Logo SKIT		Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F03	Date: 31-07-2018
	Title:	Electrical machine Lab-2	Page: 1 / 33

Copyright ©2017. cAAS. All rights reserved.

Table of Contents

CS507PC : DESIGN AND ANALYSIS OF ALGORITHM LAB	2
A. LABORATORY INFORMATION	2
1. Lab Overview	2
2. Lab Content	2
<u>3. Lab Material</u>	2
<u>4. Lab Prerequisites:</u>	3
5. General Instructions	3
6. Lab Specific Instructions	3
B. OBE PARAMETERS	3
<u>1. Lab / Course Outcomes</u>	3
2. Lab Applications	4
3. Articulation Matrix	5
4. Mapping Justification	<u>5</u>
5. Curricular Gap and Content	<u> 6</u>
<u>6. Content Beyond Syllabus</u>	<u> 6</u>
C. COURSE ASSESSMENT	<u>6</u>
<u>1. Course Coverage</u>	<u> 6</u>
<u>2. Continuous Internal Assessment (CIA)</u>	<u>7</u>
D. EXPERIMENTS	7
Experiment 01 : Structure of C program	<u>7</u>
Experiment 02 : Keywords and identifiers	<u>8</u>
Experiment 03:	9
Experiment 04 :	9

Note : Remove "Table of Content" before including in CP Book

17EEL37 : ELECTRICAL MACHINE LAB-2

A. LABORATORY INFORMATION

1. Lab Overview

Degree:	B.Tech	Program:	EE
---------	--------	----------	----

LogoSKITTeaching ProcessRev No.: 1.0Doc Code:SKIT.Ph5b1.F03Date: 31-07-2018Title:Electrical machine Lab-2Page: 2 / 33

			P = 9 = 1 = 9 9 9			
Copyright ©2017. cAAS. All rights reserved.						
Year / Semester :	2/3	Academic Year:	2018-19			
Course Title:	Electrical Machine Lab-2	Course Code:	17EEL347			
Credit / L-T-P:	3/0-1-2	SEE Duration:	180 Minutes			
Total Contact Hours:	30 Hrs	SEE Marks:	80 Marks			
CIA Marks:	20	Assignment	1 / Module			
Course Plan Author:	Mr.Raghavendra k	Sign	Dt :			
Checked By:		Sign	Dt :			

2. Lab Content

Unit	Title of the Experiments	Lab Hours	Concept	Blooms Level
1	Load test on dc shunt motor to draw speed – torque and horse power – efficiency characteristics	3	Analysis of Losses in D C motors	
2	Field Test on dc series machines	3	Analysis of Combined losses in D C motors	
3	Speed control of dc shunt motor by armature and field control	3	Analysis of load distribution	L4
4	Swinburne's Test on dc motor	3	Analysis of polarity connection	L4
5	Retardation test on dc shunt motor	3	Analysis of connection in 3 phase D C motors	
6	Regenerative test on dc shunt machines	3	Analysis of 3 phase- 2phase conversion	L4
7	Load test on three phase induction motor	3	Analysis of Seperation of losses	
8	No load and Blocked rotor test on three phase induction motor to draw (i) Equivalent circuit and (ii) Circle diagram. Determination of performance parameters at different load conditions from (i) and (ii)		Analysis of voltage in motors	-
9	Load test on induction motor	3	Analysis of voltage in alternators	L4
10	Load test on single phase induction motor to draw output versus torque, current, power and efficiency characteristics	3	Analysis of speed when connected in load	
11	Conduct suitable tests to draw the equivalent circuit of single phase induction motor and determine performance parameters	3	Analysis of excitation of motors	-
12	Conduct an experiment to draw V and Λ curves of synchronous motor at no load and load	3	Analysis Power Angle	L4

Logo	SKIT	Teaching Process		Rev No.: 1.0		
	Doc Code:	SKIT.Ph5b1.F03		Date: 31-07-2018		
	Title:	Electrical machine Lab-2		Page: 3 / 33		
Copyright ©2017. cAAS. All rights reserved.						

	curve of synchronous motor	

3. Lab Material

Unit	Details	Available
1	Text books	
	Nagaranth kothari, V.Kamaraju McGraw Hill 5 th Edition, 2013.	In Lib
2	Reference books	
	B L Theraja	In dept
3	Others (Web, Video, Simulation, Notes etc.)	
		Not Available

4. Lab Prerequisites:

-	-	Base Course:		-	-
SNo	Course	Course Name	Topic / Description	Sem	Remarks
	Code				
1	17EEL47		Knowledge on D C motor operation	3	
		Lab-2			
			Knowledge of AC and DC motors	-	

Note: If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

5. General Instructions

SNo	Instructions	Remarks
1	Keep the lab neatly.	
2	Maintain silence.	
3	Maintain your lab observation and lab manual.	
4	Prepare your experiment in well advance.	
5	Do not leave the lab without in-charge staff permission.	
6	Do not move around in the lab.	
7	Do not misplace the equipments.	
8	Check the power supply before use.	
9	Maintain discipline in the lab.	
10	After completion of your experiment switch off the power	
	supply.	

6. Lab Specific Instructions

SNo	Specific Instructions	Remarks
1	The equipment must be connected firmly to the mother	
	ground	
2	The electrodes must be cleaned properly before use	

Logo		SKIT	Teaching Process	Rev No.: 1.0	
		Doc Code:	SKIT.Ph5b1.F03	Date: 31-07-2018	
		Title:	Electrical machine Lab-2	Page: 4 / 33	
Copyrigh		AS. All rights reserved			
3	Befor	e starting f	he experiment, make sure the electrodes are		
	prope	erly aligned	to zero reading		
4	Any part of the equipment should not be touched				
5	Do not enter High-Voltage area without discharge				
6	Sudden High-Voltage should not be applied to the specimen				
7	Do	not enter	the test-bay while the equipments are in		
	operation				
8	Ignor	e the first o	one reading as the air between the electrodes		
	may l	oe ionized	-		

B. OBE PARAMETERS

1. Lab / Course Outcomes

#	COs	Teach. Hours	Concept	Instr Method	Assessment Method	Blooms Level
1	Experimentally verify the characteristics of D C motor by open circuit and short ciruit		Analysis of Losses in D C motors	Demons		Level L2
2	Experimentally verify the characteristics of D C motor using two similar D C motors	06		trate	Assignment	L2
3	Analyze the load sharing of D C motors		Analysis of load distribution	Demons trate	Assignment and Slip Test	L2
4	Analyze of connection of D C motor		Analysis of polarity connection	Simulati on	Assignment	L3
5	Analyze different winding connection of D C motor.	03	Analysis of connection in 3 phase D C motors		Slip test	L2
6	Analyze conversion of 3phase to 2phase		Analysis of 3 phase- 2phase conversion	Tutorial	Assignment	L2
7	Experimentally verify separation of of losses in synchronous motor		Analysis of Seperation of losses		Assignment and Slip Test	L3
8	Analyze the voltage regulation of different methods		Analysis of voltage in motors		Assignment	L2
9	Analyze the bus bar connection to motors		Analysis of voltage in alternators	Demons trate	Assignment	L2
10	Analyze speed control of dc motor when load is connected		Analysis of speed when connected in load	trate	Assignment	L4
11	Analysis excitation of Alternators connected to infinite bus bar		excitation of motors	trate	Assignment	
12	Analysis direct and quadrature axis reactance		Analysis Power Angle curve of	trate	Assignment	L4

Logo	SKIT	Teach	Teaching Process Rev No.:					
	Doc Code:	SKIT.Ph5b1.F03				Date: 31-0	7-2018	
	Title:	Electrical machine Lab-2	lectrical machine Lab-2 Page: 5 / 33					
Copyright ©2017. c	AAS. All rights reserved							
				alternator				
-		Total	60	-	-	-	-	

-Total60-Note: Identify a max of 2 Concepts per unit. Write 1 CO per concept.

2. Lab Applications

Application Area	CO	Level
In power systems, varieties of insulation materials are used to	CO1	L2
protect the high voltage power apparatus such as D C motor, switchgear, current D C motor, potential D C motor etc.		
The D C motor oil is degraded due to the combination of the ageing processes such as partial discharge (PDs), electrical arcing	CO2	L2
properties of insulating oil of a model D C motor is studied using a UV-visible spectrophotometer diagnostic method which is presently	-	L2
High voltage (HV) power apparatus determines the stability of any electrical power system	CO4	L3
system in which mineral oil is used for both insulation and cooling purposes. It acts a insulating medium between solid insulations like kraft paper, pressboard etc.	_	L2
	In power systems, varieties of insulation materials are used to protect the high voltage power apparatus such as D C motor, switchgear, current D C motor, potential D C motor etc. The D C motor oil is degraded due to the combination of the ageing processes such as partial discharge (PDs), electrical arcing the effects of different ageing processes on the optical absorption properties of insulating oil of a model D C motor is studied using a UV-visible spectrophotometer diagnostic method which is presently becoming a popular method to identify the ageing of the insulating oil of high voltage D C motors High voltage (HV) power apparatus determines the stability of any electrical power system Power D C motors are one of the most critical component of power system in which mineral oil is used for both insulation and cooling purposes. It acts a insulating medium between solid insulations like	In power systems, varieties of insulation materials are used to CO1 protect the high voltage power apparatus such as D C motor, switchgear, current D C motor, potential D C motor etc. The D C motor oil is degraded due to the combination of the ageing CO2 processes such as partial discharge (PDs), electrical arcing the effects of different ageing processes on the optical absorption CO3 properties of insulating oil of a model D C motor is studied using a UV-visible spectrophotometer diagnostic method which is presently becoming a popular method to identify the ageing of the insulating oil of high voltage D C motors High voltage D C motors High voltage (HV) power apparatus determines the stability of any CO4 electrical power system Power D C motors are one of the most critical component of power CO5 system in which mineral oil is used for both insulation and cooling purposes. It acts a insulating medium between solid insulations like kraft paper, pressboard etc.

Note: Write 1 or 2 applications per CO.

3. Articulation Matrix

(CO – PO MAPPING)

-	Course Outcomes				P	rogr			ome					
#	COs	PO1			PO	PO			PO					Level
			2	3	4	5	6	7	8	9	0	1	2	
17EEL47.1	Experimentally verify the			X		X								L3
	characteristics of D C motor by													
	open circuit and short ciruit Experimentally verify the		X					X						
1/EEL4/.2	Experimentally verify the characteristics of D C motor using													L4
	two similar D C motors													
17EEL47.3	Analyze the load sharing of D C	Х			Х					Х				L3
	motors													
17EEL47.4	Analyze of connection of D C motor		X				X							L3
17EEL47.5	Analyze different winding connection of D C motor.			X			X							L2
17EEL47.6	Analyze conversion of 3phase to 2phase	Х				Х								L2
17EEL47.7	Experimentally verify separation of of losses in synchronous motor				Х			Х						L3
17EEL47.8	Analyze the voltage regulation of different methods	Х			Х		Х							L4
17EE47.9	Analyze the bus bar connection to motors	Х			Х		Х							L4
17EE47	Average													

Logo	SKIT	Teaching Process	Rev No.: 1.0						
	Doc Code:	SKIT.Ph5b1.F03	Date: 31-07-2018						
	Title:	Electrical machine Lab-2	Page: 6 / 33						
Copyright ©2017. cA	Copyright ©2017. cAAS. All rights reserved.								

Note: Mention the mapping strength as 1, 2, or 3

4. Mapping Justification

Mappir	ng	Mapping	Justification
		Level	
CO	PO	-	-
CO1	PO1	L2	Understanding losses in DC motor
CO1	PO3	L3	Experimentally verify the characteristics of D C motor using two similar D C motors
CO1	PO5	L4	Analyze the load sharing of D C motors
CO2	PO2	L3	Analyze of connection of D C motor
CO2	PO7	L4	Analyze different winding connection of D C motor.
CO3	PO1	L3	Analyze conversion of 3phase to 2phase
CO3	PO4	L4	Experimentally verify separation of of losses in synchronous motor
CO3	PO9	L4	Analyze the voltage regulation of different methods
CO4	PO2	L4	Analyze the bus bar connection to motors
CO4	PO6	L4	Experimentally verify the characteristics of D C motor using two similar D C motors
CO5	PO3	L3	Analyze the load sharing of D C motors
CO5	P06		Analyze of connection of D C motor
CO6	PO1	L4	Analyze different winding connection of D C motor.
CO6	PO5	L3	Analyze conversion of 3phase to 2phase
CO7	PO4	L4	Experimentally verify separation of of losses in synchronous motor
CO7	PO7	L3	Analyze the voltage regulation of different methods
CO8	PO1	L4	Analyze the bus bar connection to motors
CO8	PO4	L4	
CO8	P06	L3	ch CO. PO manning

Note: Write justification for each CO-PO mapping.

5. Curricular Gap and Content

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					

Note: Write Gap topics from A.4 and add others also.

6. Content Beyond Syllabus

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					

Note: Anything not covered above is included here.

C. COURSE ASSESSMENT

1. Course Coverage

Unit	Title	Teachi		Nc	o. of qu	lestior	n in Exa	am		CO	Levels
		ng	CIA-1	CIA-2	CIA-3	Asg-1	Asg-2	Asg-3	SEE		
		Hours									
1	a) Open Circuit and Short circuit	03	1	-	-	-	-	-	1	CO1	L2
	tests on single phase step up or										
	step down D C motor and										
	predetermination of Efficiency and										
	regulation										
	(b) Calculation of parameters of										
	equivalent circuit by conducting										
	Open Circuit and Short circuit test										

L	Logo SKIT Teaching Process Rev No.: 1.0										
	Doc Code: SKIT.Ph5b1.F03								Date	: 31-07-	2018
Copyrig	ht ©2017. CAAS. All rights reserved.	hine La	b-2						Page	e: 7 / 33	
Copyrig	The Colf. CAAS. All rights reserved.										
2	Sumpner's test on similar D C motors and determination of combined and individual D C motor efficiency	03	1	-	-	-	-	-	1	CO2	L3
3	Parallel operation of two dissimilar	03	1	-	-	-	-	-	1	CO3	L3
	single-phase D C motors of										
	different kVA and determination of										
	load sharing and analytical										
	verification given the Short circuit										
	test data.										
4	Polarity test and connection of 3	03	1	-	-	-	-	-	1	CO4	L3
	single-phase D C motors in star –										
	delta and determination of										
	efficiency and regulation										
	under balanced resistive load										
5	Comparison of performance of 3 single-phase D C motors in delta – delta and V – V (open delta) connection under load.	03	1	-	-	-	-	-	1	CO5	L4
6	Scott connection with balanced	03	-	1	-	-	-	-	1	CO6	L4
	and unbalanced loads.										
7	Separation of hysteresis and eddy current losses in single phase D C motor.		-	1	-	-	-	-	1	CO7	L4
8	Voltage regulation of an alternator	03	-	1	-	-	-	-	1	CO8	L4
	by EMF and MMF methods.										
9	Voltage regulation of an alternator	03	-	1	-	-	-	-	1	CO9	L4
10	by ZPF method. Slip test – Measurement of direct	03	_	1					1	CO10	L4
	and quadrature axis reactance and	-	_								<u>∟</u> 4
	predetermination of regulation of										
	salient pole synchronous machines.										
11	machines. Performance of synchronous	03	-	_	1	_	_	_	1	CO11	L4
	motor connected to infinite bus, under constant power and variable excitation & vice - versa.	_									
12	Power angle curve of synchro	naus	-	-	1	-	-	-	1	CO12	L4
	motor										
-	Total	36	5	5	5	5	5	5	20	-	-

Note: Write CO based on the theory course.

2. Continuous Internal Assessment (CIA)

Evaluation	Weightage in Marks	СО	Levels
CIA Exam – 1	30	CO1, CO2, CO3, CO4	L23, L3
CIA Exam – 2	30	CO5, CO6, CO7,	L1, L2, L3
CIA Exam – 3	30	CO5, CO6,	L1, L2, L3

Logo	SKIT	Teach	Teaching Process							
	Doc Code:	SKIT.Ph5b1.F03		Date: 31-07-2018						
	Title:	Electrical machine Lab-2		Page: 8 / 33						
Copyright ©2017. CAAS. All rights reserved.										
Assignment	1 - 1	05	L2, L3, L4							
Assignment	: - 2	05	CO5, CO6, CO7,	L1, L2, L3						
Assignment - 3		05	CO8,	L1, L2, L3						
Seminar - 1		05	CO1, CO2, CO3, CO4	L2, L3, L4						

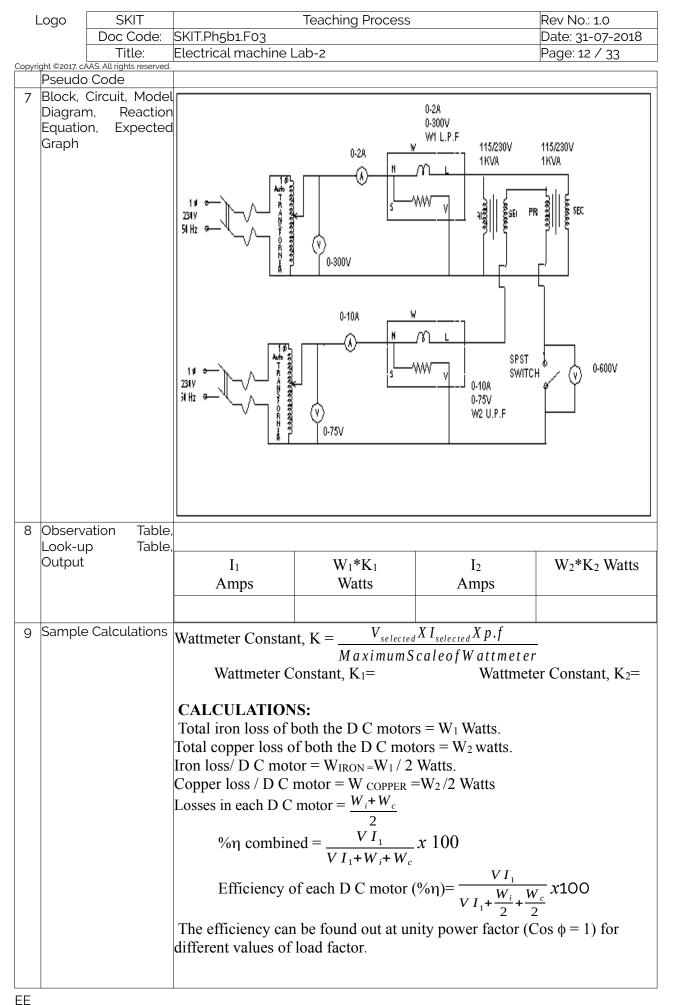
	40	-	-
Final CIA Marks	40		
Slip test			
Other Activities – define –		CO1	L2, L3, L4
Seminar - 3	05	CO8,	L2, L3, L4
Seminar - 2	05	CO5, CO6,	L2, L3, L4

SNo	Description	Marks			
1	Observation and Weekly Laboratory Activities	05 Marks			
2	Record Writing	10 Marks for each Expt			
3	Internal Exam Assessment	25 Marks			
4	Internal Assessment	15 Marks			
5	SEE	80 Marks			
-	Total	100 Marks			

D. EXPERIMENTS

Experiment 01: OPEN CIRCUIT & SHORT CIRCUIT TEST ON A SINGLE PHASE D C motor:

-	Experiment No.:	1	Marks		Dat	-		Date			
					Planı			Conducted			
1	Titlle		OPEN CIRCUIT & SHORT CIRCUIT TEST ON A SINGLE PHASE D C motor								
2	Course Outcomes	Exp	erimentally	verify th	ne characteri	stics	of D C motor	by open circ	uit and short ciruit		
3	Aim						test on a sing equivalent cir		C motor and to pre- C motor		
4	Material / Equipment Required				1						
		SL	.No. equi	pment	Туре		Ran	ge	Quantity		
			1 Volt	meter	MI		(0-300)V ,	(0-150)V	1 no, 1 no		
			2 Ami	meter	er MI (0-2)A , (0-20)A			1 no, 1 no			
			3 Watt	meter	Dynamo typ	e	(0-300)V (0)-2)A LPF	1 no		
			4 Watt	tmeter	Dynamo typ	e	(0-150)V (0-	-10)A UPF	1 no		
5		Finc	d the equiva	alent cir	cuit parame	ers F	Ro, Xo, Ro1, R	02, X01 and	X02 from the O. C.		
	Principle, Concept	and	S. C. Test re	esults ar	nd draw the e	equiv	alent circuit re	eferred to L.	V. side as well as H.		
		V. si	de No load	power f	factor, cos =	= Wc	o ∕ (Vo*lo)				
			Short circuit power factor, cos ⁼ _{sc} = Wsc / (Vsc*Isc).								
			$R_0 = \frac{V_1}{I_w}$ where Iw = IO cos $\Phi O_{X_0} = \frac{V_1}{I_m}$ Where Im = IO sin ΦO								
			R_{0}	$_{01} = \frac{W_s}{I_{so}^2}$	$\frac{dc}{dc} X_{01} = \sqrt{Z}$	$^{2}_{01} - 1$	$R_{01}b^{2}$				


l	_ogo	SKIT	Teaching Process	Rev No.: 1.0				
	0	Doc Code:	SKIT.Ph5b1.F03	Date: 31-07-2018				
		Title:	Electrical machine Lab-2	Page: 9 / 33				
Copyri	ight ©2017. cA	VAS. All rights reserved.	$Z_{01} = \frac{V_{sc}}{I_{sc}} X_{02} = K^2 X_{01} \text{ Where } K = \frac{V_2}{V_1} = \text{Transformation}$	on Ratio				
6		ure, Program,	Open circuit test:					
	Activity	, Algorithm, Code	1. Connections are made as per the	circuit diagram.				
			2. Ensure that variac is set to zero output voltage posi experiment.	ition before starting the				
		3. Switch ON the supply. Now apply the rated voltage to the Primary winding t using Variac.						
			4. The readings of the Voltmeter, ammeter and wattmeter are noted down in Tabular form.					
			5. Then Variac is set to zero output position and switch OFF the supply.					
			6. Calculate ${f R}_{f o}$ and ${f X}_{f o}$ from the readings.					
		Short Circuit Test:						
			1. Connections are made as per the circuit diagram.					
			2. Ensure that variac is set to zero output voltage posi experiment.	ition before starting the				
			t to the Primary winding by					
			4 The readings of the Voltmeter, ammeter and wattm form.	eter are noted down in Tabular				
			5. Then Variac is set to zero output position and switc	h OFF the supply.				
			6. Calculate \mathbf{R}_{o1} and \mathbf{X}_{o1} from the readings.					

L	_ogo	SK				ching Proces		Rev No.: 1.0		
	Doc Code: Title:			SKIT.Ph5b1.F					Date: 31-07-2	
Copyri	ght ©2017. cA			Electrical ma	achine Lab-2				Page: 10 / 33	
	Block,	Circuit,	Model							
	Diagran		eaction							
	Equatio Graph	n, Ex	pected	l						
	Giaph									
8	Observa	ation	Table	For	OC test					
	Look-u	р	Table	,						
	Output									
				I)	For OC test					
				SI no.	Voltmeter	Ammeter	Wattmeter	Ro	Xo	Cos φ _o
					reading	reading	reading			
					(V _o)	(l _o)	Wo			
)	SC test	I	1 1		I	1
					1	1				
				Sl no.	Voltmeter	Ammeter	Wattmeter	R ₀₁	Zo1	X ₀₁
					reading	reading	reading			
					(V _{SC})	(I _{SC})	W _{SC}			
									L	
	Cananala	Calaula	ationa			Coloulations	to find officia		vo en electione	
9	Sample	CalCula	สมอทร				s to find efficie	ency and	regulation	
				For example	e at ½ full loa	ad				
				Cupper loss	ses = Wsc x (1	./2)² watts, w	/here WSC = 1	full – loac	l cupper losse	S
				Constant los	sses = W0 wa	atts Output =	1⁄2 KVA x cos	Φ [cos Φ	may be assur	ned]
					ut + Cu. Loss	-			-	
				%= <u>outpu</u> inpu	$\frac{1}{t}x 100$					
				inpu	ι					

L	logo	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:		SKIT.Ph5b1.F03	Date: 31-07-2018
		Title:	Electrical machine Lab-2	Page: 11 / 33
	· · · ·	AS. All rights reserved.		
10	Graphs	Outputs		
11	11 Results & Analysis		hence performed open circuit and short circuit test on a to pre-determine the efficiency, regulation and equivalen	
12	Applica	tion Areas	Used in Generation , Transmission and Distribution	
13	3 Remarks			
14	Faculty Signature with			
	Date			

Experiment 02 : Sumpner's test on similar D C motors and determination of combined and individual D C motor efficiency.

-	Experiment No.:	1	Marks		Date Planned		Date Conducte	d	
1	Title			1	Sumpner's te	st			
2	Course Outcomes	Experi motors	xperimentally verify the characteristics of D C motor using two similar D (
3	Aim	1) To co	onduct si	umpner's te	st (heat run test) or	n two ide	entical D C ı	motors and	
		hence	to Prede	termine the	efficiency and reg	ulation.			
			ermine co	ombined an	d individual D C mo	otor effic	iency.		
4	Material / Equipmen Required	SL No		TICULARS	RANGE	TYPE	(
		1	Amm		0-2A	MI			
		-	Amn	letel		MI		1	
			Volta	neter	0-10A 0-300V, 0-60V, 0-			1	
		2			_			3	
		3	Wall	meter	1A,300V 10A,75V	LPF UPF		1 1	
		4	DCr	notor	1KVA	1-Ф		2	
		5	Auto	D C motor	-	-		2	
		6	SPST	Switch	-	-		1	
5	Theory, Formula Principle, Concept	The	Total co Iron lo Copper Losses i %η con Efficien	opper loss of ss/ D C mo loss / D C in each D C nbined = $\frac{1}{V}$ cy of each	$D C \text{ motors} = W_{I}$ of both the D C matrix otor = W _{IRON} = W ₁ / motor = W _{COPPER} motor = $\frac{W_i + W_c}{2}$ $\frac{VI_1}{I_1 + W_i + W_c} x 100$ D C motor (% η)= found out at unity actor.	$btors = \frac{1}{2} \text{ Watts}$ $c = \frac{W_2}{2}$ $c = \frac{V}{VI_1 + \frac{V}{2}}$	S. 2 Watts $\frac{I_1}{2} + \frac{W_c}{2} \times 1^{10}$		
6	Procedure, Program,			5 01 10 uu 10					
ΞE	Activity, Algorithm,								

Logo	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F03	Date: 31-07-2018
	Title:	Electrical machine Lab-2	Page: 13 / 33

Copyri	ght ©2017. cAAS. All rights reserved.	
10	Graphs, Outputs	
11	Results & Analysis	
		Used to protect highly sensitive and high rating electrical equipments
13	Remarks	
	Faculty Signature with Date	

Experiment 03 : Parallel operation of two dissimilar single-phase D C motors of different kVA and determination of load sharing and analytical verification given the Short circuit test data

-	Experiment No.:	1 Marks	F	Date Planned	Date Conduc	
1	Title	Parallel oper	ration of two	dissimilar sir	ngle-phase D	C motors of
		different kVA	and determi	nation of	load sha	aring and
		analytical ve	rification give	n the Short c	ircuit test dat	a
		Analyze the load	d sharing of D C	motors		
		connected in in verification giv	Parallel & de	termination of		C motors when and analytical
4	Material / Equipment Required	Sl No	PARTICULA	RRANGE	ТҮРЕ	QUANTITY
	Required	1	D C motor		1-Φ	2
		2	Ammeter	0-10A, 0-5A,	0-21014	3
		3	Voltmeter	0-600V, 0-30	00VMI	2
		4	Wattmeter	10A,150V, 20A,150V	UPF	2
		5	SPST Switch	-	-	1
5 EE	Theory, Formula, Principle, Concept	$Z_{B} = \frac{V_{s}}{I_{sc}}$ $R_{A} = \frac{W_{sc1}}{I_{sc1}^{2}} = -$ $X_{A} = ((R_{B})^{2})^{1/2} = -$	$(Z_A)^2 - (R_A)$	$Q R_B = \frac{W}{I_2}$	802	$B = ((Z_B)^2 - $

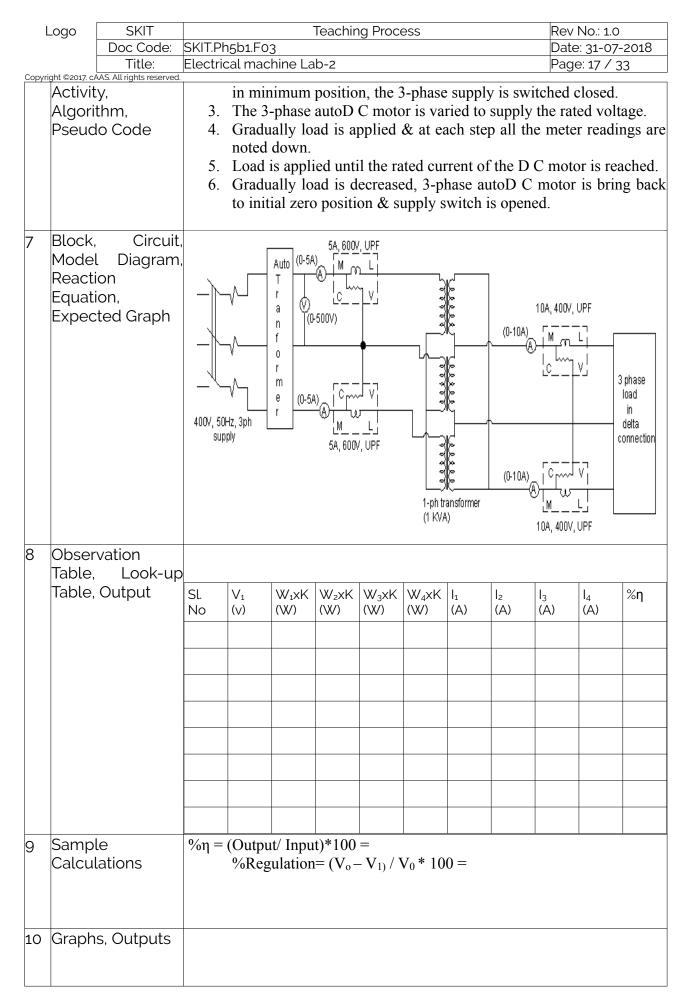
Logo

SKIT

Doc Code:

Title:

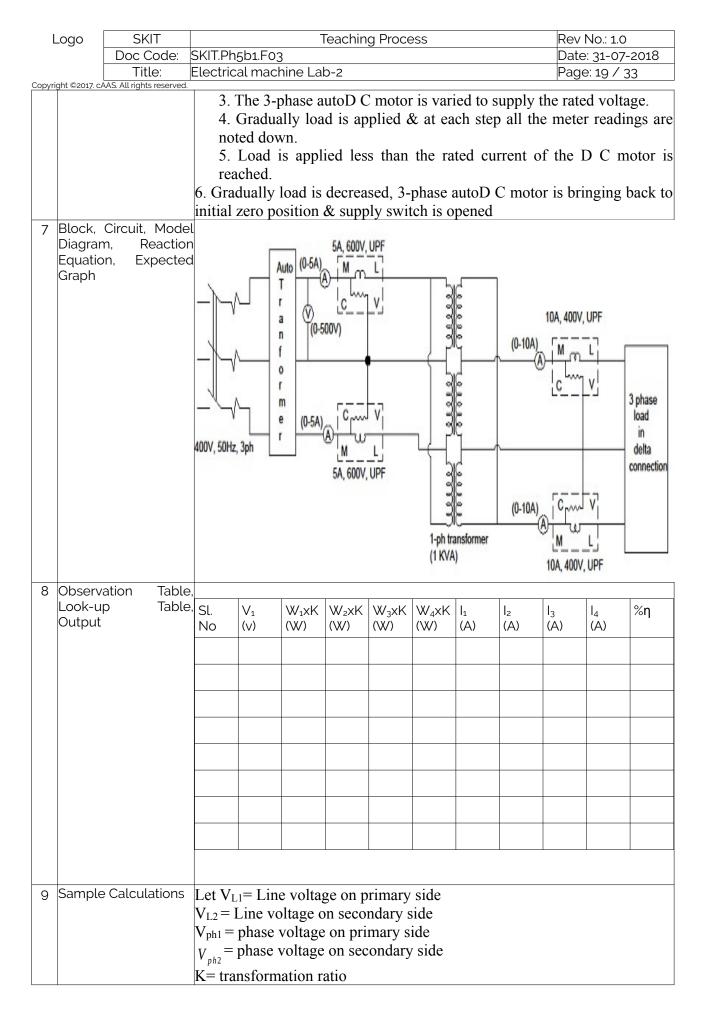
`opyright ©2017	L Itle: cAAS. All rights reserved	Electrical machine Lab-2	Page: 14 / 33
	<u>, , , , , , , , , , , , , , , , , , , </u>	$I_{A} = \frac{I_{L} * Z_{B}}{Z_{A} + Z_{B}} = A m p s I_{B} = \frac{I_{L} * Z_{A}}{Z_{A} + Z_{B}} = A m p s I_{B}$	m p s
		$Q_A = \frac{Q^* Z_B}{Z_A + Z_B} = Q_B = \frac{Q^* Z_A}{Z_A + Z_B} = i i$,
	dure, Program, y, Algorithm,	01. The circuit is rigged up as shown in the o	circuit diagram
	o Code	02 . Keep autoD C motor in minimum po	-
		kept open; the main supply is switched ON	
		applied to the primaries of the D C motors	/
		variac.	2 eg
		Note: If the voltmeter across SPST switch s	shows zero reading, it indicates
		that the two secondary windings of the tw	Ċ,
		properly. If the voltmeter shows some value	
		that the two secondary windings of the D	
		properly. In that case, the output of the v	variac reduced to zero and the
		supply is switched OFF. Then the connection	ons of the secondary terminals
		of any one of the D C motors are int	terchanged. After interchange
		secondary terminals, the supply is switche	ed ON and a small voltage is
		applied. Now, the voltmeter will show zero i	reading.
		03. The SPST switch is closed after confirm	ming the zero voltage across it
		and the rated voltage of the D C motor is app	plied to the primary windings.
		04. The no load readings of all the meters ar	re noted down.
		05. The lamp loads are applied in equal step	os and the corresponding meter
		readings are noted down and tabulated.	
		06. Loading is continued till one of the D C	motors carries its rated current.
		07. The loads are reduced to zero, the outp	out of variac is reduced to zero
		and the supply switch is opened.	
		08. Now, the connections are removed and	short circuit test is conducted
		on both the D C motors separately, as expla	ined in experiment number 01,
		and the readings are tabulated.	
		1. Bring the variac to minimum po	sition and switch OFF the
		main supply.	
		2. Repeat the same procedure a	and note down 3 to 4


L	_ogo	SKI	Г			Teachin	g Process			Rev No.:	1.0
	Ĵ	Doc Co		SKIT.Ph5	b1.F03		0				-07-2018
		Title):	Electrica	l machine	Lab-2				Page: 15	
Copyri	ght ©2017. cÁ	AS. All rights r	eserved.	bro	eakdown	voltago	~				
7	Block (Circuit N	/odal		anuowii	vollages	5.				
7	Block, C Diagram Equatior Graph	n, Rea	Aodel action ected	•							
8	Observa		Table,	•							•
	Look-up) -	Table,								
	Output			Sl. No.	I _A Amps	I _B Amps	I∟Amps	W _A watts	W _B Watts	V _L Volts	W _L watts
	Sample	Calculat	tions								
	Graphs,										
	Results			Breakd	own stra	enath o	foil =	(Break		oltage/	Distance
	Analys				en the two					Judger	Distance
	Applicat							<u></u> .	•		
	Remark										
17											

Logo

Logo	SKIT	Teaching Process	Rev No.: 1.0					
	Doc Code:	SKIT.Ph5b1.F03	Date: 31-07-2018					
	Title:	Electrical machine Lab-2	Page: 16 / 33					
Copyright ©2017. cA	Copyright ©2017. cAAS. All rights reserved.							

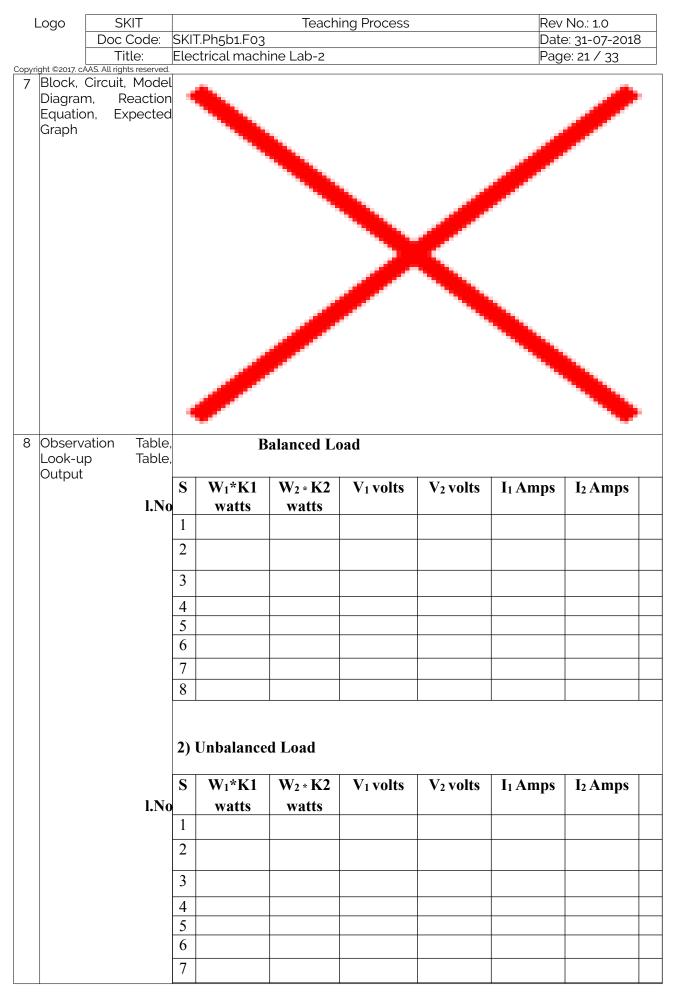
Experiment 04 :Polarity test and connection of 3 single-phase D C motors in star delta and determination of efficiency and regulation under balanced resistive load.


	Experiment No.:	3 Marks	3	Date Planned	Date Conduc			
1	Title	Polarity test				motors in star		
		- delta and determination of efficiency and regulation under						
2	Course	balanced resistive load. Analyze of connection of D C motor						
	Outcomes							
3	Aim	To obtain the flash over characteristics of the following electrode configuration in air subjected to HVAC 1 Plane - plane electrodes 2 Point - point electrodes 3 Plane - point electrodes						
4	Material /		1	1	1			
	Equipment Required	Sl No	PARTICULARS	RANGE	TYPE	QUANTITY		
	Required	1	Ammeter	0-5A 0-10A	MI MI	2 1		
		2	Voltmeter	0-30V	MI	2		
		3	Wattmeter	0-5A,0-400V	UPF	2		
		4	3Φ Load	-	-	1		
		5	3Φ Auto TFR	-	-	1		
		6	1Φ TFR of ecretion rating	ju å lKVA	-	3		
5	Theory, Formula Principle, Concept	$V_{L2} = \text{Line volt}$ $V_{ph1} = \text{phase volt}$ $V_{ph2} = \text{phase volt}$ $K = \text{transforma}$ $V_{ph1} = \frac{V_{L1}}{\sqrt{3}}, \frac{V}{V}$ Therefore V_{ph2} Since secondar $V_{ph2} = V_{L2}$ $V_{L2} = \frac{V_{L1}}{\sqrt{3}} = \frac{V_{L1}}{\sqrt{3}}$ Output = W_3 + W Input = W_1 + W	tage on second obtage on prime obtage on second tion ratio $\frac{ph2}{ph1} = K$ $K V_{ph1} = K \frac{V_{L1}}{\sqrt{3}}$ ry is connected $\frac{K}{\sqrt{3}} V_{L1}$ $V_{4} = \frac{V_{2}}{2} = \frac{V_{2}}{2} = \frac{V_{2}}{\sqrt{3}}$	ary side ary side adary side	he circuit diag	-2 m		
6	Procedure, Program			p as shown in t	-			
	Program,	2. Keepin	g the load swif	cn in minimum	a the 3-phase	autoD C motor		

L	ogo	SKIT	Teaching Process	Rev No.: 1.0
	_	Doc Code:	SKIT.Ph5b1.F03	Date: 31-07-2018
			Electrical machine Lab-2	Page: 18 / 33
Copyrio	ght ©2017. cÅ	AS. All rights reserved.		
11	Result	s &		
	Analys			
12	Applic	ation Aroas	Used in industries generating stations	
			Used in industries generating stations	
	Remar			
		y Signature		
	with D	ate		

Experiment 05 : Comparison of performance of 3 single-phase D C motors in delta – delta and V – V (open delta) connection under load.

-	Experiment No.:	1 Marks	F	Date Planned		Date Conducted	
1	Title	Comparison of	performance of		e D C m		a – delta and
			V – V (open d	delta) connect	ion unde	er load.	
2	Course Outcomes	Analyze differe	nt winding conn	ection of D C r	notor.		
3	Aim	1	e performance n delta) connec	• 1		C motors in	delta – delta
4	Material / Equipment Required	Sl No	PARTICULARS	RANGE	TYP	PE Q	UANTITY
	Required	1	Ammeter	0-5A, 0-10A	MI		2, 1
		2	Voltmeter	0-30V	MI		2
		3	Wattmeter	0-5A,0-400V	UPF	-	2
		4	3Ф Load	-	-		1
		5	3Φ Auto TFR	-	-		1
		6	1 Φ TFR of brating	10-QLA	-		3
5	Theory, Formula, Principle, Concept						
6	Procedure, Program, Activity, Algorithm, Pseudo Code	2. Keeping	s rigged up as s the load switc m position, the	h in minimun	n & the	3-phase aut	



Logo	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F03	Date: 31-07-2018
	Title:	Electrical machine Lab-2	Page: 20 / 33

Copyri	ght ©2017. cAAS. All rights reserved.	
		For delta connection, $V_{ph1} = V_{L1}$, Now $\frac{V ph2}{V ph1} = K$
		Therefore $V_{ph2} \underset{K}{V} V_{ph1}$
		But again since secondary is connected in delta.
		$V_{ph2} = V_{L2} = K_{V_{L1}}$
		Output = W_3+W_4 =
		$Input = W_1 + W_2 =$
		$\%\eta = (\text{Output/ Input})*100 =$
		%Regulation= $(V_0 - V_1) / V_0 * 100 =$
10	Graphs, Outputs	
11	Results & Analysis	
12	Application Areas	To check the break-down voltage of a D C motors
13	Remarks	
14	Faculty Signature with Date	
	2400	

Experiment 06 : Scott connection with balanced and unbalanced loads.

-	Experiment No.:	1 Marks	F	Date Planned		Date Conducted				
1	Title	Scott connec	Scott connection with balanced and unbalanced loads							
2	Course Outcomes	Analyze convers	sion of 3phase t	o 2phase						
3	Aim	Scott connec	tion with bala	anced and	unbalanc	ced loads.				
4	Material / Equipment		1	1						
	Required	Sl No	PARTICULAR	RANGE	TYP	E Q	UANTITY			
		1	D C motor tapings)	(WZKIWA	1-Φ		2			
		2	Ammeter	0-10A	MI		2			
		3	Voltmeter	0-300V	MI		2			
		4	Wattmeter	10A,300V	UPF		2			
5	Theory, Formula, Principle, Concept									
6	Procedure, Program, Activity, Algorithm, Pseudo Code	1. The circuit is 2. Keeping the supply is switcl 3. The 3-phase a 4. The secondar meters are note 5. Now, the load the other secon and the reading 6. The efficienc A graph of efficienc	3-phase auto hed ON. auto D C motor ry are loaded d down and tal d on one of th dary is increas s of various mo- ies of D C mot	D C motor is varied to equally in soulated. (Eq e secondary ed in steps eters are not ors at differe	in minimu o supply 23 steps and jual loading v is kept co to load the ted down a rent loads a	m position, BOV between the reading g) onstant, and e D C moto nd tabulated re calculate	n the lines. s of various l the load on ors unequally d. d.			

Logo SKIT			Teaching Process					Rev	Rev No.: 1.0	
		Doc Code:	SKI	T.Ph5b1.F03				Date	e: 31-07-2018	3
		Title:	Eleo	ctrical machi	ne Lab-2			Pag	e: 22 / 33	
Copyrig	ght ©2017. cA	AS. All rights reserved.				-	-		-	
			8							
						L	L	I	I	
			ηη							
9	Sample	Calculations								
10	Graphs,	Outputs								
11	Results	& Analysis								
12	Applica	tion Areas								
13	Remark	S								
	Faculty with Da									

Experiment 07 : Separation of hysteresis and eddy current losses in single phase D C motor.

	Experiment No.:	1	Marks	5	Date Planned	Date Conduc	
1	Title	SE	PARATIO	N OF NO LOAD L			
2	Course Outcomes						
	Aim	Se	naration	n of hysteresis	and eddy cu	rrent losses in	single phas
0				-	and oddy od		single phas
		_	C motor	•			
	Material / Equipmen	it r	<u> </u>			5	
	Required		Sl.No.	Equipment	Туре	Range	Quantity
			1	Voltmeter	MI	(0-300V)	1 no
			2	Ammeter	MC	(0-2)A	
							1 no
				Rheostat	Wire-wound	570Ω /1.2A,	1 no, 1no
			3			570Ω /1.2A	,
			4	Wattmeter	Electro	10A/600V	1 no
					dynamo	LPF	
					meter type		
	Theory, Formula Principle, Concept						
6	Principle, Concept Procedure, Program, Activity, Algorithm,	1.1		e circuit connecti e mover is starte			er and it is mad
6	Principle, Concept Procedure, Program,	1.] 2. 7	The prim				er and it is mad
6	Principle, Concept Procedure, Program, Activity, Algorithm,	1. 1 2. 7 to 1	The prim run at rat	e mover is starte	ed with the help	of 3-point starte	
6	Principle, Concept Procedure, Program, Activity, Algorithm,	1.] 2. 7 to 1 3.]	The prim run at rat By varyin	e mover is starte ed speed. ng alternators fie	ed with the help	of 3-point starte	
6	Principle, Concept Procedure, Program, Activity, Algorithm,	1. 1 2. 7 to 1 3. 1 is a	The prim run at rat By varyin applied to	e mover is starte ed speed. ng alternators fie o D C motor.	ed with the help eld rheostat grad	of 3-point starte	primary voltag
6	Principle, Concept Procedure, Program, Activity, Algorithm,	1. 1 2. 7 to 1 3. 1 is a 4.	The prim run at rat By varyin upplied to By adju	e mover is starte ed speed. ng alternators fie D C motor. sting the speed	ed with the help eld rheostat grad	of 3-point starte	primary voltag
6	Principle, Concept Procedure, Program, Activity, Algorithm,	1. 1 2. 7 to 1 3. 1 is a 4. obt	The prim run at rat By varyin opplied to By adju rained an	e mover is starte ed speed. ng alternators fie D C motor. sting the speed d corresponding	ed with the help eld rheostat grad	of 3-point starte	primary voltag
6	Principle, Concept Procedure, Program, Activity, Algorithm,	1.] 2. 7 to 1 3.] is a 4. obt	The prim run at rat By varyin upplied to By adju cained an are noted	e mover is starte ed speed. ng alternators fie D C motor. sting the speed d corresponding	ed with the help eld rheostat grad of prime mov reading	of 3-point starte ually, the rated point started point of the started po	primary voltag d frequency,

L	ogo	SKIT			Teachir	g Process	S		Rev No.: :	L.O	
			15b1.F03 cal machine I	ah-2				Date: 31-0 Page: 23			
Copyric	ght ©2017. cA	AS. All rights reserved.	1						raye. 23	/ 33	
			readings are tabulated.								
			6. The prime mover is switched off using the DPIC switch after bringing								
			all the	rheostats to	initial po	osition					
			7. Froi	m the tabula	ted readi	ngs the in	ron loss i	s separa	ated from edd	ly current	
			loss an	nd hysteresis	loss by						
				g respective							
	Block, (Diagran	Circuit, Model n, Reaction	1		Starte				10A,600V, LF	DE	
	Equatio Graph		+ ↑ 220 V D0 - ↓		2300 1.7A CO F1	A 0-2A) A1 M A2	Alterna 0-2A F FI A	tor Field		LV HV 0 0 00% 100% Stepup Tranformer	
8	Observa	ation Table,									
	Look-up Output			Speed of the prime moverN(r pm)	Suppl y freque ncy (f)Hz	Primar y voltag e (V)vol ts	Wattr readin Obser ved (watts)		Iron orcore Loss (Wi)watts	Wi/f	
	Sample	Calculations				Ns-Synch	nronous s	peed in	rpm		
9			2. Hys	teresis loss (y current los	(Wh) =A	f			1		

Logo	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F03	Date: 31-07-2018
	Title:	Electrical machine Lab-2	Page: 24 / 33
Copyright ©2017. cA	AS. All rights reserved.		

10	Graphs, Outputs	
11	Results & Analysis	
12	Application Areas	
13	Remarks	
14	Faculty Signature	
	Faculty Signature with Date	

Experiment 08 : VOLTAGE REGULATION OF AN ALTERNATOR BY I) EMF METHOD II) MMF METHOD.

-	Experiment No.:	1 M a	arks		Date		Date		
1	Title	VOLTAGE	E REGU	LATION OF	Planned AN ALTERN	ATOR BY I	Conducted	HOD II) MMF	
		METHOD				,		,	
	Course Outcomes								
	Aim	regulatio	n by EN	MF and MM	IF methods		and to pred	etermine the	
	Material / Equipment Required	: 1. Rł	 1. Rheostat 230Ω/1.7A, 500 Ω/1.2A 2. DC ammeter 0-2A 3. AC ammeter 0-5A 4. AC voltmeter 0-600V 5. DC voltmeter 0-30V 						
5	Theory, Formula			Strat	er				
	Principle, Concept	+ ▲ 220V DC _ ↓		C C C C C C C C C C C C C C C C C C C	A A A A A A A A A A A A A A	2A F FF		0-5A	
	Procedure, Program, Activity, Algorithm, Pseudo Code	1. Co 2. Do speed	nnectio C moto I by adj	ons are made r is started usting its fi	eld circuit	of starter a Resistance.	nd brought	to its rated ttor is varied	

L	ogo	SKIT		Teaching Pro	Cess	Rev No.: 1.0			
		Doc Coc		-03		Date: 31-07-2018			
Copyrid	aht ©2017 cA	Title: AS. All rights rese		achine Lab-2		Page: 25 / 33			
	 in Steps. Note down the voltmeter and ammeter readings. 4. This procedure is repeated till 125% of alternator rated voltage reached. Short circuit test: Steps 1 and 2 of OC test are repeated. 1. TPST switch is closed keeping alternator field circuit resistan maximum. 2. It is adjusted so that different current flow in the armature, each tin 3. note down the readings of ammeter and voltmeter. This is repeated till rated current is reached. 								
	Block, (Diagran Equatio Graph		tion						
8	Observa		ble, Open Circ		rpm				
	Look-up Output	o la		Short Circuit Test					
			sl. no	Voltage	• current				
						_			
			Sl. no	I _a (Amps)	I _f (amps)				
					-(1)	_			
						_			
9	Sample	Calculatio	ons Synchrono	us Impedance =Zs = .	AC (volt) / $\sqrt{3}$ BC (at	nps) ohms			
				us reactance = $Xs = $. /			
					$L_{\rm S} - R_{\rm a}$				
			Synchrono	us reactance = $Xs = $	$7s^2 - Ra^2$				
			$E_0 = \sqrt{VC}$	os+IaRa)2+(Vsin	$\pm I a X s) 2$				
			'+' for lag p	p.f, '-' for lead p.f					
			Where, E o	= per phase induce	ed emf on No load	V= rated terminal			
	voltage /phase								
Cos = P.F. of the load									
			% regulation	$on(Vr) = [(E_0 - V) / V]$	V] x100				
		Outputs			-				
		& Analysis	5						
12	Applica	tion Areas							

Logo	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F03	Date: 31-07-2018
	Title:	Electrical machine Lab-2	Page: 26 / 33
opyright ©2017. cA	AS. All rights reserved.	-	

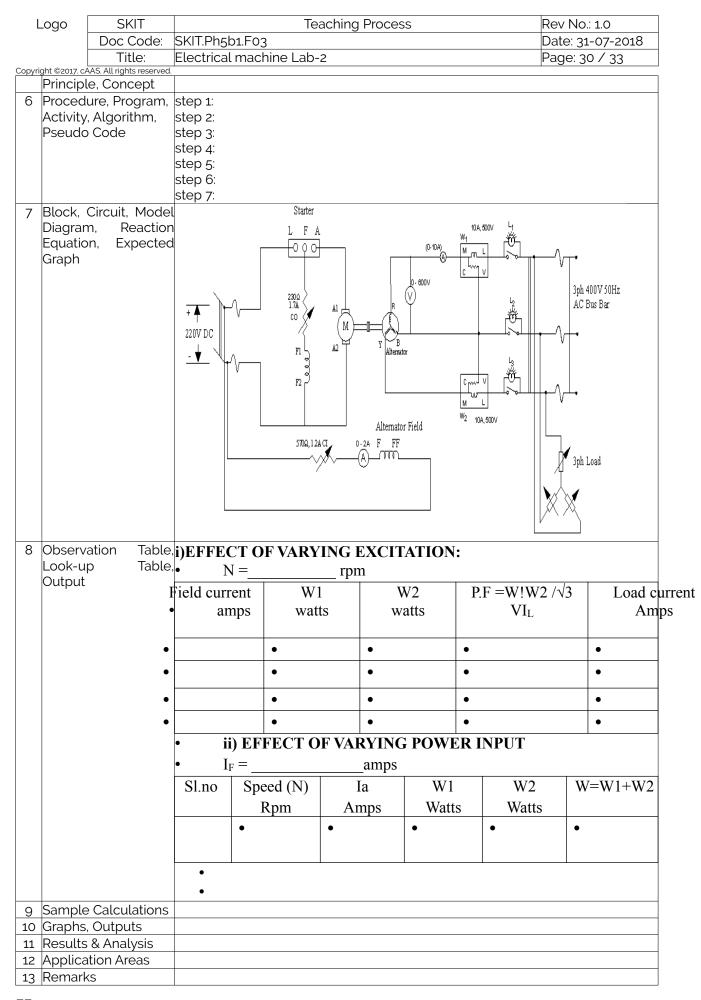
Copyright ©2017. cAAS. All rights reserved.									
	13	Remark	S						
		Faculty	Signature						
		with Da	te						

Experiment 09:VOLTAGE REGULATION OF AN ALTERNATOR BY ZPF METHOD.

-	Experiment No.:	1 Marks		Date		Date			
				Planned		Conducted			
1	Title	VOLTAC	GE REGULATION	OF AN A	TERNATOR	BY ZPF METH	HOD.		
	Course Outcomes				_				
3	Aim	1	e OC and SC te EMF and MMF		alternator	and to prede	termine the		
4	Material / Equipment	1. Rheostat 23	0Ω/1.7A, 500 Ω	2/1.2A					
	Required	2. DC ammeter	DC ammeter 0-2A						
		3. AC ammeter	r 0-5A						
		4. AC voltmete	er 0-600V						
		5. DC voltmete	er 0-30V						
5	Theory, Formula,								
	Principle, Concept								
6	Procedure, Program,	1. The OCC of	the alternator i	s first dra	wn on a gra	ph sheet.			
	Activity, Algorithm,	2. The points	A and A' on the	he ZPF c	haracteristic	es are locate	d using the		
	Pseudo Code	readings taken	during the ZPF	S & SC te	sts respectiv	ely.			
		3. From A', A	Q is drawn e	qual to a	nd parallel	to OA. From	n Q, QR is		
		drawn parallel	to airline, the in	nitial stra	ight part of (DCC.			
		4. The triangle	e A'RQ is the	potier tr	iangle. This	s triangle is	transferred		
		along the OCC	to get different	t points o	n the ZPF cł	naracteristics			
		5. Now RS is d	lrawn perpendio	cular to A	'Q				
		6. A' Q represents the armature leakage reactance drop IX _L , A' S rep the field current necessary to overcome demagnetizing effect armature reaction fig. B shows the vector diagram for lagging powe load. The length of SQ represents field current required to induce a for balancing leakage reactance drop RS.							

L	_ogo	SKIT		Teaching Process	Rev No.: 1.0
	-		SKIT.Ph5b1.F03		Date: 31-07-2018
- ·		Title:	Electrical machine	e Lab-2	Page: 27 / 33
7 7	^{ght ©2017. c/} Block, Diagrar Equatic Graph		+ ▲ 220V DC - ▼	Strater L F A TPST TPST PO O O 1.7A CO A1 M F1 A2 F2 S700, 12A CI O - 2A F FF A CO A1 O O O CO CO CO CO CO CO CO CO CO C	0-10A A Inductive Load
8	Observ Look-u Output		P.F %R 0.2 Lag	eg	
			•		
		Calculations			
		, Outputs			
		& Analysis			
		tion Areas			
	Remark				
14	Faculty with Da	signature			

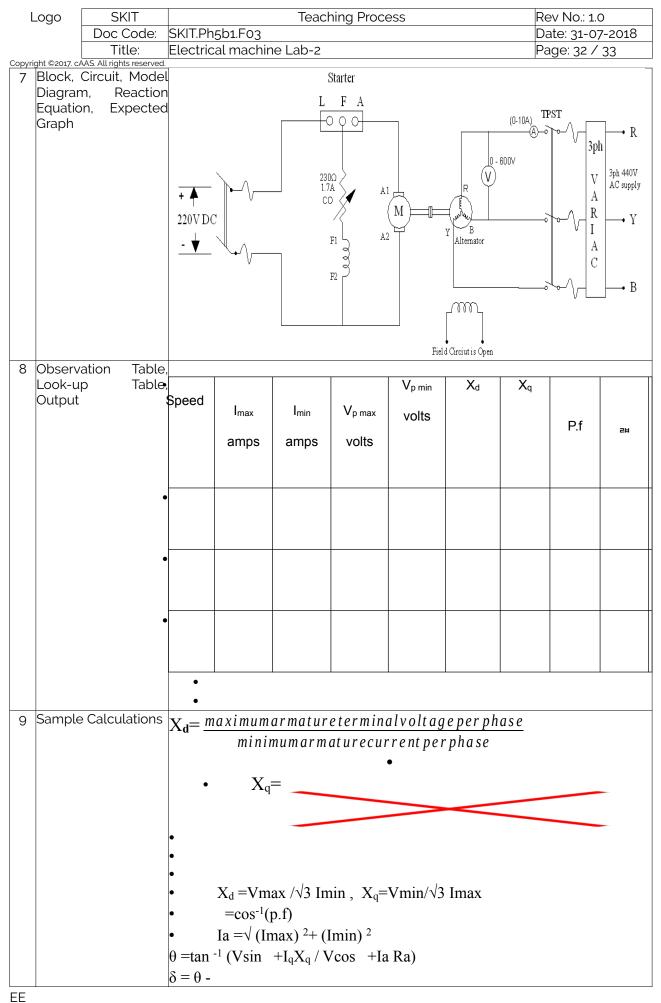
Experiment 10 : SLIP TEST ON SALIENT POLE ALTERNATOR


-	Experiment No.:	1	Marks			Date		D	ate	
						Planne	d	Conc	lucted	
1	Title			SLIP	TESTC	ON SALIE	INT POLE ALTE	RNATC	DR	
2	Course Outcomes									
3	Aim	Me	asurement	of	direct	and	quadrature	axis	reactance	and

L	ogo	SKIT		Теа	ching Process		Rev No.: 1	0
	0	Doc Code:	SKIT.Ph5b1.F0	3			Date: 31-0	7-2018
Convri	nht ©2017 cA	Title: AS. All rights reserved.	Electrical mac	hine Lab-2			Page: 28 /	′ 33
			predetermina machines	ation of	regulation	of salient	pole syncl	nronous
	Materia Require	l / Equipment d		Sl. No.	Equipment	Туре	Range	Quantity
	, i			1	Voltmeter	MI	(0-300)V	1 no
				2	Ammeter	MI	(0-5)A	1 no
				3	Rheostat	Wire-wound	570 Ω/1.2A	1 no
	Theory	Formula						
	Theory, Principl	e, Concept	,					
		ure, Program, Algorithm, Code	 Initially set fiopen. The DC motors and the DC motors and	eld regulat or is started an the synce PST switch nding left of ound 25% of ature termi lover (DC r slowly betwo ondition, re	d slowly by slidi hronous speed pen, a positive of rated Value) a nals. notor) speed is ween maximum adings of maxi	ant diagram. t minimum positi ing starter handl of the alternator sequence balan and of rated balan and of rated freq adjusted till amin and minimum p mum and minim	e and it is run at r. ced voltages of uency are impre meter and voltm positions.	a speed reduced essed eters
	Block, (Diagran Equatio Graph		h		Starter $ \begin{array}{c} $	Y Alternator	(0-10A) TPST (0-10A) A (0-10A)	→ R 3ph 440V AC supply → Y → B
8	Observation Table				Field Circiut is Open			
	Look-u Output			V _{p max} volts	V _{p min} X volts		(COS _{ги}) _{ги}	Sin ₂ы

Logo SKIT				Teaching Proc	ess	R	ev No.: 1	.0	
	- J -	Doc Code:	SKIT.Ph5b1.F03				ate: 31-0		
		Title:	Electrical machine La	ab-2			age: 29 /		
Copyrie	ght ©2017. cA	AS. All rights reserved.	· ·			1			
			•					I	
			•						
9	Sample	Calculations		CALO	CULATIONS:				
			• $X_d = \frac{maximumarmatureterminalvoltageperphase}{x_d}$						
minimumarmaturecurrentperphase					nuse				
					•				
			• $X_q = \frac{r}{r}$	ninimumarmo	ituretermina	lvoltage	lt ag e p er p hase		
			<i>maximumarmaturecurrentperphase</i>						
			•						
			•						
				• X _d =	=Vmax /√3 Im	in, X _q =V	$min/\sqrt{3}$	Imax,	
				•	$=\cos^{-1}(p.t)$	Ð			
				• Ia =	$\sqrt{(\text{Imax})^2 + (\text{Imax})^2}$				
							a ⊥Ia D	a)	
				- 0 -l	an -1 (Vsin +	$\mathbf{r}_{q}\mathbf{A}_{q} \neq \mathbf{v} \mathbf{C} 0$	5 Ta K	.a)	
				•	$\delta = \theta$ –				
			•	$I_d =$	Ia sin θ , I _q	=Ia $\cos \theta$			
				•	Eo = V cos	$s \delta + I_q R_a +$	-I _d X _d		
				• %re	gulation = $[(E$	(0 - v) / v	X100		
				, 510		· · / · ·]			
10	Graphs.	Outputs							
		& Analysis							
		tion Areas							
13	Remark	(S							
	Faculty		9						
	with Da	te							

Experiment 11 : PERFORMANCE OF SYNCHRONOUS MOTOR CONNECTED TO INFINITE BUS, CONSTANT POWER VARIABLE EXCITATION & VICE VERSA


-	Experiment No.:	1	Marks		Date		Date	
	-				Planned		Conducted	
1	Title	P	PERFORMANCE OF SYNCHRONOUS MOTOR CONNECTED TO INFINITE					
			BUS, CONSTANT POWER VARIABLE EXCITATION & VICE VERSA					
2	Course Outcomes							
3	Aim	То	Observe the	e Performan	ce of synch	ronous mot	or connected	d to infinite
		bus	, under cons	stant power a	and variable	excitation a	nd vice -vei	rsa
4	Material / Equipment							
	Required							
5	Theory, Formula,							

Logo	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F03	Date: 31-07-2018
	Title:	Electrical machine Lab-2	Page: 31 / 33
Copyright ©20	17. cAAS. All rights reserved.		
14 Facu	Ilty Signature	à	
with	Date		

Experiment 12 : POWER ANGLE CURVE OF SYNCHRONOUS motor

-	Experiment No.:	1	Marks		Date Planned		ate ucted	
1	Title			POWER ANGL	E CURVE OF SY	NCHRONOUS r	notor	
2	Course Outcomes							
3	Aim	To determine direct and quadrature axis reactance and plot power Vs load angle graph						
4	Material / Equipment Required							
			Sl. No.	Equipment	Туре	Range	Quantity	
			1	Voltmeter	MI	(0-300)V	1 no	
			2	Ammeter	MI	(0-5)A	1 no	
			3	Rheostat	Wire-wound	570 Ω /1.2A	1 no	
5	Theory, Formula Principle, Concept							
6	Procedure, Program, Activity, Algorithm, Pseudo Code	ot am,						

Logo		SKIT	Teaching Process	Rev No.: 1.0					
	0	Doc Code:	SKIT.Ph5b1.F03	Date: 31-07-2018					
		Title:	Electrical machine Lab-2	Page: 33 / 33					
Copyright ©2017. cAAS. All rights reserved.									
$I_d = Ia \sin \theta$									
	$I_q = Ia \cos \theta$								
	$Eo = V \cos \delta + I_q R_a + I_d X_d$								
10	Graphs, Outputs								
11	Results & Analysis								
12	Application Areas								
13	Remark	S							
	Faculty with Da	Signature te							