Ref No:

Sri Krishna Institute of Technology Bengaluru-560090

COURSE PLAN

Academic Year - 2018-2019

Program:	B E – Electrical & Electronics Engineering			
Semester :	4			
Course Code:	17EEL48			
Course Title:	OP AMP & LIC Lab			
Credit / L-T-P:	2 / 0-0-2			
Total Contact Hours:	36			
Course Plan Author:	Bharati.S.K			

Academic Evaluation and Monitoring Cell

#29, Hesaragatta Main Road, Chimney Hills Chikkabanavara Post Bengaluru – 560090, Karnataka, India Phone / Fax :080-23721477/28392221/23721315 Web: www.skit.org, e-mail:skitprinci1@gmail.com

17EEL48

INSTRUCTIONS TO TEACHERS

- Classroom / Lab activity shall be started after taking attendance.
- Attendance shall only be signed in the classroom by students.
- Three hours attendance should be given to each Lab.
- Use only Blue or Black Pen to fill the attendance.
- Attendance shall be updated on-line & status discussed in DUGC.
- No attendance should be added to late comers.
- Modification of any attendance, over writings, etc is strictly prohibited.
- Updated register is to be brought to every academic review meeting as per the COE.

Table of Contents

A. LABORATORY INFORMATION	4
<u>1. Laboratory Overview</u>	
2. Laboratory Content	
3. Laboratory Material	
<u>4. Laboratory Prerequisites:</u>	
<u>4. Laboratory Prerequisites:</u>	5
B. Laboratory Instructions.	<u>6</u>
1. General Instructions	6
2. Laboratory Specific Instructions	6
C. OBE PARAMETERS.	<u>6</u>
<u>1. Laboratory Outcomes</u>	<u>6</u>
2. Laboratory Applications	7
3. Mapping And Justification	8
<u>4. Articulation Matrix</u>	8
5. Curricular Gap and Experiments	9
6. Experiments Beyond Syllabus	9
D COURSE ASSESSMENT	10
<u>1. Laboratory Coverage</u>	
2. Continuous Internal Assessment (CIA)	10
E. EXPERIMENTS	<u></u> 11
Experiment 01 : Structure of C program	11
Experiment 02 : Keywords and identifiers	<u>12</u>
Experiment 03 :	
Experiment 04 :	
F. Content to Experiment Outcomes	14
<u>1. TLPA Parameters</u>	
2. Concepts and Outcomes:	15

Note : Remove "Table of Content" before including in CP Book

Each Laboratory Plan shall be printed and made into a book with cover page Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

A. LABORATORY INFORMATION

1. Laboratory Overview

Degree:	B.E	Program:	EE
Year / Semester :	2/4	Academic Year:	2018-19
Course Title:	OP AMP & LIC Lab	Course Code:	17EEL48
Credit / L-T-P:	2 / 0-0-2	SEE Duration:	180 Minutes
Total Contact Hours:	36Hrs	SEE Marks:	60 Marks
CIA Marks:	40 Marks	Assignment	-
Lab. Plan Author:	Bharati S K	Sign	Dt :
Checked By:		Sign	Dt :

2. Laboratory Content

Expt. Title of the Experiments Lab Concept Blooms

		Hours		Level
1	Design and verify a precision full wave rectifier. Determine the performance parameters.	3	Rectificatio n	L4
2	Design and realize to analyse the frequency response of an op – amp amplifier under inverting and non - inverting configuration for a given gain.	3	Frequency Response	L4
3	Design and verify the output waveform of an op – amp RC phase shift oscillator for a desired frequency.	3	Sinosoidal signal Generation	L4
4	Design and realize Schmitt trigger circuit using an op – amp for desired upper trip point (UTP) and lower trip point (LTP).	3	Square/ Rectangular Wave Generation	L4
5	Verify the operation of an op – amp as (a) voltage comparator circuit and (b) zero crossing detector.	3	Voltage Comparisio n	L3
6	Design and verify the operation's of op – amp as an (a) adder (b) subtractor (c) integrator and (d) differentiator.	3	Airthmatic Operation	L4
7	Design and realize an op – amp based first order Butterworth (a) Low pass (b) High pass and (c) Band pass filters for a given cut off frequency frequencies to verify the frequency response characteristic.	3	Active filtration	L4
8	Design and realize an op – amp based function generator to generate sine, square and triangular waves of desired frequency.	3	Different Signal Generation	L4
9	Design and realization of R – 2R ladder DAC	3	Digital to Analog Conversion	L4
10	Realization of Two bit Flash ADC.	3	Analog to Digital Conversion	L3
11	Design and verify an IC 555 timer based pulse generator for the specified pulse.	3	Pulse Generation	L4
12	Designing of Fixed voltage power supply (voltage regulator) using IC regulators 78 series and 79 series.	3	Voltage Regulation	L4

3. Laboratory Material

Books & other material as recommended by university (A, B) and additional resources used by Laboratory teacher (C).

Expt.	Details	Expt. in book	Availability
		DOOK	
A	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
	Op-Amps and Linear Integrated Circuits,Ramakant A Gayakwad, Pearson	5	In Lib / In Dept
9,10	4 th Edition 2015	Ū	
1,3,4,5	Operational Amplifiers and Linear ICs,David A. Bell,Oxford,3 rd Edition	7	In Lib/ In
,8,11,1	2011		dept
2			
В	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
12	Linear Integrated Circuits; Analysis,Design and Applications,B.	8	In Lib
	Somanthan Nair, Wiley India,2013		
8,	Linear Integrated Circuits S. Salivahanan, et al McGraw Hill 2 nd	7	In Lib
	Edition,2014.	-	
3	Operational Amplifiers and Linear Integrated Circuits K. Lal Kishore	4	In lib
	Pearson 1 st Edition, 2012	-	
С	Concept Videos or Simulation for Understanding	-	-
CO1	Rectification		
	https://nptel.ac.in/courses/108101091/46		

CO2	Frequency Response of Op Amp		
	https://www.youtube.com/watch?v=wHN0-wQKtZl		
co3	RC Phase Shift Oscillator:		
	https://www.youtube.com/watch?v=8iPRR6iCD8A&t=778s		
	https://www.youtube.com/watch?v=8eLoIUGSXns		
c04	Schmitt Trigger:		
	https://www.youtube.com/watch?v=V-bAduYIuil&list=PLuv3GM6-		
	gsE3npYPJJDnEF3pdiHZT6Kj3&index=50		
C05	Comparator and ZCD:		
	https://www.youtube.com/watch?v=V-bAduYluil&list=PLuv3GM6-		
	gsE3npYPJJDnEF3pdiHZT6Kj3&index=50		
c06	Mathematical Operations:		
	https://www.youtube.com/watch?		
	<u>v=RSWsJjUqD2w&list=PLuv3GM6-</u>		
	<u>gsE3npYPJJDnEF3pdiHZT6Kj3&index=49</u>		
C07	Filter(LPF,HPF and BPF):		
	https://www.youtube.com/watch?v=W70GFpfILKk&list=PLuv3GM6-		
	gsE3npYPJJDnEF3pdiHZT6Kj3&index=24		
	https://www.youtube.com/watch?v=2e0YSb2lo&list=PLuv3GM6-		
	gsE3npYPJJDnEF3pdiHZT6Kj3&index=25		
	https://www.youtube.com/watch?		
	v=uj4b2O4XVVE&list=PLuv3GM6-		
	<u>gsE3npYPJJDnEF3pdiHZT6Kj3&index=26</u>		
co8	Signal Generator(square,Triangular and Sin wave):		
	https://www.youtube.com/watch?v=PIsNKq9kDTQ		
co9	R-2R Ladder DAC:		
	https://www.youtube.com/watch?v=wa7plviT-do&t=1 <u>991s</u>		
C010	Flash ADC:		
	https://www.youtube.com/watch?v=wa7plviT-do&t=1991s		
CO11	Multivibrators using 555 Timer:		
C012	https://www.youtube.com/watch?v=Rd3QSzye72w Voltage Regulation		
012	https://www.youtube.com/watch?v=5rRKmZs2lil		
D	Software Tools for Design	-	-
CO1-	Multisim		
CO12			
E	Recent Developments for Research	-	-
C01	Improved		
	accuracy-https://ieeexplore.ieee.org/abstract/document/4		
	303403		
CO2	High		
	performance- <u>https://ieeexplore.ieee.org/abstract/docume</u>		
	nt/896237		
co3	Improved		
	linearity- <u>https://ieeexplore.ieee.org/abstract/document/46</u>		
	71125		
co4	Improved timing accuracy		
	- <u>https://patents.google.com/patent/US6055287A/en</u>		
C05	Improved timing accuracy		
	- <u>https://patents.google.com/patent/US6055287A/en</u>		
co6	High		

	1	1	 1
	performance- <u>https://ieeexplore.ieee.org/abstract/docume</u>		
	<u>nt/896237</u>		
C07	High frequency operation -		
	https://www.tandfonline.com/doi/abs/10.1080/002072193		
	<u>08925897</u>		
co8	Improved		
	linearity-https://ieeexplore.ieee.org/abstract/document/46		
	71125		
co9	High		
	performance- <u>https://ieeexplore.ieee.org/abstract/docume</u>		
	nt/896237		
C010	High		
	performance- <u>https://ieeexplore.ieee.org/abstract/docume</u>		
	nt/896237		
C011	Reduced recovery time -		
	https://digital-library.theiet.org/content/journals/10.1049/i		
	<u>et-cds_20060359</u>		
C012	Low drop out voltage with improved stability -		
	https://patents.google.com/patent/US6373233B2/en		
F	Others (Web, Video, Simulation, Notes etc.)		
	Nptel online video lecture	Www.on	
		linecour	ecture
		ses.nptel	
		.ac.in	

4. Laboratory Prerequisites:

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Students must have learnt the following Courses / Topics with described (Content

			locowing obdises? Toples with dese			
Expt.	Lab.	Lab. Name	Topic / Description	Sem	Remarks	Blooms
	Code					Level
1	17ELN24	Basic	Semiconductor devices and BJT/	2		L2
		Electronics	Fundamentals and characteristics			Understa
			of diode , transistor characteristics			nd
2	17EE34	Analog	Working and design of Clipping and	3		L4
		Electronics	Clamping circuits			Analyze
		Circuits				
3	17EE34	Analog	Feedback amplifier (Feedback	3		L2
		Electronics	concept)			Understa
		Circuits				nd
4	17EE34	Analog	Working and design of oscillators.	3		L4
		Electronics				Analyze
		Circuits				-

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

E	Expt.		Торіс	/ Des	cription		Ar	ea		Rema	irks		Blooms
													Level
	1	NPTEL	Videos	/Exp	eriment	: Op-am	p Place	ment/ Vic	deo l	lecturing b	y IISc prof	essor	Analyze
		based	ECG	Sig	nal /	Acquisitio	n, GA	ATE on	ו "E	lectronics	Modules	for	L4
		Conditic	oning	and	Proces	ssing fo	or	Inc	dustr	ial Appl	cations"	and	

			· · · · ·	
	Computation of BPM		assignment questions.	
2	NPTEL Videos /Experiment: Op-amp			-
	based ECG Signal Acquisition,		on "Electronics Modules for	L4
	Conditioning and Processing for		Industrial Applications" and	
	Computation of BPM		assignment questions.	
3	NPTEL Videos /Experiment: Op-amp			-
	based ECG Signal Acquisition,		on "Electronics Modules for	L4
	Conditioning and Processing for		Industrial Applications" and	
	Computation of BPM		assignment questions.	A
4	NPTEL Videos /Experiment: Op-amp			-
	based ECG Signal Acquisition,		on "Electronics Modules for	L4
	Conditioning and Processing for		Industrial Applications" and	
	Computation of BPM		assignment questions.	A
5	NPTEL Videos /Experiment: Op-amp			-
	based ECG Signal Acquisition, Conditioning and Processing for		on "Electronics Modules for	L4
	Conditioning and Processing for Computation of BPM		Industrial Applications" and assignment questions.	
6	NPTEL Videos /Experiment: Op-amp			Analyza
	based ECG Signal Acquisition,		on "Electronics Modules for	L4
	Conditioning and Processing for		Industrial Applications" and	L4
	Computation of BPM		assignment questions.	
7	NPTEL Videos /Introdutction to Gas			Analyze
'	Sensors and Experiment on		on "Electronics Modules for	L4
	Signalconditioning Circuit for Operating		Industrial Applications" and	L4
	Heater Voltage of MQ-7 Gas Sensor		assignment questions.	
8	NPTEL Videos /Introdutction to Gas			Analvze
	Sensors and Experiment on		on "Electronics Modules for	L4
	Signalconditioning Circuit for Operating		Industrial Applications" and	
	Heater Voltage of MQ-7 Gas Sensor		assignment questions.	
9	NPTEL Videos /Introdutction to Gas			Analyze
	Sensors and Experiment on		on "Electronics Modules for	L4
	Signalconditioning Circuit for Operating		Industrial Applications" and	
	Heater Voltage of MQ-7 Gas Sensor		assignment questions.	
10	NPTEL Videos /Introdutction to Gas	Placement/	Video lecturing by IISc professor	Analyze
	Sensors and Experiment on	GATE	on "Electronics Modules for	L4
	Signalconditioning Circuit for Operating		Industrial Applications" and	
	Heater Voltage of MQ-7 Gas Sensor		assignment questions.	
11	NPTEL Videos /Introdutction to Gas		Video lecturing by IISc professor	Analyze
	Sensors and Experiment on		on "Electronics Modules for	L4
	Signalconditioning Circuit for Operating		Industrial Applications" and	
	Heater Voltage of MQ-7 Gas Sensor		assignment questions.	
12		Placement/	Video lecturing by IISc professor	Analyze
	Sensors and Experiment on		on "Electronics Modules for	L4
	Signalconditioning Circuit for Operating		Industrial Applications" and	
	Heater Voltage of MQ-7 Gas Sensor		assignment questions.	

B. Laboratory Instructions

1. General Instructions

SNo	Instructions	Remarks
1	Observation book and Lab record are compulsory.	
2	Students should report to the concerned lab as per the time table.	
3	After completion of the program, certification of the concerned staff in-	
	charge in the observation book is necessary.	
	Student should bring a notebook of 100 pages and should enter the	
	readings /observations into the notebook while performing the experiment.	
	The record of observations along with the detailed experimental procedure	
	of the experiment in the Immediate last session should be submitted and	
	certified staff member in-charge.	

6	Should attempt all problems / assignments given in the list session wise.	
7	It is responsibility to create a separate directory to store all the programs, so	
	that nobody else can read or copy.	
8	When the experiment is completed, should disconnect the setup made by	
	them, and should return all the components/instruments taken for the	
	purpose.	
9	Any damage of the equipment or burn-out components will be viewed	
	seriously either by putting penalty or by dismissing the total group of	
	students from the lab for the semester/year	
10	Completed lab assignments should be submitted in the form of a Lab	
	Record in which you have to write the algorithm, program code along with	
	comments and output for various inputs given	

2. Laboratory Specific Instructions

SNo	Specific Instructions	Remarks
1	Students are expected to study the circuit, theory and procedures, expected output before doing the experiment.	
	Adjustment of signal generator: - Before connecting the signal generator to the circuit check the followings. a. Set the shape of the waveform (sinusoidal), b. Set the frequency using coarse and fine adjustments. c. Set the offset adjustments. Set the CRO in DC mode and ensure the waveform is symmetry in both positive and negative cycle. If not , adjust it using the DC offsetting potentiometer d. Set the voltage magnitude using Vcourse settings and Vfine adjustments. Adjustment of CRO: a. Select the right voltage and time scale to get the proper waveform b. For clipper and clamper circuits, observe the waveform in DC mode only c. Set the input waveform mainly for offset setting in DC mode only. d. Before measurement, ensure X & Y are in calibrated mode (if provided	
	externally) e. Ensure that Channel selection and trigger mode are properly set. f. In case of two channels do not mix the signal and ground terminals	
4	Multi-meter adjustments:- a. Set the right mode before taking the readings. b. For current reading, connect the multimeter in mA (or A) mode to the circuit before switching on the supply. Do not remove the current meter when the supply is on. Check for ac and dc modes as required. c. For voltage reading ensure that proper ac or dc setting. d. Use the proper leads for the measurement. Wrong cables damage the instrument.	
5	After adjusting the input voltage, check the circuit connections before turning the power on.	
6	After adjusting the input voltage, check the circuit connections before turning the power on.	
7	Don't pull out the connections with the power supply on.	
8	Wear your College ID card Do not operate the IC trainer kits without permission	
9	Avoid loose connection and short circuits	
10	Do not interchange the ICs while doing the experiment	
11	Handle the trainer kit properly	
12	Do not panic if you do not get the output	
13	After completion of the experiment switch off the power and return the components	

C. OBE PARAMETERS

1. Laboratory Outcomes

Expt.	Lab Code #	COs / Experiment Outcome	Teach. Hours	Concept	Instr Method	Assessment Method	Blooms Level
-	-	At the end of the experiment, the student should be able to	-	-	-	-	-
1		Design and verify OP-Amp as a precision full wave rectifier using lic hardware kit.		Rectification	ion	Voce	L4
2		Design and realize to analyse the frequency response of an op – amp amplifier under inverting and non - inverting configuration for a given gain using lic hardware kit.	03	Frequency Response	Conduct ion	Test & Viva Voce	L4
3		Design and verify the output waveform of an op – amp RC phase shift oscillator for a desired frequency using lic hardware kit.	03	Sinosoidal signal Generation	Conduct ion	Test & Viva Voce	L4
4	17EEL48.4	Design and realize Schmitt trigger circuit using an op – amp for desired upper trip point (UTP) and lower trip point (LTP) using lic hardware kit.	03	Square/ Rectangular Wave Generation	Conduct ion	Test & Viva Voce	L4
5		Verify the operation of an op – amp as (a) voltage comparator circuit and (b) zero crossing detector using lic hardware kit.	03	Voltage Comparision		Voce	L3
6	17EEL48.6	Design and verify the operation's of op – amp as an (a) adder (b) subtractor (c) integrator and (d) differentiator using lic hardware kit.	03	Airthmatic Operation	Conduct ion	Test & Viva Voce	L4
7		Design and realize an op – amp based first order Butterworth (a) Low pass (b) High pass and (c) Band pass filters for a given cut off frequency frequencies to verify the frequency response characteristic using lic hardware kit.	03	Active filteration	Conduct ion	Test & Viva Voce	L4
8		Design and realize an op – amp based function generator to generate sine, square and triangular waves of desired frequency using lic hardware kit.	03	Different Signal Generation	Conduct ion	Test & Viva Voce	L4
9		Design and realize of R – 2R ladder DAC using lic hardware kit.		Digital to Analog Conversion	Conduct ion	Test & Viva Voce	L4
10	17EEL48.10	Realize of Two bit Flash ADC using lic hardware kit.	03	Analog to Digital Conversion	Conduct ion	Test & Viva Voce	L3
11		Design and verify an IC 555 timer based pulse generator for the specified pulse using lic hardware kit.		Pulse Generation	Conduct ion	Voce	L4
12	17EEL38.12	Designing of Fixed voltage power supply (voltage regulator) using IC regulators 78 series and 79 series using lic hardware kit.		Voltage Regulation	Conduct ion	Test & Viva Voce	L4
-		Total	36	-	-	-	-

2. Laboratory Applications

Expt.	Application Area	CO	Level
1	Rectifiers are used in DC regulated power supply.	CO1	L4
2	Anlysis of freqency response of op amp	CO2	L4
	Signal generator is used in industry, agriculture, boimedicine $$ and other fields such	CO3	L4
	as high frequency induction heating, melting , quenching, ultrasonic diagnosis,		
	nuclear magnetic resonance imaging etc		
4	Used in square wave generation.	CO4	L4
5	Comparators are used in oscillators, DAC, ADC , multi-vibrators and etc	CO5	L3
6	Summing amplifier is Used in audio mixer to add different signals with n equal	CO6	L4
	gains. Instrumentaion amplifiers are used in data acquisition systems.		
7	Active filters are used in communication systems for suppressing noise, in audio	CO7	L4
	systems , biomedical instruments to interface psychollogical sensors with		
	diagnostic equipments and data logging.		
8	Use in signal/function generator.	CO8	L4
9	DAC are used in data acquition system.	CO9	L4
10	ADC are used in data acquition system.	CO10	L3
11	Use in frequency divider, pulse width modulation ,linear ramp generator and	CO11	L4
	voltage controlled oscillator.		
12	Regulators are used in developing regulated DC power supply.	CO12	L4

Note: Write 1 or 2 applications per CO.

3. Mapping And Justification

CO – PO Mapping with mapping Level along with justification for each CO-PO pair.

To attain competency required (as defined in POs) in a specified area and the knowledge & ability required to accomplish it.

LAPI	xpt Mapping Mapping Level			Justification for each CO-PO pair					
-	со	PO	_	'Area': 'Competency' and 'Knowledge' for specified 'Accomplishment'	el -				
1	1	1	3	Knowledge of rectification using op amp is required in a designing of DC regulated power supply.	L2				
	1	2	3	Analysis of DC regulated power supply need knowledge of rectification using op amp.	L3				
	1	3	3	Design of rectifier using op amp is a part of DC regulated power supply design.	L4				
	1	11	3	The Design of rectifier using op amp will be used in projects.	L4				
2	2	1	3	Knowledge of frequency response of op amp is required in a designing of electronics circuits	L2				
	2	2	3	Analysis of problem of electronics circuits need knowledge of frequency response of op amp.	L3				
	2	3	3	Design of amplifier using op amp for given gain is a part of electronics circuits design.	L4				
	2	11	3	The Design of amplifier for desired gain using op amp will be used in projects.	L4				
3	3	1	3	Knowledge of signal generator using op amp is required in a designing of complex electronics circuits.	L2				
	3	2	3	Analysis of complex electronics circuits may need knowledge of signal generator using op amp.	L3				
	3	3	3	Design of signal generator using op amp is a part of complex electronic circuits design.	L4				
	3	11	3	The Design of signal generator using op amp may be used in projects.	L4				
4	4	1	3	Knowledge of comparator and converter using op amp is required in a designing of complex electronics circuits.	L2				
	4	2	3	Analysis of complex electronics circuits may need knowledge of using comparator and converter using op amp.	L3				
	4	3	3	Design of comparator and converter using op amp is a part of complex electronic circuits design.	L4				

					_
	4	11	3	The Design of comparator and converter using op amp will be used in projects.	L4
5	5	1	3	Knowledge of comparator and converter using op amp is required in a designing of complex electronics circuits.	L2
	5	2	3	Analysis of complex electronics circuits may need knowledge of using comparator and converter using op amp.	L3
	5	11	3	The Design of comparator and converter using op amp will be used in projects.	L4
6	6	1	3	Knowledge of linear applications such as adder, summer, AC and DC amplifier using op amp is required in understanding the working of complex electronic circuits.	L2
	6	2	3	Analysis of complex electronic circuits needs knowledge of Op amp linear applications.	L3
	6	3	3	Design of linear applications such as adder,summer,AC and DC amplifier using op amp are used in many instrumentation amplifier	L4
	6	11	3	The Design knowledge of linear applications of Op Amp can be used in electronic-projects.	L4
7	7	1	3	Knowledge of filters using op amp is required in understanding the working of complex electronic circuits.	L2
	7	2	3	Analysis of complex electronic circuits needs knowledge of filters using op amp.	L3
	7	3	3	Design of filters using op amp are used usually part of communication systems.	L4
	7	11	3	The Design knowledge of filters using Op Amp can be used in electronic- projects.	L4
8	8	1	3	Knowledge of signal generator using op amp is required in a designing of complex electronics circuits.	L2
	8	2	3	Analysis of complex electronics circuits may need knowledge of signal generator using op amp.	L3
	8	3	3	Design of signal generator using op amp is a part of complex electronic circuits design.	L4
	8	11	3	The Design of signal generator using op amp may be used in projects.	L4
9	9	1	3	Knowledge of D/A conversion using op amp is required in a designing of Data acquisition systems.	
	9	2	3	Analysis of Data acquisition system need knowledge of D/A conversion using op amp.	L3
	9	3	3	Knowledgeof D/Aconversion using op amp will be applied in projects.	L4
	9	11	3	Knowledgeof D/A conversion using op amp will be applied in projects.	L4
10	10	1	3	Knowledge of A/D conversion using op amp is required in a designing of	
				Data acquisition systems.	
	10	2	3	Analysis of Data acquisition system need knowledge of A/D conversion using op amp.	L3
	10	11	3	Knowledgeof A/D conversion using op amp will be applied in projects.	L4
11	11	1	3	Knowledge of pulse generation using 555 timer is required in delay and timing circuits such as clock pulse generation.	L2
	11	2	3	Analysis of delay and timing circuits need knowledge of pulse generation using 555 timer.	L3
	11	3	3	Design of multi-vibrator using 555 timer can be a part of compex application design.	L4
	11	11	3	Knowledge of pulse generation using 555 timer will be applied in projects.	L4
12	12	1	3	Knowledge of regulators using op amp is required in a designing of DC power supply.	L2
	12	2	3	Analysis of DC power supply needs knowledgeof regulator using op amp.	L3
	10	2	2	Design of regulator using op amp is a part of DC power supply design.	L4
	12	3	3	Design of regulator using op and is a part of DC power supply design.	

4. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

00		g with mapping level for each CO-	PO	pai	r, w	iiin (ent				
-	- Experiment Outcomes Program Outcomes ot. CO.# At the end of the experiment PO							-										
Expt.	CO.#	At the end of the experiment student should be able to																
			1	2	3	4	5	6	7	8	9	10		12	01	02	03	
1		Design and verify OP-Amp as a precision full wave rectifier using lic hardware kit.		3	3								3					L4
2		Design and realize to analyse the frequency response of an op – amp amplifier under inverting and non - inverting configuration for a given gain using lic hardware kit.	3	3	3								3					L4
3		Design and verify the output waveform of an op – amp RC phase shift oscillator for a desired frequency using lic hardware kit.	3	3	3								3					L4
4		Design and realize Schmitt trigger circuit using an op – amp for desired upper trip point (UTP) and lower trip point (LTP) using lic hardware kit.	3	3	3								3					L3
5		Verify the operation of an op – amp as (a) voltage comparator circuit and (b) zero crossing detector using lic hardware kit.	3	3									3					L4
6		Design and verify the operation's of op – amp as an (a) adder (b) subtractor (c) integrator and (d) differentiator using lic hardware kit.	3	3	3								3					L4
7	17EEL48.7	Design and realize an op – amp based first order Butterworth (a) Low pass (b) High pass and (c) Band pass filters for a given cut off frequency frequencies to verify the frequency response characteristic using lic hardware kit.	3	3	3								3					L4
8		Design and realize an op – amp based function generator to generate sine, square and triangular waves of desired frequency using lic hardware kit.	3	3	3								3					L4
9		Design and realize of R – 2R ladder DAC using lic hardware kit.		3	3								3					L3
10		Realize of Two bit Flash ADC using lic hardware kit.		3									3					L4
11		Design and verify an IC 555 timer based pulse generator for the specified pulse using lic hardware kit.		3	3								3					L4
12		Designing of Fixed voltage power supply (voltage regulator) using IC regulators 78 series and 79 series using lic hardware kit.	0	3	3								3					
-	PO, PSO	1.Engineering Knowledge; 2.Probl	lem	Ar	naly	sis;	3.L	Des	ign	/	Dev	velo	рт	ent	of	Sc	oluti	ons;

Copyright ©2017. cAAS. All rights reserved.

4.Conduct Investigations of Complex Problems; 5.Modern Tool Usage; 6.The Engineer and
Society; 7.Environment and Sustainability; 8.Ethics; 9.Individual and Teamwork;
10.Communication; 11.Project Management and Finance; 12.Life-long Learning;
S1.Software Engineering; S2.Data Base Management; S3.Web Design

5. Curricular Gap and Experiments

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Expt	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					

Note: Write Gap topics from A.4 and add others also.

6. Experiments Beyond Syllabus

Topics & contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Expt	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1	Experiment: Op-amp	Video Session	14 th Feb 2019	Dr Hardik Pandey,	3
	based ECG Signal			IISc Professor	
	Acquisition,				
	Conditioning and				
	Processing for				
	Computation of BPM				

D. COURSE ASSESSMENT

1. Laboratory Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Stude	indent. I Assignment per chapter per student. I seminar per test per student.										
Unit	Title	Teachi				lestior				CO	Levels
		ng	CIA-1	CIA-2	CIA-3	Asg-1	Asg-2	Asg-3	SEE		
		Hours									
1	Design and verify a precision full			1	-	-	-	-	1	CO1	L4
	wave rectifier. Determine the										
	performance parameters.										
	Design and realize to analyse the	03	1	-	-	-	-	-	1	CO2	L4
	frequency response of an op –										
	amp amplifier under inverting and										
	non- inverting configuration for a										
	given gain.										
3	Design and verify the output	03	-	1	-	-	-	-	1	CO3	L4
	waveform of an op – amp RC										
	phase shift oscillator for a desired										
	frequency.									<u> </u>	
4	Design and realize Schmitt trigger	03	-	1	-	-	-	-	1	CO4	L4
	circuit using an op – amp for										
	desired upper trip point (UTP) and										
	lower trip point (LTP).	00	1						1	COF	
	Verify the operation of an op –	03	1	-	-	-	-	-	1	CO5	L3
	amp as (a) voltage comparator circuit and (b) zero crossing										
	detector.										
	Design and verify the operssation	03	1						1	CO6	
		03	<u> </u>	-			-	-	-		L4

	of op – amp as an (a) adder (b) subtractor (c) integrator and (d) differentiator.										
7	Design and realize an op – amp based first order Butterworth (a) low pass (b) high pass and (c)band pass filters for a given cut off frequency/frequencies to verify the frequency response characteristic.	03	1	_	-	_	_	-	1	CO7	L4
8	Design and realize an op – amp based function generator to generate sine, square and triangular waves of desired frequency.	03		1	-	_	_	-	1	CO8	L4
9	Design and realization of R – 2R ladder DAC	03	-	-	1	-	-	-	1	CO9	L4
10	Realization of Two bit Flash ADC.	03	-	-	1	-	-	-	1	CO10	L3
11	Design and verify an IC 555 timer based pulse generator for the specified pulse.	03	-	-	1	-	-	-	1	CO11	L4
12	Designing of Fixed voltage power supply (voltage regulator) using IC regulators 78 series and 79 series.	03	-	-	1	-	-	-	1	CO12	L4
-	Total	40	4	4	4				12	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Evaluation	Weightage in Marks	СО	Levels
CIA Exam – 1	30	CO2, CO5, CO6, CO7	L4, L3, L4,L4
CIA Exam – 2	30	CO1, CO3, CO4,CO8	L4, L4, L3,L4
CIA Exam – 3	30	CO9, CO10, CO11,CO12	L4, L3, L4 ,L4
Assignment - 1	10	CO2, CO5, CO6, CO7	L4, L3, L4,L4
Assignment - 2	10	CO1, CO3, CO4,CO8	L4, L4, L3,L4
Assignment - 3	10	CO9, CO10, CO11,CO12	L4, L3, L4 ,L4
Seminar - 1			
Seminar - 2			
Seminar - 3			
Other Activities – define –			
Slip test			
Final CIA Marks	40	-	-

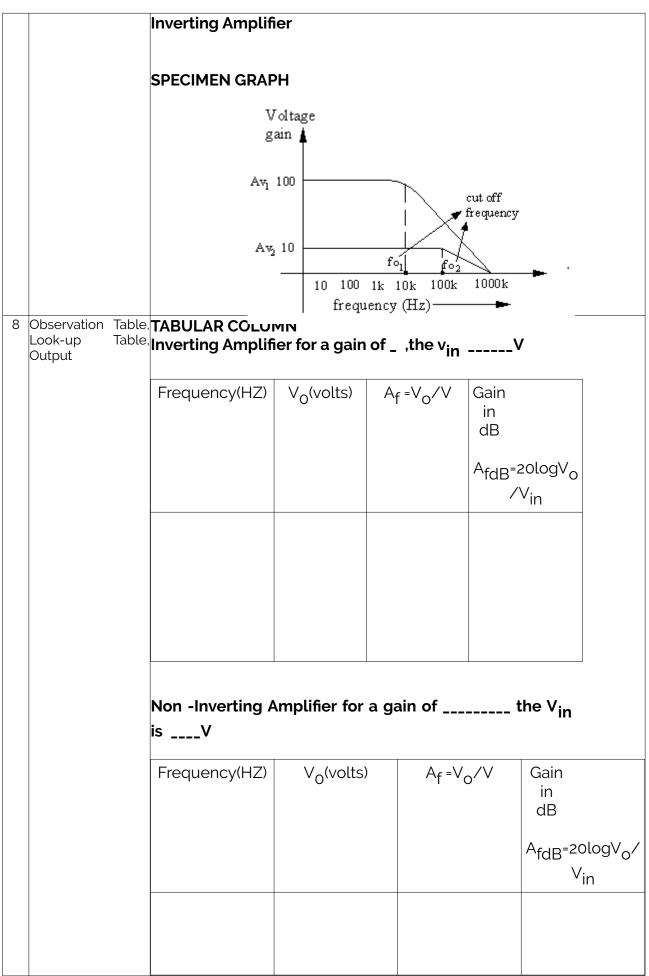
SNo	Description	Marks
1	Observation and Weekly Laboratory Activities	05 Marks
2	Record Writing	10 Marks for each Expt
3	Internal Exam Assessment	25 Marks
4	Internal Assessment	40 Marks
5	SEE	60 Marks
-	Total	100 Marks

_

E. EXPERIMENTS

Experiment 01: Precision Full Wave Rectifier

-	Experiment No.:	1 M a	rks		Date Planned	Co	Date nducted			
1	Title	Design aı paramete		ify a precisic		rectifier. Determ		ormance		
2	Course Outcomes		Design and verify OP-Amp as a precision full wave rectifier using licr hardware							
3	Aim	To Desigr	n and v	erify OP-Am	o as a precis	ion full wave rec	tifier.			
4	Material / Equipment Required		Lab Manual/ CRO, Signal generator, capacitor, diodes, power chord, ameter multi-meter, .							
		SI NO		Name		Range	Quantity			
		1	Regu Supp	ulated Dua oly	l Power	0-20V	1			
		2	Resis	stors		1.5ΚΩ(1),22ΚΩ(),10ΚΩ(1)	2 4			
		3	Capa	acitors		0.1µF, 0.01µF	2			
		4	CRO	1		-	1			
		5	Mult	imeter		-	1			
		6	ICμA	741		-	1			
		7	Patc	h Chords		-				
		8	LIC T	Frainer Kit		-	1			
		9	Stepc	down Transfo	rmer					
5	Theory, Formula Principle, Concept	·	precis	ion rectifier c	onsisting of	a summing circu	uit and a prec	ision half		
		wave rec	tifier.Th	ne advantage	e of the op	-amp precision I	rectifier circu	it over a		
		simple di	ode re	ctifier are 1) n	o diode volt	age drop betwee	en input and	output 2)		
		the abilit	y to r	ectify very s	small voltag	ges(less than th	e typical 0.7	'V diode		
		forward	voltage	e drop) 3)	amplificatio	n . if required	and 4) low	/ output		
		impeden	ce.							

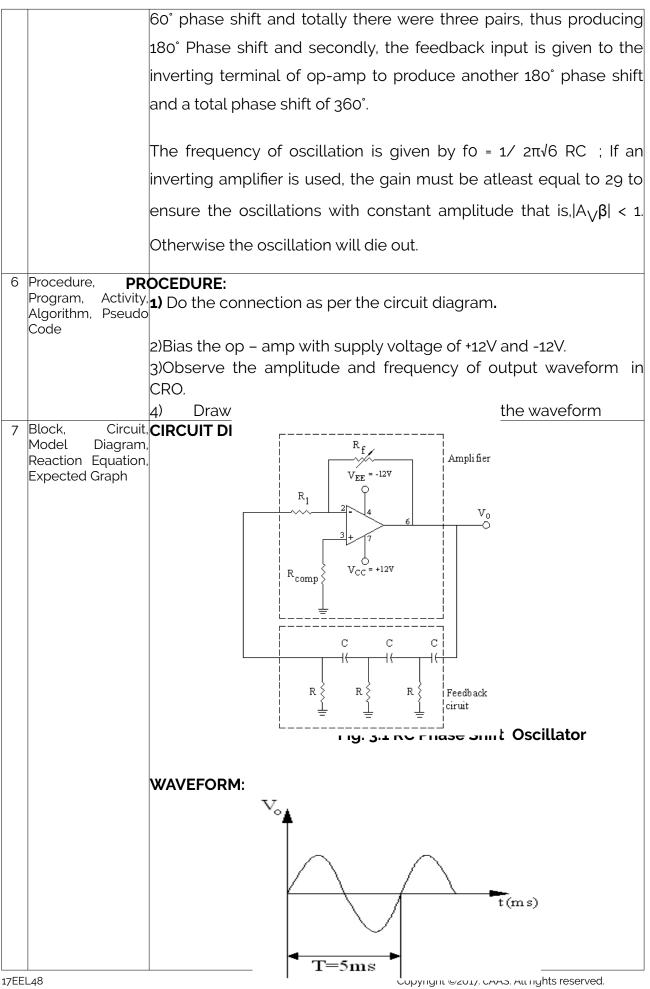

	LABORATORY PLAN - CAY 2018-19
	During positive half cycle , the output Vo =(R6/R5)Vin
	During negative half cycle, the output Vo =(R6/R5)Vin
	It is seen that the output Vo is a full wave rectified version of the input
	voltage.If resistors R6 equals R4 and R5, the circuit has an overall gain of
	1.When R6 is greater than R4 and R5, amplification and rectification both occur.
6 Procedure, Progr atre Activity, Algorithm	 p 1: Do the connections as per the circuit diagram.
Pseudo Code	, Step2: sine wave of 0.5Vp, 1MHZ as input to the op – amp. Bias the op – amp with supply voltage of +12V and -12V.
	Step3:observe input and rectified output waveform in CRO.
	Step4:calculate ripple fsctor and efficiency of full wave pricision rectifier.
	Step5: Draw the output waveform
7 Block, Circuit, Mode Diagram, Reactior Equation, Expected Graph	
	$\begin{array}{c c} & & & & \\ V_{o} \uparrow \\ V_{o} lts \end{array} & & \\ \end{array} & & \\ \end{array} & & \\ \end{array} & \begin{array}{c c} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
8 Observation Table Look-up Table Output	,
9 Sample Calculatid De	sign a precision full wave rectifier circuit to produce a 2V peak output from a sine wave input with a peak value of 0.5V and a frequency of 1 MHZ Let $I_1 = 500\muA$ (for adequate diode current) R1 = Vi/I1 = 0.5V/ 500 μ A = 1K Ω R2 = 2R1 = 2 K Ω (use two 1K Ω resistors in series) R3 = R1 R2 = 1K Ω 2K Ω = 670 Ω (use 680 Ω standard value) R4 = R5 = R1 = 1K Ω (std value) For the output to be 2V when the input is 0.5V R6 = (V0/Vin) x R5 = (2v/0.5v) x 1K Ω

		= 4 KΩ (use 3.9 KΩ std value) R7 = R4 R5 R6 = 1KΩ 1KΩ 3.9KΩ = 443 KΩ (use 470Ω std value) Calculations: Ripple Factor = V _{oac} / V _{Odc}
10	Graphs, Outputs	
11	Results & Analysis	Designed and Verifed the output of a precision full wave rectifier and determined the performance parameters such as efficiency and regulation.
12	Application Areas	Rectifiers are used in DC regulated power supply.
	Remarks	
	Faculty Signature	
	with Date	

Experiment 02 : Frequency Response of an Op – Amp

-	Experiment No.:	2	1 arks		Date			Date		
	•				Planne	d	Co	nducted		
1	Title		Design and realize to analyse the frequency response of an op – amp amplifier under inverting and non- inverting configuration for a given gain.							
2	Course Outcomes					lency response			amplifior	
		under inv hardware	verting a kit.	and non- inve	erting co	onfiguration for	аç	given gain	using lic	
3	Aim	amplifier	under ir	nverting and n	on- inve	e frequency res rting configurati	on fo	or a given g	ain.	
4	Material / Equipment Required		ab Manual/ CRO, Signal generator, capacitor, diodes, power chord, ammeter, nulti-meter.							
		SI NO		Name		Range		Quantity		
		1	Regul Suppl	ated Dual P Y	ower	0-20V		1		
		2	Resist	ors		1.5KΩ(1),22KΩ),10KΩ(1)	2(2	4		
		3	Capac	citors		0.1µF, 0.01µ	١F	2		
		4	CRO			-		1		
		5	5 Multimeter - 1							
		6	ICµA7	41		-		1		
		7	Patch	Chords		-				

	8	LIC Trainer Kit	_	1				
	9	Stepdown Transformer			-			
					J			
Principle, Concept	THEORY: INVERTING AMPLIFIER : The fundamental component of any analog computer is the operational amplifier or op-amp and the frequency configuration in which it is used as an inverting amplifier. An input voltage Vin is applied to the input voltage. It receives and inverts its polarity producing an output voltage. this same output voltage is also applied to a feedback resistor Rf, which is connected to the amplifier input analog with R1. The amplifier itself has a very high voltage gain.							
		lf Rf = R1 the	n Vo=Vi					
	an invert wanted. the amp gain of tl	VERTING AMPLIFIER: Although ing amplifier, there are some However, we cannot just switch lifier itself. We will still need n ne circuit .Therefore, we will ne imp intact and swap the inpu	applications where In the inverting and r legative feedback to bed to leave the res	such invers non inverting o control th istor structu	sion is not g inputs to le working ire around			
		VO/VI =	(Rf / Ri) +1					
	inverting	e calculations, we can see tha amplifier is set by the resista lue, then the gain will be 2 rath	ance ratio. Thus, if					
Procedure,	1)Do the	connection as per the circuit d	iagram					
Code	2)Bias th	ne op – amp with supply vo al signal of constant voltage to mp.	bltage of +12V and the inverting / no	-12V. Appl n inverting t	ly a input erminal of			
	3)Tabula	te the o/p voltage Vo w.r.t. diffe	erent values of input	frequency.				
		ate the gain A _f and plot the g						
	graph to graph.	get approximately the same	characteristic as sh	iown in the	expected			
Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	CIRCU Vin	UIT DIAGRAM: R_{f} R_{1} R_{comp}	R ₁ R _{comp} Vin	R_{f} $CE = -12V$ V_{f} V_{c} $CC = +12V$	2			
	Fig 2.1	Inverting Amplifier		Fig2	.2 Non -			

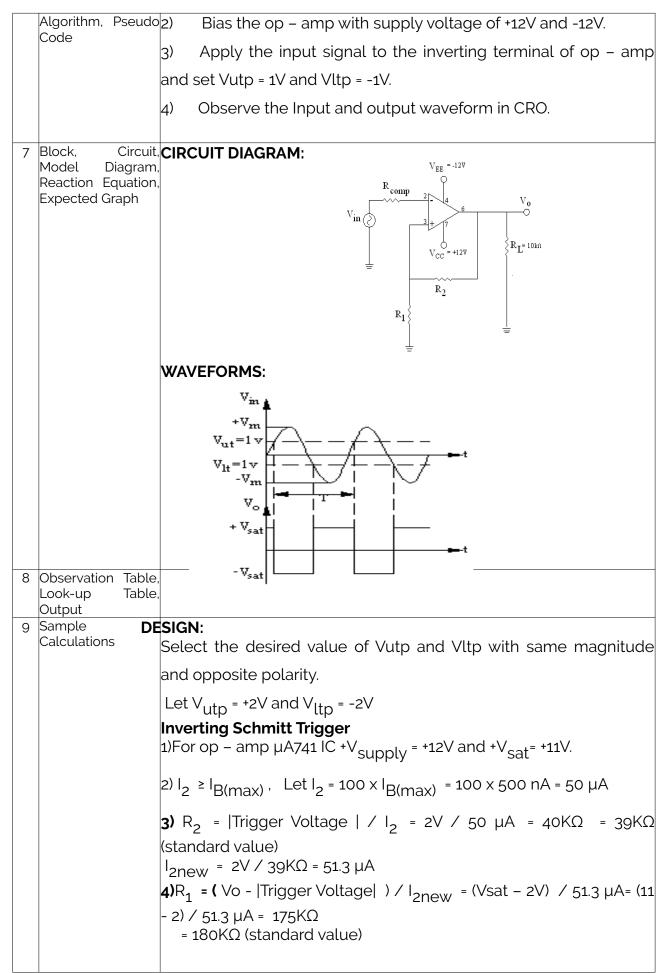

Copyright ©2017. cAAS. All rights reserved.

	~ 				
9 Sample Calculations	DESIGN Inverting Amplifier:-				
	a) Let gain $A_f = 10$ As WKT $A_f = -R_f / R_1$ and UGB =1MHz let $R_1 = 1K\Omega$ Therefore $R_f = A_f R_1 = 10k\Omega$, $R_{comp} = R_f R_1 = 10K\Omega 1K\Omega = 1K\Omega$ $\beta = R_1 / (R_1 + R_f) = 1K\Omega / (1K\Omega + 10K\Omega) = 1/11$ $f_F = f_0 (1 + A\beta) = 5 (1 + 2 00,000 \times (1/11)) = 90$ KHZ				
	b) Let gain $A_f = 100$ As WKT $A_f = -R_f / R_1$ and UGB =1MHz let $R_1 = 1K\Omega$ Therefore $R_f = A_f R_1 = 100k\Omega$, $R_{comp} = R_f R_1 = 100K\Omega 1K\Omega = 1K\Omega$ $= 1K\Omega$ $\beta = R_1 / (R_1 + R_f) = 1K\Omega / (1K\Omega + 100K\Omega) = 1/101$ $f_F = f_0 (1 + A\beta) = 5 (1 + 2 00,000 \times (1/101)) = 10KHZ$				
	Non -Inverting Amplifier:-				
a)Let gain $A_f = 10$ As WKT $A_f = 1 + (R_f / R_1)$ and UGB = 1MHZ Let $R_1 = 1K\Omega$ $10 = 1 + (R_f / 1K\Omega)$ $R_f = 9K\Omega = 10K\Omega$ $\beta = R_1 / (R_1 + R_f) = 1K\Omega / (1K\Omega + 10K\Omega) = 1/11$					
	$f_{F} = f_{0} (1 + A\beta) = 5 (1 + 2 00,000 \times (1/11)) = 90 \text{KHZ}$ b)Let gain A _f =100 As WKT A _f = 1 + (R _f / R ₁) and UGB = 1MHZ Let R ₁ =1kΩ 100 = 1 + (R _f / 1kΩ)				

		$\begin{split} & R_{f} = 99K\Omega = 100K\Omega, R_{comp} = R_{f} \ R_1 = 100K\Omega \ 1K\Omega = 1K\Omega \\ & \boldsymbol{\beta} = R_1 / (R_1 + R_{f}) = 1K\Omega / (1K\Omega + 100K\Omega) = 1/101 \\ & f_{F} = f_0 (1 + A\boldsymbol{\beta}) = 5 (1 + 2 00,000 \times (1/101)) = 10KHZ \end{split}$
10	Graphs, Outputs	
11	Results & Analysis	Designed and realized to analyse the frequency response of an op – amp amplifier under inverting and non- inverting configuration for a gain 0f 10.
12	Application Areas	Anlysis of freqency response of op amp
13	Remarks	
14	Faculty Signature with Date	RC Phase Shift Oscillator

Experiment 03: RC Phase Shift Oscillator

-	Experiment No.:	3	Marks		Date Planne		c	Date Conducted	
1	Title		Design and verify the output waveform of an op – amp RC phase shift oscillator or a desired frequency.						
2	Course Outcomes	for a desi	red freq	the output w uency using l	ic hardwa	are kit.		•	
3	Aim	oscillator	for a de	rify the outpu sired frequen	су.				
4	Material / Equipment Required	'Lab Man multi-me		D, Signal gene	erator, ca	apacitor	, resistors,	power chord	l, ammeter
		SI NO		Name		F	Range	Quantity	,
		1	Regulated Dual Power Supply			(0-20V	1	
		2	Resist	ors		-	2(1),22KΩ(.0KΩ(1)	2 4	
		3	Capac	citors		0.1µ	F, 0.01µF	2	
		4	CRO				-	1	
		5	Multir	neter			-	1	
		6	ICµA7	41			-	1	
		7	Patch	Chords			-		
	8 LIC Trainer Kit - 1							1	
		9	Stepdo	wn Transforn	her				
5	Theory, Formula Principle, Concept	THEOR RC pha		t oscillator	produc	es 360	D° of phas	se shift in t	wo parts
		Firstly, (each ar	nd every R	C pair i	n the ⁻	feedback	k network j	oroduces

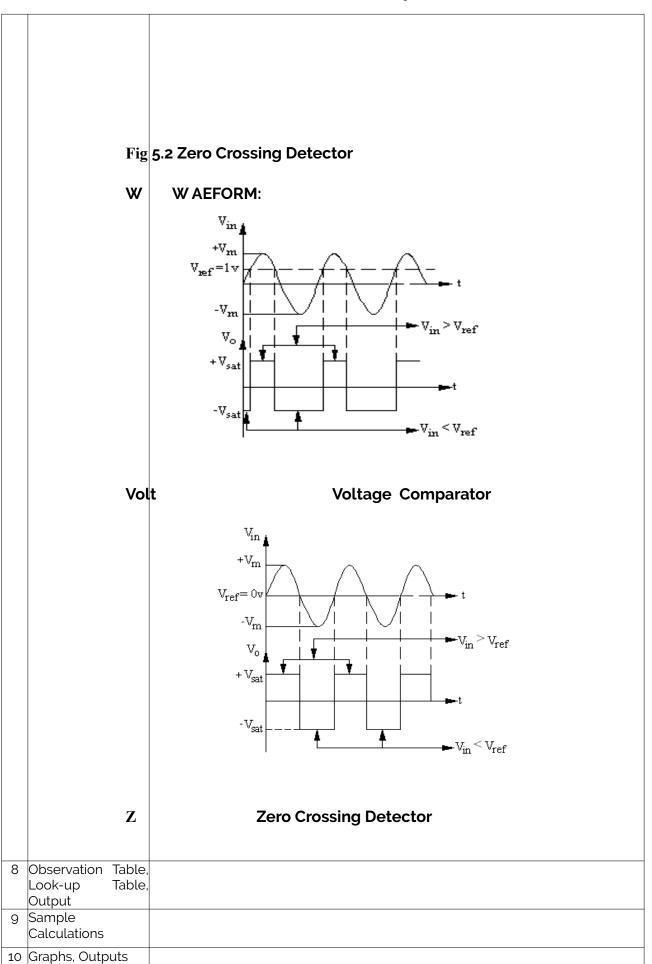

8	Observation T Look-up T Output	able, able,
9	Sample Calculations	DESIGN: Design Propblem: Design of RC Phase shift oscillator to oscillate at $f_0 = 500$ HZ. 1) Let C = 0.1 µF W.K.T $f_0 = = 1/2\pi\sqrt{6}$ RC
		$f_0 = 0.065/RC$
		therefore R = 0.065/f ₀ C
		= 0.065/ (500 x 0.1x10 ⁻⁶) = 1.31 KΩ
		R = 1.5 KΩ (std)
		2)To prevent the loading of amplifier because of RC network, it is necessary that R ₁ ≥ 10R so take R = 10 × 15 KO
		so take R ₁ = 10 x 1.5 KΩ R₁ = 15 KΩ
		3)At the given frequency, the gain must be atleast 29 i.e (for inverting)R _f /R ₁ = 29
		Therefore R _f = 29 R ₁ = 29 x 15 KΩ
		R _f = 435 KΩ
		$R_{f} = 1M\Omega$ (std value)
		4)Let R _{comp} = R _f R ₁
		= 15ΚΩ 1ΜΩ
		R _{comp} = 15KΩ
10	Graphs, Output	ts
11	Results & Analy	oscillator for a frequency of 500HZ
12 17EE	Application Are	eas Signal generator is used in industry, agriculture, boimedicine and other fields Copyright ©2017. cAAS. All rights reserved.
.,	<u>-</u>	Page # 24 / 56

		such as high frequency induction heating, melting , quenching, ultrasonic diagnosis, nuclear magnetic resonance imaging etc
13	Remarks	
14	Faculty Signat with Date	ture

-	Experiment No.:	4	Marks		Date Planne	d	Cor		
1	Title		Design and realize Schmitt trigger circuit using an op – amp for desired upper rip point (UTP) and lower trip point (LTP).						
2	Course Outcomes			e Schmitt trig nd lower trip					ed upper
	Aim		To design and realize Schmitt trigger circuit using an op – amp for desired upper rip point (UTP) and lower trip point (LTP).						
·	Material / Equipment	SI NO	SI NO Name Range Quantity						
	Required	1	Regula Supply	ated Dual F Y	Power	0-2	20V	1	
		2	Resist	ors		1.5KΩ(1)),10k		2 4	
		3	Capac	itors		0.1µF,	0.01µF	2	
		4	CRO			-	-	1	
		5	Multin	neter		-	-	1	
		6	ICµA74	41		-	-	1	
		7	Patch	Chords		-	-		
		8	LIC Tra	ainer Kit		-	-	1	_
		9		wn Transforn	ner				
		THEOR A circui		converts	a irregu	lar shap	ed wav	eform to	a square
		wave o	r pulse	is called	a Schmi	itt trigge	er or so	luaring c	ircuit. The
		input v	oltage	Vin trigge	rs the c	output \	/o ever	ry time i	t exceeds
		certain	voltage	e levels ca	alled up	oper thr	eshold	voltage	VUT and
		lower tl	nreshol	d voltage `	VLT. The	e thresh	old volt	tages are	obtained
		by usin	g the v	oltage divi	der. A co	omparat	tor with	positive	feedback
		is said t	o exhib	oit hysteres	sis, a dea	ad banc	l condit	ion. The	hysteresis
		voltage	is the c	lifference k	between	VUT&	VLT.		
		There	are tw	o types c	of Schm	itt trigg	jer bas	ed on v	vhere the
		irregula	r wave	is given. Tl	hey are,	Invertin	g & noi	n-invertir	ng Schmitt
		trigger. Schmitt trigger finds application in wave shaping						Ŭ	
									-
The other name given to Schmitt trigger is re comparator						,			
	Procedure, PR Program, Activity	OCEDU		nnection a	is per th	e circuit	diagra	m.	

Experiment 04 : Schmitt Trigger Circuit using an Op – Amp

Copyright ©2017. cAAS. All rights reserved.



		Non - Inverting Schmitt Trigger
		1)For op – amp µA741 IC -V _{supply} = -12V and -V _{sat} = -11V.
		2)I ₂ ≥ I _{B(max)} , Let I ₂ = 100 x I _{B(max)} = 100 x 500 nA = 50 μA
		3) R ₁ = Trigger Voltage / I ₂ = 2V / 50 μA = 40KΩ = 39KΩ (standard value) I _{2new} = 2V / 39KΩ = 51.3 μA 4) R ₂ = Vo / I _{2new} = 11 / 51.3 μA= (11 - 2) / 51.3 μA = 214KΩ = 180KΩ (standard value)
10	Graphs, Outputs	
	Results & Analysis	Designed and realized Schmitt trigger circuit using an op – amp for upper trip point (UTP) of +2v and lower trip point (LTP) of -2V.
12	Application Areas	Used in square wave generation.
13	Remarks	
14	Faculty Signature with Date	

Experiment 05: Voltage Comparator and zero Crossing Detector using Op Amp

-	Experiment No.:	5	1 arks		Date Planne		Co	Date Inducted	
1	Title			ation of an			a) voltage	compara	itor
2	Course Outcomes		circuit and (b) zero crossing detector. /erify the operation of an op – amp as (a) voltage comparator						
			sircuit and (b) zero crossing detector using lic hardware kit.						
3	Aim	To verify	o verify the operation of an op – amp as (a) voltage comparator frcuit and (b) zero crossing detector.						
4	Material /	circuit a	nd (b) z	ero crossi	ng dete	ector.			
4	Equipment								
	Required	SI NO		Name		R	ange	Quantity	
		1	Regul Suppl	ated Dual I y	Power	0	-20V	1	
		2	Resist	ors		-	(1),22KΩ(2 DKΩ(1)	4	
		3	Capac	itors		0.1µŀ	⁼ , 0.01µF	2	
		4	CRO				-	1	
		5	Multin	neter			-	1	
		6	ICµA7	41			-	1	
		7	Patch	Chords			-		
		8	LIC Trainer Kit				-	1	
		9	Stepdo	wn Transforn	ner				
5	Theory, Formula Principle Concept	THEOR	Y:						
	Principle, Concept	Compa	rator:						
		A comp	arator o	circuit is or	e which	n comp	oares a vo	ltage sigr	ial at one
		input with a known reference signal at the other input. It works in							works in
		open loop mode. There are basically two types of comparator							mparator
		namely inverting and non-inverting comparators. The output wil							utput will
		-	be either +Vsat or -Vsat depending upon the amplitude of the						
				nput termi	•	•	•		
		U		•			•		U
			•	is greater ·Vsat and v				nat siyridt	

	Zero Crossing Detector:
	The zero crossing detector is a special case basic comparato circuit. If we set reference voltage zero then a comparator behave like a zero crossing detector.
Program, Activity, Algorithm, Pseudo Code	OCEDURE: 1)Do the connection as per the circuit diagrams. 2) Bias the op – amp with supply voltage of +12V and -12V. 3)A fixed reference voltage Vref is applied to the inverting terminal and to the non-inverting terminal a varying voltage Vin is applied as shown in circuit diagram. 4)Vary the input voltage above and below the Vref and note down the output at pin 6 of 741 IC. 5)Observe that, when Vin is less than Vref, the output voltage is -Vsat (@ - VEE) when Vin is greater than Vref, the output voltage is +Vsat (@+VCC) 6)Observe input and output waveforms in CRO. 7)Draw the waveforms.
7 Block, Cir @if , Model Diagram, Reaction Equation, Expected Graph	
Fig	$V_{EE} = -12V$ $V_{EE} = -12V$ $V_{CC} = +12V$
rEEL48	$V_{ref} = 0v$ $+$ V_{in} ght ©2017. cAAS. All rights reserved.

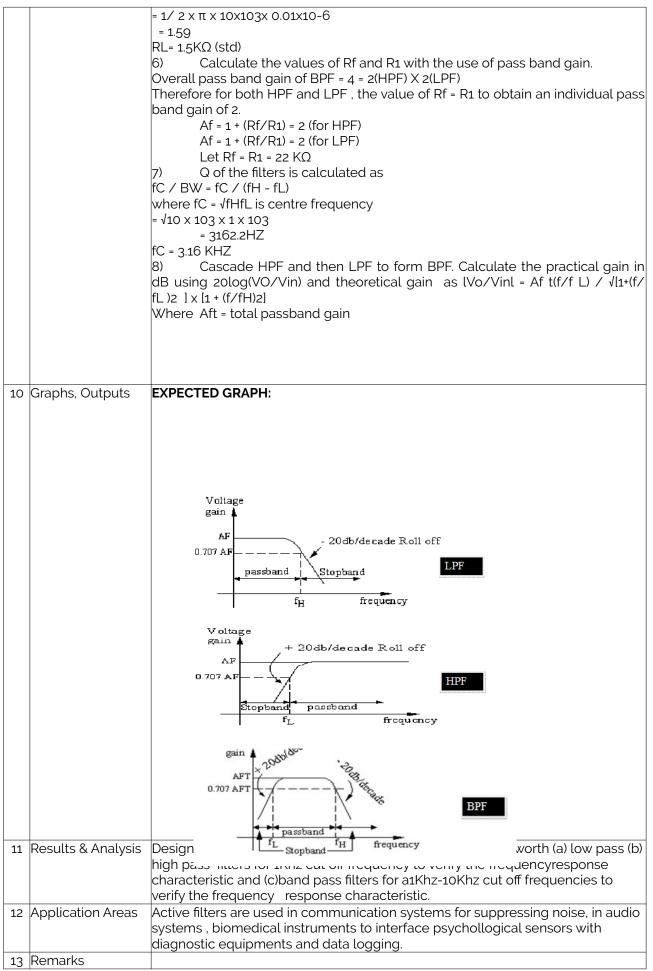
11		Verified the operation of an op – amp as (a) voltage comparator circuit for Vref ±1V and (b) zero crossing detector.
12	Application Areas	Comparators are used in oscillators, DAC, ADC , multi-vibrators and etc
13	Remarks	
	Faculty Signature	
	with Date	

Experiment 06: Op – Amp as an (a) Adder (b) Subtractor (c) Integrator and (d) Differentiator.

-	Experiment No.:	6	Marks		Date Planne		Date onducted		
1	Title			the operssat differentiator	ion of op	– amp as an (a) add		actor (c)	
2	Course Outcomes	Design a	Design and verify the operssation of op – amp as an (a) adder (b) subtractor (c) Integrator and (d) differentiator using lic hardware kit.						
3	Aim		To design and verify the operssation of op – amp as an (a) adder (b) subtractor (c ntegrator and (d) differentiator.						
4	Material / Equipment Required	SI NO		Name		Range	Quantity		
	Required	1	Regul Suppl	ated Dual I Y	Power	0-20V	1		
		2	Resist	ors		1.5KΩ(1),22KΩ(2),10KΩ(1)	4		
		3	Capac	citors		0.1µF, 0.01µF	2		
		4	CRO			-	1		
		5	Multimeter			- 1			
		6	ICµA741			-	1		
		7	Patch	Chords		-			
		8	LIC Tr	ainer Kit		-	1		
5	Theory, Formula Principle, Concept	the inv non-inv mode i invertin called ' gain of the inpu Subtrac subtrac signals approp referred resistor The ou	A two erting r verting s used. g term 'virtual this sur uts by s ctor: A ctor as can f riate va d to as s are equitput ve	mode. The mode or So the inj inal and no ground", i.e mming amp electing pr be scaled lues for the scaling am qual in valu pltage Vo	adder differen outs are on-inver the vo olifier is oper ex fferentia the circ to th resisto plifier. ie. So th is equa	nplifier may be can be obtained itial amplifier. He applied through ting terminal is pltage at that te 1, any scale fact ternal resistors. Al amplifier can cuit diagram. In the desired values ors. When this is However in this he gain of amplified to the voltage e voltage applied	ed by usir lere the gh resistor grounded rminal is z or can be this circu ues by s done, the circuit all fer is equa ge applied	ng either inverting rs to the d. This is zero. The used for ed as a uit, input selecting circuit is external al to one. d to the	

		terminal; hence the circuit is called a subtractor.
		Integrator: In an integrator circuit, the output voltage is integral of the input signal. The output voltage of an integrator is given by Vo = $-1/R1Cf \int Vi dt$ At low frequencies the gain becomes infinite, so the capacitor is fully charged and behaves like an open circuit. The gain of an integrator at low frequency can be limited by connecting a resistor in shunt with capacitor.
		Differentiator: In the differentiator circuit the output voltage is the differentiation of the input voltage. The output voltage of a differentiator is given by Vo = -RfC1 <i>dVi /dt</i> . The input impedance of this circuit decreases with increase in frequency, thereby making the circuit sensitive to high frequency noise. At high frequencies circuit may become unstable.
6	Procedure,	PROCEDURE
	Program, Activity Algorithm, Pseudo Code	Adder/Susbstractor
		1. Connect the circuit as shown in the diagram.
		2. Apply the bias voltages of <u>+</u> 12v to pin 7 and pin 4 of IC741 respectively.
		3. Apply two different signals (DC/AC) to the inputs.
		4. Vary the input voltages and note down the corresponding output at pin 6 of IC741
		5. Notice that the output is equal to the sum/difference of the two inputs.
		Integrator
		1. Connect the circuit as per the diagram shown in Fig6.3
		2. Apply a square wave/sine input of 4V(p-p) at 1KHz
		3. Observe the output at pin 6.
		4. Draw input and output waveforms .
		Differentiator
		1. Connect the circuit as per the diagram shown in Fig 6.4
		2. Apply a square wave/sine input of 4V(p-p) at 1KHz
17EEI		Conviriant @2017 cAAS All rights reserved

		3. Observe the output at pin 6
		4. Draw the input and output waveforms .
	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	
	Observation Table, Look-up Table, Output	
	Sample Calculations	
	Graphs, Outputs	
11		Designed and verifed the operation of op – amp as an (a) adder (b) subtractor (c) integrator and (d) differentiator.
12		Summing amplifier is Used in audio mixer to add different signals with n equal gains. Instrumentaion amplifiers are used in data acquisition systems.
	Remarks	
	Faculty Signature with Date	


Experiment 07: Op – Amp Based First Order Butterworth (a) Low Pass (b) High Pass and (c)Band pass Filters

-	Experiment No.:	7	Marks		Date Planne		Date Conducted			
1	Title	high pas	Design and realize an op – amp based first order Butterworth (a) low pass (b) nigh pass and (c)band pass filters for a given cut off frequency/frequencies to rerify the frequency response characteristic.							
2	Course Outcomes	high pas	esign and realize an op – amp based first order Butterworth (a) low pass (b) gh pass and (c)band pass filters for a given cut off frequency/frequencies to erify the frequency response characteristic using lic hardware kit.							
3	Aim	high pas	o design and realize an op – amp based first order Butterworth (a) low pass (b) igh pass and (c)band pass filters for a given cut off frequency/frequencies to erify the frequency response characteristic.							
4	Material / Equipment									
	Required	SI NO		Name		Range	Quantit	У		
		1	Regul Suppl	ated Dual F Y	Power	0-20V	1			
		2	Resist	ors		1.5KΩ(1),22K),10KΩ(1)	Ω(2 4			
		3	Capac	citors		0.1µF, 0.01µ	ıF 2			
		4	CRO			-	1			
		5	Multin	neter		-	1			
		6	ICµA7	41		-	1			
		7	Patch	Chords		-				
		8	LIC Tra	ainer Kit		-	1			
		9	Stepdo	wn Transform	ner					
5	Theory, Formula Principle, Concept	THEORY Active Lp A filter of frequence compone following 1. Gain &	of: circuit wh cy fH is d ents such gadvanta frequent pading p	called as Lov n as resistor & nges over a pa cy adjustmer	w Pass F & capacite assive filte It flexibilit		filter uses tra . An active filt	ansistor and er offers the		
17EE	148					Copyright ©2017.	-AAS All rights re	served		

		3. More economical because of variety of op-amps and absence of inductors. From the frequency response, when f <fh; 70.7%="" and="" drops="" f="" fh;="" gain="" iai.="" is="" maximum="" of="" off.<br="" or="" rolls="" the="" when="">The frequency range from 0 to fH is called as Passband & fH to is called as Stopband. Out of Butterworth, chebyshev & cauer filters, Butterworth filter is preferred because it has flat pass band as well as flat stop band (flat-flat) filter. Active Hpf: An active high pass filter is simply formed by interchanging the frequency determining resistor and capacitor in lowpass filter. A filter circuit which allows only high frequency range greater then a lower cut-off frequency fL is called as HIGH PASS FILTER. From the frequency response, when f<fl; 70.7%="" and="" f="" from="" gain="" gradually="" ial="" increases="" lowest="" maximum="" of="" reaches="" the="" value.="" when=""> fL, the gain is maximum IAI. The frequency range from 0 to fL is called as Stopband & fL to is called as Passband. (This is exactly opposite to active LPF)The order of the filter tells the</fl;></fh;>
		roll-off rate at stop band. Order n = 1 indicates -20dB / dec (-6db / octave); Order n = 2 indicates -40dB / dec & so on. Higher the order of the filter, better the quality will be & complex the circuit will be.
		Active Bandpass Filter: A filter which has a pass band between two cut-off frequencies fH & FL is called as Bandpass filter. Where fH > fL BPF is basically of two types (i) Wide band pass filter. (ii) Narrow band pass filter.Based on figure of merit or quality factor Q, the types are classified as follows. If Q<10, selectivity is poor & allows higher bandwidth & such BPF is called as wide BPF.If Q > 10, selective is more and allows only narrow bandwidth & such BPF is called as Narrow BPF. Relationship between Q & center frequency fC is given as
		When frequency fL < f < fH then gain is maximum. At f < fL the gain is gradually increasing (positive roll-off) from lower value & at f > fH the gain is gradually decreasing (Negative roll-off) & exactly when f = fL & f = fH the gain is 70.7% of maximum gain IAL.
6	Procedure, PRC	CEDURE (LPF /HPF /BPF):
	Program, Activity, Algorithm, Pseudo Code	
	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	R _f R _f

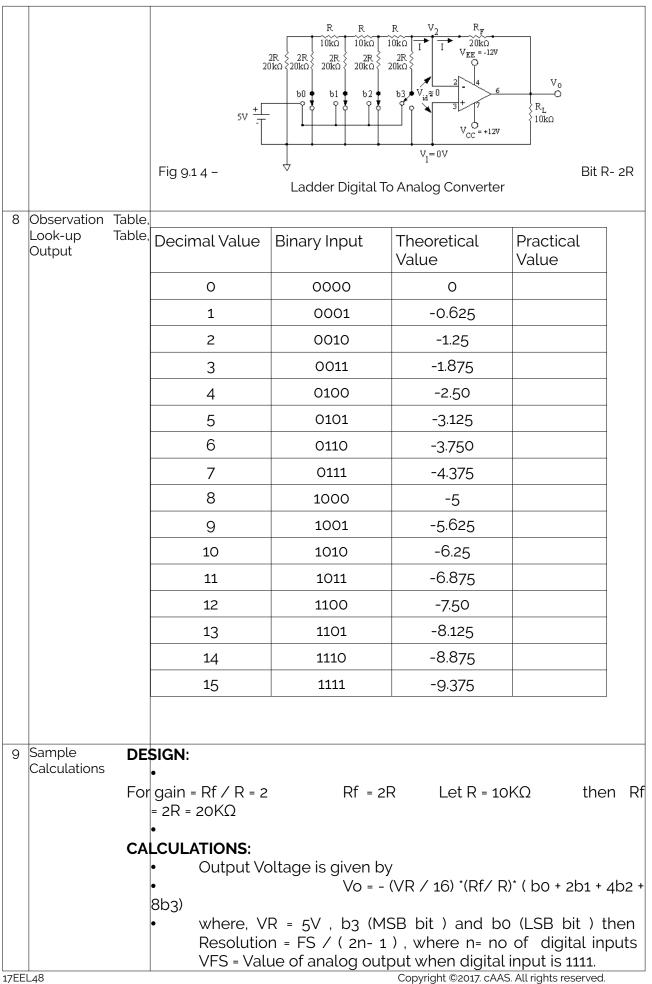
3 Observation			RVATION TAE	BLE:		
Look-up Output	Table,			V		
			PF V _{in} =	V		
		I/P	frequency,	Output Voltage	Gain A _f = lVo/V _{in} l	Gain (dB) =
		f(HZ)	nequency,	Vol		20log lVo/
						V _{in} l
						• In •
		Eor HI	DE V	Y		
		For H	PF V _{in} =	V		
		I/P	PF V_{in} = frequency,	Output Voltage	Gain A _f = lVo/V _{in} l	Gain (dB) =
					Gain A _f = lVo/V _{in} l	Gain (dB) = 20log lVo/
		I/P		Output Voltage	Gain A _f = lVo/V _{in} l	
		I/P		Output Voltage	Gain A _f = lVo/V _{in} l	20log lVo/
		I/P		Output Voltage	Gain A _f = lVo∕V _{in} l	20log lVo/
		I/P		Output Voltage	Gain A _f = lVo/V _{in} l	20log lVo/
		I/P		Output Voltage	Gain A _f = lVo∕V _{in} l	20log lVo/
		I/P		Output Voltage	Gain A _f = lVo/V _{in} l	20log lVo/
		I/P		Output Voltage	Gain A _f = lVo∕V _{in} l	20log lVo/
		I/P f(HZ)	frequency,	Output Voltage Vo	Gain A _f = lVo/V _{in} l	20log lVo/
		I/P	frequency,	Output Voltage	Gain A _f = lVo/V _{in} l	20log lVo/
		I/P f(HZ)	frequency,	Output Voltage Vo	Gain A _f = lVo/V _{in} l Gain A _f = lVo/V _{in} l	20log lVo/

		LABORATORY PLAN - CAY 2018-19
		Vinl
9	Sample Calculations	DESIGN: Design Problem : Design of LP/HP filters for cut – off frequency of fH = fL = 1khz
		and pass band gain = 2 1) Select the value of C < 1 μF.
		2) Assume C = 0.1 μF. Calculate R from fH = fL = 1 /2π RC
		$R = 1 / 2\pi (fH \text{ or } fL)C$ = 1/ 2\pi \times 1x103 \times 0.1 \times 10-6
		R = 1.5KΩ 3) Determine the value of R1 and Rf from pass band gain of the filter
		Af = 1 + (Rf/R1) 2 = 1 + (Rf/R1)
		therefore Rf = R1 to select Af = 2 let Rf = R1 = $22K\Omega$ and RL = $10K\Omega$
		4) Calculate the practical gain in dB using Gain(dB) = 20log(Vo/Vin). Theorotical gain given as IVo/Vinl = Af $/\sqrt{1+(f/fH)}$ or fL)2
		Af = Pass Band Gain f = i/p frequency
		fH = upper cut off frequency of LPF fL = Lower cut off frequency of HPF
		Design problem: Design a BPF to pass a band of 1KHZ to 10KHZ with a passband gain of 4.
		 Select the highest cut – off frequency of LPF as fH = 10KHZ and lowest cut-off frequency of HPF as fL = 1KHZ.
		2) Design the HPF first by taking fL = 1 KHZ. Assume the value of C < 1 μ F. Let CH = 0.1 μ F
		3) Calculate RH from the expression $fL = 1/2 \pi RH CH$ Therefore RH = 1/2 π fL CH
		= 1/ 2 x π x 1x103x 0.1x10-6 = 1.59
		RH = 1.5KΩ (std)
		4) Then design the LPF by taking fH = 10 KHZ. Assume the value of C < 1 μ F. Let CL = 0.01 μ F
		5) Calculate RL from the expression fH = 1/ 2 πRLCL Therefore RL = 1/2πfLCL
1700		Convergent @2017_0AAS_All rights record od

Copyright ©2017. cAAS. All rights reserved.

14	Faculty	Signature
	with Date	,

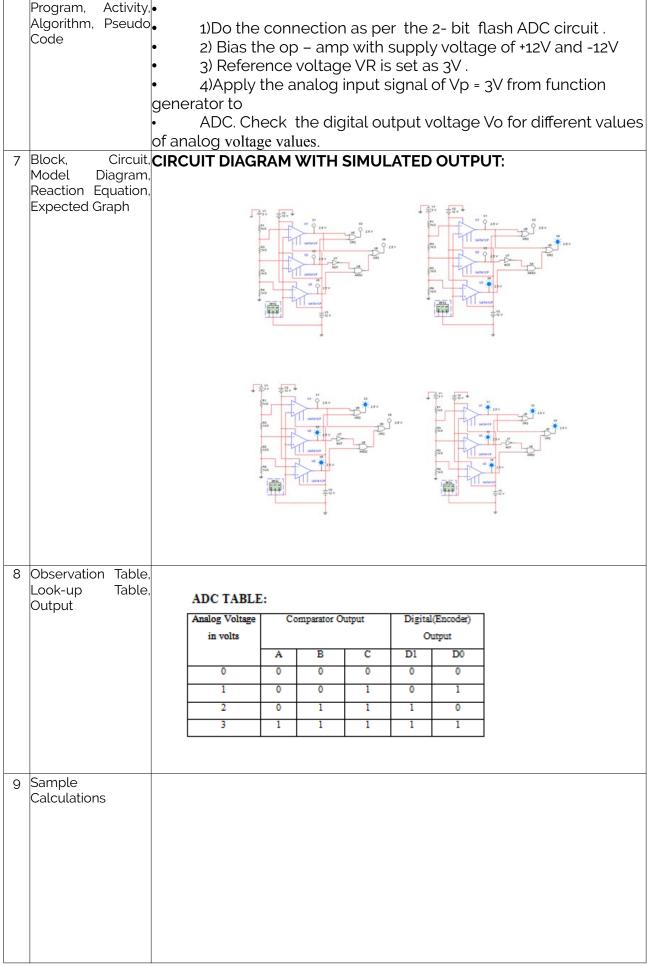
Experiment 08: Op – Amp Based Function Generator to Generate Sine, Square and Triangular Waves


-	Experiment No.:	3	1 arks	Date Planne		Date onducted	
1	Title			e an op – amp based gular waves of desirec	function generator		sine,
2	Course Outcomes	Design ar	nd realiz	e an op – amp based gular waves of desirec	function generator	0	
	Aim			alize an op – amp base gular waves of desirec		or to generat	te sine,
4	Material /						
	Equipment Required	SI NO		Name	Range	Quantity	
		1	Regul Suppl	ated Dual Power Y	0-20V	1	
		2	Resist	ors	1.5KΩ(1),22KΩ(2),10KΩ(1)	4	
		3	Capac	citors	0.1µF, 0.01µF	2	
		4	CRO		-	1	
		5	Multir	neter	-	1	
		6	ICµA7	41	-	1	
		7	Patch	Chords	-		
		8	LIC Tr	ainer Kit	-	1	
		9	Stepdo	wn Transformer			
5	Theory, Formula Principle, Concept	THEOR	Functio	on generator ger			
		amplitu generat	des. Tł .es squ	are waves and so ne circuit shown i Jare waves and section is a squ	n Fig 8.1 is a sin triangular wave	mple circu es simulta	it whic neous
				integrator. When			
				oduces triangular	•	0	
6	Procedure, PR(Program, Activity Algorithm, Pseudc Code	• 2. • 2.	Connect Bias the Obtain s Fig 8.1.	the circuit as per the op – amp with supply quare wave at Vo1 and e the output waveform	y voltage of +12V and d Triangular wave a	d -12V	vn in
7							
	Model Diagram Reaction Equation Expected Graph	,	Rr =10		$R_4 = 680 \text{ KO}$ $C_{1} = 0.01 \mu f$ H $-V_{EE} = -15 \text{ V}$ 4	V02	
			3+	γ VCC=+15V ≤R1=100KΩ	3 + VCC = +15V	^	

		LABORATORY PLAN - CAY 2010-19
		Fig 8.1 Function Generator
	Observation Table, Look-up Table, Output	
9	Calculations	$\begin{array}{l} \textbf{DESIGN}:\\ \text{Let Vopp = 7v and frequency of oscillation fo = 2KHZ.}\\ & \forall \text{sat = 12 - 1 = 11V}\\ & \forall \text{vopp = 2 x (R2/R3) x Vsat}\\ & 7 = 2 x (R2/R3) x 11\\ \text{R2/ R3 = 7/ (2 x 11)}\\ & = 0.318\\ & \text{R3 = 3.14 * R2}\\ & \text{Let R2 = 10K\Omega}\\ & \text{R3 = 3.14 * 0K\Omega}\\ & \text{r3 = 31.4K\Omega}\\ & r3$
10	Graphs, Outputs	WAVEFORM: V_{r_1} + V_{so}
11		Designed and realized an op – amp based function generator to generate sine, square and triangular waves of 2KHZ frequency
12	Application Areas	Use in signal/function generator.
	Remarks	
14	Faculty Signature with Date	

Experiment 09:R – 2R ladder DAC

-	Experiment No.:	9	Marks		Date Planned		Date Conducted	
1	Title	Desig	Design and realization of R – 2R ladder DAC					
2	Course Outcomes	Design and realize of R – 2R ladder DAC using lic hardware kit.						

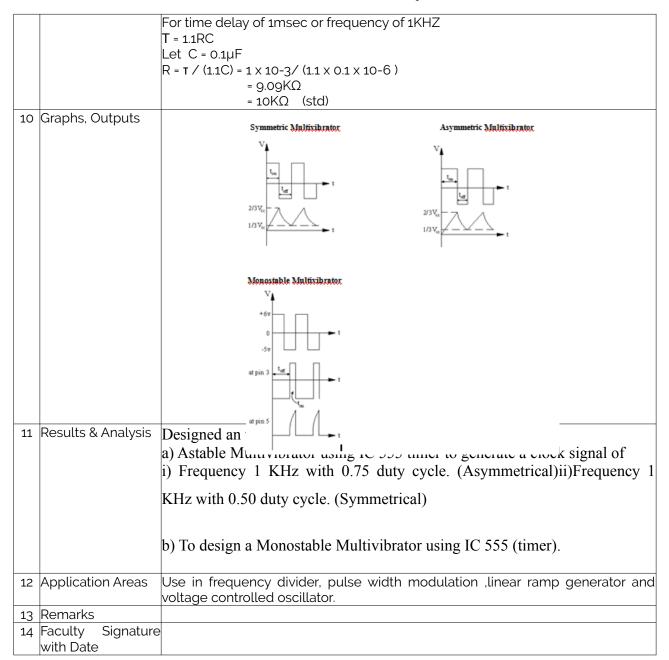

3	Aim	To design	and realization of R – 2R ladd	ler DAC			
	Material /	(
	Equipment						
	Required	SI NO Name Range Quan					
		1	Regulated Dual Power Supply	0-20V	1		
		2	Resistors	1.5KΩ(1),22KΩ(2),10KΩ(1)	4		
		3	Capacitors	0.1µF, 0.01µF	2		
		4	CRO	-	1		
		5	Multimeter	-	1		
		6	ICµA741	-	1		
		7	Patch Chords	-			
		8	LIC Trainer Kit	-	1		
		9	Stepdown Transformer				
		is accomplished using digital-to- analogue converters (DAC). The R-2R ladded network is commonly used for Digital to Analog conversions. In basic N bit R-2R resistor ladder network the digital inputs or bits range from the most significant bit (MSB) to the least significant bit (LSB). The bits are switched between either oV or VR and depending on the state and location of the bits Vo will vary between oV and VR . The MSB causes the greatest change in output voltage and the LSB causes the smallest. The R-2R ladder is inexpensive and relatively easy of manufacture since only two resistor values are required. It is fast and has fixed output impedance R. In R-2R ladder type D to A converter, only two values of resistor is used (i.e.R and 2R). Hence it is suitable for integrated circuit fabricatio The typical values of R are from 2.5K-J = to 10K-J =. In this output voltage is weighted sum of digital inputs. Since the resistive ladder is a linear network, the principle of super position can be used to find the total analog output voltage for a particular digital input by adding the output voltages caused by the individual digital inputs. The output voltage is linearly proportional to the digital input and the range can be adjusted by changing the reference voltage					
		VR PRCODURE: 1)Wire the R/2R ladder 4 bit DAC circuit . 2)Bias the op – amp with supply voltage of +12V and -12V 3) Reference voltage VR is set as 5V . 4) Find the output voltage Vo for different combinations of digital binary inputs from 0000 to 1111. 5)Compare the calculated values with observed values and plot DAC					
	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	,	istics. DIAGRAM:				

		• Resolution = 0.625 = Value of LSB bit.
10	Graphs, Outputs	
11	Results & Analysis	Designed and realized 4-bit R – 2R ladder DAC
12	Application Areas	DAC are used in data acquition system.
13	Remarks	
14	Faculty Signature	
	with Date	

Experiment 10:Two Bit Flash ADC.

-	Experiment No.:	10	Marks		Date Planne	d Co	Date onducted	
1	Title	Realiza	tion of Two	bit Flash AD				
2	Course Outcomes			Flash ADC u		ardware kit.		
	Aim	To reali	To realization of Two bit Flash ADC.					
4	Material /							1
	Equipment Required	SINC)	Name		Range	Quantity	
		1	Regul Suppl	ated Dual F Y	Power	0-20V	1	
		2	Resist	ors		1.5ΚΩ(1),22ΚΩ(2),10ΚΩ(1)	2 4	
		3	Capac	citors		0.1µF, 0.01µF	2	
		4	CRO			-	1	
		5	Multin	neter		-	1	
		6	ICµA7	41		-	1	
		7	Patch	Chords		-		
		8	LIC Tra	ainer Kit		-	1	
		9		wn Transforn	ner			
5	Theory, Formula Principle, Concept	Flash A analog convers divider) combin an enco using a compai form of compai then co digital outputs of com	ORY: h ADC is also called as parallel ADC.Its response is very fast.It conver- og signal into digital signal using parallel set of comparators. As version time is very fast it is called as flash. ADC.Reference ladder(voltag- der) consists of 2N equal size resistors. N – bit flash ADC consist of parall- ibination of 2N-1 comparators. Outputs of all comparators are connected ncoder. Analog voltage is applied to non inverting terminals of all comparator g a single line.Reference voltage is applied to inverting terminals parators using divider circuit.Each comparator produces digital output in the n of 1 or 0. If unknown analog voltage is greater than reference voltage is comparator produces high logic.If analog voltage is less than reference voltage is comparator produces low logic i.e 0.Thus all parallel comparator produces al representation of analog voltage in the form of zero and one. The					rs. As its er(voltage of parallel inected to mparators minals of tput in the ce voltage produces ne. These
6	Procedure, R	zeros a CODUI		lo binary hur	nper and	producesdigital bi	inary output.	
0	R		<u>\L</u> .					

10	Graphs, Outputs	-
11	Results & Analysis	Realized Two bit Flash ADC.
		ADC are used in data acquition system.
	Remarks	
	Faculty Signature	
	with Date	


Experiment 11: IC 555 timer Based Pulse Generator

-	Experiment No.:	3 N	larks	Date		Date		
				Planne		Conducted		
1	Title		esign and verify an IC 555 timer based pulse generator for the specified pulse.					
2	Course Outcomes	using lic h	hardware		· · ·		-	
3	Aim	To design pulse.	and ver	ify an IC 555 timer bas	sed pulse genera	tor for the sp	ecified	
4	Material / Equipment							
	Required	SI NO		Name	Range	Quantity	Y	
		1	Regul Suppl	ated Dual Power Y	0-20V	1		
		2	Resist	ors	1.5KΩ(1),22KΩ),10KΩ(1)	.(2 4		
		3	Capac	tors	0.1µF, 0.01µF	- 2		
		4	CRO		-	1		
		5	Multin	neter	-	1		
		6	ICµA74	41	-	1		
		7	Patch	Chords	-			
		8	LIC Tra	ainer Kit	-	1		
		9	Stepdo	wn Transformer				

5	Theory, Formula,	THEORY:	
	Principle, Concept	An Astable Multivibrator or a Free Running Multivibrator which has no stable states. Its output oscillates continuou unstable states without the aid of external triggering. The states are determined by Resistor Capacitor (RC) time cons	usly between its two time period of each
		Monostable Multivibrators or "One-Shot Multivibrators" as are used to generate a single output pulse of a specified w "LOW" when a suitable external trigger signal or pulse T is a	vidth, either "HIGH" or
		PROCEDURE FOR ASTABLE MULTIVIBRATOR:	
	Algorithm, Pseudo Code	Asymmetrical: Frequency 1 KHz with 0.75 duty cycle. 1.Verify the components and patch chords whether they are 2.Connect the Astable multivibrator circuit using IC 555 time	
		as per the design. 3.Switch on the DC power supply unit Vcc=12V. 4.Observer the output waveform at pin no 6 on CRO.(capacit 5.Also observe the output waveform at pin no 3 on CRO.(Mu 6.For the capacitor output at pin no 6 , measure the max voltage levels. Verify that VUT =2/3Vcc and VLT= 1/3 Vcc. 7.Compare the capacitor voltage Vc with output wavefor capacitor charges and Vc rises exponentially when output i C discharges through RB and the diode and Vc falls expon is low. 8.Verify the designed value of frequency matches with prac	ltivibrator output) imum and minimum m Vo and note that is high. The capacitor ientially when output
		Symmetrical: Frequency 1 KHz with 0.50 duty cycle 1.Verify the components and patch chords whether they are 2.Connect the Astable multivibrator circuit using IC 555 time as per the design. 3.Switch on the DC power supply unit Vcc=12V. 4.Observer the output waveform at pin no 6 on CRO.(capacit 5.Also observe the output waveform at pin no 3 on CRO.(Mu 6.For the capacitor output at pin no 6 , measure the max voltage levels. Verify that VUT =2/3Vcc and VLT= 1/3 Vcc. 7.Compare the capacitor voltage Vc with output wavefor capacitor charges and Vc rises exponentially when output i C discharges through RB and the diode and Vc falls expon is low. 8.Verify the designed value of frequency matches with pract	er as shown in the ckt tor output) ltivibrator output) imum and minimum m Vo and note that is high. The capacitor ientially when output
		PROCEDURE FOR MONOSTABLE MULTIVIBRATOR: 1.Verify all the components and patch chords. 2.Connect the Monostable Multivibrator circuit using IC 555	s-timer as like shown
		in ckt. 3.Switch on the D ^{(Symmetric:} pulse at pin no 2 u 4.Adjust the input	eriodic input trigger and adjust the input
		pulse amplitude to 5.Observe the tim IN4007 4starge lower voltage leve	ss the capacitor 'C' asure its higher and
		6.Measure the out designed frequence	hat it is equal to the
		7.Verify whether the Fig 11.2 Symmetric Multivibrator Fig 11.3 Asymmetric Multivibrator. Observe the outpu Monostable Multivibrator:	oractical values and
7	Block, Circuit, Model Diagram,	10K0 114007 4 10K0 40K0 40K0 40K0 40K0 40K0	
17EEI	9	10V discharge 7 P-P 555 ■ TIMER = 0.047µF	.ll rights reserved.
<i>⊥</i> / ∟∟			a nghis reserved.

Fig 11.1 Monostable Multivibrator.

Reaction Equation,	
Expected Graph	
Observation Table,	
Look-up Table,	
Output	
Sample	DESIGN:
Calculations	Astable Multivibrator:
	Symmetric: For frequency of 1KHZ and 50% duty cycle.
	F = 1KHZ so T = 1 / F = 1/ (1000) = 1msec
	T = TH + TL = 0.5msec + 0.5msec
	Where T = total period of the cycle
	TH = upper threshold time
	TL = lower threshold time
	TH = TL = 0.5msec
	TH = TL = 0.693RC = 0.5msec
	Therefore R = 0.5msec / (0.693C)
	Let C = 0.1µF
	R = 0.5 × 10-3 / (0.693 × 0.1 × 10-6)
	= 7.22KΩ
	= 6.8KΩ (std)
	So RA =RB = 6.8KΩ
	Asymmetric : For frequency of 1KHZ and duty cycle of 75%.
	T = 1 / F = 1 / 1000 = 1msec
	Therefore T = TH + TL = 0.75 msec + 0.25 msec
	TH = 0.693 (RA + RB) C = 0.75 msec
	RA + RB = TH / (0.693 C) Let C = 0.1µF
	$= 0.75 \times 10^{-3} / (0.693 \times 0.1 \times 10^{-6})$
	RA + RB = 10.82KΩ
	TL = 0.693 RB C = 0.25msec
	RB = TL / (0.693C) Let C = 0.1µF
	= 0.25 × 10-3 / (0.693 × 0.1 × 10-6)
	= 3.6ΚΩ
	RB = 3.3KΩ (std)
	W.K.T RA + RB = 10.82KΩ
	Therefore $RA = 10.82K\Omega - RB$
	$= 10.82 \text{K}\Omega - 3.3 \text{K}\Omega$
	= 7.49ΚΩ
	$RA = 6.8K\Omega$ (std)
	Monostable:
1	

Experiment 12:Fixed Voltage Power Supply (voltage regulator) using IC Regulators 78 Series and 79 Series.

Experiment No.:	3	Marks			Date Conducted			
Title		Designing of Fixed voltage power supply (voltage regulator) using IC regulators						
Course Outcomes		Design of Fixed voltage power supply (voltage regulator) using IC regulators 78						
Aim		To designing of Fixed voltage power supply (voltage regulator) using IC regulators 78 series and 79 series.						
Material / Equipment						_		
Required	SI NO		Name	Range	Quantity			
	1			0-20V	1			
	2	Resist	ors	1.5KΩ(1),22KΩ	2(2 4			
	Title Course Outcomes Aim Material / Equipment	Title Designin 78 series Course Outcomes Design o series an Aim To design regulator Material / Equipment Required SI NO 1	Title Designing of Fixe 78 series and 79 Course Outcomes Design of Fixed version Aim To designing of Fixed version Aim To designing of Fixed version Material / Equipment SI NO 1 Regul Supple	Title Designing of Fixed voltage power supp 78 series and 79 series. Course Outcomes Design of Fixed voltage power supply (series and 79 series using lic hardware Aim To designing of Fixed voltage power surgulators 78 series and 79 series. Material / Equipment SI NO Required SI NO Name 1 Regulated Dual Power Supply	Planned Title Designing of Fixed voltage power supply (voltage regulator 78 series and 79 series. Course Outcomes Design of Fixed voltage power supply (voltage regulator series and 79 series using lic hardware kit. Aim To designing of Fixed voltage power supply (voltage regulators 78 series and 79 series. Material / Required SI NO Name Range 1 Regulated Dual Power 0-20V Supply Voltage Dower 0-20V	TitleDesigning of Fixed voltage power supply (voltage regulator) using IC regulator)TitleDesigning of Fixed voltage power supply (voltage regulator) using IC regulator)Course OutcomesDesign of Fixed voltage power supply (voltage regulator) using IC regulator)AimTo designing of Fixed voltage power supply (voltage regulator) using IC regulators 78 series and 79 series.Material Equipment RequiredSI NONameRangeQuantity1Regulated Dual Power0-20V1		

	1							
),10KΩ(1)				
		3	Capacitors	0.1μF, 0.01μF	2			
		4	CRO	_	1			
		5	Multimeter	_	1			
		6	ICµA741	-	1			
		7	Patch Chords	-				
		8	LIC Trainer Kit	-	1			
		9	Stepdown Transformer					
	 Principle, Concept A voltage regulator is a circuit that supplies a constant voltage regardless changes in load current and input voltage. IC voltage regulators are versatil relatively inexpensive and are available with features such as programmab output, current/voltage boosting, internal short circuit current limiting, therm shunt down and floating operation for high voltage applications. The 78XX series consists of three-terminal positive voltage regulators with sever voltage options. These IC's are designed as fixed voltage regulators and will adequate heat sinking can deliver output currents in excess of 1A. The 79XX series of fixed output voltage regulators are complements to the 78% series devices. These negative regulators are available in same seven voltage options. Typical performance parameters for voltage regulators are limited. 							
	Program, Activity, Algorithm, Pseudo Code	PROCEDURE: vity, 1)Do the connection as per the circuit diagram. udo2)Vary the load resistance. But start applying from 100Ω. 3)Note down the current and Vo for different values of RL 4)Check that Vo should be 5V for different values of RL						
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	4)Check that Vo should be 5V for different values of RL. rcuit, CIRCUIT DIAGRAM: ram, ition,						

Fig12.2 Negative Voltage Regulator Using 7905 IC

Observation Tak Look-up Tak	ole, For 7805 Regulator ole,								
Output	Load Resistance(RL) in Ω	Load Current in mA	Output voltage in volts						
	100								
	200								
	300								
	400								
	500								
	600								
	700								
	800								
	900								
	1000								
	For 7905 Regulator								
	Load Resistance(RL) in Ω	Load Current in mA	Output voltage in volts						
	100								
	200								
	300								
	400								
	500								
	600								
	700								
	800								
	900								
	1000								
Sample Calculations	DESIGN: Vinrms = $12V$ Vodc = $2Vm/\pi$ = $10.8v$ lodc = $100mA$ RL (min) = Vodc/lodc = Let Rf = 10Ω Ripple = γ = Vorm s / v Let γ =6%=0.06, F = 50 WKT γ = $1/4\sqrt{3}$ F C1 F	= 100Ω /odc = 0.48	2 = 0.01µF						
Graphs, Outputs		<u> </u>							
Results & Analys		esigned and verified fixed voltage power supply (voltage regulator) using IC egulators 7805 for +5V and 7905 for -5V.							

12	Application Areas	Regulators are used in developing regulated DC power supply.
13	Remarks	
14	Faculty Signature with Date	

F. Content to Experiment Outcomes

1. TLPA Parameters

Table 1: TLPA – Example Course

· · · · · · ·			•	_			,
Expt-	Course Content or Syllabus	Conten				Instruction	Assessment
#	(Split module content into 2 parts which	t	Learning			Methods for	Methods to
	have similar concepts)	Teachi	Levels	S'	Verbs	Learning	Measure
		ng	for	Level	for		Learning
		Hours	Content		Learnin		
					g		
Α	В	С	D	Ε	F	G	Н
1	Design and verify a precision full wave	3	L4	L4	Analyze		Internal
	rectifier. Determine the performance				,		Assessment
	parameters.						Test
2	Design and realize to analyse the frequency	3	L4	L4	Analyze	Experiment	Internal
	response of an op – amp amplifier under	Ũ					Assessment
	inverting and non - inverting configuration						Test
	for a given gain.						
	Design and verify the output waveform of	3	L4	L4	Analvze	Experiment	Internal
	an op – amp RC phase shift oscillator for a	Ŭ					Assessment
	desired frequency.						Test
4	Design and realize Schmitt trigger circuit	3	L4	L4	Analyze	Experiment	Internal
	using an op – amp for desired upper trip	5		- '			Assessment
	point (UTP) and lower trip point (LTP).						Test
5	Verify the operation of an op – amp as (a)	3	L3	L3	Analyze	Experiment	Internal
	voltage comparator circuit and (b) zero	5					Assessment
	crossing detector						Test
6	Design and verify the operation's of op –	3	L4	L4	Analyze	Experiment	Internal
	amp as an (a) adder (b) subtractor (c)	5			,		Assessment
	integrator and (d) differentiator.						Test
7	Design and realize an op – amp based first	3	L4	L4	Analyze	Experiment	Internal
	order Butterworth (a) Low pass (b) High pass		L4	L4	/ whatyze		Assessment
	and (c) Band pass filters for a given cut off						Test
	and (c) band pass litters for a given cut on						IESL

	-						
	frequency frequencies to verify the frequency response characteristic.						
8	Design and realize an op – amp based function generator to generate sine, square and triangular waves of desired frequency.	3	L4	L4	Analyze	Experiment	Internal Assessment Test
9	Design and realization of R – 2R ladder DAC	3	L4	L4	Analyze	Experiment	Internal Assessment Test
10	Realization of Two bit Flash ADC.	3	L3	L3	Analyze	Experiment	Internal Assessment Test
11	Design and verify an IC 555 timer based pulse generator for the specified pulse.	3	L4	L4	Analyze	Experiment	Internal Assessment Test
12	Designing of Fixed voltage power supply (voltage regulator) using IC regulators 78 series and 79 series.		L4	L4	Analyze	Experiment	Internal Assessment Test

2. Concepts and Outcomes:

Table 2: Concept to Outcome – Example Course									
Expt - #	Learning or Outcome from study	Identified Concepts from	Final Concept	Concept Justification (What all Learning	CO Components (1.Action Verb, 2.Knowledge,	Course Outcome			
	of the Content or Syllabus	Content		Happened from the study of Content / Syllabus. A short word for learning or	3.Condition / Methodology, 4.Benchmark)	Student Should be able to			
				outcome)					
A	/		K	L Data adiation (M	N Desire state if op Asso			
	verify a precision full wave rectifier. Determine the performanc e parameters.		n	efficiency of designed precision full wave rectifier for given input and output signal amplitude.	2.OP-Amp as a precision full wave rectifier 3.using lic hardware kit.				
	Design and realize to analyse the frequency response of an op – amp amplifier under inverting and non – inverting configuratio n for a given gain.	Frequency Response	Frequency Response	inverting and non - inverting amplifier using op amp for a given gain.Analysis frequency response of inverting and non inverting amplifier.	2.analysis of the frequency response of an op – amp amplifier under inverting and non -	Design and realize to analyse the frequency response of an op – amp amplifier under inverting and non - inverting configuration for a given gain using lic hardware kit.			
2	Design and	Sinosoidal	Sinosoidal	Designing and	1.Design and verify	Design and verify the output			

			LAD	ORATORY PLAN - CAY 201	10-19	
	verify the output waveform of an op – amp RC phase shift oscillator for a desired frequency.	signal Generation	signal Generation	phase shift oscillator for a given	waveform of an op – amp RC phase shift	waveform of an op – amp RC phase shift oscillator for a desired frequency using lic hardware kit.
2	Design and	Square/ Rectangular Wave Generation	Rectangula r Wave	Square/Rectangula r wave for a given UTP and LTP of	2.Schmitt trigger circuit using an op – amp for desired upper trip point	Design and realize Schmitt trigger circuit using an op – amp for desired upper trip point (UTP) and lower trip point (LTP) using lic hardware kit.
3	Verify the operation of an op – amp as (a) voltage comparator circuit and (b) zero crossing detector.	Voltage Comparisio n	Voltage Comparisio n	wave by comparing	comparator circuit	Verify the operation of an op – amp as (a) voltage comparator circuit and (b) zero crossing detector using lic hardware kit.
3	Design and verify the operation's of op – amp as an (a) adder (b) subtractor (c) integrator and (d) differentiator	Airthmatic Operation	Airthmatic Operation	operations, using op amp, such as addition, substraction,	op – amp as an (a)	Design and verify the operation's of op – amp as an (a) adder (b) subtractor (c) integrator and (d) differentiator using lic hardware kit.
4	Design and realize an op – amp based first order Butterworth (a) Low pass (b) High pass and (c) Band pass filters for a given cut off frequency frequencies to verify the frequency r esponse	Active filtration	Active filtration	designed LPF,HPF AND BPF for given	2.op – amp based first order Butterworth (a) Low pass (b) High pass and (c) Band pass filters for a given cut off frequency	frequency response characteristic using lic hardware kit.

	characteristi c.					
4	Design and realize an op – amp based function generator to generate sine, square and triangular waves of desired frequency.		Signal Generation	square, triangular and sin wave for a given frequency using op amp.	2. op – amp based function generator to generate sine, square and	Design and realize an op – amp based function generator to generate sine, square and triangular waves of desired frequency using lic hardware kit.
5	Design and realization of R – 2R ladder DAC		Analog Conversion	verification of R-2R	1.Design and realize 2.R – 2R ladder DAC 3.using lic hardware kit.	Ű,
5	Realization of Two bit Flash ADC.	Analog to Digital Conversion	Analog to Digital	Verification of 2 bit flash ADC	1.Realize	Realize of Two bit Flash ADC using lic hardware kit.
	Design and verify an IC 555 timer based pulse generator for the specified pulse.	Generation	Generation	pulse ageneration for given frequency	2.IC 555 timer based	

i