Ref No:

Sri Krishna Institute of Technology, Bengaluru-560090

COURSE PLAN

Academic Year - 2018-2019

Program:	B E – Electrical And Electronics Engineering
Semester :	4
Course Code:	18EE46
Course Title:	OPAMP AND LINEAR IC's
Credit / L-T-P:	4 / 4-0-0
Total Contact Hours:	60
Course Plan Author:	KIRANMAYI

Academic Evaluation and Monitoring Cell

#29, Hesaragatta Main Road, Chimney Hills Chikkabanavara Post Bengaluru – 560090, Karnataka, India Phone / Fax :080-23721477/28392221/23721315 Web: www.skit.org, e-mail:skitprinci1@gmail.com

Table of Contents

A. COURSE INFORMATION	4
1. Course Overview	
2. Course Content	4
3. Course Material	5
4. Course Prerequisites	6
5. Content for Placement, Profession, HE and GATE	6
B. OBE PARAMETERS	6
1. Course Outcomes	6
2. Course Applications	7
3. Mapping And Justification	7
4. Articulation Matrix	
5. Curricular Gap and Content	8
6. Content Beyond Syllabus	
C. COURSE ASSESSMENT	9
1. Course Coverage	
2. Continuous Internal Assessment (CIA)	
D1. TEACHING PLAN - 1	
Module - 1	
Module – 2	
E1. CIA EXAM – 1	
a. Model Question Paper - 1	
b. Assignment -1	
D2. TEACHING PLAN - 2	
Module – 3	
Module – 4	
E2. CIA EXAM – 2	
a. Model Question Paper - 2	
b. Assignment – 2	
D3. TEACHING PLAN - 3	
Module – 5	
E3. CIA EXAM – 3	24
a. Model Question Paper - 3	
b. Assignment – 3	
F. EXAM PREPARATION	
1. University Model Question Paper	
2. SEE Important Questions	
G. Content to Course Outcomes	
1. TLPA Parameters	
2. Concepts and Outcomes:	

Note : Remove "Table of Content" before including in CP Book Each Course Plan shall be printed and made into a book with cover page Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	EC
Semester:	4	Academic Year:	2018
Course Title:	OP AMP and LIC	Course Code:	18EE46
Credit / L-T-P:	4 / 4-0-0	SEE Duration:	180 Minutes
Total Contact Hours:	60 Hours	SEE Marks:	60 Marks
CIA Marks:	40 Marks	Assignment	1 / Module
Course Plan Author:	Kiranmayi	Sign	Dt:
Checked By:		Sign	Dt:
	CIA Target : 54 %	SEE Target:	60. %

Note: Define CIA and SEE % targets based on previous performance.

2. Course Content

Content \checkmark Syllabus of the course as prescribed by University or designed by institute. Identify 2 concepts per module as in G.

HoursLeve1Operational amplifiers:Introduction, Block diagram representation of a typical Op-amp, schematic symbol, characteristics of an Op-amp, ideal op-amp, equivalent circuit, ideal voltage transfer curve.open loop configuration, differential amplifier, inverting & non -inverting amplifier, Op- amp with negative feedback(excluding derivations). General Linear Applications: A.C. amplifier, summing, scaling & averaging amplifier, inverting and non-inverting configuration, Instrumentation amplifierLinear mathematical operationsLinear and mathematical operationsLinear and mathematical operations2Active Filters: First & Second order high pass & low pass Butterworth filters. Band pass filters. all pass filters. DC Voltage Regulators: voltage regulator basics, voltage follower regulator, adjustable output regulator, LM317 & RegulationSignal filterering RegulationL4, L3Signal generators: Triangular / rectangular wave generator, voltage to current converters: Basic comparator, zero crossing detector, inverting & non-inverting Schmitt trigger circuit, voltage converters10Comparison and conversion4Signal processing circuits: Precision half wave & full wave rectifiers10RectificationL4, L4Signal processing circuits: Precision half wave & full wave integrated circuit 8-bit D/A, successive approximation ADC, linear ramp ADC.10Frequency and phase lockingL3, L5Phase Locked Loop (PLL):Basic PLL, components, performance factors.10Frequency and phase lockingL3, L	Mod	Content	Teachi	Identified Module	Blooms
1 Operational amplifiers: Introduction, Block diagram representation of a typical Op-amp, schematic symbol, characteristics of an Op-amp, ideal op-amp, equivalent circuit, ideal voltage transfer curve.open loop configuration, differential amplifier, inverting & non -inverting amplifier, Op-amp with negative feedback(excluding derivations). OP-AMP L2, L General Linear Applications: AC. amplifier, summing, scaling & averaging amplifier, inverting and non-inverting configuration, instrumentation amplifier Linear and mathematical operations Linear and mathematical operations 2 Active Filters: First & Second order high pass & low pass filters. BDC Voltage Regulators: voltage regulator basics, voltage follower regulator, adjustable output regulator, LM317 & LM327 Integrated circuits regulators. Signal filterering L4, L 3 Signal generators: Triangular / rectangular wave generator, inverting & non-inverting Schmitt trigger circuit, voltage converter and basics of voltage to frequency and frequency to voltage converters: Basics of voltage to frequency and frequency to voltage converters: Basics, R-2R D/A Converter, Integrated circuit 8-bit D/A, successive approximation ADC, linear ramp ADC. 10 Rectification L4, L 4 Signal processing circuits: Precision half wave & full wave frequency and frequency to voltage converters: Basics, R-2R D/A Converter, Integrated circuit 8-bit D/A, successive approximation ADC, linear ramp ADC. A/D and D/A Conversion 5 Phase Locked Loop (PLL): Basic PLL, components, performance factors. 10 Frequency and p/A L3, L </th <th>ule</th> <th></th> <th>ng</th> <th>Concepts</th> <th>Learning</th>	ule		ng	Concepts	Learning
 representation of a typical Op-amp, schematic symbol, characteristics of an Op-amp, ideal op-amp, equivalent circuit, ideal voltage transfer curve,open loop configuration, differential amplifier, inverting a non-inverting amplifier, Op-amp with negative feedback(excluding derivations). General Linear Applications: A.C. amplifier, summing, scaling & averaging amplifier, inverting and non-inverting configuration, Instrumentation amplifier Active Filters: First & Second order high pass & low pass Butterworth filters. Band pass filters, all pass filters. DC Voltage Regulators: voltage regulator basics, voltage follower regulator, adjustable output regulator, LM317 & Voltage Regulation Signal generators: Triangular / rectangular wave generator. phase shift oscillator, saw tooth oscillator. Comparators & Converters: Basic comparator, zero crossing detector, inverting & non-inverting Schmitt trigger circuit, voltage converter and basics of voltage to frequency and frequency to voltage converters: Basics, R-2R D/A Converter. Integrated circuit 8-bit D/A, successive approximation ADC, linear ramp ADC. Phase Locked Loop (PLL): Basic PLL, components, performance factors. Timer: Internal architecture of 555 timer, Mono stable multi 			Hours		Levels
 characteristics of an Op-amp, ideal op-amp, equivalent circuit, ideal voltage transfer curve,open loop configuration, differential amplifier, inverting & non -inverting amplifier, Op-amp with negative feedback(excluding derivations). General Linear Applications: A.C. amplifier, summing, scaling & averaging amplifier, inverting and non-inverting configuration. Instrumentation amplifier Active Filters: First & Second order high pass & low pass Butterworth filters. Band pass filters, all pass filters. DC Voltage Regulators: voltage regulator basics, voltage follower regulator, adjustable output regulator, LM317 & Uoltage Converters: Basic comparator, zero crossing detector, inverting & non-inverting Schmitt trigger circuit, voltage to current converter with grounded load, current to voltage converter and basics of voltage to frequency and frequency to voltage converters: Basics, R-2R D/A Converter, Integrated circuit 8-bit D/A, successive approximation ADC, linear ramp ADC. Phase Locked Loop (PLL): Basic PLL, components, performance factors. 	1	Operational amplifiers: Introduction, Block diagram	10	OP-AMP	L2, L4
 circuit, ideal voltage transfer curve.open loop configuration, differential amplifier, inverting & non -inverting amplifier, Opamp with negative feedback(excluding derivations). General Linear Applications: A.C. amplifier, summing, scaling & averaging amplifier, inverting and non-inverting configuration, Instrumentation amplifier Active Filters: First & Second order high pass & low pass Butterworth filters. Band pass filters, all pass filters. DC Voltage Regulators: voltage regulator basics, voltage follower regulator, adjustable output regulator, LM317 & LM337 Integrated circuits regulators. Signal generators: Triangular / rectangular wave generator, phase shift oscillator, saw tooth oscillator. Comparators & Converters: Basic comparator, zero crossing detector, inverting & non-inverting Schmitt trigger circuit, voltage converter and basics of voltage to frequency and frequency to voltage converters: Basics, R-2R D/A Converter, Integrated circuit 8-bit D/A, successive approximation ADC, linear ramp ADC. Phase Locked Loop (PLL): Basic PLL, components, performance factors. 		representation of a typical Op-amp, schematic symbol,		Characteristics	
differential amplifier, inverting & non - inverting amplifier, Op- amp with negative feedback(excluding derivations). General Linear Applications: A.C. amplifier, summing, scaling & averaging amplifier, inverting and non-inverting configuration, Instrumentation amplifierLinear and mathematical operations2Active Filters: First & Second order high pass & low pass Butterworth filters. Band pass filters, all pass filters. DC Voltage Regulators: voltage regulator basics, voltage follower regulator, adjustable output regulator, LM317 & LM337 Integrated circuits regulators.16Signal filterering RegulationL4, L3Signal generators: Triangular / rectangular wave generator, phase shift oscillator, saw tooth oscillator. Comparators & Converters: Basic comparator, zero crossing detector, inverting & non-inverting Schmitt trigger circuit, voltage converters and basics of voltage to frequency and frequency to voltage converters10Comparison and conversion4Signal processing circuits: Precision half wave & full wave rectifiers A/D & D/A Converters: Basics, R-2R D/A Converter, Integrated circuit 8-bit D/A, successive approximation ADC, linear ramp ADC.10Frequency and D/A Conversion5Phase Locked Loop (PLL): Basic PLL, components, performance factors, Timer: Internal architecture of 555 timer, Mono stable multi10Frequency and phase lockingL3, L		characteristics of an Op-amp, ideal op-amp, equivalent			
amp with negative feedback(excluding derivations). General Linear Applications: A.C. amplifier, summing, scaling & averaging amplifier, inverting and non-inverting configuration, Instrumentation amplifierLinear and mathematical operations2Active Filters: First & Second order high pass & low pass Butterworth filters. Band pass filters, all pass filters. DC Voltage Regulator: voltage regulator basics, voltage follower regulator, adjustable output regulator, LM317 & Voltage LM337 Integrated circuits regulators.16Signal filterering Signal generators: Triangular / rectangular wave generator, rectifiers14Signal Signal Comparators & Converters: Basic comparator, zero crossing detector, inverting & non-inverting Schmitt trigger circuit, voltage to current converter with grounded load, current to voltage converter and basics of voltage to frequency and frequency to voltage converters10RectificationL4, L4Signal processing circuits: Precision half wave & full wave rectifiers10RectificationL4, LA/D & D/A Converters: Basics, R-2R D/A Converter, Integrated circuit 8-bit D/A, successive approximation ADC, linear ramp ADC.10Frequency and phase lockingL3, L5Phase Locked Loop (PLL): Basic PLL, components, performance factors.10Frequency and phase lockingL3, L					
General Linear Applications: A.C. amplifier, summing, scaling & averaging amplifier, inverting and non-inverting configuration, Instrumentation amplifierLinear and mathematical operations2Active Filters: First & Second order high pass & low pass Butterworth filters. Band pass filters, all pass filters. DC Voltage Regulators: voltage regulator basics, voltage follower regulator, adjustable output regulator, LM317 & Voltage and the phase shift oscillator, saw tooth oscillator.16Signal filtereringL4, L3Signal generators: Triangular / rectangular wave generator, phase shift oscillator, saw tooth oscillator. Comparators & Converters: Basic comparator, zero crossing detector, inverting & non-inverting Schmitt trigger circuit, voltage converter and basics of voltage to frequency and frequency to voltage converters14Signal GenerationL4, L4Signal processing circuits: Precision half wave & full wave integrated circuit 8-bit D/A, successive approximation ADC, linear ramp ADC.10Rectification A/D and D/A ConversionL4, L5Phase Locked Loop (PLL): performance factors. Timer: Internal architecture of 555 timer, Mono stable multi10Frequency and phase lockingL3, L					
scaling & averaging amplifier, inverting and non-inverting configuration, Instrumentation amplifierLinear mathematical operations2Active Filters: First & Second order high pass & low pass Butterworth filters. Band pass filters, all pass filters. DC Voltage Regulators: voltage regulator basics, voltage follower regulator, adjustable output regulator, LM317 & LM337 Integrated circuits regulators.16Signal filtereringL4, L3Signal generators: Triangular / rectangular wave generator, phase shift oscillator, saw tooth oscillator. Comparators & Converters: Basic comparator, zero crossing detector, inverting & non-inverting Schmitt trigger circuit, voltage to current converter with grounded load, current to voltage converters14Signal GenerationL4, L4Signal processing circuits: Precision half wave & full wave rectifiers10RectificationL4, LA/D & D/A Converters: Basics, R-2R D/A Converter, linear ramp ADC.A/D and D/A ConversionL4, L5Phase Locked Loop (PLL): performance factors. Timer: Internal architecture of 555 timer, Mono stable multi10Frequency and phase lockingL3, L					
configuration, Instrumentation amplifiermathematical operations2Active Filters: First & Second order high pass & low pass Butterworth filters. Band pass filters, all pass filters. DC Voltage Regulators: voltage regulator basics, voltage follower regulator, adjustable output regulator, LM317 & LM337 Integrated circuits regulators.16Signal filtereringL4, L3Signal generators: Triangular / rectangular wave generator, phase shift oscillator, saw tooth oscillator. Comparators & Converters: Basic comparator, zero crossing detector, inverting & non-inverting Schmitt trigger circuit, voltage converter and basics of voltage to frequency and frequency to voltage converters14Signal GenerationL4, L4Signal processing circuits: Precision half wave & full wave Integrated circuit 8-bit D/A, successive approximation ADC, linear ramp ADC.10Rectification ConversionL4, L5Phase Locked Loop (PLL): performance factors. Timer: Internal architecture of 555 timer, Mono stable multi10Frequency and phase lockingL3, L					
2 Active Filters: First & Second order high pass & low pass Butterworth filters. Band pass filters, all pass filters. DC Voltage Regulators: voltage regulator basics, voltage follower regulator, adjustable output regulator, LM317 & Voltage LM337 Integrated circuits regulators. 16 Signal filterering L4, L 3 Signal generators: Triangular / rectangular wave generator, phase shift oscillator, saw tooth oscillator. 14 Signal L4, L Generation Comparators & Converters: Basic comparator, zero crossing detector, inverting & non-inverting Schmitt trigger circuit, voltage to current converter with grounded load, current to voltage converter and basics of voltage to frequency and frequency to voltage converters Comparison and conversion Comparison and conversion 4 Signal processing circuits: Precision half wave & full wave rectifiers 10 Rectification L4, L A/D & D/A Converters: Basics, R-2R D/A Converter, A/D A/D and D/A 5 Phase Locked Loop (PLL): Basic PLL, components, performance factors. 10 Frequency and phase locking L3, L					
2 Active Filters: First & Second order high pass & low pass Butterworth filters. Band pass filters, all pass filters. DC Voltage Regulators: voltage regulator basics, voltage follower regulator, adjustable output regulator, LM317 & Voltage LM337 Integrated circuits regulators. 16 Signal filterering L4, L 3 Signal generators: Triangular / rectangular wave generator, phase shift oscillator, saw tooth oscillator. Comparators & Converters: Basic comparator, zero crossing detector, inverting & non-inverting Schmitt trigger circuit, voltage converter and basics of voltage to frequency and frequency to voltage converters Comparison and conversion Comparison and conversion 4 Signal processing circuits: Precision half wave & full wave integrated circuit 8-bit D/A, successive approximation ADC, linear ramp ADC. 10 Rectification L4, L 5 Phase Locked Loop (PLL): Basic PLL, components, performance factors. Timer: Internal architecture of 555 timer, Mono stable multi 10 Frequency and phase locking L3, L		configuration, Instrumentation amplifier			
Butterworth filters. Band pass filters, all pass filters. DC Voltage Regulators: voltage regulator basics, voltage follower regulator, adjustable output regulator, LM317 & LM337 Integrated circuits regulators.Voltage Regulation3Signal generators: Triangular / rectangular wave generator, phase shift oscillator, saw tooth oscillator. Comparators & Converters: Basic comparator, zero crossing detector, inverting & non-inverting Schmitt trigger circuit, voltage to current converter with grounded load, current to voltage converter and basics of voltage to frequency and frequency to voltage converters: Basics, R-2R D/A Converter, Integrated circuit 8-bit D/A, successive approximation ADC, linear ramp ADC.10RectificationL4, L4Signal processing circuits: Phase Locked Loop (PLL): performance factors. Timer: Internal architecture of 555 timer, Mono stable multi10Frequency and phase bookingL3, L					
DC Voltage Regulators: voltage regulator basics, voltage follower regulator, adjustable output regulator, LM317 & LM337 Integrated circuits regulators.Voltage Regulation3Signal generators: Triangular / rectangular wave generator, phase shift oscillator, saw tooth oscillator. Comparators & Converters: Basic comparator, zero crossing detector, inverting & non-inverting Schmitt trigger circuit, voltage to current converter with grounded load, current to voltage converter and basics of voltage to frequency and frequency to voltage convertersComparison and conversion4Signal processing circuits: Precision half wave & full wave rectifiers10Rectification4L4, LA/D & D/A Converters: Basics, R-2R D/A Converter, linear ramp ADC.A/D and D/A ConversionL4, L5Phase Locked Loop (PLL): Basic PLL, components, performance factors. Timer: Internal architecture of 555 timer, Mono stable multi10Frequency and phase lockingL3, L	2		16	Signal filterering	L4, L4
follower regulator, adjustable output regulator, LM317 & LM337 Integrated circuits regulators.Voltage Regulation3Signal generators: Triangular / rectangular wave generator, phase shift oscillator, saw tooth oscillator. Comparators & Converters: Basic comparator, zero crossing detector, inverting & non-inverting Schmitt trigger circuit, voltage to current converter with grounded load, current to voltage converter and basics of voltage to frequency and frequency to voltage converters14Signal GenerationL4, L Generation4Signal processing circuits: Precision half wave & full wave rectifiers A/D & D/A Converters: Basics, R-2R D/A Converter, Integrated circuit 8-bit D/A, successive approximation ADC, linear ramp ADC.10Rectification A/D and D/A ConversionL4, L5Phase Locked Loop (PLL): performance factors. Timer: Internal architecture of 555 timer, Mono stable multi10Frequency and phase lockingL3, L					
LM337 Integrated circuits regulators.Regulation3Signal generators: Triangular / rectangular wave generator, phase shift oscillator, saw tooth oscillator.14Signal GenerationL4, LComparators & Converters: Basic comparator, zero crossing detector, inverting & non-inverting Schmitt trigger circuit, voltage to current converter with grounded load, current to voltage converter and basics of voltage to frequency and frequency to voltage convertersComparison and conversionComparison and conversion4Signal processing circuits: Precision half wave & full wave rectifiers10RectificationL4, LA/D & D/A Converters: Basics, R-2R D/A Converter, linear ramp ADC.A/D and D/A ConversionL4, L5Phase Locked Loop (PLL): Basic PLL, components, performance factors. Timer: Internal architecture of 555 timer, Mono stable multi10Frequency and phase lockingL3, L					
3 Signal generators: Triangular / rectangular wave generator, phase shift oscillator, saw tooth oscillator. 14 Signal Generation L4, L Comparators & Converters: Basic comparator, zero crossing detector, inverting & non-inverting Schmitt trigger circuit, voltage to current converter with grounded load, current to voltage converter and basics of voltage to frequency and frequency to voltage converters Comparison and conversion Comparison and conversion 4 Signal processing circuits: Precision half wave & full wave rectifiers 10 Rectification L4, L A/D & D/A Converters: Basics, R-2R D/A Converter, lintegrated circuit 8-bit D/A, successive approximation ADC, linear ramp ADC. 10 Rectification L4, L 5 Phase Locked Loop (PLL): Basic PLL, components, performance factors. 10 Frequency and phase locking L3, L				0	
 phase shift oscillator, saw tooth oscillator. Comparators & Converters: Basic comparator, zero crossing detector, inverting & non-inverting Schmitt trigger circuit, voltage to current converter with grounded load, current to voltage converter and basics of voltage to frequency and frequency to voltage converters 4 Signal processing circuits: Precision half wave & full wave full wave frectifiers A/D & D/A Converters: Basics, R-2R D/A Converter, Integrated circuit 8-bit D/A, successive approximation ADC, linear ramp ADC. 5 Phase Locked Loop (PLL): Basic PLL, components, performance factors. 5 Phase Locked Loop (FLL): Basic PLL, components, Timer: Internal architecture of 555 timer, Mono stable multi 				<u> </u>	
Comparators & Converters: Basic comparator, zero crossing detector, inverting & non-inverting Schmitt trigger circuit, voltage to current converter with grounded load, current to voltage converter and basics of voltage to frequency and frequency to voltage convertersComparison and conversion4Signal processing circuits: Precision half wave & full wave rectifiers10RectificationL4, LA/D & D/A Converters: Integrated circuit 8-bit D/A, successive approximation ADC, linear ramp ADC.10RectificationL4, L5Phase Locked Loop (PLL): performance factors. Timer: Internal architecture of 555 timer, Mono stable multi10Frequency and phase LockingL3, L	3		14	0	L4, L4
detector, inverting & non-inverting Schmitt trigger circuit, voltage to current converter with grounded load, current to voltage converter and basics of voltage to frequency and frequency to voltage convertersComparison and conversion4Signal processing circuits: Precision half wave & full wave rectifiers10RectificationL4, L4Signal processing circuits: Precision half wave & full wave rectifiers10RectificationL4, L6A/D & D/A Converters: Integrated circuit 8-bit D/A, successive approximation ADC, linear ramp ADC.A/D and D/A ConversionConversion5Phase Locked Loop (PLL): performance factors. Timer: Internal architecture of 555 timer, Mono stable multi10Frequency and phase LockingL3, L				Generation	
voltage to current converter with grounded load, current to voltage converter and basics of voltage to frequency and frequency to voltage convertersComparison and conversion4Signal processing circuits: Precision half wave & full wave rectifiers10RectificationL4, LA/D & D/A Converters:Basics, R-2R D/A Converter, Integrated circuit 8-bit D/A, successive approximation ADC, linear ramp ADC.A/D and D/A ConversionA/D and D/A ConversionL3, L5Phase Locked Loop (PLL):Basic PLL, components, performance factors.10Frequency and phase lockingL3, L					
voltage converter and basics of voltage to frequency and frequency to voltage converters Comparison and conversion 4 Signal processing circuits: Precision half wave & full wave rectifiers 10 Rectification L4, L A/D & D/A Converters: Basics, R-2R D/A Converter, Integrated circuit 8-bit D/A, successive approximation ADC, Linear ramp ADC. A/D and D/A Conversion Conversion 5 Phase Locked Loop (PLL): Basic PLL, components, performance factors. 10 Frequency and phase locking L3, L Timer: Internal architecture of 555 timer, Mono stable multi 10 Frequency and phase locking L3, L					
frequency to voltage converters conversion 4 Signal processing circuits: Precision half wave & full wave rectifiers 10 Rectification L4, L A/D & D/A Converters: Basics, R-2R D/A Converter, Integrated circuit 8-bit D/A, successive approximation ADC, Linear ramp ADC. A/D and D/A Conversion Conversion 5 Phase Locked Loop (PLL): Basic PLL, components, IO performance factors. 10 Frequency and phase locking L3, L Timer: Internal architecture of 555 timer, Mono stable multi Internal				Comparison and	
4 Signal processing circuits: Precision half wave & full wave rectifiers 10 Rectification L4, L A/D & D/A Converters: Basics, R-2R D/A Converter, Integrated circuit 8-bit D/A, successive approximation ADC, linear ramp ADC. A/D and D/A Conversion Conversion 5 Phase Locked Loop (PLL): Basic PLL, components, performance factors. 10 Frequency and phase locking L3, L					
rectifiers A/D & D/A Converters: Basics, R-2R D/A Converter, Integrated circuit 8-bit D/A, successive approximation ADC, Linear ramp ADC. A/D and D/A Conversion 5 Phase Locked Loop (PLL): Basic PLL, components, performance factors. 10 Frequency and L3, L phase locking Timer: Internal architecture of 555 timer, Mono stable multi Timer 10	4				
A/D & D/A Converters: Basics, R-2R D/A Converter, Integrated circuit 8-bit D/A, successive approximation ADC, Linear ramp ADC. A/D and D/A Conversion 5 Phase Locked Loop (PLL): Basic PLL, components, performance factors. 10 Frequency and phase locking L3, L Timer: Internal architecture of 555 timer, Mono stable multi Frequency and phase locking L3, L	4			Rectification	∟4, ∟4
Integrated circuit 8-bit D/A, successive approximation ADC, linear ramp ADC.Conversion5Phase Locked Loop (PLL): Basic PLL, components, performance factors.10Frequency and phase lockingL3, LTimer: Internal architecture of 555 timer, Mono stable multi10Frequency and phase lockingL3, L				A/D and D/A	
linear ramp ADC. 5 5 Phase Locked Loop (PLL): Basic PLL, components, performance factors. 10 Frequency and L3, L Timer: Internal architecture of 555 timer, Mono stable multi 10 Frequency and L3, L					
5Phase Locked Loop (PLL):Basic PLL, components, performance factors.10Frequency and phase lockingL3, LTimer:Internal architecture of 555 timer, Mono stable multiFrequency and phase lockingL3, L					
performance factors. phase locking Timer: Internal architecture of 555 timer, Mono stable multi	5		10	Frequency and	L3, L4
Timer: Internal architecture of 555 timer, Mono stable multi				. ,	-5, -7
		vibrators and applications.		Pulse generation	
- Total 60	-			-	-

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 – 30 minutes

Design: Simulation and design tools used – software tools used ; Free / open source
 Research: Recent developments on the concepts – publications in journals; conferences etc.

	arch: Recent developments on the concepts – publications in journals; co		
Modul es	Details	Chapters in book	Availability
Α	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
	Op-Amps and Linear Integrated Circuits,Ramakant A Gayakwad, Pearson 4 th Edition 2015	1,2,3,6,7, 9,10	In Lib / In Dep
	Operational Amplifiers and Linear ICs,David A. Bell,Oxford,3 rd Edition 2011	7,9,10,12,	In Lib/ In dep
В	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
	Linear Integrated Circuits; Analysis,Design and Applications,B. Somanthan Nair, Wiley India,2013	5,8	In Lib
	Linear Integrated Circuits S. Salivahanan, et al McGraw Hill 2 nd Edition,2014.	3,4,5,6,7, 8,10,11	In Lib
3,4	Operational Amplifiers and Linear Integrated Circuits K. Lal Kishore Pearson 1 st Edition, 2012	4,8	In lib
	Concept Videos or Simulation for Understanding	-	-
	OP-AMP Charecteristics		
	https://www.youtube.com/watch?v=SaJsL9_M1_w&list=PLuv3GM6- gsE3npYPJJDnEF3pdiHZT6Kj3&index=16 - 36 min		
	https://www.youtube.com/watch?v=tgMIX73SNPE&list=PLuv3GM6- gsE3npYPJJDnEF3pdiHZT6Kj3&index=17 -28 min		
C2	Linear and mathematical operations. https://www.youtube.com/watch?v=RSWsJjUqD2w&list=PLuv3GM6- gsE3npYPJJDnEF3pdiHZT6Kj3&index=49		
C3	Signal Filtering. https://www.youtube.com/watch?v=W70GFpfILKk&list=PLuv3GM6- gsE3npYPJJDnEF3pdiHZT6Kj3&index=24 https://www.youtube.com/watch?v=2e0YSb2lo&list=PLuv3GM6- gsE3npYPJJDnEF3pdiHZT6Kj3&index=25 https://www.youtube.com/watch?v=uj4b2O4XVVE&list=PLuv3GM6- gsE3npYPJJDnEF3pdiHZT6Kj3&index=26 -33min		
C4	Voltage Regulation https://www.youtube.com/watch?v=5rRKmZs2lil		
C5	Signal Generation. https://www.youtube.com/watch?v=M3yI0byaqKc&list=PLuv3GM6- gsE3npYPJJDnEF3pdiHZT6Kj3&index=27 -43min https://www.youtube.com/watch?v=8eLoIUGSXns&list=PLuv3GM6- gsE3npYPJJDnEF3pdiHZT6Kj3&index=28 -19 minimization https://www.youtube.com/watch?v=YH1zbPA_i2Y&list=PLuv3GM6- gsE3npYPJJDnEF3pdiHZT6Kj3&index=29 – 30 min		
C6	Camparision and conversion https://www.youtube.com/watch?v=V-bAduYIuiI&list=PLuv3GM6- gsE3npYPJJDnEF3pdiHZT6Kj3&index=50		
	Rectification <u>https://nptel.ac.in/courses/108101091/46</u>		
	A/D and D/A Convertion https://www.youtube.com/watch?v=kMGap-0XwGs https://www.youtube.com/watch?v=xdoAB7jevk0 Phase and frequency locking		
09	https://www.youtube.com/watch?v=gVNXLqFTqP4		
C10	Pulse Generation		

	https://www.youtube.com/watch?v=Rd3QSzye72w		
	https://www.youtube.com/watch.v/https://www.youtube.com/watch.v/https://www.youtube.com/		
	Lab : <u>https://www.youtube.com/watch?v=P9e7hUNPGVs</u> -		
D	Software Tools for Design	-	-
CO1-	Multisim		
CO10			
Е	Recent Developments for Research	-	-
CO3	High frequency operation -		
	https://www.tandfonline.com/doi/abs/10.1080/00207219308925897		
CO4	Low drop out voltage with improved stability -	-	
	https://patents.google.com/patent/US6373233B2/en		
CO5	Improved		
	linearity- <u>https://ieeexplore.ieee.org/abstract/document/4671125</u>		
CO6	Improved timing accuracy		
	- <u>https://patents.google.com/patent/US6055287A/en</u>		
CO7	Improved		
	accuracy- <u>https://ieeexplore.ieee.org/abstract/document/4303403</u>		
CO8	High		
	performance- <u>https://ieeexplore.ieee.org/abstract/document/896237</u>		
CO9	Improved power supply rejection -		
	https://patents.google.com/patent/US6963233B2/en		
CO10	Reduced recovery time -		
	https://digital-library.theiet.org/content/journals/10.1049/iet-		
	<u>cds_20060359</u>		
F	Others (Web, Video, Simulation, Notes etc.)	-	-
1	Nptel online video lecture	Www.on	
			video lecture
		ses.nptel	
		.ac.in	

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Stude	ents must	have learnt the	following Courses / Topics with des	cribe	d Content	
Mod	Course	Course Name	Topic / Description	Sem	Remarks	Blooms
ules	Code					Level
1	17ELN15	Basic	1/ Semiconductor devices and	1/2		L2
	/25		BJT/ Fundamentals of diode characteristics and transistor characteristics			
2-5			2/ Transistor biasing/ Knowledge of amplifiers and oscillators	3		L3

~ (Tapias with described Capta . Students must hav . Ie learnt the fi

5. Content for Placement, Profession, HE and GATE

Circuits

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Mod	Topic / Description	Area	Remarks	Blooms
		Alea	Rendiks	
ules				Level
1	NPTEL Videos /Introduction Wafer	Higher	Video lecturing by IISc professor	Analyze
	Manufacturing Process and Clean room	Education/	on "Electronics Modules for	L4
	Protocols	GATE	Industrial Applications" and	
	Introduction to Fabrication Process		assignment questions.	
	Technology and Op-amp			

2	NPTEL Videos /Experiment: Op-amp	Higher	Video lecturing by IISc professor	Analyze
6	based ECG Signal Acquisition,			
	Conditioning and Processing for		Industrial Applications" and	
	Computation of BPM		assignment questions.	
2	NPTEL Videos /Experiment: Op-amp		<u> </u>	Analyza
5	based ECG Signal Acquisition,			
	Conditioning and Processing for		Industrial Applications" and	L4
	Computation of BPM		assignment questions.	
			<u> </u>	
4	NPTEL Videos /Experiment: Op-amp	0	, , , , , , , , , , , , , , , , , , ,	· ·
	based ECG Signal Acquisition,	Education/	on "Electronics Modules for	L4
	Conditioning and Processing for	GATE	Industrial Applications" and	
	Computation of BPM		assignment questions.	
5	NPTEL Videos /Experiment: Op-amp	Higher	Video lecturing by IISc professor	Analyze
	based ECG Signal Acquisition,	Education/	on "Electronics Modules for	L4
	Conditioning and Processing for		Industrial Applications" and	-
	Computation of BPM		assignment questions.	

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs. Identify a max of 2 Concepts per Module. Write 1 CO per Concept.

Blooms' Level Understand L2 Understand L4 Analyse
L2 Understand L4 Analyse L4 Analyze
Understand L4 Analyse L4 Analyze
Understand L4 Analyse L4 Analyze
L4 Analyse L4 Analyze
L4 Analyse L4 Analyze
L4 Analyse L4 Analyze
Analyse L4 Analyze
L4 Analyze
L4 Analyze
Analyze
Analyze
L4
Analyse
e é
L4
Analyse
e é
L4
Analyse
e é
L4
Analyse
9
L4

		converter using IC LM741C.		Convertion		assignme nt	
5	18EE46.9	Demonstrate the application of Linear ICs as PLL using IC LM741C	05	Phase and frequency locking	Lecture /PPT	Unit Test and assignme nt	L3 understand
5		Design the application of Linear ICs as Multivibrator using IC 555.	05	Pulse Generation	Lecture /PPT	Unit Test and assignme nt	L4 Analyse
-	-	Total	61	-	-	-	L2-L4

2. Course Applications

Write 1 or 2 applications per CO.

Students should be able to employ / apply the course learnings to

			1
Mod		CO	Level
ules	Compiled from Module Applications.		
1	Apply in designing electronic circuits.	CO1	L2
1	Summing amplifier is Used in audio mixer to add different signals with n equal	CO2	L4
	gains. Instrumentaion amplifiers are used in data acquisition systems.		
	Active filters are used in communication systems for suppressing noise, in audio		L4
	systems , biomedical instruments to interface psychollogical sensors with		
	diagnostic equipments and data logging.		
2	Regulators are used in developing regulated DC power supply.	CO4	L4
	Signal generator is used in industry, agriculture, boimedicine and other fields such	CO5	L4
	as high frequency induction heating, melting , quenching, ultrasonic diagnosis,		
	nuclear magnetic resonance imaging etc		
3	Comparators are used in oscillators, DAC, ADC , multi-vibrators and etc	CO6	L4
4	Rectifiers are used in DC regulated power supply.	CO7	L4
4	DAC and ADC are used in data acquition system.	CO8	L4
5	PLL is used in motor speed control and tracking filter.	CO9	L3
5	Multivibrators are used in delay , timing circuits , frequency dividers and to	CO10	L4
	generate clock pulses for computer.		

3. Mapping And Justification

CO – PO Mapping with mapping Level along with justification for each CO-PO pair.

To attain competency required (as defined in POs) in a specified area and the knowledge & ability required to accomplish it.

Mod	Мар	ping	Mapping	Justification for each CO-PO pair	Lev
ules			Level		el
-	СО	PO	-	'Area': 'Competency' and 'Knowledge' for specified 'Accomplishment'	-
1	CO1	PO2	2	Analysis of output of electronic circuits using op amp requires knowledge of op amp characteristics.	L3
1	CO2	PO1	2	Knowledge of linear applications such as adder,summer,AC and DC amplifier using op amp is required in understanding the working of complex electronic circuits.	L1
1	CO2	PO2	2	Analysis of complex electronic circuits needs knowledge of Op amp linear applications.	L3
1	CO2	PO3	2	Design of linear applications such as adder,summer,AC and DC amplifier using op amp are used in many instrumentation amplifier	L4
1	CO2	PO11	2	The Design knowledge of linear applications of Op Amp can be used in electronic-projects.	L4
2	CO3	PO1	2	Knowledge of filters using op amp is required in understanding the working of complex electronic circuits.	L1
2	CO3	PO2	2	Analysis of complex electronic circuits needs knowledge of filters using op amp.	L3
2	CO3	PO3	2	Design of filters using op amp are used usually part of communication	L4

				systems.	
2	CO3	PO11	2	The Design knowledge of filters using Op Amp can be used in electronic- projects.	L4
2	CO4	PO1	2	Knowledge of regulators using op amp is required in a designing of DC power supply.	L1
2	CO4	PO2	2	Analysis of DC power supply needs knowledgeof regulator using op amp.	L3
2	CO4	PO3	2	Design of regulator using op amp is a part of DC power supply design.	L4
2	CO4	PO11	2	The Design of DC power supply is used in developing a power supply system for projects.	L4
3	CO5	PO1	2	Knowledge of signal generator using op amp is required in a designing of complex electronics circuits.	L1
3	CO5	PO2	2	Analysis of complex electronics circuits may need knowledge of signal generator using op amp.	L3
3	CO5	PO3	2	Design of signal generator using op amp is a part of complex electronic circuits design.	L4
3	CO5	PO11	2	The Design of signal generator using op amp may be used in projects.	L4
3	CO6	PO1	2	Knowledge of comparator and converter using op amp is required in a designing of complex electronics circuits.	L1
3	CO6	PO2	2	Analysis of complex electronics circuits may need knowledge of using comparator and converter using op amp.	L3
3	CO6	PO3	2	Design of comparator and converter using op amp is a part of complex electronic circuits design.	L4
3	CO6	PO11	2	The Design of comparator and converter using op amp will be used in projects.	L4
4	CO7	PO1	2	Knowledge of rectification using op amp is required in a designing of DC regulated power supply.	L1
4	CO7	PO2	2	Analysis of DC regulated power supply need knowledge of rectification using op amp.	L3
4	CO7	PO3	2	Design of rectifier using op amp is a part of DC regulated power supply design.	L4
4	CO7	PO11	2	The Design of rectifier using op amp will be used in projects.	L4
4	CO8	PO1	2	Knowledge of A/D and D/A conversion using op amp is required in a designing of Data acquisition systems.	L1
4	CO8	PO2	2	Analysis of Data acquisition system need knowledge of A/D and D/A conversion using op amp.	L3
4	CO8	PO11	2	Knowledgeof A/D and D/A conversion using op amp will be applied in projects.	L4
5	CO9	PO1	2	Knowledge of phase ans frequency locking using op amp is required normally in RF based applications and in motor speed control.	L1
5	CO9	PO2	2	Analysis of RF based applications need knowledge of phase ans frequency locking using op amp.	L3
5	CO9	PO11	2	Knowledge of phase locked loop using op amp will be applied in projects.	L4
5	CO10	PO1	2	Knowledge of pulse generation using 555 timer is required in delay and timing circuits such as clock pulse generation.	L1
5	CO10	PO2	2	Analysis of delay and timing circuits need knowledge of pulse generation using 555 timer.	L3
5	CO10	PO3	2	Design of multi-vibrator using 555 timer can be a part of compex application design.	L4
5	CO10	PO11	2	Knowledge of pulse generation using 555 timer will be applied in projects.	L4

4. Articulation Matrix

<u>CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.</u>

-	-	Course Outcomes	Course Outcomes Program Outcomes				-										
Mod	CO.#	At the end of the course	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS PS	Lev
ules		student should be able to	1	2	3	4	5	6	7	8	9	10	11	12	O1	02 03	el

																	_
1		Describe the characteristics of ideal and practical operational amplifier.		2								2				L	2
1		Design the linear applications of OP-AMP using IC LM741C .		2	2							2				L	4
2		Design filters using linear IC LM741C.			2							2				L	4
2		Design DC Regulated power supply using regulators IC's LM317 and LM337.		2	2							2					1
3	18EE46.5	Design signal generators using linear IC LM741C.	2	2	2							2				L	4
3	18EE46.6	Design the application of Linear ICs as comparators and Converter using IC LM741C.		2	2							2					4
4		Design the application of Linear ICs as rectifiers using IC LM741C.		2	2							2				L	1
4	18EE46.8	Understand the application of Linear ICs as A/D and D/A converter using IC LM741C.		2								2				L	1
5	18EE46.9	Understand the working of PLL using IC LM741C and its applications.		2								2				L	3
5	18EE46.10	Design of multivibrator using IC 555 timer and its applications.	2	2	2							2				L	1
-	CS501PC	Average attainment (1, 2, or 3)														-	
-	PO, PSO	1.Engineering Knowledge; 2.Probl 4.Conduct Investigations of Compl Society; 7.Environment and Su 10.Communication; 11.Project M S1.Software Engineering; S2.Data E	ex l ıstc 1an	Prol aina age	blen bilit eme	ns; ; y; nt	5.M 8.E ar	odei thic: nd	rn 7 s; Fin	⁻ool 9.In anc	Usag dividu e; 1	je; 6 Jal 2.Lif	.The an	e Eng d T	gine Fear	er an nwori	d k;

5. Curricular Gap and Content

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Mod	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
ules					
1	Photolithography (Heart	Placement, GATE,	Video session	14 th Feb 2019	Dr Hardik
	of Microengineering	Higher Study.			Pandey, IISc
	Process)				Professor

6. Content Beyond Syllabus

Topics & contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Mod	Gap Topic	Area	Actions Planned	Schedule	Resources	PO Mapping
ules				Planned	Person	
1	Photolithography	Placement,	Video session	14 th Feb 2019	Dr Hardik	3
	(Heart of	GATE,			Pandey, IISc	
	Microengineering	Higher			Professor	
	Process)	Study.				

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Mod	Title	Teach.	No. of c	question in	Exam		CO	Levels
ules		Hours	CIA-1 CIA-2 C	CIA-3 Asg	Extra	SEE		

COURSE PLAN - CAY 2018-19

							Asg			
1	Operational amplifiers and General Linear Applications	10	2	-	-	1	1	2	CO1, CO2	L2, L4
	Active Filters and DC Voltage Regulators	16	2	-	-	1	1	2	CO3, CO4	L4, L4
3	Signal generators and Comparators & Converters	15	-	2	-	1	1	2	CO5, CO6	L4, L4
4	Signal processing circuits and A/D & D/A Converters	10	-	2	-	1	1	2	CO7, C08	L4, L4
5	Phase Locked Loop (PLL) and Timer	10	-	-	4	1	1	2	CO9, CO10	L3 L4
-	Total	60	4	4	4	5	5	10	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Mod	Evaluation	Weightage in	СО	Levels
ules		Marks		
	CIA Exam – 1	30	CO1, CO2, CO3, CO4	L2, L4, L4, L4
3, 4	CIA Exam – 2	30	CO5, CO6, CO7, C08	L4, L4, L4, L4
5	CIA Exam – 3	30	CO9, CO10	L3, L4
1, 2	Assignment - 1	10	CO1, CO2, CO3, CO4	L2, L4, L4, L4
3, 4	Assignment - 2	10	CO5, CO6, CO7, CO8	L4, L4, L4, L4
5	Assignment - 3	10	CO9, CO10	L3, L4
1, 2	Seminar - 1		-	-
3, 4	Seminar - 2		-	-
5	Seminar - 3		-	-
1, 2	Quiz - 1		-	-
3, 4	Quiz - 2		-	-
5	Quiz - 3		-	-
1 - 5	Other Activities – Mini Project	-	CO9, CO10	L2,L2
	Final CIA Marks	20	-	-

D1. TEACHING PLAN - 1

Module - 1

Title:	Operational Amplifiers and General Linear Application	Appr	10 Hrs
		Time:	
а	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Describe the characteristics of ideal and practical operational amplifier.	CO1	L2
2	Design the linear applications of OP-AMP using IC LM741C .	CO2	L4
b	Course Schedule	-	-
Class No	Module Content Covered	СО	Level
1	Introduction, Block diagram representation of a typical Op-amp.	C01	L2
2	schematic symbol, characteristics of an Op-amp	C01	L2
3	ideal op-amp, equivalent circuit, ideal voltage transfer curve	C01	L2
4	open loop configuration, differential amplifier, inverting & non –inverting	C01	L2
E	amplifier Op-amp with negative feedback(excluding derivations)	C01	L2
<u>5</u> 6	A.C. amplifier.	C01	L2 L2
7	summing, scaling & averaging amplifier using inverting and non-inverting	C02	L4
	configuration		
8	summing, scaling & averaging amplifier using non-inverting configuration	C02	L4

Copyright ©2017. cAAS. All rights reserved.

9	Instrumentation amplifier	C02	L2
10	Instrumentation amplifier	C02	L2
С	Application Areas	со	Level
1	Use in designing electronic circuits.	CO1	L2
2	Summing amplifier is Used in audio mixer to add different signals with n equal	CO2	L4
	gains. Instrumentaion amplifiers are used in data acquisition systems.		
d	Review Questions	-	-
1	Define the following electrical parameters: input offset voltage, input resistance, CMRR, output voltage swing and slew rate.	CO1	L2
2	What are the characteristics of of an ideal op amp?	CO1	L2
3	What is the voltage transfer curve of an op amp?	CO1	L2
4	List 3 open loop op amp configurations.	CO1	L1
5	Explain why open loop op amp configurations are not used in linear applications.	CO1	L2
6	State the typical values of input offset voltage, CMRR, slew rate and PSRR for IC 741 op amp.	CO1	L1
7	Define input offset voltage and explain why it exists in all op amps.	CO1	L2
8	Why is it necessary to use an external offset voltage compensating network with practical op amp circuits?	CO1	L2
9	What is the offset minimizing resistor Rom ?	CO1	L2
10	Why is the output offset voltage generated by the input bias current always larger than generated by the input offset current?	CO1	L2
11	What are the factors that affect the input offset voltage, input bias and input offset currents?	CO1	L1
12	What is thermal drift ? How does it affect performance of an op amp circuit?	CO1	L2
13	Briefly explain the difference between the dc and ac amplifiers.	CO2	L2
	What are the major advantage and disadvantage of a single supply ac amplifiers?	CO2	L2
	Explain the concept of virtual ground in context with an op amp.	CO2	L2
14	State the advantages of negative feedback.	CO2	L1
	What is an instrumentation amplifier? List three application of instrumentation amplifier.	CO2	L2
е	Experiences	-	-
1		CO1	L2
2			
3			
4		CO3	L3
5			
5			

Module – 2

Title:	Active filters and DC Voltage Regulator	Appr	16 Hrs
		Time:	
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Design filters using linear IC LM741C.	CO3	L4
2	Design DC Regulated power supply using regulators IC's LM317 and LM337.	CO4	L4
b		-	-
Class No	Module Content Covered	СО	Level
11	Introduction to filters. Difference between active and passive filters	CO3	L4
12	First order low pass Butterworth filters	CO3	L3

13First order high pass Butterworth filters14Second order low pass Butterworth filters15Second order high pass Butterworth filters16Band pass filters - wide band pass17Band pass filters - narrow band pass18all pass filters19voltage regulator basics20voltage regulator basics21voltage follower regulator	CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO4	L3 L3 L3 L3 L3 L4
15Second order high passButterworth filters16Band pass filters - wide band pass17Band pass filters - narrow band pass18all pass filters19voltage regulator basics20voltage regulator basics	CO3 CO3 CO3 CO3	L3 L3 L4
16Band pass filters - wide band pass17Band pass filters - narrow band pass18all pass filters19voltage regulator basics20voltage regulator basics	CO3 CO3 CO3	L3 L4
 17 Band pass filters - narrow band pass 18 all pass filters 19 voltage regulator basics 20 voltage regulator basics 	CO3 CO3	L4
18all pass filters19voltage regulator basics20voltage regulator basics	CO3	
19voltage regulator basics20voltage regulator basics	-	1 I -
20 voltage regulator basics	04	L2
		L2
21 Voltage follower regulator	CO4	L2
	CO4	L3
22 voltage follower regulator	CO4	L4
23 adjustable output regulators	CO4	L4
24 adjustable output regulators	CO4	L2
25 LM317 & LM337 Integrated circuits regulators.	CO4	L2
26 LM317 & LM337 Integrated circuits regulators.		
c Application Areas	СО	Level
1 Active filters are used in communication systems for suppressing noise, ir		L4
audio systems, biomedical instruments to interface psychollogical sensors	S	
with diagnostic equipments and data logging.		
2 Regulators are used in developing regulated DC power supply.	CO6	L4
d Review Questions	-	-
1 Define a filter. How are filters classified?	CO3	L1
2 What is a passband and a stopband for a filter?	CO3	L1
3 What are the advantages of active filters over passive ones?	CO3	L2
4 What is Butterworth response?	CO3	L1
5 What is an all -pass filter? Where and why is it needed?	CO3	L1
6 What is a voltage regulator?	CO4	L1
7 Briefly explain the action of a DC voltage regulators.	CO4	L2
8 Write the equations for line regulation, load regulation and ripple rejection.	CO4	L2
9 What are the advantages of adjustable voltage regulators over the fixed	d CO4	L2
voltage regulator?		
10 What are the blocks of DC power supply?	CO4	L1
e Experiences	-	-
1	CO1	L2
2	1	<u> </u>
	1	
		1
3 4	CO3	L3

E1. CIA EXAM – 1

a. Model Question Paper - 1

Crs	Code	18EE46	Sem:	4	Marks:	30	Time:	75 minute	es	
Cοι	Course: OP Amp and Linear Integrated									
-	-	Note: Ansv	wer any 3 qu	estions, ead	ch carry equ	ual marks:1,	2	Marks	СО	Level
1	a	With a nea [.]	t block diagr	am , explair	n the genera	l stages of a	an OP-AMP I	C. 5	CO1	L2
			e effect of fee on inverting a		nput resistar	nce, output r	esistance of	a 5	CO1	L3
		inverting ar = 75Ω, f₀ = 5)P-AMP havin mplifier with 5HZ .Supply v A _F , R _{iF} , R _{oF} and	R ₁ =470Ω ar voltages = ±:	nd R _F =4.7KΩ	. A= 200,00	00, R _i = 2MΩ,		CO1	L4
					OR					
2	a	Derive an e	expression fo	r output vo	ltage of diffe	erential sum	ming amplifi	er 5	CO2	L3
	b	Derive the	closed loop	voltage gaiı	n of voltage	series feed	oack amplifie	er 5	CO2	L3
	С	What is an	instrumenta	tion amplifie	er? For instru	umentation a	amplifier usir	ng 5	CO2	L2

		transducer bridge obtain an expression for output voltage Vo in terms of change in resistance ΔR of the transducer. Draw the circuit diagram			
		Devive the evenession for agin and phase even a first evelop law pase		<u> </u>	
3	a	Derive the expression for gain and phase angle of first order low pass butterworth filter.	5	CO3	L3
	b	Explain the following performance parameters of voltage regulator.I) Line Regulation. ii) Load Regulation iii) Ripple Rejection.	5	CO4	L2
	С	Design a high pass filter with a cut-off frequency of 10KHZ with a passband gain of 1.5	5	CO3	L4
		OR			
4	а	With a neat circuit diagram, explain the operation of a adjustable regulator using OP – AMP.	5	CO4	L2
	b	Explain in detail the all pass filter and mention applications.	5	CO3	L2
	С	An LM317 regulator is to provide 6v output from 15V supply. The load current is 200mA. Design the circuit, calculate the power dissipation. Draw the circuit diagram. Select I1 = 1mA, Vref – 1.25V.	5	CO4	L4
2	а	Describe the Z parameters in reciprocal networks?	5	CO3	L2
	b	Derive an expression for standing wave ratio and explain?	10	CO2	L3

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

	A UISLINCE C	15510	griment to i	<u> </u>	ed to each stud odel Assignmer		 S			
Crs C	ode: 18EE2	16	Sem:		Marks:	5 / 10	Time:	90 - 120	minute	S
Cours		-	and Linear	Integrate				0		-
					ments. Each as	signment c	arries equal m	ark.		
SNo	USN				Assignment De			Marks	со	Level
1	1KT16EE0	(T16EE002 With a neat block diagram, explain the general stages of an op amp IC.							CO1	L2
2	1KT16EE0		Derive the feedback a		op voltage gair	n of voltage	series	5	CO1	L3
3	1KT16EE0		Derive the feedback a		op voltage gair	n of voltage	shunt	4	CO1	L3
4	1KT17EE0				feedback on ir tical non inverti			5	CO1	L3
	1KT17EE0				feedback on ir		nce, output	5	CO1	L3
5	1KT17EE0				he following te and input bias o		fset voltage,	5	CO1	L2
6	1KT17EE0		expression show that (nput offset current and input bias current. For the non inverting amplifier configuration, obtain expressions for closed loop gain. Af from the basic concepts, how that difference input voltage is zero ideally and hence gain Af from this concept and input resistance Rif with						L3
8	1KT17EE0	-	= 1000hm,	Rf = 1Kohi	nverting amplifi m and supply v e amplifier(UGE	oltages = 15	5V.Determine		CO1	L3
9	1KT17EE0		Ro, Ci = C1 +15V, gain / amplifier ai diagram.	= 0.1f, R1 = Af = 11, UC nd maxim	g ac amplifier s = R2 = R3 = 100k GB = 1MHZ.Calc num output voll	(ohm, Rf = 1 ulate bandv tage swing.	Mohm, VCC = width of Draw the circu		CO1	L3
10	1KT17EE0		The IC 741C op amp having the following parameters is connected as a inverting amplifier with R1 = 470 and Rf = 4.7K. A = 200,000, Ri = 2M, Ro = , fo = 5HZ.Supply voltages = 15V and output voltage swing = 13v.Calculate Af, Rif, Rof and fF.						C01	L3
11	1KT17EE0		amplifier w	rith three	on for the outpu inputs and ave	raging ampl	lifier.	5	CO2	L3
12	1KT17EE0		Derive an e summing a		n for output vol	ltage of diffe	erential	5	CO2	L4

		COURSE PLAN - CAT 2010-19			
13	1KT17EE015	Draw and explain the operation of peaking amplifier	5	CO2	L2
14	1KT16EE015	What is an instrumentation amplifier? For instrumentation amplifier using transducer bridge obtain an expression for output voltage Vo in terms of change in resistance ΔR of the transducer. Draw the circuit diagram	5	CO2	L2
15	1KT18EE400	The circuit of peaking amplifier is to provide a gain of 10 at a peak frequency of 16KHZ.Determine the values of all components.	5	CO2	L3
16	1KT18EE401	Derive the expression for gain and phase angle of first order low pass Butterworth filter and draw its frequency response.	5	CO3	L3
17	1KT16EE002	Derive the expression for gain and phase angle of first order high pass Butter worth filter and draw its frequency response.	5	CO3	L3
18	1KT16EE010	Design a low pass filter at a cut off frequency of 15.9KHZ with a passband gain 1.5.	5	CO3	L4
19		Sketch the circuit of second order active low pass filter. Explain its operation with the expected frequency response and indicate the design steps.	5	CO3	L2
20	1KT17EE002	Sketch the circuit of second order active High pass filter. Explain its operation with the expected frequency response and indicate the design steps.	5	CO3	L2
21	1KT17EE003	Using op amp , design a second order low pass filter with a cut off frequency of 1KHZ.	5	CO3	L4
22	1KT17EE004	Design a Butterworth Second – order high pass filter circuit to have a cut off frequency of 6KHZ. Calculate the actual cut frequency for the circuit using the selected component values.C1 = 1000pF, C2 = C1 = 1000PF.	5	CO3	L4
23		What is a band pass filter? Sketch the circuit of a single stage band pass filter. Explain the low pass and high pass of the circuit. Discuss the design.	5	CO3	L2
24	1KT17EE007	Design a wide band pass filter with fL = 200HZ, fH = 1KHZ and pass band gain = 4. Assume capacitor value for high pass section = 0.05microF and for low pass section = 0.01microF.Also calculate the value of Q factor for the filter and center frequency. Draw the circuit diagram.	5	CO3	L4
25		Design a single stage band pass filter with unity gain and a pass band from 300HZ to 30KHZ.	5	CO3	L4
26	1KT17EE010	Explain the terms – figure of merit, centre frequency and band width with respect to band pass filter.	5	CO3	L2
27	1KT17EE011	Explain with a block diagram and response curve, how Band stop filter can be obtained using low pass, high pass and summing circuit.	5	CO3	L2
28	1KT17EE014	Design a wide band reject filter using first order high pass and low pass filters having fL = 2KHZ and fH = 400HZ respectively with pass band gain as 2.	5	CO3	L4
29	1KT17EE015	Design the narrow band pass filter with two feedback paths with fC = 1.5khz, Q = 7 and AF = 15.Calculate the new value of resistance in the circuit which will change fc to 2khz.	5	CO3	L4
30	1KT16EE015	Explain the working of notch filter. Draw its frequency response. State its common application.	5	CO3	L2
31	1KT18EE400	Design a notch filter to eliminate 120HZ hum.	5	CO3	L4
32	1KT18EE401	Explain in detail the all pass filter and mention applications.	5	CO3	L2
33	1KT16EE002	Explain the following performance parameters of voltage regulator. i) Line Regulation. ii) Load Regulation iii) Ripple Rejection.	5	CO4	L2
		Draw and explain the block schematic of regulated power	5	CO4	L2
34	1KT16EE010	supply.	5		

		follower regulator using OP – AMP.			
36	1KT17EE002	Derive the expressions for the performance parameters of voltage follower regulator.	5	CO4	L3
37	1KT17EE003	Design a voltage follower regulator to provide output voltage of approximately 6V.The load resistance has a minimum value of 150Ω and the available supply voltage is ±12V.Use 1N753 zenior diode has Vz = 6.3V and Iz = 20mA.		CO4	L4
38	1KT17EE004	The voltage follower regulator has Vs = Vcc = 12V, Vo = 6.3v, R1 = 270 Ω . D1 is a IN753 Zener diode and IL(max) = 42mA.If the supply source resistance is 25 Ω , determine the line regulation, load regulation and ripple rejection for the circuit.(Zz = 70hm from IN753 data sheet)	-	CO4	L3
39	1KT17EE006	Design a voltage follower regulator circuit using 741 opamp with following specifications: 1) output voltage 12V 2) Maximum load current = 50mA.	5	CO4	L4
40	1KT17EE007	With a neat circuit diagram, explain the operation of a adjustable regulator using OP – AMP.	5	CO4	L2
41	1KT17EE008	Briefly explain with the help of schematic diagram, the working of LM317 IC regulator.	5	CO4	L2
42	1KT17EE010	Calculate the resistance of R1 and R2 for the LM317 voltage regulator to produce an output voltage of 9v.	5	CO4	L3
43	1KT17EE011	An LM317 regulator is to provide 6v output from 15V supply. The load current is 200mA. Design the circuit, calculate the power dissipation. Draw the circuit diagram. Select I1 = 1mA, Vref – 1.25V.		CO4	L3

D2. TEACHING PLAN - 2

Module – 3

Title:	Signal Generators and comparator	Appr Time:	15 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	_	Level
1	Design signal generators using linear IC LM741C.	CO5	L4
2	Design the application of Linear ICs as comparators and Converter using IC LM741C.	CO6	L4
b	Course Schedule		
Class No	Module Content Covered	со	Level
27	Triangular / rectangular wave generator.	CO5	L4
28	Problems on Triangular / rectangular wave generator	CO5	L3
29	phase shift oscillator	CO5	L2
30	Problems on phase shift oscillator	CO5	L3
31	saw tooth oscillator	CO5	L3
32	Basic comparator, zero crossing detector	CO6	L2
33	Basics of Schmitt trigger circuit	CO6	L2
34	Inverting Schmitt trigger circuit	CO6	L2
35	Problems on inverting Schmitt trigger circuit	CO6	L4
36	Non-inverting Schmitt trigger circuit	CO6	L2
37	Problems on Non-inverting Schmitt trigger circuit	CO6	L4
38	voltage to current converter with grounded load	CO6	L3
39	current to voltage converter	CO6	L3
40	Basics of voltage to frequency and frequency to voltage converters.	CO6	L2
41	Basics of voltage to frequency and frequency to voltage converters.	CO6	L2
с	Application Areas	со	Level
1	Signal generator is used in industry, agriculture, biomedicine and other fields	CO1	L3

	such as high frequency induction heating, melting , quenching, ultrasonic		
	diagnosis, nuclear magnetic resonance imaging etc		
2	Comparators are used in oscillators, DAC, ADC , multi-vibrators and etc	CO2	L4
d	Review Questions	-	-
1	Define an oscillator.	CO5	L2
2	What are the two requirements for oscillation?	CO5	L2
3	How are oscillators are classified?	CO5	L2
4	What is frequency stability? Explain its significance.	CO5	L2
5	What is the difference between the sawtooth wave and the triangular wave?	CO5	L2
6	What is a comparator?	CO5	L2
7	What is the basic difference between basic comparator and schmitt trigger?	CO5	L2
8	List the important characteristics of the comparator?	CO5	L2
9	What is a voltage limit, and why is it needed?	CO6	L2
10	Name and then briefly describe the one application of V/F and F/V converters.	CO6	L2
е	Experiences	-	-
1		CO1	L2
2			
3			
4		CO3	L3
5			
4		CO6	L3
5			

Module – 4

Title:	Signal processing circuits and A/D & D/A Converters	Appr Time:	10 Hrs
a	Course Outcomes	-	Blooms
-		_	Level
1	Design the application of Linear ICs as rectifiers using IC LM741C.	C07	L4
2	Demonstrate the application of Linear ICs as A/D and D/A converter using IC LM741C.		L3
b			
Class No	Module Content Covered	СО	Level
42	Signal processing circuits: Precision half wave rectifiers : saturating and non saturating half wave rectifiers	CO7	L2
43	Precision Half wave rectifiers: Two output precision rectifier, negative precision rectifier	CO7	L2
44	Precision full wave rectifiers:1)Using haif wave rectifier and summing circuit	C07	L2
45	Precision full wave rectifiers:2) High input impedance full wave precision rectifier.	CO7	L2
46	Design problems on rectifiers	CO7	L4
47	A/D & D/A Converters:Basics	CO8	L2
48	R–2R D/A Converter	CO8	L2
49	Integrated circuit 8-bit D/A	CO8	L2
50	Successive approximation ADC	CO8	L2
51	linear ramp ADC	CO8	L2
с	Application Areas	со	Level
1	Rectifiers are used in DC regulated power supply.	CO7	L3
2	DAC and ADC are used in data acquition system.	CO8	L4
d	Review Questions		-
1	What is precision rectifier?state its advantages	C07	L2

2	Sketch the circuit of a saturating type half wave precision rectifier. Draw the	CO7	L2
	input and output waveforms and explain the circuit operation		
3	Discuss the advantages of a precision rectifier over an ordinary diode circuit		L2
	and show how the voltage gain can be achieved with a saturating precision		
	rectifier.		
4	Sketch the circuit of a non saturating type half wave precision rectifier. Draw	C07	L2
	the input and output waveforms and explain the circuit operation, and discuss		
	its advantages over the saturating type circuit.		
5	Sketch the circuit of a two output half wave precision rectifier. Draw the input	C07	L2
	and output waveforms and explain the circuit operation		
6	What is difference between A/D and D/A converters.	CO8	L4
7	Define the following terms for D/A converters : resolution, settling time,	CO8	L2
	conversion time.		
8	State electrical characteristics of IC 1408	CO8	L2
9	What do you mean by quantization error?	CO8	L2
10	Explain the advantages of R/2R ladder technique over binary weighted	CO8	L2
	resistor technique.		
е	Experiences	-	-
1		C07	L2
2			
3			
4		CO8	L3
5			

E2. CIA EXAM – 2

a. Model Question Paper - 2

Crs C	Code:	18EE46	Sem:	4	Marks:	30	Time: 75	; minute	S	
Cour	se:	OP Amp a	and Linear	Integrated	l					_
-					, each carry e			Marks	со	Level
1				0	ar/rectangular e circuit and e>		n generator. Drav peration.	/ 10	CO5	L2
			RC phase s LM741 wit		wer supply.	tput wave	form frequency o	f 5	CO5	L4
					OR					
2			ne working waveform a		0	ator with t	he help of circui	t 5	CO5	L2
	b						the operation o Draw its hysteresis		CO6	L2
		U U					equency of 15KHZ sume C1 = C2 = C	-	CO5	L4
3		be combi rectifier. D	ned with a Draw the vo	a summing Itage wav	g circuit to pr	oduce a fi ant stages	ecision rectifier car ull wave precisior s of the circuit and s proffered.	۱	CO7	L2
		Define the		terms for			ition, settling time	4	CO8	L2
	С	Design a r		ig schmitt		to have U	TP = +3V and LTP =	= 5	CO6	L4
			•		OR					
4	а	Explain R/	/2R ladder	technique	of D/A conve	rter.		6	CO8	L2
			DAC has res		20mv/LSB. F	ind Vofs a	nd Vo if the inputs	5 3	CO8	L3
	С	Explain t	he succes	ssive app	oroximation a ock diagram a	0	digital converte nple.	r 6	CO8	L2

		OR			
2		Extract the field pattern for the ordinary linear end fire array of n isotropic	7	CO7	L3
		point sources of equal amplitude and spacing			
	b	Prove that the radiation resistance of a thin linear antenna is 75 ohm	8	CO8	L4

b. Assignment – 2

Note: A distinct assignment to be assigned to each student.

NOLC.	7 Calstiniet assi	Model Assignment Questions			
Crs C	ode: 18EE46		0 – 120 I	minuto	c
Cours		P and Linear Integrated Circuits.	0 1201	milate	5
		to answer 2-3 assignments. Each assignment carries equal ma	ŕk		
SNo		Assignment Description	Marks	со	Level
1		State the Barkausen criteriaon and explain how it is fulfilled in		CO5	L2
-	1111022002	RC phase shift oscillator.Draw the waveforms at various points		005	
		and explain its operation.			
2	1KT16EE010	Sketch the circuit of triangular/rectangular waveform	5	CO5	L2
		generator. Draw the output waveforms from the circuit and			
		explain its operation.			
3	1KT16EE024	Explain the diode amplitude stabilization of RC phase shift	5	CO5	L2
		oscillator with diagram and equations.			
4	1KT17EE002	Design the phase shift oscillator of fig below to give a		CO5	L4
		maximum output of ±3v with oscillation of 6KHZ.Include			
		distortion minimization adjustement.			
5	1K117EE003	Design a RC phase shift oscillator for an output waveform	5	CO5	L4
6		frequency of 5KHZ.Use LM741 with ±15v power supply.	_	<u> </u>	
6	1K11/EE004	Design a RC phase shift oscillator using opamp.Assume C = 0.1µF frequency of oscillations = 200HZ.Draw the circuit		CO5	L4
		diagram.			
7	1KT17EE006	Explain the working of Wien bridge oscillator with the help of	5	CO5	L2
/		circuit diagram, waveforms and equations.		009	
8	1KT17FF007	Design a Wein bridge oscillator to have an output frequency	′ 5	CO5	L4
•		of 15KHZ using a BIFET opamp with a supply voltage of ± 12 V.		000	
	1KT17EE008	Design a Wein bridge oscillator to have an output frequency	5	CO5	L4
		of 15KHZ using a BIFET opamp with a supply voltage of		Ũ	
		±12V.Assume C1 = C2 = C = 0.01µF.			
6	1KT17EE010	Explain the working of voltage to current with grounded load.	5	CO6	L2
7	1KT17EE011		5	CO6	L2
		different waveforms when Vref is positive and negative.			
8	1KT17EE014		5	CO6	L2
		waveforms when Vref is positive and negative.			
9		Advantages of schmittrigger over zero crossing detector.	5	CO6	L4
10	1K116EE015	With a neat circuit diagram and waveforms. Explain the		CO6	L2
		operation of inverting schmittrigger with different LTP and UTP. Draw its hysteresis curve.			
11	1KT18FE400	Design a non inverting schmitt trigger circuit to have UTP =	5	CO6	L4
11		+3V and LTP = $-5V$.Use a 741 opamp with VCC = $\pm 15V$.	C D	000	L4
12	1KT18FF401	Draw the circuit of a non saturating type half wave precision	5	C07	L2
		rectifier. Draw the input and output waveforms and explain		,	
		the circuit operation.			
13	1KT16EE002	Draw the circuit of full wave precision rectifier. Draw the input	5	CO7	L2
		and output waveforms and explain the circuit operation.			
14	1KT16EE010	List the the advantages of a precision rectifier over an ordinary	4	CO7	L4
		diode circuit.			
15	1KT16EE024	With a neat circuit diagram, show how a half wave precision		C07	L2
		rectifier can be combined with a summing circuit to produce a			
		full wave precision rectifier. Draw the voltage waveforms at			
		relevant stages of the circuit and write the equations to show			
16		that full wave rectification is preffered.	8	CO7	
16		With a neat diagram, explain the operation of high input	. 0	00/	L2

		impedance full wave precision rectifier. Draw the waveforms			
		at various point. Write the equations to show that full wave			
		rectification is performed.			
17	1KT17EE003	Define the following terms for D/A converters : resolution,	4	CO8	L2
		settling time, conversion time, accuracy.			
18	1KT17EE004	An 8-bit DAC has resolution of 20mv/LSB. Find Vofs and Vo if	5	CO8	L3
		the inputs are 10000000 and 10000110.			
19	1KT17EE006	Explain R/2R ladder technique of D/A converter.	5	CO8	L2
20	1KT17EE007	Explain the advantages of R/2R ladder technique over binary	3	CO8	L4
		weighted resistor technique.			
21	1KT17EE008	Explain the successive approximation analog to digital	5	CO8	L2
		converter technique with the help of a block diagram and an			
		example.			
22	1KT17EE010	An 8-bit DAC has an output voltage range of 0-2.55V. Define	3	CO8	L3
		the resolution in at least 2 ways.			
23	1KT17EE011	Explain the block diagram of IC 1408	5	CO8	L2
24	1KT17EE014	Explain the working of single slope ADC with the help of neat	5	CO8	L2
		diagram.			
25	1KT17EE015	Explain the working of dual slope ADC with the help of neat	5	CO8	L2
		diagram.			

D3. TEACHING PLAN - 3

Module – 5

Title:	Phase Locked Loop and 555 Timer	Appr Time:	10 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Demonstrate the application of Linear ICs as PLL using IC LM741C	CO9	L4
2	Design the application of Linear ICs as Multivibrator using IC 555.	CO10	L4
b	Course Schedule		
Class N	o Module Content Covered	СО	Level
52	Basic of PLL	CO9	L2
53	PLL components:VCO	CO9	L2
54	PLL components:phase detector: switched type and balanced modulator type	CO9	L2
55	PLL components:phase detector:digital phase detector	CO9	L2
56	performance factors	CO9	L3
57	Timer: Internal architecture of 555 timer	CO10	L2
58	Mono stable multi vibrators	CO10	L2
59	Problems on Mono stable multi vibrators	CO10	L3
60	Applications of Mono stable multi vibrators	CO10	L2
61	Astable multi vibrator and applications	CO10	L3
с	Application Areas	со	Level
1	PLL is used in motor speed control and tracking filter.	CO9	L4
2	Multi vibrators are used in delay , timing circuits , frequency dividers and to generate clock pulses for computer.		L4
d	Review Questions	_	_
1	What is phase locked loop.	CO9	L1
2	List the basic building blocks of PLL.	CO9	 L1
3	What is the major difference between digital and analog PLLs.	CO9	L1
4	Briefly explain the roles of a low pass filter in PLLs.	CO9	L1
5	Briefly explain the roles of a VCO in PLLs.	CO9	L2
6	What are the advantages and disadvantages of monolithic PLL over descrete PLLs?		L4
7	List important features of 555 timer.	CO10	L1

8	What are the basic modes in which 555 timer operates?	CO10	L1
	Briefly explain the difference between the two operating modes of 555 timer.	CO10	L2
е	Experiences	-	-
1		CO9	L4
2			
3			
4		CO10	L4

E3. CIA EXAM – 3

a. Model Question Paper - 3

Crs C	Code:	18EE46	Sem:	4	Marks:	30	Time:	75 minute	s	
Cour	se:	OP Amp ar	nd Linear Inte	egrated						
-			wer any 2 qu					Marks	CO	Level
1	а	What is PL	.L? Explain th	ne working o	of the buildir	ng blocks of	PLL.	9	CO9	L2
	b	Write a note o	ite a note on application of PLL IC 565							L2
2	а	Explain PLL based frequency multiplier and frequency synthesizer						10	CO9	L2
	b	Explain opera	ating principle o	f PLL. Hence d	efine lock rang	e, capture rang	e and pull in tir	me 5	CO9	L2
3			e functions o					10	CO10	L2
			e multivibra						CO10	L3
			for $tON = 0.6$	ims.Total tir	ne period = :	Ims.Assume	C = 0.1µF.Di	raw		
		the circuit	diagram.							
					OR					
4		Explain mo waveforms	onostable m s.	iulti vibrato	r circuit ope	eration using	g op amp v	vith 7	CO10	L2
		square wa	555 based s ave of 1KHZ and the outp	. If Vcc =					CO10	L3

b. Assignment – 3

Note: A distinct assignment to be assigned to each student.

Model Assignment Questions												
Crs C	ode:	18EE46	Sem:	1	Marks:	5 / 10	Time:	90 - 120	minute	S		
Cours	se:	OP Amp	and Linear In	tegrated								
Note:	Each	student	to answer 2-3	assignmen	ts. Each ass	signment ca	arries equal ma	ark.				
SNo	l	USN		Assig	nment Des	cription		Marks	CO	Level		
1	1KT1	6EE002	Explain the b	.ock diagrar	n of PLL.			8	CO9	L2		
	1KT1	16EE010	What is PLL? PLL.	P Explain th	ne working	of the bui	lding blocks o	of 8	CO9	L2		
2	1KT1		Explain PLL synthesizer.	based fro	equency r	nultiplier a	and frequenc	у 8	CO9	L3		
	1KT1	17EE002	Explain the va	arious applie	cations of P	LL		10	CO9	L3		
3	1KT1	17EE003	Write a note (on applicati	on of PLL K	C 565		5	CO9	L3		
4	1KT1		Explain opera			Hence det	fine lock range	e, 5	CO9	L2		
5	1KT1	7EE006	Explain the fu	Inctions of N	/arious pins	of IC 555 ti	imer.	10	CO10	L2		
	1KT1	I7EE007	Draw and exp	plain the fur	nctional blo	ck diagram	of IC 555.	10	CO10	L2		
6	1KT1		Explain mone amp with way		Itivibrator (circuit opei	ration using o	р 6	CO10	L2		
7	1KT17EE010 Explain astable multivibrator circuit operation using op with waveforms.			using op am	р 6	CO10	L2					
8	1KT17EE011 Design a 555 astable multivibrator to give a 2KHZ pulse repetition frequency with a 70% duty cycle. Use Vcc = 18V.					e 6	CO10	L4				
9	1KT:	17EE014	An astable	multivibrate	or is to k	be designe	ed for gettin	g 6	CO10	L3		

	rectangular waveform for tON = 0.6ms.Total time period = 1ms.Assume C = 0.1µF.Draw the circuit diagram.		
10	Design a 555 based square wave generator to produce a symmetrical square wave of 1KHZ. If Vcc = 12V, draw the voltage across timing capacitor and the output.	CO10	L4

F. EXAM PREPARATION

1. University Model Question Paper

C		OD Amp and Linear Integrated	/ Vaar	Mari	2040
Cours		OP Amp and Linear Integrated Month	/ rear		
Crs C		18EE46 Sem: 4 Marks: 100 Time:		180 m	
		Answer all FIVE full questions. All questions carry equal marks.	Marks		Leve
1	a	With a neat block diagram , explain the general stages of an OP-AM IC.	6	CO1	L2
	b	Explain the effect of feedback on input resistance, output resistance of a practical non inverting amplifier.	8	CO1	L3
	С	The 741C OP-AMP having the following parameters is connected as a inverting amplifier with R ₁ =470 Ω and R _F =4.7K Ω . A= 200,000, R _i = 2M Ω , R _o = 75 Ω , f _o = 5HZ .Supply voltages = ±15V and output voltage swing = ±13V. Calculate A _F , R _{iF} , R _{oF} and f _F .	6	CO1	L3
		OR			
	а	Derive an expression for output voltage of differential summing amplifier.	5	CO2	L3
-	b	Derive the closed loop voltage gain of voltage series feedback amplifier	6	CO1	L3
	С	What is an instrumentation amplifier? For instrumentation amplifier using transducer bridge obtain an expression for output voltage Vo in terms of change in resistance ΔR of the transducer. Draw the circuit diagram.	9	CO2	L2
2	а	Derive the expression for gain and phase angle of first order low pass butter-worth filter.	7	CO3	L3
	b	Explain the following performance parameters of voltage regulator.I) Line Regulation. ii) Load Regulation iii) Ripple Rejection.	e 6	CO4	L2
	С	Design a high pass filter with a cut-off frequency of 10KHZ with a passband gain of 1.5	7	Co3	L4
		OR			
	а	With a neat circuit diagram, explain the operation of a adjustable regulator using OP – AMP.	e 7	CO4	L2
	b	Explain in detail the all pass filter and mention applications.	6	CO3	L2
		An LM317 regulator is to provide 6v output from 15V supply. The load current is 200mA. Design the circuit, calculate the power dissipation Draw the circuit diagram. Select I1 = 1mA, Vref – 1.25V	d 7	CO4	L3
3		Sketch the circuit of triangular/rectangular waveform generator. Draw the output waveforms from the circuit and explain its operation.	/ 12	CO5	L2
		Design a RC phase shift oscillator for an output waveform frequency of 5KHZ.Use LM741 with ±15v power supply.	8	CO5	L4
		OR			
	а	Explain the working of Wien bridge oscillator with the help of circui diagram, waveforms and equations.	t 7	CO5	L2
	b	With a neat circuit diagram and waveforms. Explain the operation o inverting schmittrigger with different LTP and UTP. Draw its hysteresis curve.		CO6	L2
	С	Design a non inverting schmitt trigger circuit to have UTP = +3V and LTP = -5V.Use a 741 op-amp with VCC = ±15V.	= 6	CO6	L4
4		With a neat circuit diagram, show how a half wave precision rectifier car be combined with a summing circuit to produce a full wave precisior rectifier. Draw the voltage waveforms at relevant stages of the circuit and write the equations to show that full wave rectification is proffered.	r k	CO7	L2
	b	Define the following terms for D/A converters : resolution, settling time conversion time, accuracy.	4	CO8	L4

-	С	Discuss the advantages of a precision rectifier over an ordinary diode circuit and show how the voltage gain can be achieved with a saturating precision rectifier.	6	CO7	L2
		OR			
	а	Explain R/2R ladder technique of D/A converter.	8	CO8	L2
	b	An 8-bit DAC has resolution of 20mv/LSB. Find Vofs and Vo if the inputs are 10000000 and 10000110.	4	CO8	L3
	С	Explain the successive approximation analog to digital converter technique with the help of a block diagram and an example.	8	CO8	L2
5	а	What is PLL? Explain the working of the building blocks of PLL.	8	CO9	L2
	b	Write a note on application of PLL IC 565	8	CO9	L2
	С	Explain operating principle of PLL. Hence define lock range, capture range and pull in time	4	CO9	L2
		OR			
	а	Explain the functions of various pins of IC 555 timer.	10	CO10	L2
-	b	Explain monostable multivibrator circuit operation using op amp with waveforms.	5	CO10	L2
	С	Design a 555 based square wave generator to produce a symmetrical square wave of 1KHZ. If Vcc = 12V, draw the voltage across timing capacitor and the output.	5	CO10	L4

2. SEE Important Questions

Cours	se:	OP Amp and Linear Integrated Circuits Mo	nth / Y	'ear	May /	2018
Crs C	ode:	18EE46 Sem: 4 Marks: 100 Tim	ie:		180 m	inutes
	Note	Answer all FIVE full questions. All questions carry equal marks.		-	-	
Mod ule	Qno.		Ma	arks	со	Yea
1	1	With a neat block diagram , explain the general stages of an OP-AM IC		6	CO1	2004
		Explain the effect of feedback on input resistance, output resistance of		8	CO1	2004
		practical non inverting amplifier.				
	3	The 741C OP-AMP having the following parameters is connected as a		6	CO1	2004
		inverting amplifier with R_1 =470 Ω and R_F =4.7K Ω . A= 200,000, R_i = 2M Ω ,	R₀			
		= 75 Ω , f _o = 5HZ .Supply voltages = ±15V and output voltage swing = ±13\	/.			
		Calculate A_F , R_{iF} , R_{oF} and f_F .				
		Derive an expression for output voltage of differential summing amplif		5	CO2	2007
	5	Derive the closed loop voltage gain of voltage series feedback amplifi		6	CO1	2010
	6	What is an instrumentation amplifier? For instrumentation amplifier usi	<u> </u>	9	CO2	200
		transducer bridge obtain an expression for output voltage Vo in terms	of			
		change in resistance ΔR of the transducer. Draw the circuit diagram.				
2	1	Derive the expression for gain and phase angle of first order low pass butter-worth filter.		7	CO3	2009
		Explain the following performance parameters of voltage regulator.I) L Regulation. ii) Load Regulation iii) Ripple Rejection.	ine	6	CO4	2006
	3	Design a high pass filter with a cut-off frequency of 10KHZ with a passband gain of 1.5		7	C03	2004
	4	With a neat circuit diagram, explain the operation of a adjusta regulator using OP – AMP.	ıble	7	CO4	2006
	5	Explain in detail the all pass filter and mention applications.		6	CO3	2006
		An LM317 regulator is to provide 6v output from 15V supply. The l current is 200mA. Design the circuit, calculate the power dissipat Draw the circuit diagram. Select I1 = 1mA, Vref – 1.25V		7	CO4	2007
3		Sketch the circuit of triangular/rectangular waveform generator. D the output waveforms from the circuit and explain its operation.	raw :	12	CO5	2004
		Design a RC phase shift oscillator for an output waveform frequency o	f	8	CO5	200
	2	pesign a ne phase shint oscillator for an output waveform frequency o	I	U U	005	200

		5KHZ.Use LM741 with ±15v power supply.			
	2	Explain the working of Wien bridge oscillator with the help of circuit	7	CO5	2004
	3	diagram, waveforms and equations.	7	005	2004
	4		7	C06	2004
	4	With a neat circuit diagram and waveforms. Explain the operation of inverting schmittrigger with different LTP and UTP. Draw its hysteresis	/	000	2004
		curve.			
	5	Design a non inverting schmitt trigger circuit to have UTP = +3V and LTP =	6	C06	2006
	5	-5 V.Use a 741 op-amp with VCC = ± 15 V.	0	000	2000
4	1	With a neat circuit diagram, show how a half wave precision rectifier can	10	CO7	2007
		be combined with a summing circuit to produce a full wave precision			
		rectifier. Draw the voltage waveforms at relevant stages of the circuit and			
		write the equations to show that full wave rectification is proffered.			
	2	Define the following terms for D/A converters : resolution, settling time,	4	CO8	2010
		conversion time, accuracy.			
	3	Discuss the advantages of a precision rectifier over an ordinary diode	6	CO7	2009
		circuit and show how the voltage gain can be achieved with a saturating			
		precision rectifier.			
	4	Explain R/2R ladder technique of D/A converter.	8	CO8	2007
	5	An 8-bit DAC has resolution of 20mv/LSB. Find Vofs and Vo if the inputs	4	CO8	2004
		are 1000000 and 10000110.			
	6	Explain the successive approximation analog to digital converter	8	CO8	2005
		technique with the help of a block diagram and an example.			
	4	V/hat is DLL2 Evaluing the working of the building blocks of DLL	0	<u> </u>	2011
5	1	What is PLL? Explain the working of the building blocks of PLL.	8 8	CO9	2011
	2	Write a note on application of PLL IC 565	-	CO9	2012
	3	Explain operating principle of PLL. Hence define lock range, capture range and pull in time	4	CO9	2014
	4	Explain the functions of various pins of IC 555 timer.	10	CO10	2015
	5	Explain monostable multivibrator circuit operation using op amp with	5	CO10	2016
		waveforms.			
	6	Design a 555 based square wave generator to produce a symmetrical	5	CO10	2017
		square wave of 1KHZ. If Vcc = 12V, draw the voltage across timing			
		capacitor and the output.			

G. Content to Course Outcomes

1. TLPA Parameters

Table 1: TLPA – Example Course

N 4 -		Countrat		The st	ام م £ند م ام ا	In a kin safet	A
Мо							Assessment
dul	(Split module content into 2 parts which have						Methods to
e-	similar concepts)	g Hours	Levels	ms'	Verbs for	Methods	Measure
#			for	Leve	Learning	for	Learning
			Content	l		Learning	
A	В	С	D	Ε	F	G	Н
1	Operational amplifiers: Introduction, Block	5	L1,L2	L2	Understa	Lecture	Unit Test
	diagram representation of a typical Op-amp,				nd		and
	schematic symbol, characteristics of an Op-						assignment
	amp, ideal op-amp, equivalent circuit, ideal						
	voltage transfer curve,open loop						
	configuration, differential amplifier, inverting &						
	non –inverting amplifier, Op-amp with						
	negative feedback(excluding derivations).						
	negative reedback(excluding derivations).						
1	General Linear Applications: A.C. amplifier,	5	L2,L3		Analyse	Lecture	Unit Test
			L2,L3	L4	Anatyse	Lecture	
	summing, scaling & averaging amplifier,						and
	inverting and non-inverting configuration,						assignment
	Instrumentation amplifier						
2	Active Filters: First & Second order high pass	8	L2,L3,L4	L4	Analyze	Lecture	Unit Test

	& low pass Butterworth filters. Band pass						and
	filters,all pass filters.						assignment
2	DC Voltage Regulators: voltage regulator basics, voltage follower regulator, adjustable output regulator, LM317 & LM337 Integrated circuits regulators.		L2,L3,L4	L4	Analyse	Lecture	Unit Test and assignment
3	Signal generators: Triangular / rectangular wave generator, phase shift oscillator, saw tooth oscillator.		L2,L3,L4	L4	Analyse	Lecture	Unit Test and assignment
3	Comparators & Converters: Basic comparator, zero crossing detector, inverting & non-inverting Schmitt trigger circuit, voltage to current converter with grounded load, current to voltage converter and basics of voltage to frequency and frequency to voltage converters	-	L2,L3,L4	L4	Analyse	Lecture	Unit Test and assignment
4	Signal processing circuits: Precision half wave & full wave rectifiers	5	L2,L3,L4	L4	Analyse	Lecture	Unit Test and assignment
4	A/D & D/A Converters: Basics, R–2R D/A Converter, Integrated circuit 8-bit D/A, successive approximation ADC, linear ramp ADC.	-	L2,L3,L4	L4	Analyse	Lecture/ PPT	
5	P hase Locked Loop (PLL): Basic PLL, components, performance factors.	5	L2,L3	L3	understa nd	Lecture/ PPT	Unit Test and assignment
5	Timer: Internal architecture of 555 timer, Mono stable multi vibrators and applications.	5	L2,L3,L4	L4	Analyse	Lecture/ PPT	Unit Test and assignment

2. Concepts and Outcomes:

Table 2: Concept to Outcome – Example Course

Мо	U U		Final Concept		CO Components	Course Outcome
dul	Outcome	Concepts		Justification	(1.Action Verb,	
e-	from study of	from		(What all Learning	2.Knowledge,	
#	the Content	Content		Happened from the	3.Condition /	Student Should be
	or Syllabus			study of Content /		able to
	,			Syllabus. A short	4.Benchmark)	
				word for learning or		
				outcome)		
Α	1	J	K	L	М	N
1	-Block	- OP-AMP		OP Amp	1.Describe	Describe the
	diagram	Charecter	Charecteristic	characteristics and	2.the characteristics	characteristics of
	representatio	istics	s and	its various	of ideal and	ideal and practical
	n of a typical		configuration	configurations.	practical operational	operational
	Op-amp	- OP-AMP	S		amplifier.	amplifier.
	-	configurat				
	characteristic	U U				
	s of an Op-	-				
	amp,	Feedback				
	-ideal voltage					
	transfer curve					
	-open loop					
	configuration,					
	differential					

	amplifier, inverting & non – inverting amplifier, -Op-amp with negative feedback					
	scaling & averaging amplifier - Instrumentati on amplifier	operation s - mathemat ical	mathematical operations.		2.the linear applications of OP-	Design the linear applications of OP- AMP using IC LM741C .
	Second order high pass & low pass Butterworth filters. -Band pass filters -all pass filters.	frequency	Filtering.			Design filters using linear IC LM741C.
2	-voltage regulator basics -voltage follower regulator -adjustable output regulator, -	- voltage	Regulation		2.DC Regulated power supply 3. using regulators	Design DC Regulated power supply using regulators IC's LM317 and LM337.
3	-Triangular / rectangular wave generator -phase shift oscillator - saw tooth oscillator.	Triangular / rectangul ar wave generatio	Generation.	square, triangular,sine and	2.signal generators 3.using linear IC LM741C.	Design signal generators using linear IC LM741C.

3 -Basic -Voltage generatio n Comparison and Design of ZCD 1.Design Design the periodic of the schmitt trigger and 2 the application of application of Line. 3 -Basic -Voltage comparator, comparisi zero crossingon Comparison and Design of ZCD 1.Design Design the periodic of the schmitt trigger and 2 the application of application of Line. detector, -voltage conversion converters usingLinear ICs aslCs as comparator on-inverting & courrent conversion converters using IC LM741C. 3.using IC LM741C. Schmitt n and vice ovoltage to voltage converter IC LM741C. converter frequency n and vice schwith in and vice in and vice load, current/versa to voltage converter -basics of -basics of voltage to frequency and in and in and
3 -Basic -Voltage Comparison Design of ZCD .1.Design Design of Linear 3 -Basic -Voltage comparison and Schmitt trigger and 2.the application of application of Linear 2 -voltage -voltage conversion and Schmitt trigger and 2.the application of application of Linear 2 -voltage -voltage conversion converters using Linear ICs aslCs as comparato 0p Amp. comparators and and Converter usin converter IC LM741C. IC LM741C. 3 -softent n and vice susing IC LM741C. IC LM741C. 4 converter frequency with conversio susing IC LM741C. 5 converter frequency n and vice susing IC LM741C. 4 converter frequency n and vice susing IC LM741C. 5 converter frequency n and vice susing IC LM741C. 6 n and vice susing IC LM741C. susing IC LM741C. susing IC LM741C. 6 voltage
comparator, comparisi zero crossingon detector, -voltage -inverting &to current non-inverting conversio Schmitt n and vice trigger circuit, versa -voltage to-voltage current to converter frequency with conversio grounded n and vice to voltage converter -basics of voltage to frequency
frequency to voltage converters
4 - Precision -Half Rectification Design of Half and 1.Design Design th half wave wave Precision Design of Half and 1.Design Design th and full wave rectificatio n Full pricision Precision Precision
4 -Basics - A/D and D/A Working of 1.Demonstrate Demonstrate the application of application of Linear -R-2R D/A Terminolo Convertion Succesive 2.the application of application of Linear Converter, gies of code approximation ADC Linear ICS as A/D and D/A Integrated code code DAC. 3.using IC LM741C. LM741C. D/A n -successive -Analog Approximatio Io digital ADC, linear code n ADC, linear code conversio n. - DDC. Digital to Integrated Conversio
analog code conversio
code

	nce factors					
vibrators -applications.	re of 555 timer -Different width	Generation	nostable r using	1.Design 2.the application Linear ICs Multivibrator 3.using IC 555.	ı of as	ultivibrator