Ref No:

# Sri Krishna Institute of Technology, Bangalore



COURSE PLAN

Academic Year 2019-2020

| Program:             | B E – Electrical and Electronics Engineering |
|----------------------|----------------------------------------------|
| Semester :           | 4                                            |
| Course Code:         | 18EE45                                       |
| Course Title:        | Electromagnetic Field Theory                 |
| Credit / L-T-P:      | 03/2-2-0                                     |
| Total Contact Hours: | 52                                           |
| Course Plan Author:  | ARUN G                                       |

Academic Evaluation and Monitoring Cell

Sri Krishna Institute of Technology #29,Chimney hills,Hesaraghata Main road, Chikkabanavara Post Bangalore – 560090, Karnataka, INDIA

## Phone / Fax :08023721477/28392221/23721315 Web: www.skit.org.in , e-mail: <u>skitprinci@gmail.com</u>

# Table of Contents

| A. COURSE INFORMATION                             | 2        |
|---------------------------------------------------|----------|
| 1. Course Overview                                | 2        |
| 2. Course Content                                 | 3        |
| <u>3. Course Material</u>                         |          |
| <u>4. Course Prerequisites</u>                    | 3        |
| 5. Content for Placement, Profession, HE and GATE | 4        |
| B. OBE PARAMETERS.                                | 4        |
| <u>1. Course Outcomes</u>                         | 4        |
| 2. Course Applications                            | 4        |
| 3. Articulation Matrix                            | 4        |
| <u>4. Curricular Gap and Content</u>              | 5        |
| C. COURSE ASSESSMENT.                             | 5        |
| <u>1. Course Coverage</u>                         | 5        |
| 2. Continuous Internal Assessment (CIA)           | 5        |
| D1. TEACHING PLAN - 1                             | 5        |
| Module - 1                                        | 5        |
| Module – 2                                        | <u>6</u> |
| E1. CIA EXAM – 1.                                 | 7        |
| a. Model Question Paper - 1                       | 7        |
| <u>b. Assignment -1</u>                           | 7        |
| D2. TEACHING PLAN - 2                             | 7        |
| Module – 3                                        | 7        |
| Module – 4                                        | 8        |
| E2. CIA EXAM – 2.                                 | 9        |
| a. Model Question Paper - 2                       | 9        |
| b. Assignment – 2                                 |          |
| D3. TEACHING PLAN - 3                             |          |
| Module – 5                                        |          |
| E3. CIA EXAM – 3                                  | 11       |
| a. Model Question Paper - 3                       |          |
| b. Assignment – 3                                 |          |
| F. EXAM PREPARATION                               | 11       |
| 1. University Model Question Paper                | 11       |
| 2. SEE Important Questions                        |          |

# A. COURSE INFORMATION

### **1**. Course Overview

| Degree:              | BE                           | Program:       | EE          |
|----------------------|------------------------------|----------------|-------------|
| Semester:            | 4                            | Academic Year: | 2019-2020   |
| Course Title:        | Electromagnetic Field theory | Course Code:   | 18EE45      |
| Credit / L-T-P:      | 03/2-2-0                     | SEE Duration:  | 180 minutes |
| Total Contact Hours: | 52                           | SEE Marks:     | 60 marks    |
| CIA Marks:           | 40                           | Assignment     | 40 marks    |
| Course Plan Author:  | ARUN G                       | Sign           |             |
| Checked By:          |                              | Sign           |             |
| CO Targets           | CIA Target :                 | SEE Target:    |             |

Note: Define CIA and SEE % targets based on previous performance.

#### 2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute.

| Mod | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Teaching Hours | Blooms Learning |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------|
| ule |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | Levels          |
| 1   | Vector Analysis: Scalars and Vectors, Vector algebra,<br>Cartesian co-ordinate system, Vector Components and unit<br>vectors. Scalar field and Vector field. Dot product and Cross<br>product, Gradient of a scalar field. Divergence and Curl of a<br>vector field. Co – ordinate systems: cylindrical and spherical,<br>relation between different coordinate systems. Expression for<br>gradient, divergence and curl in rectangular, cylindrical and<br>spherical co-ordinate systems. Numerical. Electrostatics:<br>Coulomb's law, Electric field intensity and its evaluation for (i)<br>point charge (ii) line charge (iii) surface charge (iv) volume<br>charge distributions. Electric flux density, Gauss law and its<br>applications. Maxwell's first equation (Electrostatics).<br>Divergence theorem. Numerical | 12             | L3              |
| 2   | Energy and Potential: Energy expended in moving a point<br>charge in an electric field. The line integral. Definition of<br>potential difference and potential. The potential field of a<br>point charge and of a system of charges. Potential gradient.<br>The dipole. Energy density in the electrostatic field.<br>Numerical. Conductor and Dielectrics: Current and current<br>density. Continuity of current. Metallic conductors,<br>conductor's properties and boundary conditions. Perfect<br>dielectric materials, capacitance calculations. Parallel plate<br>capacitor with two dielectrics with dielectric interface parallel<br>to the conducting plates.Numerical.                                                                                                                                             | 12             | L4              |
| 3   | Poisson's and Laplace Equations: Derivations and problems,<br>Uniqueness theorem. Steady magnetic fields: Biot - Savart's<br>law, Ampere's circuital law. The Curl. Stokes theorem.<br>Magnetic flux and flux density. Scalar and vector magnetic<br>potentials. Numerical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10             | L4              |
| 4   | Magnetic forces: Force on a moving charge and differential<br>current element. Force between differential current elements.<br>Force and torque on a closed circuit. Numerical. Magnetic<br>Materials and Magnetism: Nature of magnetic materials,<br>magnetisation and permeability. Magnetic boundary<br>conditions. Magnetic circuit, inductance and mutual                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10             | L4              |

|   | inductance. Numerical                                                                                                                                                                                                                                                                                                                    |    |    |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|
| 5 | Time Varying Fields and Maxwell's Equations: Faraday's law,<br>Displacement current. Maxwell's equations in point form and<br>integral form. Numerical. Uniform plane wave: Wave<br>propagation in free space and in dielectrics. Pointing vector<br>and power considerations. Propagation in good conductors,<br>skin effect. Numerical | 08 | L4 |
| - | Total                                                                                                                                                                                                                                                                                                                                    |    |    |

#### 3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 – 30 minutes

2. Design: Simulation and design tools used – software tools used ; Free / open source

3. Research: Recent developments on the concepts – publications in journals; conferences etc.

| Modul | Details                                                                                             | Chapters | Availability  |
|-------|-----------------------------------------------------------------------------------------------------|----------|---------------|
| es    |                                                                                                     | in book  |               |
| Α     | Text books (Title, Authors, Edition, Publisher, Year.)                                              | -        | -             |
| 1     | Engineering Electromagnetics William H Hayt et al McGraw Hill 8<br>thEdition 2014                   | 1,2,4,5, | In Lib & Dept |
|       |                                                                                                     | 0,/      |               |
| 2     | Principles of Electromagnetics Matthew N. O. Sadiku Oxford 6 th Edition, 2015                       | 3,4,5,6  | In Lib & Dept |
| В     | Reference books (Title, Authors, Edition, Publisher, Year.)                                         | -        | -             |
| 1     | Fundamentals of Engineering Electromagnetics David K. Cheng Pearson 2014                            |          | In lib        |
| 2     | Electromagnetism -Theory (Volume -1) -Applications (Volume-2)<br>AshutoshPramanik PHI Learning 2014 |          | In lib        |
| 3     | Electromagnetic Field Theory Fundamentals Bhag Guru et al Cambridge 2005                            |          | In lib        |
| С     | Concept Videos or Simulation for Understanding                                                      | -        | -             |
| C1    |                                                                                                     |          |               |
| C2    |                                                                                                     |          |               |
| C3    |                                                                                                     |          |               |
| C4    |                                                                                                     |          |               |
| C5    |                                                                                                     |          |               |
| D     | Software Tools for Design                                                                           | -        | -             |
|       |                                                                                                     |          |               |
| E     | Recent Developments for Research                                                                    | -        | -             |
|       |                                                                                                     |          |               |
|       |                                                                                                     |          |               |
|       | Others (Web Video Simulation Notes etc.)                                                            |          |               |
|       | Utiers (web, video, Simulation, Notes etc.)                                                         | -        | -             |
|       |                                                                                                     |          |               |
|       |                                                                                                     |          |               |

### 4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Students must have learnt the following Courses / Topics with described Content ....

| Ν | 1od  | Course  | Course Name                | Topic / Desc                | ription     | Sem | Remarks                                            | Blooms |
|---|------|---------|----------------------------|-----------------------------|-------------|-----|----------------------------------------------------|--------|
| U | lles | Code    |                            |                             |             |     |                                                    | Level  |
|   | 1    | 17MAT11 | Engineering<br>Mathematics | 1. Knowledge of<br>Scalars. | vectors and | 1   | Diploma students will<br>be given extra<br>classes | L3     |

| 2 | 17MAT11  | Engineering | 2. Knowledge of coordinate system   | 1 | Diploma students will | L3 |
|---|----------|-------------|-------------------------------------|---|-----------------------|----|
|   |          | Mathematics |                                     |   | be given extra        |    |
|   |          |             |                                     |   | classes               |    |
| 3 | 17MAT11  | Engineering | 3.Knowledge of matrix ,trignometry, | 1 | Diploma students will | L3 |
|   |          | Mathematics | differentiation and integration.    |   | be given extra        |    |
|   |          |             | _                                   |   | classes               |    |
| 4 | 17PHY12/ | Engineering | 4. Knowledge of columbs law or      | 2 | Diploma students will | L3 |
|   | 22       | Physics     | Gauss Law                           |   | be given extra        |    |
|   |          |             |                                     |   | classes               |    |

#### 5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

| Mod<br>ules | Topic / Description                                                                                                                             | Area | Remarks                               | Blooms<br>Level |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------------------------|-----------------|
| 1           | Scalars and Vectors, Vector algebra,<br>Cartesian co-ordinate system, Vector<br>Components and unit vectors. Scalar<br>field and Vector field , | FT   | Problems solving an<br>Implementation | d L3            |
| 1           | Coulomb's law, Maxwell's first equation (Electrostatics). Divergence theorem                                                                    | FT   | Problems solving an<br>Implementation | d L4            |
| 2           | Poisson's and Laplace Equations                                                                                                                 | FT   | Problems solving an<br>Implementation | d L3            |
| 5           | Faraday's law, Displacement current.<br>Maxwell's equations in point form and<br>integral form                                                  | FT   | Problems solving an<br>Implementation | d L3            |

### **B. OBE PARAMETERS**

#### **1.** Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs.

| Mod  | Course   | Course Outcome                     | Teach. Hours | Instr Method  | Assessme  | Blooms'    |
|------|----------|------------------------------------|--------------|---------------|-----------|------------|
| ules | Code.#   | At the end of the course, student  |              |               | nt        | Level      |
|      |          | should be able to                  |              |               | Method    |            |
| 1    | 18EE45.1 | Understand the rectangular,        | 10           | Lecture       | Slip Test | L2         |
|      |          | sheperical and cylindrical         |              |               |           |            |
|      |          | coordinate system using scalar and |              |               |           |            |
|      |          | vector dot product.                |              |               |           |            |
| 2    | 18EE45.2 | Determine point, line, volume      | 10           | Lecture       | Assignme  | L4         |
|      |          | charges in an electric field using |              |               | nt        | Analyze    |
|      |          | dot product.                       |              |               |           |            |
| 3    | 18EE45.3 | Understand the point form of gauss | 10           | Lecture       | Assignme  | L2         |
|      |          | law using rectangular coordinate   |              |               | nt and    | Understand |
|      |          | system                             |              |               | Slip Test |            |
| 4    | 18EE45.4 | Apply line integral for the        | 10           | Lecture / PPT | Assignme  | L3         |
|      |          | movement of charges                |              |               | nt        | Apply      |
| 5    | 18EE45.4 | Apply maxwell equations for a EM   | 10           | Lecture       | Slip test | L3         |
|      |          | wave in x axis.+                   |              |               | -         | Apply      |
| -    | -        | Total                              | 50           | -             | -         | L2-L4      |

#### 2. Course Applications

Write 1 or 2 applications per CO.

Students should be able to employ / apply the course learnings to ...

| Mod  | Application Area                   | CO | Level |
|------|------------------------------------|----|-------|
| ules | Compiled from Module Applications. |    |       |

| 1 | Evaluate scalar and vector parametres and calculate the dot and cross product  | CO1 | L2 |
|---|--------------------------------------------------------------------------------|-----|----|
|   |                                                                                |     |    |
| 2 | Understanding electric field intensity                                         | CO2 | L4 |
| 3 | Use guass law to understand divergence                                         | CO3 | L2 |
|   |                                                                                |     |    |
| 4 | Apply line integral to find the energy and potential.                          | CO4 | L3 |
| 5 | Apply divergence to compute uniqueness theorem                                 | CO5 | L3 |
|   | Apply faradays law to compute point form and integral form of maxwell equation |     |    |
|   | Apply poynting theorem and calculate skin effect in time varying fields.       |     |    |

#### 3. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

| -    | -        | Course Outcomes                                                                       | Program Outcomes |      |      |      |     |      |     |      |     |      |      | -    |    |    |       |       |
|------|----------|---------------------------------------------------------------------------------------|------------------|------|------|------|-----|------|-----|------|-----|------|------|------|----|----|-------|-------|
| Mod  | CO.#     | At the end of the course                                                              | PO               | PO   | PO   | PO   | PO  | PO   | PO  | PO   | PO  | PO   | PO   | PO   | PS | PS | PS    | Lev   |
| ules |          | student should be able to                                                             | 1                | 2    | 3    | 4    | 5   | 6    | 7   | 8    | 9   | 10   | 11   | 12   | O1 | 02 | 03    | el    |
| 1    | 18EE45.1 | Understand the rectangular,                                                           | 2                | 1    | 1    | 1    |     |      | 2   |      |     |      |      | 2    | 2  |    |       | L2    |
|      |          | sheperical and cylindrical                                                            |                  |      |      |      |     |      |     |      |     |      |      |      |    |    |       |       |
|      |          | coordinate system using scalar                                                        |                  |      |      |      |     |      |     |      |     |      |      |      |    |    |       |       |
|      |          | and vector dot product.                                                               |                  |      |      |      |     |      |     |      |     |      |      |      |    |    |       |       |
| 2    | 18EE45.2 | Determine point, line, volume                                                         | 3                | 2    | 1    | 1    |     |      | 2   |      |     |      |      | 3    |    | 2  |       | L2    |
|      |          | charges in an electric field using                                                    |                  |      |      |      |     |      |     |      |     |      |      |      |    |    |       |       |
|      |          | dot product.                                                                          |                  |      |      |      |     |      |     |      |     |      |      |      |    |    |       |       |
| 3    | 18EE45.3 | Understand the point form of                                                          | 3                | 1    | 2    | 1    |     |      | 2   |      | 1   |      |      | 2    |    |    | 1     | L3    |
|      |          | gauss law using rectangular                                                           |                  |      |      |      |     |      |     |      |     |      |      |      |    |    |       |       |
|      |          | coordinate system                                                                     |                  |      |      |      |     |      |     |      |     |      |      |      |    |    |       |       |
| 4    | 18EE45.4 | Apply line integral for the                                                           | 3                | 1    | 2    | 1    |     |      | 2   |      | 1   |      |      | 2    | 1  |    |       | L2    |
|      |          | movement of charges                                                                   |                  |      |      |      |     |      |     |      |     |      |      |      |    |    |       |       |
| 5    | 18EE45.5 | Apply maxwell equations for a                                                         | 2                | 2    | 2    |      | 2   | 2    | 3   |      |     |      | 1    |      |    | 3  |       | L3    |
|      |          | EM wave in x axis.+                                                                   |                  |      |      |      |     |      |     |      |     |      |      |      |    |    |       |       |
| -    | 15EE662. | Average                                                                               |                  |      |      |      |     |      |     |      |     |      |      |      |    |    |       | -     |
| -    | PO, PSO  | 1.Engineering Knowledge; 2.Prob                                                       | lem              | Ar   | naly | sis; | 3.L | Des  | ign | /    | Dei | velo | рт   | ent  | of | Sc | oluti | ons;  |
|      |          | 4.Conduct Investigations of Complex Problems; 5.Modern Tool Usage; 6.The Engineer and |                  |      |      |      |     |      |     |      |     |      | and  |      |    |    |       |       |
|      |          | Society; 7.Environment and Sustainability; 8.Ethics; 9.Individual and Teamwork        |                  |      |      |      |     |      |     |      |     |      |      | ork; |    |    |       |       |
|      |          | 10.Communication; 11.Project N                                                        | 1an              | age  | eme  | ent  | ar  | nd   | Fir | nan  | ce; | . 12 | Lif€ | e-lo | ng | Le | earr  | ning; |
|      |          | S1.Software Engineering; S2.Data E                                                    | Base             | e Mo | ana  | ger  | nen | t; S | 3.W | eb l | Des | iqn  |      |      |    |    |       |       |

#### 4. Curricular Gap and Content

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

| Mod  | Gap Topic | Actions Planned | Schedule Planned            | Resources Person | PO Mapping            |
|------|-----------|-----------------|-----------------------------|------------------|-----------------------|
| ules |           |                 |                             |                  |                       |
| 1    |           | Seminar         | 2 <sup>nd</sup> week / date | Dr XYZ, Inst     | List from B4<br>above |
| 2    |           | Seminar         | 3 <sup>rd</sup> Week        |                  |                       |

### C. COURSE ASSESSMENT

#### **1**. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation.

| Mod  | Title                              | Teach. |       | No. o | f quest | CO  | Levels |     |         |        |
|------|------------------------------------|--------|-------|-------|---------|-----|--------|-----|---------|--------|
| ules |                                    | Hours  | CIA-1 | CIA-2 | CIA-3   | Asg | Extra  | SEE |         |        |
|      |                                    |        |       |       |         |     | Asg    |     |         |        |
| 1    | Vector Analysis and Electrostatics | 10     | 2     |       |         | 1   | 1      | 2   | CO1,CO2 | L2, L4 |
| 2    | Energy and Potential               | 10     | 2     |       |         | 1   | 1      | 2   | CO1,CO2 | L2,L3  |

COURSE PLAN - CAY 2019-20

| 3 | Poissons and Laplace Equations | 10 |   | 2 |   | 1 | 1 | 2  | CO3,CO4 | L2,L3 |
|---|--------------------------------|----|---|---|---|---|---|----|---------|-------|
| 4 | Magnetic forces                | 10 |   | 2 | 2 | 1 | 1 | 2  | CO3,CO4 | L2,L3 |
| 5 | Time varying Fields            | 10 |   |   | 2 | 1 | 1 | 2  | CO4,CO5 | L2,L4 |
| - | Total                          | 50 | 4 | 4 | 4 | 5 | 5 | 10 | -       | -     |

#### 2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

| Mod   | Evaluation                      | Weightage in | CO      | Levels |
|-------|---------------------------------|--------------|---------|--------|
| ules  |                                 | Marks        |         |        |
| 1, 2  | CIA Exam – 1                    | 30           | CO1,CO2 | L2     |
| 3, 4  | CIA Exam – 2                    | 30           | CO3,CO4 | L2     |
| 5     | CIA Exam – 3                    | 30           | CO4,CO5 | L2     |
|       |                                 |              |         |        |
| 1, 2  | Assignment - 1                  | 10           | CO1,CO2 | L2,L2  |
| 3, 4  | Assignment - 2                  | 10           | CO3,CO4 | L2,L2  |
| 5     | Assignment - 3                  | 10           | CO4,CO5 | L2,L2  |
|       |                                 |              |         |        |
| 1, 2  | Seminar - 1                     |              | -       | -      |
| 3, 4  | Seminar - 2                     |              | -       | -      |
| 5     | Seminar - 3                     |              | -       | -      |
|       |                                 |              |         |        |
| 1, 2  | Quiz - 1                        |              | -       | -      |
| 3, 4  | Quiz - 2                        |              | -       | -      |
| 5     | Quiz - 3                        |              | _       | -      |
|       |                                 |              |         |        |
| 1 - 5 | Other Activities – Mini Project | -            |         |        |
|       | Final CIA Marks                 |              | -       | -      |

# D1. TEACHING PLAN - 1

### Module - 1

| Title:   | Vector Analysis and Electrostatics                                                                                              | Appr  | 10 Hrs |
|----------|---------------------------------------------------------------------------------------------------------------------------------|-------|--------|
|          |                                                                                                                                 | Time: |        |
| a        | Course Outcomes                                                                                                                 | СО    | Blooms |
| 1        | Understand the rectangular, sheperical and cylindrical coordinate system using scalar and vector dot product.                   | CO1   | L2     |
| 2        | Determine point, line, volume charges in an electric field using dot product.                                                   | CO2   | L3     |
|          |                                                                                                                                 |       |        |
|          |                                                                                                                                 |       |        |
| b        | Course Schedule                                                                                                                 | -     | -      |
| Class No | Portion covered per hour                                                                                                        | -     | -      |
| 1        | Scalars and Vectors, Vector algebra,                                                                                            | CO1   | L2     |
| 2        | Cartesian co-ordinate system, Vector Components and unit vectors                                                                | CO1   | L2     |
| 3        | Scalar field and Vector field. Dot product and Cross product, Gradient of a scalar field. Divergence and Curl of a vector field | CO1   | L2     |
| 4        | Co – ordinate systems: cylindrical and spherical, relation between different coordinate systems.                                | CO1   | L2     |
| 5        | Expression for gradient, divergence and curl in rectangular,                                                                    | CO1   | L2     |
| 6        | cylindrical and spherical co-ordinate systems. Numerical.                                                                       | CO1   | L2     |
| 7        | Coulomb's law, Electric field intensity                                                                                         | CO1   | L2     |
| 8        | Evaluation for (i) point charge (ii) line charge (iii) surface charge (iv) volume charge distributions.                         | CO1   | L2     |

| 9  | Electric flux density, Gauss law and its applications.                                                     | CO1 | L2 |
|----|------------------------------------------------------------------------------------------------------------|-----|----|
| 10 | Maxwell's first equation (Electrostatics). Divergence theorem. Numerical.                                  | CO1 | L2 |
| С  | Application Areas                                                                                          |     |    |
| -  | Students should be able employ / apply the Module learnings to $\ldots$                                    |     |    |
| 1  | Use to find intensity and density                                                                          | CO1 | L3 |
| 2  | Used in coordinate system                                                                                  | CO2 | L4 |
|    |                                                                                                            |     |    |
| d  | Review Questions                                                                                           |     | L  |
| -  |                                                                                                            |     |    |
| 1  | Find the expression of the field component at a far point due to a dipole                                  | CO1 | L1 |
| 2  | Discuss coordinate system                                                                                  | CO1 | L3 |
| 3  | Explain vector and scalar product                                                                          | CO2 | L2 |
| 4  | Write and explain electric field intensity                                                                 | CO2 | L4 |
| 5  | Illustrate coloumbs law                                                                                    | CO2 | L2 |
| 6  | With usual notations derive the equation for the magnetic force between two differential current elements. | CO2 | L5 |
| 7  | State and Prove i) Ampere circuit law ii) Stoke's Theorem                                                  | CO2 | L2 |
| 8  | Use columbs law                                                                                            | CO2 | L3 |
| 9  | Write and solve electric flux density                                                                      | CO2 | L4 |
| 10 | List asymptotic notations for omega and theta?                                                             | CO1 | L1 |
|    |                                                                                                            |     |    |
|    |                                                                                                            |     |    |
| е  | Experiences                                                                                                | -   | -  |
| 1  |                                                                                                            | CO1 | L2 |
| 2  |                                                                                                            |     | ĺ  |

### Module – 2

| Title:      | Energy and Potential                                                                                                       | Appr  | 10 Hrs |
|-------------|----------------------------------------------------------------------------------------------------------------------------|-------|--------|
|             |                                                                                                                            | Time: |        |
| a           | Course Outcomes                                                                                                            | СО    | Blooms |
| -           |                                                                                                                            | -     | Level  |
| 1           | Apply line integral for the movement of charges Understand the point form of gauss law using rectangular coordinate system | CO3   | L2     |
| 2           | Apply line integral for the movement of charges Understand the point form of gauss law using rectangular coordinate system | CO4   | L3     |
| b           | Course Schedule                                                                                                            | _     | -      |
| Class<br>No | Portion covered per hour                                                                                                   | -     | -      |
| 11          | Energy expended in moving a point charge in an electric field. The line integral                                           | CO3   | L2     |
| 12          | Definition of potential difference and potential                                                                           | CO3   | L3     |
| 13          | The potential field of a point charge and of a system of charges.                                                          | CO3   | L2     |
| 14          | Potential gradient. The dipole                                                                                             | CO3   | L3     |
| 15          | Energy density in the electrostatic field. Numerical                                                                       | CO3   | L2     |
| 16          | Current and current density. Continuity of current.                                                                        | CO3   | L3     |
| 17          | Metallic conductors, conductor's properties and boundary conditions                                                        | CO3   | L2     |
| 18          | Perfect dielectric materials, capacitance calculations.                                                                    | CO3   | L2     |
| 19          | Parallel plate capacitor with two dielectrics with dielectric interface parallel to the conducting plates                  | CO3   | L3     |
| 20          | Numericals                                                                                                                 | CO3   | L2     |
|             |                                                                                                                            |       |        |
| С           | Application Areas                                                                                                          | -     | -      |
| -           | Students should be able employ / apply the Module learnings to                                                             | -     | -      |
| 1           | Use to find performance of Line integral                                                                                   | CO3   | L3     |
| 2           | Used in current density                                                                                                    | CO4   | L4     |
|             |                                                                                                                            |       |        |

| d  | Review Questions                                   | -   | -  |
|----|----------------------------------------------------|-----|----|
| -  |                                                    |     |    |
| 11 | Use current density to find continuity of current. | CO3 | L3 |
| 12 | Explain energy expended in moving a charge         | CO3 | L2 |
| 13 | Write and explain iterative binary line intergral  | CO4 | L4 |
| 14 | Illustrate potential gradient.                     | CO4 | L2 |
| 15 | Describe the advantage of potential energy         | CO3 | L5 |
| 16 | Explain current density                            | CO3 | L2 |
|    |                                                    |     |    |
| е  | Experiences                                        | -   | -  |
| 1  |                                                    | CO3 | L2 |
| 2  |                                                    |     |    |

### E1. CIA EXAM – 1

### a. Model Question Paper - 1

| Crs  |                | 18EE45       | Sem:           | 4               | Marks:               | 30                                         | Time:          | 75 minute | es  |       |
|------|----------------|--------------|----------------|-----------------|----------------------|--------------------------------------------|----------------|-----------|-----|-------|
| Code | <del>)</del> : |              |                |                 |                      |                                            |                |           |     |       |
| Cou  | rse:           | Electromag   | netic Field 1  | Theory          |                      |                                            |                |           |     |       |
| -    | -              | Note: Ansv   | ver any ON     | E FULL qu       | estions, FR          | OM EACH                                    | MODULE ea      | ach Marks | CO  | Level |
|      |                | carry equal  | l marks.       |                 |                      |                                            |                |           |     |       |
|      |                | MODULE _1    | 1              |                 |                      |                                            |                |           |     |       |
| 1    | а              | What are so  | calars and ve  | ectors.         |                      |                                            |                | 15        | CO1 | L1    |
|      | b              | Find the exp | oression of t  | he field con    | nponent at a         | ı far point du                             | le to a dipole | Э.        |     | L2    |
|      | С              | A spherical  | volume cha     | rge density     | is given by <b>p</b> | <b>)= ρ</b> <sub>0</sub> (1-r <sup>2</sup> | /a²) r≤a r>    | >a        | CO2 | L3    |
|      |                | i. Ca        | alculate the   | total charge    | e Q                  |                                            |                |           |     |       |
|      |                | ii. Fi       | nd the elect   | ric field inte  | nsity E outsi        | de the char                                | ge distributio | on        |     |       |
|      |                | iii. F       | ind the elec   | tric field inte | ensity for r ≤a      | a.                                         |                |           |     |       |
|      |                | iv. Show tha | at the maxim   | ium value of    | f E is at r= 0.7     | 745a                                       |                |           |     |       |
|      |                |              |                |                 |                      |                                            |                |           |     |       |
| 2    | а              | Discuss diff | erent coordi   | nate system     | ٦.                   |                                            |                | 15        | CO1 | L2    |
|      | b              | Explain eleo | ctric flux der | nsity.          |                      |                                            |                |           |     | L4    |
|      |                | MODULE _2    | 2              |                 |                      |                                            |                |           |     |       |
| 3    | а              | Explain gau  | iss law and    | divergence      | theorem              |                                            |                | 15        | CO3 | L1    |
|      | b              | Explain curi | rent and cur   | rent density    | ,                    |                                            |                |           | CO4 | L2    |
|      |                |              |                | -               |                      |                                            |                |           |     |       |
| 4    | а              | Compute th   | ne potential   | difference      |                      |                                            |                | 15        | CO3 | L2    |
|      | b              | Compute lir  | ne intergral   |                 |                      |                                            |                |           | CO4 | L2    |
|      |                |              | -              |                 |                      |                                            |                |           |     |       |
|      |                |              |                |                 |                      |                                            |                |           |     |       |

### b. Assignment -1

|                                            |        |                       | Mo         | odel Assignmer | nt Questic | ons |    |     |    |
|--------------------------------------------|--------|-----------------------|------------|----------------|------------|-----|----|-----|----|
| Crs Code:                                  | 18EE45 | Time: 7               | 75 minutes |                |            |     |    |     |    |
| Course: Electromagnetic Field Theory       |        |                       |            |                |            |     |    |     |    |
|                                            |        |                       |            |                |            |     |    |     |    |
| SN                                         | 0      |                       | Marks      | СО             | Level      |     |    |     |    |
|                                            |        |                       |            |                |            |     |    |     |    |
| 1                                          |        | Discuss varic         | us coor    | dinates system | ۱.         |     | 10 | CO1 | L2 |
| 2                                          |        | Discuss coulombs law. |            |                |            |     |    | CO1 | L2 |
| <b>3</b> Discuss electric field intensity. |        |                       |            |                |            |     | 10 | CO1 | L2 |

| 4  | Describe line integral, surface integral, volume integral.                                                                                                                                                                                                                                                                                      | 10 | CO1 | L3 |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|----|
| 5  | Calculate electric flux density at A(0,0,4) due to q=6 micro c at origin.                                                                                                                                                                                                                                                                       | 10 | CO1 | L3 |
| 6  | If E=-8xy a <sub>x</sub> -4x <sup>2</sup> a <sub>y</sub> +a <sub>z</sub> v/m. Find the work done in carrying a 6C of charge from A(1,8,5) to B(2,18,6) along the path y=3x+2, z=x+4.                                                                                                                                                            | 10 | CO3 | L3 |
| 7  | State and prove divergence theorem.                                                                                                                                                                                                                                                                                                             | 10 | CO2 | L2 |
| 8  | If V=3x <sup>2</sup> +3y <sup>2</sup> +3z <sup>2</sup> v Find (i) V (ii) E (iii) D at P(-4,5,4)                                                                                                                                                                                                                                                 | 10 | CO2 | L3 |
| 9  | <ul> <li>A spherical volume charge density is given by ρ= ρ₀ (1-r² /a²) r≤a r&gt;a</li> <li>i. Calculate the total charge Q</li> <li>ii. Find the electric field intensity E outside the charge distribution</li> <li>iii. Find the electric field intensity for r ≤a.</li> <li>iv. Show that the maximum value of E is at r= 0.745a</li> </ul> | 10 | CO2 | L3 |
| 10 | If V=3x <sup>2</sup> +3y <sup>2</sup> +3z <sup>2</sup> v Find (i) V (ii) E (iii) D at P(-4,5,4)                                                                                                                                                                                                                                                 | 10 | CO1 | L2 |
| 11 | Calculate electric flux density at A(0,0,4) due to q=6 micro c at origin.                                                                                                                                                                                                                                                                       | 10 | CO1 | L2 |
| 12 | Explain electric flux density.                                                                                                                                                                                                                                                                                                                  | 10 | CO1 | L2 |
| 13 | Explain gauss law and divergence theorem.                                                                                                                                                                                                                                                                                                       | 10 | CO2 | L2 |
| 14 | Explain current and current density.                                                                                                                                                                                                                                                                                                            | 10 | CO2 | L2 |
| 15 | If E=-8xy a <sub>x</sub> -4x <sup>2</sup> a <sub>y</sub> +a <sub>z</sub> v/m. Find the work done in carrying a 6C of charge from A(1,8,5) to B(2,18,6) along the path y=3x+2, z=x+4.                                                                                                                                                            | 10 | CO2 | L3 |
| 16 | Compute line intergral.                                                                                                                                                                                                                                                                                                                         | 10 | CO1 | L2 |
|    |                                                                                                                                                                                                                                                                                                                                                 |    |     |    |
|    |                                                                                                                                                                                                                                                                                                                                                 |    |     |    |
|    |                                                                                                                                                                                                                                                                                                                                                 |    |     |    |
|    |                                                                                                                                                                                                                                                                                                                                                 |    |     |    |

### D2. TEACHING PLAN - 2

### Module - 3

| Title:   | Poissons and Laplace Equations                                 | Appr  | 10 Hrs |
|----------|----------------------------------------------------------------|-------|--------|
|          |                                                                | Time: |        |
| a        | Course Outcomes                                                | СО    | Blooms |
| -        | At the end of the topic the student should be able to          | -     | Level  |
| 1        | Understand the current density and vector operator             | CO3   | L2     |
| 2        | Understand uniquiness theorem                                  | CO3   | L3     |
|          |                                                                |       |        |
| b        | Course Schedule                                                |       |        |
| Class No | Portion covered per hour                                       | -     | -      |
| 21       | Derivations and problems                                       | CO3   | L2,L3  |
| 22       | Uniqueness theorem.                                            | CO3   | L2,L3  |
| 23       | Biot - Savart's law                                            | CO3   | L2,L3  |
| 24       | Ampere's circuital law                                         | CO3   | L2,L3  |
| 25       | The Curl                                                       | CO3   | L2,L3  |
| 26       | Stokes theorem                                                 | CO3   | L2,L3  |
| 27       | Magnetic flux & flux density                                   | CO3   | L2,L3  |
| 28       | Scalar potentials                                              | CO3   | L2,L3  |
| 29       | vector magnetic potentials                                     | CO3   | L2,L3  |
| 30       | numericals                                                     | CO3   | L2,L3  |
|          |                                                                |       |        |
| С        | Application Areas                                              | -     | -      |
| -        | Students should be able employ / apply the Module learnings to | -     | -      |
| 1        | Use to find potential wrt laplace equations                    | CO3   | L4     |
| 2        | Used in current and magnetic field                             | CO3   | L3     |
|          |                                                                |       |        |
| d        | Review Questions                                               | -     | -      |

| -   | The attainment of the module learning assessed through following questions                    | -   | -  |
|-----|-----------------------------------------------------------------------------------------------|-----|----|
| 1   | State and prove Uniqueness theorem                                                            | CO3 | L4 |
| 2   | Show that V satisfies Laplace equation in spherical coordinate system                         | CO3 | L3 |
| 3   | Solve the Laplace equation for the potential field and find the capacitance in                | CO3 | L4 |
|     | homogeneous region between two concentric conducting spheres with radii a                     |     |    |
|     | and b such that b>a if V=0 at r=b, V=V₀ at r=a.                                               |     |    |
| 4   | Explain the scalar and vector magnetic potentials                                             | CO3 | L3 |
| 5   | With usual notations derive the equation for the magnetic force                               | CO3 | L4 |
|     | between two differential current elements.                                                    |     |    |
| 6   | State and Prove i) Ampere circuit law ii) Stoke's Theorem                                     | CO3 | L3 |
| 7   | In an infinitely long coaxial cable carrying a uniformly current I in the inner               | CO3 | L4 |
|     | conductor and -I in the outer conductor, find the magnetic field intensity is a               |     |    |
|     | function of radius and sketch the field intensity variation.                                  |     |    |
| 8   | Derive the expression for <b>H</b> due to straight conductor of finite length.                | CO3 | L3 |
| 9   | Find the magnetic flux density at the centre O of a square of sides Equal to 5m and           | CO3 | L4 |
|     | carrying 10 A of current                                                                      |     |    |
| 10  | A conductor in the form of regular polygon of n sides inscribed in a circle of radius R.      | CO3 | L3 |
|     | Show that the expression for magnetic flux density B is given by B=( $\mu_0 l/2R$ )tan( /n)   |     |    |
|     | at the centre where I is the current. Show also when n is indefinitely increased then the     |     |    |
|     | expression reduces to B= ( $\mu_0 I/2R$ ). A circuit carrying a direct current of 5 A forms a |     |    |
|     | regular hexagon inscribed in a circle of radius 1m. Calculate the magnetic flux               |     |    |
|     | density at the centre of the current hexagon. Assume the medium to be free space.             |     |    |
|     |                                                                                               |     |    |
|     |                                                                                               |     |    |
|     |                                                                                               |     |    |
|     |                                                                                               |     |    |
|     |                                                                                               |     |    |
|     |                                                                                               |     |    |
| е   | Experiences                                                                                   | -   | -  |
| 1   |                                                                                               | 006 | L2 |
| 1 2 |                                                                                               |     |    |

### Module – 4

| Title:   | Magnetic forces                                                     | Appr  | 10 Hrs |
|----------|---------------------------------------------------------------------|-------|--------|
|          |                                                                     | Time: |        |
| a        | Course Outcomes                                                     | СО    | Blooms |
| -        | At the end of the topic the student should be able to               | -     | Level  |
| 1        | Understand the magnetic field parameters like intensity and density | CO4   | L2     |
| 2        | Understand maxwell eqautions                                        | CO4   | L3     |
|          |                                                                     |       |        |
| b        | Course Schedule                                                     |       |        |
| Class No | Portion covered per hour                                            | -     | -      |
| 31       | Force on a moving charge and differential current element           | CO4   | L2,L3  |
| 32       | Force between differential current elements                         | CO4   | L3     |
| 33       | Force and torque on a closed circuit                                | CO4   | L2,L3  |
| 34       | Numerical                                                           | CO4   | L3     |
| 35       | Nature of magnetic materials                                        | CO4   | L3     |
| 36       | Magnetisation and permeability.                                     | CO4   | L3     |
| 37       | Magnetic boundary conditions                                        | CO4   | L2,L3  |
| 38       | Magnetic circuit                                                    | CO4   | L3     |
| 39       | Inductance                                                          | CO4   | L2,L3  |
| 40       | Mutual inductance and numerical                                     | CO4   | L3     |
|          |                                                                     |       |        |
| С        | Application Areas                                                   | -     | -      |

| -  | Students should be able employ / apply the Module learnings to                                                                                                                                                                                                                                                                                                                                                           | -   | -        |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------|
| 1  | Use to find potential energy                                                                                                                                                                                                                                                                                                                                                                                             | CO4 | L2,L3    |
| 2  | Used in magnetic boundary conditions                                                                                                                                                                                                                                                                                                                                                                                     | CO4 | L3       |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                          |     |          |
| d  | Review Questions                                                                                                                                                                                                                                                                                                                                                                                                         | -   | -        |
| _  | The attainment of the module learning assessed through following questions                                                                                                                                                                                                                                                                                                                                               | -   | -        |
| 1  | Explain differential current elements                                                                                                                                                                                                                                                                                                                                                                                    | CO4 | L2,L3    |
| 2  | Explain Force between differential current elements.                                                                                                                                                                                                                                                                                                                                                                     | CO4 | L3       |
| 3  | Explain Magnetization and permeability                                                                                                                                                                                                                                                                                                                                                                                   | CO4 | L2,L3    |
| 4  | Write the Maxwell's equations in point and integral form for time varying fields. State each Maxwell's equation.                                                                                                                                                                                                                                                                                                         | CO4 | L3       |
| 5  | Given $\mu = 10^{-5}$ H/m, $4 \times 10^{-9}$ F/m, =0 and $_{v}=0$ . Find k so that each of the following pairs of fields satisfies Maxwell's equation<br>i) D=6a <sub>x</sub> -2ya <sub>y</sub> +2za <sub>z</sub> nC/m <sup>2</sup> and H=kza <sub>x</sub> +10ya <sub>y</sub> -25za <sub>z</sub> A/m<br>ii) E=(20y-kt)a <sub>x</sub> V/m and H=(y+200000t)a <sub>z</sub> V/m .<br>Write the unit of k in both the cases | CO4 | L2,L3    |
| 6  | Explain the concept of self inductance and mutual inductance                                                                                                                                                                                                                                                                                                                                                             | CO4 | L3       |
| 7  | Derive the boundary conditions at the interface between two different magnetic materials.                                                                                                                                                                                                                                                                                                                                | CO4 | L2,L3    |
| 8  | A Solenoid with air core has 2000 turns and a length of 500mm. Core radius is 40mm. Find its inductance.                                                                                                                                                                                                                                                                                                                 | CO4 | L3       |
| 9  | Calculate the vector current density at a point P(1.5, 90°, 0.5) if $H=(2/\rho) \cos 0.2 \phi a_{\rho}$ .                                                                                                                                                                                                                                                                                                                | CO4 | L2,L3    |
| 10 | With usual notations derive the equation for the magnetic force between two, differential current elements.                                                                                                                                                                                                                                                                                                              | CO4 | L3       |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                          |     |          |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                          |     |          |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                          |     |          |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                          |     |          |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                          |     |          |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                          |     |          |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                          |     |          |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                          |     | <u> </u> |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                          |     |          |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                          |     |          |
| е  | Experiences                                                                                                                                                                                                                                                                                                                                                                                                              | -   | -        |
| 1  |                                                                                                                                                                                                                                                                                                                                                                                                                          | CO7 | L2       |
| 2  |                                                                                                                                                                                                                                                                                                                                                                                                                          | 1   | 1        |

### E2. CIA EXAM – 2

### a. Model Question Paper - 2

| Crs<br>Code | s 18EE45 Sem: 4 Marks: 30 Time 75 minut<br>de: |                                                           |                                                   | ites        |                 |            |          |         |          |       |       |
|-------------|------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------|-------------|-----------------|------------|----------|---------|----------|-------|-------|
| Cou         | rse:                                           | Electromag                                                | gnetic Fiel                                       | d Theory    | 1               |            | I        |         |          |       |       |
| -           | -                                              | Note: Ans                                                 | wer any (                                         | ONE FULL    | questions, F    | ROM EA     | сн мо    | DULE ea | ach Marl | (s CO | Level |
|             |                                                | carry equa                                                | al marks.                                         |             |                 |            |          |         |          |       |       |
|             |                                                | MODULE 3                                                  | 3                                                 |             |                 |            |          |         |          |       |       |
| 1           | a                                              | State and p                                               | orove Unic                                        | lueness the | eorem           |            |          |         | 5        | CO4   | L3    |
|             | b                                              | Show that                                                 | V satisfies                                       | Laplace ed  | quation in sphe | erical cod | ordinate | system  | 10       | CO4   | L3    |
|             |                                                |                                                           |                                                   |             |                 |            |          |         |          |       |       |
| 2           | а                                              | Explain tl                                                | Explain the scalar and vector magnetic potentials |             |                 |            |          |         | 5        | CO4   | L2    |
|             | b                                              | With usual notations derive the equation for the magnetic |                                                   |             |                 |            | 10       | CO4     | L4       |       |       |
|             |                                                | force bet                                                 | ween tw                                           | o differei  | ntial current   | elemer     | nts.     | -       |          |       |       |

|   |   | MODULE 4                                                              |    |     |    |
|---|---|-----------------------------------------------------------------------|----|-----|----|
| 3 | а | Derive point form of continuity equation and Maxwell equation         | 5  | CO4 | L3 |
|   | b | Evaluate the boundary conditions for E and D between two dielectrics. | 10 | CO4 | L3 |
|   |   |                                                                       |    | CO4 |    |
| 4 | а | Derive the expression for B of a circular loop of radius 'a'          | 5  | CO4 | L3 |
|   |   | carrying a current I using Biot Savart Law.                           |    |     |    |
|   | b | Obtain the boundary conditions at the interface between two magnetic  | 10 | CO4 | L3 |
|   |   | materials                                                             |    |     |    |
|   |   |                                                                       |    |     |    |
|   |   |                                                                       |    |     |    |
|   |   |                                                                       |    |     |    |

# b. Assignment – 2

|           |          |                                                                                                                                                                                                                              | Mode                                                                                                                                                      | el Assignme                                                                                                                                | nt Questio                                                                                                       | ns                                                                                                                                                                 |                                    |     |       |
|-----------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----|-------|
| Crs Code: | 18EE45   | Sem:                                                                                                                                                                                                                         | 4                                                                                                                                                         | Marks:                                                                                                                                     | 30                                                                                                               | Time:                                                                                                                                                              | 75 minute                          | es  |       |
| Course:   | Electron | nagnetic Fie                                                                                                                                                                                                                 | eld Theory                                                                                                                                                |                                                                                                                                            |                                                                                                                  |                                                                                                                                                                    |                                    |     |       |
|           |          |                                                                                                                                                                                                                              |                                                                                                                                                           |                                                                                                                                            |                                                                                                                  |                                                                                                                                                                    |                                    |     |       |
| SN        | lo       |                                                                                                                                                                                                                              | Ass                                                                                                                                                       | ignment De                                                                                                                                 | scription                                                                                                        |                                                                                                                                                                    | Marks                              | со  | Level |
| 1         |          | State and p                                                                                                                                                                                                                  | orove Uniqu                                                                                                                                               | eness theor                                                                                                                                | em                                                                                                               |                                                                                                                                                                    | 10                                 | CO4 | L3    |
| 2         | 2        | Show that system                                                                                                                                                                                                             | V satisfies L                                                                                                                                             | aplace equa                                                                                                                                | ation in sp                                                                                                      | herical coordinat                                                                                                                                                  | ə 10                               | CO4 | L2    |
| 3         | 3        | Solve the I<br>capacitanc<br>conductinc<br>r=b, V=Vo at                                                                                                                                                                      | _aplace equ<br>e in homog<br>g spheres w<br>t r=a.                                                                                                        | lation for the<br>geneous reg<br>ith radii a al                                                                                            | e potential<br>jio betwee<br>nd b such                                                                           | . field and find the<br>en two concentri<br>that b>a if V=0 a                                                                                                      | e 10<br>c<br>t                     | CO4 | L3    |
| 4         | Ļ        | Explain tl                                                                                                                                                                                                                   | he scalar a                                                                                                                                               | and vector                                                                                                                                 | <sup>,</sup> magnet                                                                                              | ic potentials                                                                                                                                                      | 10                                 | CO4 | L2    |
| 5         | 5        | With usu<br>magnetic<br>elements                                                                                                                                                                                             | al notatior<br>c force bet<br>s.                                                                                                                          | ns derive t<br>ween two                                                                                                                    | he equat<br>differen                                                                                             | tion for the<br>tial current                                                                                                                                       | 10                                 | CO4 | L3    |
| 6         | j        | State and I                                                                                                                                                                                                                  | Prove i) Arr                                                                                                                                              | npere circuit                                                                                                                              | law ii) S                                                                                                        | toke's Theorem                                                                                                                                                     | 10                                 | CO4 | L3    |
| 7         |          | In an infinitely long coaxial cable carrying a uniformly current I in the inner conductor and –I in the outer conductor, find the magnetic field intensity is a function of radius and sketch the field intensity variation. |                                                                                                                                                           |                                                                                                                                            |                                                                                                                  |                                                                                                                                                                    |                                    | CO4 | L3    |
| 8         | 3        | Derive the<br>length.                                                                                                                                                                                                        | expression                                                                                                                                                | for <b>H</b> due to                                                                                                                        | o straight o                                                                                                     | conductor of finit                                                                                                                                                 | ə 10                               | CO4 | L3    |
| g         | )        | Find the square of                                                                                                                                                                                                           | a 10<br>t                                                                                                                                                 | CO4                                                                                                                                        | L3                                                                                                               |                                                                                                                                                                    |                                    |     |       |
| 10        | D        | A conduct<br>inscribed<br>expression<br>$B=(\mu_0I/2F$<br>Show als<br>expression<br>direct cur<br>in a circl<br>density a<br>the mediu                                                                                       | tor in the<br>in a circ<br>n for mag<br>()tan(/n) a<br>o when n<br>n reduces<br>rent of 5 A<br>rent of 5 A<br>e of radius<br>t the centr<br>im to be free | form of recle of rac<br>gnetic flux<br>at the cent<br>is indefin<br>to B= $(\mu_0 I$<br>forms a r<br>forms a r<br>forms the ce<br>e space. | gular pol<br>lius R.<br>density<br>re where<br>itely incr<br>/2R). A c<br>regular he<br>culate the<br>current he | ygon of n side<br>Show that the<br>B is given by<br>I is the current<br>eased then the<br>circuit carrying<br>exagon inscribe<br>e magnetic flut<br>exagon. Assume | 5 10<br>2<br>7<br>2<br>a<br>d<br>K | CO4 | L3    |
| 1:        | 1        | Explain Fo                                                                                                                                                                                                                   | rce betweer                                                                                                                                               | n differential                                                                                                                             | current ele                                                                                                      | ements.                                                                                                                                                            | 10                                 | CO4 | L3    |
| 1:        | 2        | Explain Ma                                                                                                                                                                                                                   | gnetization                                                                                                                                               | and permea                                                                                                                                 | ability                                                                                                          |                                                                                                                                                                    | 10                                 | CO4 | L3    |
| 1;        | 3        | Write the<br>for time v                                                                                                                                                                                                      | Maxwell's arying field                                                                                                                                    | equations i<br>ls. State ea                                                                                                                | in point a<br>ich Maxw                                                                                           | nd integral forn<br>ell's equation.                                                                                                                                | <b>1</b> 10                        | CO4 | L3    |
| 14        | 4        | Given µ=:<br>that each                                                                                                                                                                                                       | 10 <sup>-5</sup> H/m, 4<br>of the follo                                                                                                                   | ×10 <sup>-9</sup> F/m<br>wing pairs                                                                                                        | =0 and of fields s                                                                                               | v = 0. Find k so satisfies                                                                                                                                         | 10                                 | CO4 | L3    |

|    | Maxwell's equation<br>i) $D=6a_x-2ya_y+2za_z nC/m^2$ and $H=kza_x+10ya_y-25za_z A/m$<br>ii) $E=(20y-kt)a_x V/m$ and $H=(y+200000t)a_z V/m$ . |    |     |    |
|----|----------------------------------------------------------------------------------------------------------------------------------------------|----|-----|----|
| 15 | Write the unit of k in both the cases<br>Explain the concept of self inductance and mutual<br>inductance                                     | 10 | CO4 | L3 |
| 16 | Derive the boundary conditions at the interface between two different magnetic materials.                                                    | 10 | CO4 | L3 |
| 17 | A Solenoid with air core has 2000 turns and a length of 500mm. Core radius is 40mm. Find its inductance.                                     | 10 | CO4 | L3 |
| 18 | Calculate the vector current density at a point P(1.5, 90°, 0.5) if $H=(2/\rho)\cos 2\phi a_{\rho}$ .                                        | 10 | CO4 | L3 |
| 19 | With usual notations derive the equation for the magnetic force between two differential current elements.                                   | 10 | CO4 | L3 |
| 20 | State and prove Uniqueness theorem                                                                                                           | 10 | CO4 | L3 |

# D3. TEACHING PLAN - 3

### Module – 5

| Title:   | Loop and Horn Antenna and Antenna Types                                               | Appr      | 10 Hrs |
|----------|---------------------------------------------------------------------------------------|-----------|--------|
|          |                                                                                       | Time:     |        |
| a        | Course Outcomes                                                                       | со        | Blooms |
| -        | At the end of the topic the student should be able to                                 | -         | Level  |
| 1        | Evaluate maxwell equation on point and integral form                                  | CO5       | L3     |
| 2        | Understand wave propogation and skin effect                                           | CO5       | L2     |
|          |                                                                                       |           |        |
| b        | Course Schedule                                                                       | -         | -      |
| Class No | Portion covered per hour                                                              | -         | -      |
| 41       | Faraday's law                                                                         | CO5       | L3     |
| 42       | Displacement current                                                                  | CO5       | L2     |
| 43       | Maxwell's equations in point form and integral form                                   | CO5       | L3     |
| 44       | Numericals                                                                            | CO5       | L2     |
| 45       | Wave propagation in free space                                                        | CO5       | L3     |
| 46       | Wave propagation in dielectrics                                                       | CO5       | L2     |
| 47       | Pointing vector                                                                       | CO5       | L3     |
| 48       | Power considerations                                                                  | CO5       | L2     |
| 49       | Propagation in good conductors                                                        | CO5       | L3     |
| 50       | Skin effect. Numerical                                                                | CO5       | L2     |
|          |                                                                                       |           |        |
| С        | Application Areas                                                                     | -         | -      |
| -        | Students should be able employ / apply the Module learnings to                        | -         | -      |
| 1        | Use to find skin effect                                                               | CO5       | L3     |
| 2        | Used in wave propagation                                                              | CO5       | L4     |
|          |                                                                                       |           |        |
| d        | Review Questions                                                                      | -         | -      |
| -        | The attainment of the module learning assessed through following questions            | -         | -      |
| 1        | Explain electromagnetic wave propagation in good conductor                            | CO5       | L3     |
|          |                                                                                       |           |        |
| 2        | The magnetic field intensity of uniform plane wave in air is 20 A/m in ay $^{\wedge}$ | CO5       | L4     |
|          | direction. The wave s propagating in the z-direction at an angular frequency of       |           |        |
|          | 2x10 <sup>9</sup> rad/sec. Find: (i) Phase shift constant (ii)                        |           |        |
|          | Wavelength(iii) Frequency (iv)mplitude of electric field intensity.                   |           |        |
| 3        | State and explain the faraday's law of electromagnetic induction                      | CO5       | L3     |
| 18EE45   | Copyright ©2017. cAAS. All righ                                                       | nts reser | ved.   |

Copyright ©2017. cAAS. All rights reserved.

| 4  | Derive Maxwell's equation for time varying fields.                                                                                                                                                                                                                                                                         | CO5  | L4 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|
| 5  | Given E = Em sin( $\omega$ t- $\beta$ z) a <sub>y</sub> <sup>^</sup> in free space. Find D, B, H.                                                                                                                                                                                                                          | CO5  | L3 |
| 6  | Find the amplitude of the displacement current density, In the air near car antenna where the field strength of FM signal is E= 80 $\cos(6.277 \times 10^8 \text{t} - 2.09 \text{y})a_z \text{ v/m}$ Inside a capacitor where $\xi_r = 600$ and D= $3 \times 10^{-6} \sin(610^6 \text{t} - 0.3464 \text{x}) \text{ c/m}^2$ | CO5  | L4 |
|    |                                                                                                                                                                                                                                                                                                                            |      |    |
| 7  | State and explain the conditions of Faraday's law                                                                                                                                                                                                                                                                          | CO5  | L4 |
| 8  | Derive and obtain the solution of 3-D wave equation for all the vector fields, In free space.                                                                                                                                                                                                                              | CO5  | L3 |
| 9  | A certain material has conductivity =0 and $\mu_r$ =1. Make use of Maxwell's equations to find r.Assume E=800sin(10 <sup>6</sup> t-0.1z)a <sub>y</sub> (V/m)                                                                                                                                                               | CO5  | L4 |
| 10 | Explain the point and integral form of Poynting Theorem.                                                                                                                                                                                                                                                                   | CO5  | L3 |
| 11 | Write the point and integral form of Maxwell's equation for free space and conductor                                                                                                                                                                                                                                       | CO5  | L4 |
|    |                                                                                                                                                                                                                                                                                                                            |      |    |
|    |                                                                                                                                                                                                                                                                                                                            |      |    |
|    |                                                                                                                                                                                                                                                                                                                            |      |    |
|    |                                                                                                                                                                                                                                                                                                                            |      |    |
|    |                                                                                                                                                                                                                                                                                                                            |      |    |
|    |                                                                                                                                                                                                                                                                                                                            |      |    |
|    |                                                                                                                                                                                                                                                                                                                            |      |    |
|    |                                                                                                                                                                                                                                                                                                                            |      |    |
|    |                                                                                                                                                                                                                                                                                                                            |      |    |
|    |                                                                                                                                                                                                                                                                                                                            |      |    |
|    |                                                                                                                                                                                                                                                                                                                            |      |    |
|    |                                                                                                                                                                                                                                                                                                                            |      |    |
|    |                                                                                                                                                                                                                                                                                                                            |      |    |
|    |                                                                                                                                                                                                                                                                                                                            |      |    |
| e  | Experiences                                                                                                                                                                                                                                                                                                                | _    | _  |
| 1  |                                                                                                                                                                                                                                                                                                                            | CO10 | L2 |
| 2  |                                                                                                                                                                                                                                                                                                                            | CO9  |    |

# E3. CIA EXAM – 3

### a. Model Question Paper - 3

| Crs ( | Code | 18EE45       | Sem:                        | 4                        | Marks:     | 30       |             | Time:    | 75                 | minute | ninutes |       |  |  |
|-------|------|--------------|-----------------------------|--------------------------|------------|----------|-------------|----------|--------------------|--------|---------|-------|--|--|
| Cou   | rse: | Electromag   | gnetic Field                | Theory                   |            |          |             |          |                    |        |         |       |  |  |
| -     | -    | Note: Ansv   | wer any ON                  | IE FULL qu               | lestions,  | FROM     | ЕАСН М      | IODULE   | each               | Marks  | СО      | Level |  |  |
|       |      | carry equa   | l marks.                    |                          |            |          |             |          |                    |        |         |       |  |  |
| 1     | a    | Explain ele  | ctromagnet                  | ic wave prop             | bagation i | n good   | conduct     | or       |                    | 5      | CO5     | L4    |  |  |
|       |      |              |                             |                          |            |          |             |          |                    |        |         |       |  |  |
|       | b    | The magne    | etic field inte             | ensity of unif           | form plan  | e wave   | in air is 2 | 20 A/m i | n a <sub>y</sub> ^ | 10     | CO5     | L3    |  |  |
|       |      | direction. 7 | The wave :                  | s propagati              | ng in th   | e z-dire | ection a    | it an ar | ngular             |        |         |       |  |  |
|       |      | frequency    | of _ 2x1                    | 0 <sup>9</sup> rad/se    | c. Find:   | (i) Pl   | nase sł     | hift cor | nstant             |        |         |       |  |  |
|       |      | (II) Wavelen | igth(III) Freqi             | lency (IV)mp             | olitude of | electric | field inte  | ensity.  |                    |        |         |       |  |  |
|       |      |              |                             |                          |            |          |             |          |                    |        | CO5     | L4    |  |  |
| 2     | а    | Derive Max   | well's equat                | ion for time             | varying fi | elds.    |             |          |                    | 5      | CO5     | L4    |  |  |
|       | b    | Given E = E  | Em sin( <mark>ωt-β</mark> z | $a_y^{\text{n}}$ in free | space. Fi  | nd D, B, | H.          |          |                    | 10     | CO5     | L3    |  |  |
|       |      |              |                             |                          |            |          |             |          |                    |        |         |       |  |  |
|       |      |              |                             |                          |            |          |             |          |                    |        | CO5     | L4    |  |  |
| 3     | a    | State and    | l explain th                | ne conditio              | ons of Fa  | araday   | 's law      |          |                    | 5      | CO5     | L4    |  |  |

|   | b | Derive and obtain the solution of 3-D wave equation for all | 10 | CO5 | L3 |
|---|---|-------------------------------------------------------------|----|-----|----|
|   |   | the vector fields, In free space.                           |    |     |    |
|   |   |                                                             |    | CO5 | L4 |
| 4 | а | Explain the point and integral form of Poynting Theorem.    | 5  | CO5 | L4 |
|   | b | Write the point and integral form of Maxwell's equation for | 10 | CO5 | L3 |
|   |   | free space and conductor                                    |    |     |    |
|   |   |                                                             |    |     |    |
|   |   |                                                             |    |     |    |

# b. Assignment – 3

|           |                                                                                  | Mc                                                                   | del Assignme                                                      | ent Questio                                               | ns                                                                                     |          |     |    |
|-----------|----------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------|----------|-----|----|
| Crs Code: | 18EE45 Sem:                                                                      | 4                                                                    | Marks:                                                            | 10                                                        | Time: 7                                                                                | 5 minute | es  |    |
| Course:   | Electromagnetic I                                                                | -ield Theory                                                         | ,                                                                 |                                                           |                                                                                        |          |     |    |
| SNo       |                                                                                  | Marks                                                                | со                                                                | Level                                                     |                                                                                        |          |     |    |
| 1         | Explain electroma                                                                | gnetic wave                                                          | e propagation                                                     | in good co                                                | nductor                                                                                | 10       | CO5 | L4 |
| 2         | The magnetic field<br>^ direction. The v<br>frequency of<br>(ii) Wavelength(iii) | 10                                                                   | CO5                                                               | L4                                                        |                                                                                        |          |     |    |
| 3         | Explain Skin effect                                                              | -                                                                    |                                                                   |                                                           |                                                                                        | 10       | CO5 | L3 |
| 4         | Derive Maxwell's e                                                               | equation for                                                         | time varying f                                                    | ields.                                                    |                                                                                        | 10       | CO5 | L4 |
| 5         | Given E = Em sin(i                                                               | ωt-βz) $a_y^{h}$ in                                                  | free space. F                                                     | ind D, B, H.                                              |                                                                                        | 10       | CO5 | L4 |
| 6         | The dry earth<br>permittivity r=4<br>conduction curre                            | 10                                                                   | CO5                                                               | L3                                                        |                                                                                        |          |     |    |
| 7         | State and expla                                                                  | ain the cor                                                          | nditions of F                                                     | araday's                                                  | law                                                                                    | 10       | CO5 | L4 |
| 8         | Derive and obt<br>the vector field                                               | ain the sol<br>s, In free s                                          | ution of 3-1<br>pace.                                             | D wave e                                                  | quation for all                                                                        | 10       | CO5 | L4 |
| 9         | Explain the conce                                                                | pt of self inc                                                       | luctance and                                                      | mutual ind                                                | uctance                                                                                | 10       | CO5 | L3 |
| 10        | Explain the poi                                                                  | nt and inte                                                          | egral form o                                                      | f Poyntin                                                 | g Theorem.                                                                             | 10       | CO5 | L4 |
| 11        | Write the point free space and                                                   | and integ<br>conduc                                                  | ral form of I<br>ctor                                             | Maxwell's                                                 | equation for                                                                           | 10       | CO5 | L4 |
| 12        | Explain electroma                                                                | 10                                                                   | CO5                                                               | L3                                                        |                                                                                        |          |     |    |
| 13        | The magnetic field<br>^ direction. The v<br>frequency of<br>(ii) Wavelength(iii) | d intensity o<br>wave s prop<br>2x10 <sup>9</sup> rad<br>Frequency ( | f uniform plar<br>bagating in th<br>/sec. Find:<br>iv)mplitude of | ne wave in a<br>ne z-directi<br>(i) Phase<br>electric fie | air is 20 A/m in a <sub>y</sub><br>on at an angular<br>shift constant<br>ld intensity. | 10       | CO5 | L4 |
| 14        | Explain Skin effec                                                               | -                                                                    |                                                                   |                                                           |                                                                                        | 10       | CO5 | L4 |
| 15        | Derive Maxwell's e                                                               | equation for                                                         | time varying f                                                    | ields.                                                    |                                                                                        | 10       | CO5 | L3 |
| 16        | Given E = Em sin(                                                                | wt-βz) a <sub>y</sub> ^ in                                           | free space. F                                                     | ind D, B, H.                                              |                                                                                        | 10       | CO5 | L4 |
|           |                                                                                  |                                                                      |                                                                   |                                                           |                                                                                        |          |     |    |
|           |                                                                                  |                                                                      |                                                                   |                                                           |                                                                                        |          |     |    |
|           |                                                                                  |                                                                      |                                                                   |                                                           |                                                                                        |          |     |    |
|           |                                                                                  |                                                                      |                                                                   |                                                           |                                                                                        |          |     |    |

# F. EXAM PREPARATION

### 1. University Model Question Paper

| Course: |      | Electromagnetic Field Theory Month /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ' Year | May /2019  |       |  |
|---------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|-------|--|
| Crs C   | ode: | 18EE45 Sem: 4 Marks: 100 Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | 180 minute |       |  |
| Mod     |      | Answer all FIVE full questions. All questions carry equal marks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Marks  | со         | Level |  |
| ule     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |            |       |  |
|         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |            |       |  |
| 1       | а    | Define electric scalar potential. With usual notations, establish the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12     | CO1        | L2    |  |
|         |      | relationship between electric field intensity and electric scalar potential.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |            |       |  |
|         | b    | Calaculate electric field intensity at a point on a sphere of radius 3m if a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8      | CO2        | L3    |  |
|         |      | +ve charge of 2 micro c is at origin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |            |       |  |
|         |      | OR<br>Describe line internel suffrage internel subscript Determine the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | 001        |       |  |
| -       | a    | bescribe line integral, surface integral, volume integral. Determine the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12     | CO1        | L3    |  |
|         |      | N(205) N(205)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |            |       |  |
|         | h    | N(2,0,3)<br>Determine the force between two charges $a_1 - 3 \times 10^{-4}$ at $m(1,2,3)$ and $a_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8      | $CO_2$     | 12    |  |
|         | D    | D = $D$ = | 0      | 002        | L3    |  |
|         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |            |       |  |
| 2       | а    | Given the potential field $v=50x^2vz+20v^2$ volts in free space. find                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8      | C02        | L3    |  |
|         |      | i)Potential v at p(1,2, ii) Field strength at p iii) $a_x^{-}$ at p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |            |       |  |
|         | b    | State and prove divergence theorem.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12     | CO2        | L3    |  |
|         |      | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |            |       |  |
| -       | а    | If V=3x²+3y²+3z² v Find (i) V (ii) E (iii) D at P(-4,5,4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8      | CO2        | L3    |  |
|         | b    | Derive point form of continuity equation and Maxwell equation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12     | CO2        | L3    |  |
|         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |            |       |  |
| 3       | а    | With usual notations derive the equation for the magnetic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10     | CO3        | L3    |  |
|         |      | force between two differential current elements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |            |       |  |
|         | b    | State and Prove i) Ampere circuit law ii) Stoke's Theorem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10     | CO3        | L2    |  |
|         |      | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |            |       |  |
|         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |            |       |  |
| -       | а    | Derive the expression for <b>H</b> due to straight conductor of finite length.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8      | CO3        | L3    |  |
|         | b    | Find the magnetic flux density at the centre O of a square of sides<br>Equal to 5m and carrying 10 A of current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6      | CO3        | L3    |  |
|         | С    | A conductor in the form of regular polygon of n sides inscribed in a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6      | CO3        | L3    |  |
|         |      | circle of radius R. Show that the expression for magnetic flux                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |            |       |  |
|         |      | density B is given by $B = (\mu_0 I/2R) tan(/n)$ at the centre where I is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |            |       |  |
|         |      | the current. Show also when n is indefinitely increased then the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |            |       |  |
|         |      | expression reduces to B= ( $\mu_0 I/2R$ ). A circuit carrying a direct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |            |       |  |
|         |      | current of 5 A forms a regular hexagon inscribed in a circle of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |            |       |  |
|         |      | radius 1m. Calculate the magnetic flux density at the centre of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |            |       |  |
|         |      | current hexagon. Assume the medium to be free space.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |            |       |  |
| -       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | 00         |       |  |
| 4       | а    | A Solenoid with air core has 2000 turns and a length of 500mm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5      | CO4        | L3    |  |
|         | k    | Core radius is 40mm. Find its inductance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _      | <u> </u>   |       |  |
|         | a    | Calculate the vector current density at a point P(1.5, 90°, 0.5) if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5      | CO4        | _∟3   |  |
|         |      | $H = (2/\rho) \cos(2\rho) a_{\rho}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10     | Cot        |       |  |
|         | С    | with usual notations derive the equation for the magnetic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10     | C04        | ∟3    |  |
|         |      | torce between two differential current elements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |            |       |  |
|         |      | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |            |       |  |
|         | а    | State and prove Uniqueness theorem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8      | CO4        | L3    |  |

|   | b | Show that V satisfies Laplace equation in spherical coordinate system       | 2  | CO4 | L3 |
|---|---|-----------------------------------------------------------------------------|----|-----|----|
| - | С | Solve the Laplace equation for the potential field and find the capacitance | 10 | CO4 | L3 |
|   |   | in homogeneous regio between two concentric conducting spheres with         |    |     |    |
|   |   | radii a and b such that b>a if V=0 at r=b, V=V₀ at r=a.                     |    |     |    |
|   |   |                                                                             |    |     |    |
| 5 | а | The magnetic field intensity of uniform plane wave in air is 20 A/m in ay ^ | 10 | CO5 | L3 |
|   |   | direction. The wave s propagating in the z-direction at an angular          |    |     |    |
|   |   | frequency of 2x10 <sup>9</sup> rad/sec. Find: (i) Phase shift constant      |    |     |    |
|   |   | (ii) Wavelength(iii) Frequency (iv)Amplitude of electric field intensity.   |    |     |    |
|   | b | Explain Skin effect                                                         | 5  | CO5 | L2 |
|   | С | Derive Maxwell's equation for time varying fields.                          | 5  | CO5 | L3 |
|   |   | OR                                                                          |    | CO5 |    |
|   | а | Derive and obtain the solution of 3-D wave equation for all the vector      | 10 | CO5 | L3 |
|   |   | fields, In free space                                                       |    |     |    |
|   | b | Write the point and integral form of Maxwell's equation for free space and  | 10 | CO5 | L3 |
|   |   | conductor                                                                   |    |     |    |
|   |   |                                                                             |    |     |    |

### 2. SEE Important Questions

| Cours | se:  | Electromag                                     | netic Field T                                     | heory                                 |                                                 |                          |                                              | Month                         | / Year | May 20   | 019    |
|-------|------|------------------------------------------------|---------------------------------------------------|---------------------------------------|-------------------------------------------------|--------------------------|----------------------------------------------|-------------------------------|--------|----------|--------|
| Crs C | ode: | 18EE45                                         | Sem:                                              | 4                                     | Mar                                             | KS:                      | 100                                          | Time:                         |        | 180 m    | inutes |
|       | Note | Answer all I                                   | FIVE full que                                     | stions. All                           | questions c                                     | arry ec                  | qual marks.                                  | I                             | -      | -        |        |
| Mod   | Qno. | Important (                                    | Question                                          |                                       |                                                 | -                        |                                              |                               | Marks  | CO       | Year   |
| ule   |      |                                                |                                                   |                                       |                                                 |                          |                                              |                               |        |          |        |
| 1     | 1    | Define ele                                     | ctric scalar                                      | potentia                              | l. With usu                                     | al not                   | tations, est                                 | ablish the                    | 10     | CO2      | 2016   |
|       |      | relationship                                   | between ele                                       | ectric field                          | d intensity ar                                  | d elec                   | ctric scalar p                               | potential.                    | 10     | <u> </u> |        |
|       | 2    | +ve charge                                     | of 2 micro c i                                    | i intensity<br>is at origir           | n.<br>1.                                        | n a sp                   | onere of rac                                 | lius 3m if a                  | 10     | CO1      | 2014   |
|       | 3    | Determine<br>10-9C at N(                       | the force bet<br>2,0,5)                           | tween two                             | o charges q                                     | = 3X10                   | )-4 at m(1,2,                                | 3) and q2=-                   | 5      | CO1      | 2015   |
|       | 4    | Discuss ele                                    | ctric field inte                                  | ensity.                               |                                                 |                          |                                              |                               | 5      | CO1      | 2016   |
|       | 5    | Describe li<br>force betw<br>N(2,0,5)          | ne integral,<br>'een two ch                       | surface<br>harges q1                  | integral, vol<br>.= 3x10-4 at                   | ume i<br>m(1,2           | ntegral.Dete<br>2,3) and q2                  | ermine the<br>=-10-9C at      | 10     | CO1      | 2017   |
|       |      |                                                |                                                   |                                       |                                                 |                          |                                              |                               |        |          |        |
| 2     | 1    | Given the p<br>i)Potential v                   | otential field<br>v at p(1,2, ii) F               | v=50x²yz<br>ield stren                | +20y² volts ir<br>gth at p iii) a               | free s<br>_^ at p        | space, find                                  |                               | 10     | CO2      | 2017   |
|       | 2    | State and p                                    | rove diverge                                      | nce theoi                             | rem.                                            |                          |                                              |                               | 10     | CO2      | 2016   |
|       | 3    | lf V=3x <sup>2</sup> +3y <sup>2</sup>          | +3z² v Find (i)                                   | V (ii) E (iii)                        | D at P(-4,5,4                                   | )                        |                                              |                               | 10     | CO2      | 2010   |
|       | 4    | Derive poin                                    | t form of cor                                     | ntinuity ec                           | luation and N                                   | laxwe                    | ell equation.                                |                               | 10     | CO2      | 2014   |
|       | 5    | Explain gau                                    | ıss law                                           |                                       |                                                 |                          |                                              |                               | 10     | CO2      | 2016   |
|       | 6    | Derive max                                     | wells equation                                    | on in poin                            | t form                                          |                          |                                              |                               | 10     | CO2      | 2015   |
|       | 7    | Explain wor                                    | rk done wrt e                                     | quipoten                              | tial surface.                                   |                          |                                              |                               | 10     | CO2      | 2010   |
| 3     | 1    | With usua                                      | al notations                                      | s derive                              | the equat                                       | on fo                    | r the mag                                    | netic                         | 10     | CO3      | 2014   |
|       |      | force bety                                     | ween two o                                        | different                             | lial current                                    | elem                     | ients.                                       |                               |        |          |        |
|       | 2    | State and P                                    | Prove i) Amp                                      | pere circu                            | it law ii) St                                   | oke's T                  | heorem                                       |                               | 10     | CO3      | 2014   |
|       | 3    | In an infinite<br>conductor a<br>is a functior | ely long coax<br>and –I  in the<br>n of radius ar | kial cable<br>e outer co<br>nd sketch | carrying a ui<br>nductor, finc<br>the field inf | iform<br>the n<br>ensity | ly current I i<br>nagnetic fie<br>variation. | n the inner<br>ld intensity   | 10     | CO3      | 2011   |
|       | 4    | Derive the e                                   | expression fo                                     | or <b>H</b> due to                    | o straight co                                   | nducto                   | or of finite le                              | ength.                        | 10     | CO3      | 2016   |
|       | 5    | Find the materia to 5m and c                   | agnetic flux o<br>carrying 10 A                   | density al<br>of curren               | t the centre<br>t                               | D of a                   | square of s                                  | sides Equal                   | 10     | CO3      | 2016   |
|       | 6    | A conducto<br>of radius R.                     | or in the form<br>Show that t                     | of regula                             | ar polygon o<br>ssion for mag                   | <sup>-</sup> n sid       | es inscribed<br>flux densit\                 | d in a circle<br>/ B is given | 10     | CO3      | 2015   |

|   |   | by B=( $\mu_0$ I/2R)tan(/n) at the centre where I is the current. Show also when<br>n is indefinitely increased then the expression reduces to B= ( $\mu_0$ I/2R). A<br>circuit carrying a direct current of 5 A forms a regular hexagon inscribed in<br>a circle of radius 1m. Calculate the magnetic flux density at the centre of<br>the current hexagon. Assume the medium to be free space. |    |     |      |
|---|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|------|
| 4 | 1 | A Solenoid with air core has 2000 turns and a length of 500mm. Core radius is 40mm. Find its inductance.                                                                                                                                                                                                                                                                                         | 10 | CO4 | 2010 |
|   | 2 | Calculate the vector current density at a point P(1.5, 90°, 0.5) if $H=(2/2) \cos 2\pi a^{2}$                                                                                                                                                                                                                                                                                                    | 10 | CO4 | 2012 |
|   | 3 | With usual notations derive the equation for the magnetic force between two differential current elements.                                                                                                                                                                                                                                                                                       | 10 | CO4 | 2014 |
|   | 4 | State and prove Uniqueness theorem                                                                                                                                                                                                                                                                                                                                                               | 10 | CO4 | 2014 |
|   | 5 | Show that V satisfies Laplace equation in spherical coordinate system                                                                                                                                                                                                                                                                                                                            | 10 | CO4 | 2013 |
|   |   |                                                                                                                                                                                                                                                                                                                                                                                                  |    |     |      |
| 5 | 1 | Derive Maxwell's equation for time varying fields.                                                                                                                                                                                                                                                                                                                                               | 10 | CO5 | 2016 |
|   | 2 | Given E = Em sin( $\omega$ t- $\beta$ z) a <sub>y</sub> ^ in free space. Find D, B, H.                                                                                                                                                                                                                                                                                                           | 10 | CO5 | 2014 |
|   | 3 | The dry earth has conductivity $=10^{-8}$ (S/m) and relative permittivity $_{r}=4$ . Find the frequency range on which the conduction current dominates the displacement current.                                                                                                                                                                                                                | 10 | CO5 | 2011 |
|   | 4 | State and explain the conditions of Faraday's law                                                                                                                                                                                                                                                                                                                                                | 10 | CO5 | 2011 |
|   | 5 | Derive and obtain the solution of 3-D wave equation for all the vector fields, In free space.                                                                                                                                                                                                                                                                                                    | 10 | CO5 | 2010 |

### **Course Outcome Computation**

### Academic Year:

. .

| Odd / Even semester   |     |     |     |     |      |     |      |     |    |     |    |     |     |
|-----------------------|-----|-----|-----|-----|------|-----|------|-----|----|-----|----|-----|-----|
| INTERNAL TEST         |     |     |     |     | T1   |     | T2   |     |    |     |    |     |     |
| Course Outco          | ome | CO1 |     | CO2 |      | CO3 |      | CO4 |    | CO5 |    | CO6 |     |
| QUESTION N            | 0   | Q1  | LV  | Q2  | LV   | Q3  | LV   | Q1  | LV | Q2  | LV | Q3  | LV  |
| MAX MARKS             |     | 10  | -   | 10  | -    | 10  | -    | 10  | -  | 10  | -  | 10  | -   |
| USN-1                 |     | 5   | 2   | 10  |      |     |      | 10  | 3  | 9   | 3  | 4   | 1   |
| USN-2                 |     | 5   | 2   | 8   | 3    |     |      |     |    |     |    |     |     |
| USN-3                 |     | 7   | 3   | 7   | 3    | 10  | 3    | 8   | 3  | 8   | 3  | 5   | 2   |
| USN-4                 |     |     |     |     |      | 4   | 1    | 10  | 3  | 8   | 3  | 6   | 2   |
| USN-5                 |     | 8   | 3   | 6   | 2    | 9   | 3    | 10  | 3  | 8   | 3  |     |     |
| USN-6                 |     |     |     |     |      |     |      | 10  | 3  | 9   | 3  | 4   | 1   |
| Average<br>Attainment | CO  |     | 2.5 |     | 2.75 |     | 2.33 |     | 3  |     | 3  |     | 1.5 |

LV Threshold : 3:>60%, 2:>=50% and <=60%, 1: <=49%

CO1 Computation :(2+2+2+3)/4 = 10/4=2.5

### **PO Computation**

| Program<br>Outcome      |   | PO1 |     | P   |      | PO3 |      | PO1 |    | PO12 |    | PO12 |     |   |
|-------------------------|---|-----|-----|-----|------|-----|------|-----|----|------|----|------|-----|---|
| Weight of               |   | 3   |     |     | 1    |     | 3    | 2   | 2  | i    | 2  |      | 3   |   |
| Course Outcome          |   | CO1 |     | CO2 |      | CO3 |      | CO4 |    | CO5  |    | CO6  |     |   |
| Test/Quiz/Lab           |   |     |     | T1  | L    |     |      |     |    | Т    | 2  |      |     |   |
| QUESTION NO             |   | Q1  | LV  | Q2  | LV   | Q3  | LV   | Q1  | LV | Q2   | LV | Q3   | LV  | ( |
| MAX MARKS               |   | 10  | -   | 10  | -    | 10  | -    | 10  | -  | 10   | -  | 10   | -   | - |
| USN-1                   |   | 5   | 2   | 10  | 3    |     |      | 10  | 3  | 9    | 3  | 4    | 1   |   |
| USN-2                   |   | 5   | 2   | 8   | 3    |     |      |     |    |      |    |      |     |   |
| USN-3                   |   | 7   | 3   | 7   | 3    | 10  | 3    | 8   | 3  | 8    | 3  | 5    | 2   |   |
| USN-4                   |   |     |     |     |      | 4   | 1    | 10  | 3  | 8    | 3  | 6    | 2   |   |
| USN-5                   |   | 8   | 3   | 6   | 2    | 9   | 3    | 10  | 3  | 8    | 3  |      |     | - |
| USN-6                   |   |     |     |     |      |     |      | 10  | 3  | 9    | 3  | 4    | 1   |   |
| Average C<br>Attainment | 0 |     | 2.5 |     | 2.75 |     | 2.33 |     | 3  |      | 3  |      | 1.5 |   |