complex line integrals cauchy's theorem cauchy's integral formmula Baed on problems 	Beserved.Find the bilinear transformation that maps the points z=-1,i,1 on to the pointsco2W=1,i,-1 respectively.Co2Find the bilinear transformation that maps the points 1,i,-1 onto the points i,0,-1co2respectivelyCo2Find the bilinear transformation that transforms the points z1=1,z2=i,z3=-1 ontoco2the points w1=2,w2=i,w3=-2 find the fixed points of the transformation.co2Line function , complex line integralsco2cauchy's theoremco2Baed on problemsco2

E1. CIA EXAM – 1

a. Model Question Paper - 1

Crs	Code		minute	es	
Cοι	urse:	Complex analysis,probability&stastistial methods			
	-	Note: Answer all questions, each carry equal marks. Module : 1, 2	Marks		Level
1	a	Derive the Cauchy Riemanns equation in the Cartesian form.	5	CO1	L3
	b	Derive Cauchy Riemann equations in Polar form. (OR) Derive the necessary conditions for $f(z)=u(r,\theta)+iv(r,\theta)$ to be analytic in a region	5	CO1	L3
	С	Find the analytic function u+iv where u is given to be u=e ^x ((x^2-y^2)cosy-2xysiny)	5	CO1	L3
2				CO1	
2	a	Show that Z^n is analytic .Hence find its derivativeIf $w=z^3$ find dw/dz .	5		L3
	b	Find the analytic function $f(z)=u+iv$ given that $u=\dot{c}\dot{c})+\frac{x}{(x^2+y^2)}$.	5	CO1	L3
	С	Find the analytic function $f(z)=u+iv$ whose real part is $y+e^x cosy$	5	CO1	L3
3	а	Discussion of transformations:W=z^2	5	CO2	L4
	b	cauchy's theorem	5	CO2	L3
	С	Find the bilinear transformation that maps the points 1,i,-1 onto the points i,0,-1 respectively	5	CO2	L3
		OR			
4	a	Discussion of transformations:W=Z+1/Z	5	CO2	L4
4	b	cauchy's integral formmula	5 5	CO2 CO2	L3
	C	Find the bilinear transformation that transforms the points z1=1,z2=i,z3=-1 onto the points w1=2,w2=i,w3=-2 find the fixed points of the transformation.	5	CO2	L3
		points of the duiloformution.			

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

Model Assignment Questions

	ginnen a						
Crs Code:	18MAT41	Sem:	4	Marks:	5	Time:	90 – 120 minutes
Course:	Complexa	nalysis,prob	ability&stast	istialmetho	Module : 1, 2	2	

All riah	ts reserved.	COURSE PLAN - CAY 2018-19			
Aurigh	ds				
Note:		t to answe5r 2-3 assignments. Each assignment carries equal m	ark.		
SNo		Assignment Description	Marks	СО	Level
1		Derive the Cauchy Riemanns equation in the Cartesian	5	CO1	L3
-		form.			
2		Dariya Cauahy Diamann aquations in Dalar form	5	CO1	L3
~		Derive Cauchy Riemann equations in Polar form. (OR) Derive the necessary conditions for $f(z)=u(r,\theta)+iv(r,\theta)$ to be analytic in a regio	5	001	
2				CO1	1.2
3		Show that Z ⁿ is analytic .Hence find its derivative	5	CO1	L3
4		If $w=z^3$ find dw/dz .	5	CO1	L3
5		If $f(z)=u+iv$ is analytic and hence find $f(z)$ if $u-v = (x-y)(x^2+4xy+y^2)$.	5	CO1	L3
6		Find the analytic function u+iv where u is given to be $u=e^{x}((x^{2}-y^{2})\cos y-2xy\sin y)$	5	CO1	
7		If f(z)=u+iv is analytic prove that	5	CO1	L3
		$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial x^2}\right) f(z) ^2 = 4 f^I(z) ^2$			
8		If $f(z)=u+iv$ is analytic function ,show that $\left[\frac{\partial}{\partial x} f(Z) \right]^{2} + \left[\frac{\partial}{\partial y} f(Z) \right]^{2} = f^{I}(Z) ^{2}.$	5	CO1	L3
9		Find the analytic function $f(z)=u+iv$ given that $u=\dot{c}\dot{c}$) + $\frac{x}{(x^2+y^2)}$.	- 5	CO1	L3
10		If $f(z) = u(r, \theta) + iv(r, \theta)$ is an analytic function, show that u and v satisfy yhe equation $\frac{\partial^2 \phi}{\partial r^2} + \frac{1}{r} \frac{\partial \phi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \phi}{\partial \theta^2} = 0$	5	CO1	L3
11		Find the analytic function $f(z)=u+iv$ whose real part is $y+e^x \cos y$.	5	CO1	L3
12		Discussion of transformations:W=z^2	5	CO2	L4
L3		Discussion of transformations:W=e^Z	5	CO2	L4
L4		Discussion of transformations:W=Z+1/Z	5	CO2	L4
15		Find the bilinear transformation that maps the points $z=-1,i,1$ or to the points $w=1,i,-1$ respectively.		CO2	L4
16		Find the bilinear transformation that maps the points 1,i,-1 onto the points i,0,-1 respectively	5	CO2	L4
17		Find the bilinear transformation that transforms the points z1=1,z2=i,z3=-1 onto the points w1=2,w2=i,w3=-2 find the fixed points of the transformation.		CO2	L4
18		Line function , complex line integrals	5	CO2	L4
19		cauchy's theorem	5	CO2	L4
20		cauchy's integral formmula	5	CO2	L4
21		Baed on problems	5	CO2	L4
22		P.T w=1+z/1-z map the region z less than are equal to 1 onto the half plane R(U) greaterthan are equal to 0 being the region ugreater than are equal to 0	5	CO2	L4
23		Find the invariant points of the following bilinea transformations w=z-1-i/z+2	5	CO2	L4

Page # 12 / 28

7 tti rights reserved.				
24	Bilinear transformationw=3z-4/z-1	5	CO2	L4
	Obtain the image of the region bounded by the line x=1,x=2,y=1,y=2 under the tranformation w=e^z and sketch the region		CO2	L4

D2. TEACHING PLAN - 2

Module – 3

Title:	PROBABILITY DISTRIBUTIONS:	Appr Time:	12 Hrs
а	Course Outcomes	СО	Blooms
-	The student should be able to:	-	Level
1	Learn different probability measures ,distribution function and its properties and also apply various inequalities in statistical analysis.	CO3	
b	Course Schedule		
Class No	Portion covered per hour	-	-
1	Probability distributions: Introduction on probability some examples	CO3	L3
2	Random variables(discrete and continuous)	CO3	L3
3	probability mass/density function	CO3	L3
4	Binomial distribution based on problems	CO3	L3
5	poisson distribution based on problems	CO3	L3
6	Exponential ditribution and problems normal	CO3	L3
7	normal distribution& problems.	CO3	L3
8	More examples on dirtibutions	CO3	L3
С	Application Areas	-	-
-		-	-
1	To analyze problems associated with optimization of digital circuits	co3	L3
d	Review Questions	-	-
-		-	-
1	Find the binomial probability distribution which has mean 2 and variance 4/3		
2	Fit a poiSSon distribution for the following data and calculate the theoretical frequency X:0 1 2 3 4 Y:122 60 15 2 1		
3	The number of telephone lines busy at an instant of time is binomial variate with probability 0.1 that a line is busy. If 10 lines are chosen at random, what is the probability that i) No line is busy ii) At least 5 lines are busy iii) At most 3 lines are busy.	CO3	L3
4	The probability that a man aged 60 will live up to 70 is 0.65. Out of 10 men, now at the age of 60 ,find probability that 1)Atlest 7 will live up) 2)Exactly 9 will live up to 7	CO3	L3
5	The probability that a man aged 60 will live up to 70 is 0.65. Out of 10 men, now at the age of 60 ,find probability that 1)Atlest 7 will live up) 2)Exactly 9 will live up to 7	CO3	L3

All rights re			
6	In sampling a large number of parts manufactured by a company, the mean number of defectives in a samples of 20 is 2. Out of 1000 such samples, how many would be expected to contain atleast three defective parts	CO3	L3
7	Given that 2% of the fuses manufactured by a firm are defective ,find by using Poisson distribution ,the probability that a box containing 200 fuses has i)No defective fuses ii)3 or more defective fuses iii)At least one defective fuse.	CO3	L3
8	For the following normal distribution find c and also the mean and S.D of frequency distribution	CO3	L3
9	In normal distribution 31% of the items are under 45 and 8% are over 64 .Find the mean and standard deviation given that A(0.5)-0.19 And A(1.4)=0.42	CO3	L3
10	 i) A die is thrown 8times. Find the probability that '3' falls ii) Exactly 2 times iii) At least once At the most 7times 	CO3	L3
11	In certain town the duration of shower has mean 5 minutes. What is the probability that shower will last for i) 10 minutes or more ii) less than 10 minutes iii) between 10 and 12 minutes	CO3	L3
12	If x I a normal variate with mean 30 and S.D 5 find the probability that (1) 26 less than are equal to"" X"Less than are equal to40 (2) X greater than are equal to 45.	CO3	L3
е	Experiences	-	-
1			
2			

Module – 4

Title	Curve fitting & statistical methods	Appr Time:	13 Hrs
а	Course Outcomes	CO	Blooms
-	Student should be able to		LEVEL
1	Analyze various transformations to convert one plane to another evaluate complex integral and finding the bet relation between the variables.& Apply to construct numerical data and solving by least square method	CO2	L3
b	Course Schedule		
Class No	p Portion covered per hour	-	-
1	Correlation and rank correlation problems	CO2	L3
2	More examples on rank correlation		
3	Regression and Regression coefficients	C02	L3
4	lines of regression - problems	C02	L3
5	Regression line XON Y &Y ON X problems	C02	L3
6	Fitting of curves introduction- Fitting equation of straight line.	C02	L3
7	Fitting equation of parabola.	CO2	L3
8	Second degree parabola problems	C02	L3
9	Fitting equation of exponential curve problems	CO2	L3
10	More examples	C02	L3

Page # 14 / 28

С	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	To study the nature of complex potential in field theory Curve fitting is the process of constructing a curve that has the best fit to a series of data points.	CO2	L
d	Review Questions	-	-
-	hu	001	
1	Fit a curve of the form $y=ae^{bx}$ to the following data : x : 77 100 185 239 285 y: 2.4 3.4 7.0 11.1 19.6	CO2	L
2	Fit a parabola by using least squares method to the following method to the following data :	CO2	L
	x : 1.0 1.5 2.0 2.5 3.0 3.5 4.0		
	y: 1.1 1.3 1.6 2.0 2.7 3.4 4.1		
3	Fit a traight line y=ax+b for the following data x:1 3 4 6 8 9 11 14 Y:1 2 4 4 5 7 8 9	CO2	L
4	Fit a straight line in the leat quare ence for the following data X:50 70 100 120 Y:12 15 21 25	CO2	L
5	Fit a second degree parabola y=ax^2 +bx+c in the leat square sence for the following data X:1 2 3 4 5 Y:10 12 13 16 19	CO2	L
6	Fit a curve of the form $y=ae^{bx}$ for the data X: 0 2 4 Y:8.12 12 31.82	CO2	L
7	Compute the coefficient of correlation and the equation of the lines of regression for the data X:1 2 3 4 5 6 7 Y:9 8 10 12 11 13 14	CO2	L
8	Obtain the line of regression and f hence find the coefficient of correlation for the data X:1 2 3 4 5 6 7 Y:9 8 10 12 11 13 14	CO2	L
9	Find the correlation coefficient for the data A:92 89 87 86 83 77 71 63 53 50 Y:86 83 91 77 68 85 52 82 37 57	CO2	L

	x:68 64 75 50 64 80 75 40 55 64 y:62 58 68 45 81 60 68 48 50 70		
е	Experiences	-	-
1			

E2. CIA EXAM – 2

a. Model Question Paper - 2

Crs (Cour		18MAT41 Sem: IV Marks: 30 Time: 75 Complexanalysis,probability&stastistialmethods	minute	S	
- UUI	se.	Note: Answer all questions, each carry equal marks. Module : 3, 4	Marks	со	Level
1	а	Find the binomial probability distribution which has mean 2 and variance 4/3	5	CO3	L3
	b	Fit a poion distribution for the following data and calculate the theoretical frequency X:0 1 2 3 4 Y:122 60 15 2 1	5	CO3	L3
	С	The number of telephone lines busy at an instant of time is binomial variate with probability 0.1 that a line is busy. If 10 lines are chosen at random, what is the probability that i) No line is busy ii) At least 5 lines are busy iii) At most 3 lines are busy.			L3
			5	CO3	L3
		OR			<u> </u>
2	a	Given that 2% of the fuses manufactured by a firm are defective ,find by using Poisson distribution ,the probability that a box containing 200 fuses has i)No defective fuses ii)3 or more defective fuses iii)At least one defective fuse.	5	CO3	L3
	b	Obtain the mean and S.D of the normal distribution.	5	CO3	L3
	С	In a normal ditribution 31% of the itemes are under 45 and 8% of the item are over 64.find the mean and S.D of the distributions	5	CO3	L3
3	а	Fit a parabola by using least squares method to the following method to the following data :x : 1.01.52.02.53.03.54.0y : 1.11.31.62.02.73.44.1	5	CO2	L3
	b	Fit a traight line y=ax+b for the following data x:1 3 4 6 8 9 11 14 Y:1 2 4 4 5 7 8 9	5	CO2	L3
	С	Fit a curve of the form $y=ae^{bx}$ for the data X: 0 2 4 Y:8.12 12 31.82	5	CO2	L3
		OR			
4	а	Find the correlation coefficient for the data	CO2	L3	L3

	A:92 89 87 86 83 77 71 63 53 50 Y:86 83 91 77 68 85 52 82 37 57			
b	Compute the rank correlation coefficient for the followingdata x:68 64 75 50 64 80 75 40 55 64 y:62 58 68 45 81 60 68 48 50 70	CO2	L3	L3
С	Obtain the line of regression and f hence find the coefficient of correlation for the data X:1 2 3 4 5 6 7 Y:9 8 10 12 11 13 14	CO2	L3	L3

b. Assignment – 2

Note: A distinct assignment to be assigned to each student.

			grinnorite		odel Assignm		ons				
Crs C	ode:	18MAT41	L Sem:	IV	Marks:	10	Time				
Cours		ds	-		&stastistialme						
			to answe		nments. Each			qual ma			1
SNo		USN			Assignment D				Marks	CO	Level
1			The pdf		e x is given b	y the follo			5	C03	L3
				Х	0	1	2	3			
				P(x)	k	3k	5k	7k			
				For wh	nat value of	k this re	presents	a valid			
			probab	ility distri	bution?						
2			Fit a poi	SSon distr	ibution for th	e followir	ng data and	l	5	CO3	L3
			calculate	e the theore	etical frequen	ncy					
			X:0 1	2 3 4							
			Y:122 6	50 15 2	l						
3			When a	coin is tos	sed 4 time fir	nd the prol	bability of	gettinh	5	CO3	L3
			1) exact	ly one head	d 2)atmot 3 h	ead 3) at 1	not 2 head	S			
4			The nun	nber of tele	phone lines l	busy at an	instant of	time is	5	CO3	L3
			binomia	l variate w	ith probabilit	y 0.1 that	a line is bu	ısy. If			
					at random, v						
			i) No lin	e is busy i	i) At least 5	lines are	busy iii) A	t most			
				are busy.							
5					he fuses man			are	5	CO3	L3
				· ·	using Poisson						
					ox containing						
					es ii)3 or mor	e defectiv	e fuses iii).	At least			
				ective fuse.							
6					it a man aged		-		CO3	L3	L3
				it of 10 me	n, now at the	e age of 60	,find prob	ability			
			that		、 、 一						
			1)Atles	st 7 will liv	/e up) 2)Exa	actly 9 w	rill live up	to 7			
7					e number of p				CO3	L3	L3
					n number of						
					0 such sampl		•	d be			
			expected	to contain	n atleast three	e defective	e parts				

VII righta racon (COURSE PLAN - CAT 2010-19			
All rights reserv 8	5In normal distribution 31% of the items are under 45 and 8% are over 64 .Find the mean and standard deviation given that A(0.5)-0.19 And A(1.4)=0.42	5	CO3	L3
9	 A die is thrown 8times. Find the probability that '3' falls Exactly 2 times At least once At the most 7times 	5	CO3	L3
10	In certain town the duration of shower has mean 5 minutes. What is the probability that shower will last for i) 10 minutes or more ii) less than 10 minutes iii) between 10 and 12 minutes	5	CO3	L3
11	The probability that a pen manufactured by a company will be defective is 0.1. if 12 such pens are selected, find the probability that i) exactly 2 will be defective ii) at least 2 will be defective iii) none will be defective.	5	CO3	L3
12	In a normal ditribution 31% of the itemes are under 45 and 8% of the item are over 64.find the mean and S.D of the distributions		co3	L3
13	If x I a normal variate with mean 30 and S.D 5 find the probability that (1) 26 less than are equal to"" X""Less than are equal to40 (2) X greater than are equal to 45.	-	соз	L3

D3. TEACHING PLAN - 3

Module – 5

Title:	Joint probability distribution & sampling theory	Appr Time:	10 Hrs
а	Course Outcomes	CO	Blooms
-	The student should be able to:	-	Level
1	To solve problems related to information and coding theory&To smoothen and prediction of discrete data in digital computers & cruise control system in motor vehicles.		L3
			L3
b	Course Schedule	-	-
Class No	Portion covered per hour	-	-
1	Introduction on joint probability distribution	co4	L3
2	joint probability distribution for two discrete random variables	C04	L3
3	Problems based on expectations	c04	L3
4	Problems on co variance	C04	L3
5	Sampling theory: Introduction to sampling distributions,	C04	L3
6	standard error,,test of hypothesis for means	co4	L3
7	Type 1&Type 2 errors	co4	L3
8	Confidence limits for means students's t-distribution	C04	L3
9	Chi-square distribution as a test of goodness of fit	co4	L3
10	More examples on sampling theory	c04	L3
с	Application Areas	-	-

ΔIJ	riahts	reserved.
Λu	ngino	reserveu.

1	Students should Solve the proble						esis	- CO4	L
-									
4	Review Questic								
d -		115						-	-
1	The mean of the standard size 100 dra the mean of	error of t wn from t	he distril hat popu	bution Ilation.	of means find the j	of a sam	ple of y that	CO4	L
	will be negative								
2	If the mean of an i must be used in or than 572?	nfinite populat						CO4	L
3	Find the probabilitate are heads	ty that in 100 to	osses of a fai	r coin bet	ween 45% an	d 55% of the o	outcomes	CO4	L;
4	Out of 1000 samp than 40% are boys						hat 1)iess	CO4	L;
5	A random sample of 82 and a standa	than 40% are boys,2) between 40% and 60% are boys,3)55% or more are girls A random sample of 400 items chosen from an infinite population is found to have a mean of 82 and a standard deviation of 18. find the 95% confidence limits for the mean of the population from which the sample is drawn							L;
6	The mean and star and 2.92 find 1)95 student population	ndard deviation % 2)99% conf	of marks sc					CO4	Ľ
7	A biased coin is tossed 500 times and head turns up 120 times .find the 95% confidence limits for the proportion of heads turning up in infinitely many tosses						CO4	L	
8	A biased coin is to limits for the prop	ossed 500 times	s and head tu	rns up 12	0 times .find t	he 95% confid	lence	CO4	L
9	A coin was tossed coin is unbiased at	1 400 times and t 5% level of si	l the head tur gnificance./	rned up 21	l6 times test t	he hypothesis		CO4	L
10	Find how many he significance.	eads in 64 tosse	es of a coin v	vill ensure	e its fairness a	t 0.05 level of		CO4	L
11	F or a random sam deviations from th confidence limits	e mean equal t	o 135 and dr	awn from	a normal pop	oulation, find th	ie 95%	CO4	L;
12	Find the stude 2,0,2,2,3,3, taking	ents 't' for tl	ne followir	ng value	es in a san			CO4	L
13	In 200 tosses of that the coin is f	a coin,118 he	eads and 82	2 tails we	ere observed	d test the hyp	oothesis	CO4	Ľ
14	A die is throw appearing on th X:1 2 3 4 5 6	n 60 times e face x is giv	and the ven by the	frequenc following	:y distributi g table	on for the	number	CO4	L
16	f:15 6 4 7 11 17 to The joint distrib					llows			
	Χ\Υ	-4		2		7			
	1	1\8		1\4		1\8			
	5 1\4 1\8 1\8 1) E(X) AND E(Y) 2)E(Xy) 3) sigma x σ y 4) cov(x ,y) p(x,y)								

All	rights	reserved.

	1	0.1	0.2	0	0.3		
	2	0.2	0.1	0.1	0		
	Determine the 1)E(X) &E(Y) 2) S.D OF X&Y 3)COV(X&Y) 4) CORRELATIO		bility distributio	n of x&y		_	_
е	Experiences					_	
1							

E3. CIA EXAM – 3

a. Model Question Paper - 3

Cou	Loue		em: IV	Marks:	30	Time:	75 minut	es	
	rse:			y&stastistialmeth					
	-			each carry equa			Marks		Leve
	a	standard e drawn fro	error of the c m that popul	n normal infinite distribution of me lation.find the p n from the popul	eans of a s robability t	sample of size hat the mean	100	CO4	L3
	b			o random variabl			5	CO4	L3
		X\Y	-4	2		7			
		1	1\8	1\4		1\8			
		5 1) E(X) AND E(\	1\4	1\8		1\8			
	С	3) sigma x &sig 4) cov(x ,y) p(x,y)		has a mean 0				00.	
	C					andard deviatio		CO4	L3
			e probability th	hat the mean of a				C04	L3
		find the	e probability th						L3
	a	find the be nega The me 100 stu	e probability th ative ean and stanc udents are 6	hat the mean of a	a sample o marks scc find 1)95%	f 900 members pred by a samp 2)99% confide	s will le of 5 ence	CO4	L3 L3
		find the be nega The me 100 stu	e probability th ative ean and stanc udents are 6	OR OR dard deviation of 57.45 and 2.92	a sample o marks scc find 1)95%	f 900 members pred by a samp 2)99% confide	s will le of 5 ence		
	a	find the be nega The me 100 stu interval	e probability th ative ean and stanc udents are 6 Is for estimation	OR OR dard deviation of 57.45 and 2.92 f ng the mean ma	a sample o marks scc find 1)95% rks of the s	f 900 members pred by a samp 2)99% confide student popula	s will le of 5 ence	CO4	L3
	a	find the be nega The me 100 stu interval X\Y 1 2	e probability thative ean and stanc udents are 6 ls for estimation -2 0.1 0.2	hat the mean of a OR dard deviation of 57.45 and 2.92 f ng the mean ma -1 0.2 0.1	a sample o marks scc find 1)95% rks of the s 4 0 0.1	ored by a samp 2)99% confide student popula 5 0.3 0	s will le of 5 ence	CO4	L3
	a	find the be negative to the second se	e probability thative ean and stanc udents are 6 ls for estimation -2 0.1 0.2 nine the marging d E(X),E(Y) AN (,Y Y) tion of X AND	Aard deviation of a OR dard deviation of 57.45 and 2.92 ng the mean ma -1 0.2 0.1 inal probability d ND E(XY)	a sample o marks scc find 1)95% rks of the s 4 0.1 istribution	ored by a samp 2)99% confide student popula 5 0.3 0 of X ,Y	s will le of 5 ence	CO4	L3

1 Find the mean and S.D of the sampling distribution of mean by considering sampling of size 2 with replacement	5	CO4	L3 L3
The weights of 1500 ball bearings are normally distributed with a mean of 635 gms and S.D of 1.36 gms if 300 random samples of size 36 are drawn from this population determine the expected mean and S.D of the sampling distribution of mean if sampling I done 1) with replacement 2)without replacement A manufacturer claimed that atleast 95% of the equipment which he			L3
	5	CO4	1
ample of 200 pieces of equipment revealed that 18 of them were faulty.tet hi claim at a significancelevel of 1% and 5%		CO4	L3
•••			
Find the students 't' for the following values in a sample of eight:-4,-2,-2,0,2,2,3,3, taking the mean of the population to be zero	5	CO4	L3
Find the students 't' for the following values in a sample of eight 3 2 ,0,2 1 1 2 3, taking the mean of the population to be zero.	5	CO4	L3
number appearing on the face x is given by the following table: 1. X:1 2 3 4 5 6		CO4	L3
	 2,0,2,2,3,3, taking the mean of the population to be zero Find the students 't' for the following values in a sample of eight 3 2 ,0,2 1 1 2 3, taking the mean of the population to be zero. A die is thrown 60 times and the frequency distribution for the number appearing on the face x is given by the following table: 1. X:1 2 3 4 5 6 	 Find the students 't' for the following values in a sample of eight:-4,-2,-5 2,0,2,2,3,3, taking the mean of the population to be zero Find the students 't' for the following values in a sample of eight 3 2 ,0,2 15 1 2 3, taking the mean of the population to be zero. A die is thrown 60 times and the frequency distribution for the 5 number appearing on the face x is given by the following table: 1. X:1 2 3 4 5 6 	Find the students 't' for the following values in a sample of eight:-4,-2,-5CO42,0,2,2,3,3, taking the mean of the population to be zeroCO4Find the students 't' for the following values in a sample of eight 3 2 ,0,2 1 5CO41 2 3, taking the mean of the population to be zero.CO4A die is thrown 60 times and the frequency distribution for the 5CO41. X:1 2 3 4 5 6CO4

b. Assignment – 3

Note: A distinct assignment to be assigned to each student.

				Мос	del Assignmei	nt Quest	ions				
Crs C	ode:	18mat41	Sem:	IV	Marks:	10		90 - 120	minute	S	
Cours	se:	Comple	exanalysis	probability,	&stastistialme	th Modu	le : 5				
	ods										
	Note: Each student to answer 2-3 assignments. Each assignment carries equal mark.										
SNo		USN			signment De			Marks	CO	Level	
1								5	CO4	L3	
							order that there be on	e			
					ean of the samp						
2				obability that outcomes are		of a fair c	oin between 45% and	d 5	CO4	L3	
3							now many would yow ween40% and 60% ar		CO4	L3	
			boys,3)55%	or more are	girls	•					
4		A random sample of 400 items chosen from an infinite population is found to have a mean of 82 and a standard deviation of 18.find the 95%						CO4	L3		
			confidence is drawn	limits for the	mean of the po	pulation f	rom which the sampl	e			
5			A biased coin is tossed 500 times and head turns up 120 times .find the 95% confidence limits for the proportion of heads turning up in infinitely many tosses						CO4	L3	
6			The S.D c company is taken in orc	of the life-ti estimated as	s 100 hours. Find confident that	nd how la	manufactured by rige a sample must b in the estimated mean	e	CO4	L3	
7			company is taken in oro	estimated as	s 100 hours. Find confident that	nd how la	s manufactured by irge a sample must b in the estimated mean	e	CO4	L3	

All rights reserved	l.	COOF	RSE PLAN - CA	1 2010-19						
8	Find the stu		0		sample of pulation to be	5	CO4	L3		
9	In 200 tosse	othesis that t			ere observed nd 0.01 levels	5	CO4	L3		
10	Find how mar 0.05 level of s		tosses of a co	in will ensure	e its fairness at	5	CO4	L3		
11	In 200 tosse test the hyp	In 200 tosses of a coin,118 heads and 82 tails were observed test the hypothesis that the coin is fair at 0.05 and 0.01 levels of significance								
12	in example	tern described ow the ball 20 ball 40 percent		CO4	L3					
13	1 Find th	A population consists of 4 numbers 3,7,11,15 1 Find the mean and S.D of the sampling distribution mean by considering sampling of size 2 with replacement								
14	distril gms this p of the 1) with repla	The weights of 1500 ball bearings are normally distributed with a mean of 635 gms and S.D of 1.30 gms if 300 random samples of size 36 are drawn from this population determine the expected mean and S.I of the sampling distribution of mean if sampling I done 1) with replacement 2)without replacement								
15	X\Y	-2	-1	4	5	5	CO4	L3		
	1	0.1	0.2	0	0.3					
	2	0.2	0.1	0.1	0					
	Deter 6. Also 1 7. S.D o 8. COV(9. Corre 10. Furth varial									
16	times .fir		confidence l	imits for th	d turns up 120 e proportion of		CO4	L3		
17					es X & Y is as	5	CO4	L3		
	Х\Ү	-4	2		7					
	1	1\8	1\4		1\8					
	5	1\4	1\8		1\8					
	1) E(X) AND E(Y) 2)E(Xy) 3) sigma x σ y 4) cov(x ,y) correlations (x,y)									
18	which he an exan revealed	e supplied to nination of a	a factory c ample of a them were	onformed 200 pieces	the equipment to specification of equipment hi claim at a					

All rights reserved. F. EXAM PREPARATION

1. University Model Question Paper

Cour			nth / Year		
		18MAT41 Sem: VII Marks: 80 Tin			ninutes
Mod ule	Note	Answer all FIVE full questions. All questions carry equal marks.	Marks	СО	Leve
1	a	Derive the Cauchy Riemanns equation in the Cartesian form.	5	CO1	L3
		Derive Cauchy Riemann equations in Polar form. (OR) Derive the necessary conditions for $f(z)=u(r,\theta)+iv(r,\theta)$ to be analy	5 tic	CO1	L3
	с	in a regio	5	CO1	L3
		If $f(z)=u+iv$ is analytic and hence find $f(z)$ if $u-v = (x-y)(x^2+4xy+OR)$	y^2).		L3
L	а	Find the analytic function u+iv where u is given to be $u=e^{x}((x^{2}-y))\cos(y-2xy)$	² 5	CO1	L3
	b	If $f(z)=u+iv$ is analytic function ,show that $\left[\frac{\partial}{\partial x} f(Z) \right]^{2} + \left[\frac{\partial}{\partial y} f(Z) \right]^{2} = f^{I}(Z) ^{2}.$	5	CO1	L3
	С	Find the analytic function $f(z)=u+iv$ whose real part is $y+e^{x} cosy$	5	CO1	L3
		Find the analytic function $f(z)=u+iv$ given that $u=i$.			
2	а	Discussion of transformations:W=z^2	5	C02	L4
	b	Find the bilinear transformation that maps the points z=-1,i,1 on to points w=1,i,-1 respectively.	the5	C02	L4
	С	cauchy's theorem	5	C02	L4
		OR			
2		cauchy's integral formula	5	C02	L3
		Find the bilinear transformation that transforms the points z1=1,z2=i,z onto the points w1=2,w2=i,w3=-2 find the fixed points of transformation.		CO2	L3
	С	Discussion of transformations:W=Z+1/Z	5	CO2	L4
3		Find the binomial probability distribution which has mean 2 and variance 4/3	an 5	CO3	L3
		Fit a poiSSon distribution for the following data and calculate the theoretical frequency X:0 1 2 3 4 Y:122 60 15 2 1	5	CO3	L3
	С	The probability that a man aged 60 will live up to 70 is 0.65. Out of 10 men, now at the age of 60 ,find probability that 1)Atlest 7 will live up) 2)Exactly 9 will live up to 7	of 5	co3	L3
		OR			
3	a	The number of telephone lines busy at an instant of time is binomi variate with probability 0.1 that a line is busy. If 10 lines are chose		CO3	L3

All rig	hts res	erved	COURSE PLAN - (CAY 2018-19		-	-	
	103103	random, what is the prollines are busy iii) At mo			v ii) At least 5			
	b	Given that 2% of the fus by using Poisson distrib 200 fuses has i)No defective fuses ii)3 defective fuse.	ses manufactured ution ,the probabi	by a firm an lity that a b	ox containing	5	CO3	L3
	С	For the following norma S.D of frequency distrib		l c and also	the mean and	5	CO4	L3
	D	In normal distribution 3 over 64 .Find the mean And A(1.4)=0.42	1% of the items a			5	CO3	L3
4	a	Fit a curve of the form $y=ae^{-1}$ x : 77 100 185 y : 2.4 3.4 7.0	^{xx} to the following da 239 285 11.1 19.6	ta :		5	CO2	L3
	b	Fit a parabola by using least following data :	-	-	ethod to the	5	CO2	L3
			2.5 3.0 3.5 .0 2.7 3.4	4.0 4.1				
	С	Fit a traight line y=ax+b x:1 3 4 6 8 9 11 14 Y:1 2 4 4 5 7 8 9		g data		5	CO2	L3
			OR5					
4	a	Obtain the line of regress correlation for the data X:1 2 3 4 5 6 7 X:9 8 10 12 11 13 14		nd the coeff	icient of	5	CO2	L3
	Y:9 8 10 12 11 13 14 b Find the correlation coefficient for the data A:92 89 87 86 83 77 71 63 53 50 Y:86 83 91 77 68 85 52 82 37 57						CO2	L3
	С	Compute the rank corret x:68 64 75 50 64 80 y:62 58 68 45 81 60	75 40 55 64	for the follo	wingdata	5	CO2	L3
5	a	X\Y -2 1 0.1	-1 0.2	4 0	5	5	CO4	L3
			0.1 e marginal probab E(Y) AND E(XY)	0.1 ility distribut	o ion of X ,Y			

All rid	ghts res	served	C	OURSE PLAN - CAY 20	018-19			
	,							
		Correlation of X AND Y Further verify that X &Y are dependent random variables.						
	С		ossed 400 times and t s unbiased at 5% leve		6 times test the hypothesis			
	а	deviations fro	om the mean equal to	with mean 41.5 and 135 and drawn from	the sum of the squares of t a normal population, find the me mean of the mean of the	he	CO4	L3
	b	Find the stu	2,-5	CO4	L3			
	С	2,0,2,2,3,3, taking the mean of the population to be zero The joint distribution of two random variables X & Y is as follows						L3
		X\Y	-4	2	7			
		1	1\8	1\4	1\8			
		5	1\4	1\8	1\8			
	1) E(X) AND E(Y) 2)E(Xy) 3) sigma x σ y 4) cov(x ,y) correlations (x,y)							

2. SEE Important Questions

Cours	se:	Complexanalysis,probability&stastistialmethods Month	/ Year	2020-	07-01			
Crs Code:		18MAT41 Sem: 4 Marks: 80 Time:		180 m	ninutes			
	Note	Answer all FIVE full questions. All questions carry equal marks.	-	-				
Mod ule	Qno.	Important Question	Mark s	со	Year			
1	a	Derive the Cauchy Riemanns equation in the Cartesian form.	5	CO1	2014			
	b	Derive Cauchy Riemann equations in Polar form	5	CO1	2015			
	с	If $w=z^3$ find dw/dz .	5	CO1	2009			
	d	Construct the analytic function whose real part is $e^{x}(xsiny + ycosy)$	5	CO1	2010			
		If $f(z)=u(r,\theta)+iv(r,\theta)$ is an analytic function, show that u and v 5						
		satisfy yhe equation $\frac{\partial^2 \phi}{\partial r^2} + \frac{1}{r} \frac{\partial \phi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \phi}{\partial \theta^2} = 0$						
	f	Find the analytic function $f(z)=u+iv$ whose real part is $y+e^x \cos y$.	5	CO2	2007			
			5	CO2	2017			
2	а	Discussion of transformations:W=z^2	5	CO2	2009			
	b	Discussion of transformations:W=e^Z	5	CO2	2011			
	С	Discussion of transformations:W=Z+1/Z	5	CO2	2013			
	d	Find the bilinear transformation that maps the points z=-1,i,1 on to th points w=1,i,-1 respectively.	e5	CO2	2015			
	е	Find the bilinear transformation that maps the points 1,i,-1 onto the poin i,0,-1 respectively	ts5	CO2	2015			
	f	cauchy's integral formmula	5	CO2	2017			
	g	P.T w=1+z/1-z map the region z less than are equal to 1 onto the ha plane R(U) greaterthan are equal to 0 being the region ugreater than a equal to 0	-	CO2	2017			

CO3

CO3

CO3

CO3

CO3

CO3

CO3

CO3

CO2

CO2

CO2

CO2

5

2017

2009

2011

2011

2018

2011

2017

2018

2016

2017

2016

2007

A 11	abto	convod		C	OURSE PLAN	- CAY 2018-	19		·				
All ri	gnis re	served.											
1													
3	а	The pdf	The pdf of a variate x is given by the following table:										
			Х	0	1	2	3	4	5	5			
			P(x)	k	3k	5k	7k	9k	1	μk			
			For w	hat value	of k this r	epresen	ts a valid						
		probab	ility distr	ibution?									
	b	Given th	hat 2% of	the fuses ma	anufacture	d by a firi	n are defe	ctive ,fi	ind	5			
		by using	g Poisson o	distribution	,the proba	bility that	a box con	taining	200				
		fuses ha	-										
		i)No defective fuses ii)3 or more defective fuses iii)At least one											
		defective fuse. 5											
	С												
		In normal distribution 31% of the items are under 45 and 8% are over $(4 \text{ Find the mass and standard deviation given that } A(0.5) 0.10 \text{ And}$											
		64 .Find the mean and standard deviation given that A(0.5)-0.19 And $A(1.4)=0.42$											
		A(1.4)=0.42 4. A die is thrown 8times. Find the probability that '3' falls 5											
	d	4. A die is thrown 8times. Find the probability that '3' falls											
			Exactly 2 1										
			At least on										
		At the most 7times pdf of a variate X is given by the following table:											
	е	p p			n by the lo		1 DIE:		2				
			P(X)	0.1	- <u>-</u>	0.2	2k		0.3				
		For wha		÷	ents a valio			ion?	0.0				
		For what value of k this represents a valid probability distribution? Also find :i)p(x≥2) ii)p(-1 <x≤2)< td=""></x≤2)<>											
	f	The number of telephone lines busy at an instant of time is binomial 5 variate with probability 0.1 that a line is busy. If 10 lines are chosen at											
		random, what is the probability that i) No line is busy ii) At least 5 lines are busy iii) At most 3 lines are busy.											
	g	Find the probability that in 100 tosses of a fair coin between 45%											
	9			he outcome				00000	10/0				
	h			o samples o									
		expect to find that 1)iess than 40%are boys,2)between40%and 60%											
		are boys,3)55%or more are girls											
4	2	Г:4	C 41 C	bx + - +1-	. 6.11	1				F			
4	а			n y=ae ^{bx} to th 185 239	-	data :				5			
		x : 77	100	185 239	285								
		y: 2.4	3.4	7.0 11.1	19.6								
	b		bola by usin	g least square	s method to	the followir	ng method to	the follo	owing	5			
		data :											
		1.0	1.5		2.0 2.5	4.0							
		x : 1.0	1.5 2	2.0 2.5	3.0 3.5	4.0							
				0									
		y∶ 1.1	1.3 1	6 2.0 2	2.7 3.4	4.1							
	С			=ax+b for t	he followi	ng data				5			
		v·1 3 / /	580111/	1						1			

d

x:1 3 4 6 8 9 11 14 Y:1 2 4 4 5 7 8 9

X:50 70 100 120 Y:12 15 21 25

Fit a straight line in the leat quare ence for the following data

	0	Fit a second degree periods $y = ay \land 2 \pm by \pm a$ in the last gavers gaves for	5	CO2	2009
	e	Fit a second degree parabola $y=ax^2+bx+c$ in the leat square sence for the following data X:1 2 3 4 5	5	CO2	2006
		Y:10 12 13 16 19			
	f	Fit a curve of the form $y=ae^bx$ for the data X: 0 2 4 Y:8.12 12 31.82	5	CO2	2010
	g	Compute the coefficient of correlation and the equation of the lines of regression for the data X:1 2 3 4 5 6 7 Y:9 8 10 12 11 13 14	5	CO2	2010
	h	Obtain the line of regression and f hence find the coefficient of correlation for the data X:1 2 3 4 5 6 7 Y:9 8 10 12 11 13 14	5	CO2	2010
	İ	Find the correlation coefficient for the data A:92 89 87 86 83 77 71 63 53 50 Y:86 83 91 77 68 85 52 82 37 57	5	CO2	2013
	j	Compute the rank correlation coefficient for the followingdata x:68 64 75 50 64 80 75 40 55 64 y:62 58 68 45 81 60 68 48 50 70	5	CO2	200
	a	If the mean of an infinite population is 575 with standard deviation8.3, how large a sample must be used in order that there be one chance in 100 that the mean of the sample is less than 572?	5	CO4	201
	b	Find the probability that in 100 tosses of a fair coin between 45% and 55% of the outcomes are heads	5	CO4	201
	с	Out of 1000 samples of 200 children each in how many would you expect to find that 1)iess than 40% are boys, 2) between 40% and 60% are boys, 3) 55% or more are girls	5	CO4	201
	d	mean of 82 and a standard deviation of 18.find the 95% confidence limits for the mean of the population from which the sample is drawn	5	CO4	200
	e	The mean and standard deviation of marks scored by a sample of 100 students are 67.45 and 2.92 find 1)95% 2)99% confidence intervals for estimating the mean marks of the student population	5	CO4	200
	f	confidence limits for the proportion of heads turning up in infinitely many tosses	5	CO4	201
	g	A biased coin is tossed 500 times and head turns up 120 times .find the 95% confidence limits for the proportion of heads turning up in infinitely many tosses	5	CO4	201
	h	A coin was tossed 400 times and the head turned up 216 times test the hypothesis that the coin is unbiased at 5% level of significance./	5	CO4	201
	İ	Find how many heads in 64 tosses of a coin will ensure its fairness at 0.05 level of significance.	5	CO4	201
	j	F or a random sample of 16 values with mean 41.5 and the sum of the squares of the deviations from the mean equal to 135 and drawn from a normal population, find the 95% confidence limits and the confidence interval, for the mean of the mean of the population.	5	CO4	201
_	k	Find the students 't' for the following values in a sample of eight:-4,-2,- 2,0,2,2,3,3, taking the mean of the population to be zero	5	CO4	200

All rights res	served.		OURSE PLAN - CAY 20	18-19					
l	In 200 tosses of a coin,118 heads and 82 tails were observed test the 5 CO4 2009 hypothesis that the coin is fair at 0.05 and 0.01 levels of significance								
m			the frequency di n by the following	stribution for the num table	iber5	CO4	2011		
n	X:1 2 3 4 5 6				5	CO4	2015		
0	f:15 6 4 7 11 17 te	5	CO4	2017					
p	p The joint distribution of two random variables X & Y is as follows						2018		
	Χ\Υ	-4	2	7					
	1	1\8	1\4	1\8					
	5	1\4	1\8	1\8					
	5 14 10 10 1) E(X) AND E(Y) 2)E(Xy) 3) sigma x σ y 4) cov(x ,y) p(x,y)								