Ref No:

<SKIT, Bangalore>

COURSE PLAN

Academic Year 2019-20

Program:	B E – Electrical and Electronics Engineering		
Semester :	4		
Course Code:	18EE44		
Course Title:	Electric Motors		
Credit / L-T-P:	4 / 4-0-0		
Total Contact Hours:	50		
Course Plan Author:	Shweta B		

Academic Evaluation and Monitoring Cell

Table of Contents

A. COURSE INFORMATION	4
1. Course Overview	
2. Course Content	4
3. Course Material	
4. Course Prerequisites	6
5. Content for Placement, Profession, HE and GATE	6
B. OBE PARAMETERS	6
1. Course Outcomes	6
2. Course Applications	7
3. Mapping And Justification	7
4. Articulation Matrix	
5. Curricular Gap and Content	
6. Content Beyond Syllabus	
C. COURSE ASSESSMENT	
1. Course Coverage	
2. Continuous Internal Assessment (CIA)	
D1. TEACHING PLAN - 1	
Module - 1	
Module – 2	
E1. CIA EXAM – 1	
a. Model Question Paper - 1	
b. Assignment -1	
D2. TEACHING PLAN - 2	
Module – 3	
Module – 4	-
E2. CIA EXAM – 2	
a. Model Question Paper - 2	
b. Assignment – 2	-
D3. TEACHING PLAN - 3	
Module - 5	
E3. CIA EXAM – 3	
a. Model Question Paper - 3	
b. Assignment – 3	
F. EXAM PREPARATION	
1. University Model Question Paper	
2. SEE Important Questions	
G. Content to Course Outcomes	
1. TLPA Parameters	
2. Concepts and Outcomes:	

Note : Remove "Table of Content" before including in CP Book Each Course Plan shall be printed and made into a book with cover page Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	EE
Semester:	4	Academic Year:	2019-20
Course Title:	ELECTRIC MOTORS	Course Code:	18EE44
Credit / L-T-P:	4 / 4-0-0	SEE Duration:	180 Minutes
Total Contact Hours:	50 Hours	SEE Marks:	60 Marks
CIA Marks:	40 Marks	Assignment	1 / Module
Course Plan Author:	SHWETA B	Sign	Dt:
Checked By:		Sign	Dt:
CO Targets	CIA Target : %	SEE Target:	%

Note: Define CIA and SEE % targets based on previous performance.

2. Course Content

Content \checkmark Syllabus of the course as prescribed by University or designed by institute. Identify 2 concepts per module as in G.

Module		Teaching Hours	Concepts	Blooms Learning Levels
1	DC Motors: Classification, Back emf, Torque equation, and significance of back emf, Characteristics of shunt, series & compound motors. Speed control of shunt, series and compound motors. Application of motors. DC motor starters –3 point and 4 point Losses and efficiency-Losses in DC motors, power flow diagram,efficiency, condition for maximum efficiency	10	Characteristics and operation DC motor	UnderstandL2, Analyze L4
2	Testing of dc motors: Direct & indirect methods of testing of DC motors-Brake test, Swinburne's test, Retardation test, Hopkinson's test, Field's test, merits and demerits of tests Three phase Induction motors: Review of concept and generation of rotating magnetic field, Principle of operation, construction, classification and types; squirrel-cage, slip-ring (No question shall be set from the review portion). Slip, Torque equation, torque- slipcharacteristic covering motoring, generating and braking regions of operation, Maximum torque, significance of slip	10	Testing in DC motors	Apply L3, Understand L2
3	Performance of three-phase Induction Motor: Phasor diagram of induction motor on no-load and on load, equivalent circuit, losses, efficiency, No-load and blocked rotor tests. Performance of the motor from the circle diagram and equivalent circuit. Cogging and crawling High torque rotors-double cage and deep rotor bars. Equivalent circuit and performance evaluation of double cage induction motor. Induction motor working as induction motor; standalone operation and grid connected operation.	10	Working andCharacteristics of Induction motor	Apply L3, Apply L3
4	Starting and speed Control of Three-phase Induction Motors: Need for starter. Direct on line, Star-Delta and autoDC MOTOR starting. Rotor resistance starting. Speed control by voltage, frequency, and rotor resistance methods Single-phase Induction Motor: Double revolving field theory and principle of		Starting methods of induction motor	Apply L3, Analyze L4

	operation. Construction and operation of split-phase, capacitor start, capacitor run, and shaded pole motors.Comparison of single phase motors and applications.			
5	Synchronous motor: Principle of operation, phasor diagrams, torque and torque angle, Blondel diagram, effect of change in load, effect of change in excitation, V and inverted V curves. Synchronous con denser, hunting and damping. Methods of starting synchronous motors Other motors:Construction and operation of Universal motor, AC servomotor, Linear induction motor and stepper motors.		Characteristics of Synchronous Motor	
-	Total	54	-	-

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 – 30 minutes

2. Design: Simulation and design tools used – software tools used ; Free / open source

3. Research: Recent developments on the concepts – publications in journals; conferences etc.

	in Recent developments on the concepts publications injournals, et		
Modules	Details		Availability
		in book	
Α	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
1, 2, 3, 4,	Electrical Machines – I J nagaranth khothari TMH Publication, 2nd,	3, 4	In Lib / In
5	2010.		Dept
1, 2, 3, 4,	Electrical machines – J B Gupta, Pearson Education.	2, 4	In Lib/ In dep
5			
	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
1, 2, 3, 4,	Electrical Machines– B L Thereja, John Wiley India Pvt. Ltd. 3rdEdn,	?	In Lib
	2008.		
С	Concept Videos or Simulation for Understanding	-	-
C1	Working of Klystron Oscillator		
	https://www.youtube.com/watch?v=Fvud81pYGOg – 15 Mins		
	https://www.youtube.com/watch?v=TsBTI3tO5-8 – 5 Mins		
C2			
C3			
C4			
C5			
	Lab : <u>https://www.youtube.com/watch?v=Pge7hUNPGVs</u> -		
D	Software Tools for Design	-	-
	Klystron Oscillator - Vsim - <u>https://www.txcorp.com/</u> -		
	Stripline - <u>http://www.atlantarf.com/Stripline.php</u>		
Е	Recent Developments for Research	-	-
	Improve efficiency - <u>https://ieeexplore.ieee.org/abstract/document/</u>		
	<u>6891996</u>		

F	Others (Web, Video, Simulation, Notes etc.)	-	-
1	How Electron / Vacuum Tubes work ?		
	<u> https://www.youtube.com/watch?v=nA_tglygvNo</u>		

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Students must have learnt the following Courses / Topics with described Content ...

Modules	Course	Course Name	Topic	/ Description		Sem	Remarks		Blooms
	Code								Level
1	-17EE23	Basic	Basic	operation	of	-	Gap		Understand
		Electrical	Transformer	· / D C Generator	-		A seminar	on	L2
		Engineering					Transformer		

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Modules	Topic / Description	Area	Remarks	Blooms Level
	Basic operation of DC Motor / Induction / motor		Gap A seminar on DC Motor	Understand L2
3				
3				
5				
-				
-				

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs. Identify a max of 2 Concepts per Module. Write 1 CO per Concept.

Modules	Course	Course	Teach.	Concept	Instr Method	Assessment	Blooms' Level
	Code.#	Outcome	Hours			Method	
		At the end of					
		the course,					
		student should					
		be able to					
1		Ideal,On load, No load Characteristics, of DC motor all day efficiency		Characteristics and operation	Lecture	Slip Test	Understand L2
1		Three phase Induction motor different winding connection star-Delta Delta-star Y-Y	-	Winding connection	Lecture/ Tutorial	Assignment	Analyze L4

2. Course Applications

Write 1 or 2 applications per CO. Students should be able to employ / apply the course learnings to

Modules	Application Area	
	Compiled from Module Applications.	

1	Used in Industries	CO1	L2
1	Understanding Power generation	CO2	L4
2	Used in domestic purpose	CO3	L3
2	Use Backtracking technique for searching a set of solutions or for searching an	CO4	L2
	optimal solution		
3	Apply characteristics of different rating of DC motor	CO5	L2
3	Apply characteristics of different rating of Induction motor	CO6	L3
4	Evaluate starting of motors	CO7	L3
4	Apply different methods to get efficiency of a machine	CO8	L4
5	Able to solve different faults in DC motor and induction motor	CO9	L2
5	Able to solve numericals for different parameters	CO10	L2

4. Articulation Matrix

CO – PO Mappingwith mapping level for each CO-PO pair, with course average attainment.

-	-	Course			cuoi	100						tcom		atta		10.		-
		Outcomes							log	ran			00					
Module	CO.#	At the end of	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO	Leve
S		the course	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3	l
		student should																
		be able to																
1	18EE44. 1	Ideal,On load No loac Characteristics, of DC motor all day efficiency	L	2.5							2.5							L2
1	18EE44. 2	Tests on DC motors	2.5	2.5							2.5							L2
2	18EE44. 3	Conditions for load sharing,Load sharing Ir similar and dissimilar DC motor		2.5							2.5							L2
2	18EE44. 4	Equivalent circuit of auto dc motor,derivatio n of copper saving, efficiency and voltage regulation		2.5							2.5							L3
3	18EE44. 5	Necessity of tertiary winding equivalent circuit and connection		2.5							2.5							L2
3	6	Armature reaction of AC and DC and Commutation of generation numericalon motor									2.5							L2
4	18EE44. 7	Harmonics of Synchronous motor Equivalent	2.5	2.5							2.5							L3

							_							
		circuit												
4	8	Load and No load characteristics Excitation for motor,load sharing		2.5					2.5					L2
5	9	Open circuit and short circuit test, V curves and inverted V curves , Voltage regulation		2.5					2.5					L2
5	18EE44. 1	Ideal,On load, No load Characteristics, of DC motor all day efficiency		2.5					2.5					L3
-	С	Average attainment (1, 2, or 3)	2.5	2.5					2.5					-
-		4.Conduct Invest Society; 7.Enviro 10.Communicatio	Engineering Knowledge; 2.Problem Analysis; 3.Design / Development of Solutions; Conduct Investigations of Complex Problems; 5.Modern Tool Usage; 6.The Engineer and ociety; 7.Environment and Sustainability; 8.Ethics; 9.Individual and Teamwork; Communication; 11.Project Management and Finance; 12.Life-long Learning; Software Engineering; S2.Data Base Management; S3.Web Design											

5. Curricular Gap and Content

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Modules	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1	Transformer	Seminar	2 nd week / date	DrManjunath A, Inst	List from B4
					above
2					
3					
4					
5					

6. Content Beyond Syllabus

Topics &contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Modules	Gap Topic	Area	Actions	Schedule	Resources	PO Mapping
			Planned	Planned	Person	
1	Application in	Placement, GATE,	Presentation	3 rd week /	Dr ABC, Inst.	List from B4
	Different	Higher Study,	by students &	date	Self	above
	industries	Entrepreneurship.	Mini Project			
1	Induction motor		Presentation		Self	
2						

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Modules	Title	Teach.			quest				CO	Levels
		Hours	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE		
							Asg			
1	Voltage regulation and its	12	5	-	-	1	1	2	CO1, CO2	L2, L4
	significance.Three-phase									
	Induction Motor									
	Operation and Effects of saliency	7	3	-	-	1	1	2	CO3, CO4	L3,L2
	in synchronous Motor									
3	two-reaction theory of	12	-	3	-	1	1	2	CO5, CO6	L3,L3
	synchronous Motor									
4	Direct and Quadrature reactance	13	-	6	-	1	1	2	CO7, C08	L3,L4
5	Voltage regulation and its	10	-	-		1	1	2	CO9,	L2,L2
	significance.Three-phase								CO10	
	Induction Motor									
-	Total	54				5	5	10	-	-

2.Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

	Final CIA Marks	20	-	-
1 - 5	Other Activities – Mini Project	-	CO9, CO10	L2,L2
5	Quiz - 3			-
3, 4	Quiz - 2			-
1, 2	Quiz - 1		-	-
5	Seminar - 3		_	_
3, 4	Seminar - 2		_	-
1, 2	Seminar - 1		-	-
5			003,0010	<u> </u>
5	Assignment - 3	05	CO9, CO10	L2,L2
	Assignment - 2	05	CO5, CO6, CO7,C08	L2,L3,L3,L4
1, 2	Assignment - 1	05	CO1, CO2, CO3,Co4	L2,L4,L3,L2
5		10	009,0010	
	CIA Exam – 3	15	CO9, CO10	L2,L2
3, 4	CIA Exam – 2	15	CO5, CO6, CO7,C08	L2,L3,L3,L4
1, 2	CIA Exam – 1	15	CO1, CO2, CO3,Co4	L2,L4,L3,L2
i louutos	Evaluation	Marks		201013
Modules	Evaluation	Weightage in	СО	Levels

18EE44 / A

D1. TEACHING PLAN - 1

Module - 1

Title:	Microwave Tubes And Microwave Transmission Lines	Appr Time:	12 Hrs
а	Course Outcomes	СО	Bloom
-	At the end of the topic the student should be able to	-	Level
1	Understand the working of DC motor	CO1	L2
2	Understand the NO-load and ON-load	CO2	L4
b	Course Schedule	-	-
Class No	Portion covered per hour	-	-
1	DC Motors: Classification, Back emf, Torque equation,,	CO1	L2
2	, Characteristics of shunt, series & compound motors	CO1	L2
3	Speed control of shunt, series and compound motors. Application of motors	CO1	L2
4	DC motor starters –3 point and 4 point	CO1	L2
5	Losses in DC motors.	CO1	L2
6	power flow diagram, efficiency	CO2	L2
7	dc motor connection for three phase operation – zigzag/star and V/V, choice of connection	CO2	L2
8	condition for maximum efficiency	CO2	L4
9	significance of back emf	CO2	L4
10	DC Motors: Classification, Back emf, Torque equation,,	CO2	L4
11	Characteristics of shunt, series & compound motors	CO2	L3
12	Speed control of shunt, series and compound motors. Application of motors	CO2	L3
С	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	Use to find characteristics of DC Motor	CO1	L2
2	Efficiency of DC Motor in industrial applications	CO2	L4
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	Explain the reason for tap changing in DC Motor. State on which winding the taps are provided & why?	CO1	L2
2	Explain with neat sketch the construction of t.	CO1	L2
3	Derive an torque equation for a D C motor.	CO1	L2
4	Draw and explain vector diagram of dc motor loaded with Inductive and capacitive load		L2
5	Explain open-delta connection with the help of neat diagram. Show that open- delta connection has a KVA rating of 58% of the rating of the normal delta- delta connection.	CO2	L2
6	Show the terminal connections of a three-phase dc motor with phasor diagram and corresponding clock method representation 1)Ddo 2) Yy6 3) Dy1 4) Yd11		L2
7	A 50KVA, 4400/220V, dc motor has $R_1=3.45\Omega$, $R_2=0.009\Omega$, The Values of reactance's are $X_1=5.2\Omega$, $X_2=0.015\Omega$, calculate for the dc motor (i) Equivalent resistance as referred to primary ii)Equivalent resistance as referred to secondary iii) Equivalent reactance as referred to both primaryand secondary iv) Total copper loss, first using individual resistances of the windings and secondly, using equivalent resistances as referred to each side v) Equivalent impedance referred to both sides.		L2
8	A 25KVA single phase dc motor has 250 turns on the primary and 40 turns on the secondary winding. The primary is connected to 1500V, 50Hz .Calculate i) Primary and secondary currents on full load ii) Secondary EMF iii) Maximum flux in the core		L2
9	Derive an equation for a single phase dc motor .Draw and explain vector diagram of dc motor loaded with Inductive and capacitive load.	CO2	L2

10	A 25KVA single phase dc motor has 250 turns on the primary and 40 turns on the secondary winding. The primary is connected to 1500V, 50Hz .Calculate i) Primary and secondary currents on full load ii) Secondary EMF iii) Maximum flux in the core		L2
11	Explain line impedance and admittance?	CO2	L2
12	Explain the reason for tap changing in DC Motor. State on which winding the taps are provided & why?	CO2	L3
13	Explain with neat sketch the construction of t.	CO2	L4
е	Experiences	-	-
1		CO1	L2
2			
3			
4		CO2	L3
5			

Module – 2

Title:	Microwave network theory and Microwave passive devices	Appr Time:	7 Hrs
a	Course Outcomes	со	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Parallel operation of dc motors	CO3	L3
2	Connection of 3 phase dc motor	CO4	L2
b	Course Schedule	-	-
Class No	Portion covered per hour	-	-
13	Parallel Operation of dc motors	CO3	L2
14	Load sharing in case of similar and dissimilar dc motors	CO3	L2
15	Testing of dc motors	CO3	L3
16	Tap changing dc motors	CO3	L3
17	equivalent circuit	CO3	L2
18	no load and on load tap changing dc motors	CO4	L2
19	Necessity of Parallel operation	CO4	L2
18	conditions for parallel operation		
19	Single phase and three phaseinductionmotors		
С	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	Used in distribution system	CO3	L3
2	Used in industrial application for sharing	CO4	L2
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
14	Write a brief note on parallel operation of two-single phase dc motors with	CO3	L2
	unequal voltage ratio. Derive the necessary relation.	001	
15	List the advantages and disadvantages of an autodc motor	CO3	L2
16	Two 250KVA dc motors supplying a network are connected in parallel on both primary and secondary sides. Their voltage ratios are the same. The resistance	CO3	L2
	drops are 1.5% & 0.9% and the reactance drops are 3.33% & 4% respectively.		
	Calculate the KVA loading on each dc motor and its power factor when the		
	total load on the dc motors is 500KVA & at 0.707 lagging p.f.		
17	What are the conditions to operate two dc motors in parallel?	CO4	L2

18	Derive an expression for the copper savings in an autodc motor as compared with 2 winding dc motor.	CO3	L2
19	A 400/100V, 10 KVA, 2 winding dc motor is to be employed as an autodc motor to supply a 400volts circuit from 500volts source. When tested as 2 winding dc motor at rated load of 0.85 p.f lagging, its efficiency is 97%. Determine its KVA rating and efficiency as an autodc motor		L2
20	Explain the reason for tap changing in dc motor. State on which winding the taps are provided & why?	CO3	L2
21	Explain on load tap changing with neat diagram.		
е	Experiences	-	-
1		CO3	L2
2			
3			
4		CO4	L3
5			

E1. CIA EXAM – 1

a. Model Question Paper - 1

		18EE44	Sem:	IV	Marks:	30	Time:	75 minu	tes	
Cou	rse:			ANTENNA						
-	-				ich carry equa			Marl		Level
1	а		e reason f re provide		nging in dc me	otor. State	on which wind	ling 8	CO1	L1
	b				rith neat diagra			6		L2
		open-delt	a connect		KVA rating c		agram. Show t the rating of		CO2	L3
					eration of two- e necessary rel		se dc motors v	vith 6		L2
1	а	List the ac	dvantages	and disadv	antages of an	autodc mo	otor	8		L4
	b	both prim resistance respective factor whe p.f.	ary and se drops are ely. Calcula en the tota	condary si 1.5% & 0.9 ate the KV/ I load on th	des. Their volt. % and the read A loading on e ne dc motors i	age ratios a ctance dro ach dc mc s 500KVA a	cted in parallel are the same. ⁻ ps are 3.33% & otor and its pov & at 0.707 lagg	The 4% wer		L3
		What are	the conditi	ons to ope	rate two dc m	otors in par	rallel?	4		L2
		compared	d with 2 wir	nding dc m	otor.	-	autodc motor		CO3	L1
2	a	motor to s 2 winding	supply a 4 dc motor	oovolts cire at rated lo	cuit from 500v	olts source lagging, its	oyed as an auto e. When testec s efficiency is 9 otor	l as	CO4	L2
	b		ith neat sk dc motor.	etch the c	onstruction of	three pha	se core type a	and 8		L1
							xplain the the constants of a			L2
		reactance resistance secondary secondary	e's areX1=5.2 e as referre y iii) Equiv y iv) Total	2Ω,X₂=0.015 ed to prima valent read copper los	;Ω, calculate fo ary ii) Equivale stance as re ss, first using i	or the dc m ent resistan ferred to ndividual r	Ω, The Values notor (i) Equival nce as referred both primarya resistances of s referred to ea	ent 1 to and the		L2

		side v) Equivalent impedance referred to both sides			
2		Show the terminal connections of a three-phase dc motor with phasor diagram and corresponding clock method representation 1)Dd0 2) Yy6 3) Dy1 4) Yd11	8		L1
	b	Derive an expression for standing wave ratio and explain?	10	CO2	L3

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

Each student USN 1KT17EE002 1KT17EE004 1KT17EE005	Model Assignment QuestionsSem:IVMarks:5Time:9IC MOTORSModule : 1, 2IC MOTORSModule : 1, 2IC Motorsto answer 2-3 assignments. Each assignment carries equal material assignment carries equal material assignment of two-single phase do motors with unequal voltage ratio. Derive the necessary relation.IC Motors with unequal voltage ratio. Derive the necessary relation.List the advantages and disadvantages of an autodc motorTwo 250KVA dc motors supplying a network are connected in parallel on both primary and secondary sides. Their voltage ratios are the same. The resistance drops are 1.5% & 0.9% and the reactance drops are 3.33% & 4% respectively. Calculate the	Marks 5 5	CO1	Level
se: ELECTRI Each student USN 1KT17EE002 1KT17EE004 1KT17EE005	IC MOTORS Module : 1, 2 to answer 2-3 assignments. Each assignment carries equal ma Assignment Description Write a brief note on parallel operation of two-single phase do motors with unequal voltage ratio. Derive the necessary relation. List the advantages and disadvantages of an autodc motor Two 250KVA dc motors supplying a network are connected ir parallel on both primary and secondary sides. Their voltage ratios are the same. The resistance drops are 1.5% & 0.9% and	rk. Marks 5 5	CO 1	Level
Each student USN 1KT17EE002 1KT17EE004 1KT17EE005	to answer 2-3 assignments. Each assignment carries equal ma Assignment Description Write a brief note on parallel operation of two-single phase do motors with unequal voltage ratio. Derive the necessary relation. List the advantages and disadvantages of an autodc motor Two 250KVA dc motors supplying a network are connected in parallel on both primary and secondary sides. Their voltage ratios are the same. The resistance drops are 1.5% & 0.9% and	Marks 5 5	CO1 CO2	L2
USN 1KT17EE002 1KT17EE004 1KT17EE005	Assignment DescriptionWrite a brief note on parallel operation of two-single phase do motors with unequal voltage ratio. Derive the necessary relation.List the advantages and disadvantages of an autodc motorTwo 250KVA dc motors supplying a network are connected in parallel on both primary and secondary sides. Their voltage ratios are the same. The resistance drops are 1.5% & 0.9% and	Marks 5 5	CO1 CO2	L2
1KT17EE002 1KT17EE004 1KT17EE005	Write a brief note on parallel operation of two-single phase do motors with unequal voltage ratio. Derive the necessary relation. List the advantages and disadvantages of an autodc motor Two 250KVA dc motors supplying a network are connected in parallel on both primary and secondary sides. Their voltage ratios are the same. The resistance drops are 1.5% & 0.9% and	5 5 5	CO1 CO2	L2
1KT17EE004 1KT17EE005	motors with unequal voltage ratio. Derive the necessary relation. List the advantages and disadvantages of an autodc motor Two 250KVA dc motors supplying a network are connected in parallel on both primary and secondary sides. Their voltage ratios are the same. The resistance drops are 1.5% & 0.9% and	5	CO2	
1KT17EE005	Two 250KVA dc motors supplying a network are connected ir parallel on both primary and secondary sides. Their voltage ratios are the same. The resistance drops are 1.5% & 0.9% and) 9		L3
	parallel on both primary and secondary sides. Their voltage ratios are the same. The resistance drops are 1.5% & 0.9% and	e e	CO2	
	KVA loading on each dc motor and its power factor when the total load on the dc motors is 500KVA & at 0.707 lagging p.f.	e l		L4
1KT17EE006	What are the conditions to operate two dc motors in parallel?	5	CO1	L3
	motor as compared with 2 winding dc motor.		CO1	L2
	an autodc motor to supply a 400volts circuit from 500volts source. When tested as 2 winding dc motor at rated load o	S f	CO2	L3
	Explain the reason for tap changing in dc motor. State or which winding the taps are provided & why?	ו	CO2	L4
1KT17EE0010	Explain on load tap changing with neat diagram.		CO1	L3
1KT17EE011		ו	CO1	L2
1KT17EE012	Explain with neat sketch the construction of three phase core type and shell type dc motor.	è	CO2	L3
1KT17EE013	Derive an equation for a single phase dc motor.		CO2	L4
1KT18EE400	Draw and explain vector diagram of dc motor loaded with Inductive and capacitive load	ו	CO1	L3
			CO1	L2
1KT17EE002			CO2	L3
	e / t l 5 0	CO2	L4 L3	
	1KT17EE008 1KT17EE009 1KT17EE010 1KT17EE011 1KT17EE012 1KT17EE013 1KT17EE013 1KT17EE003 1KT17EE002 1KT17EE003	total load on the dc motors is 500KVA & at 0.707 lagging p.f.1KT17EE006What are the conditions to operate two dc motors in parallel?1KT17EE007Derive an expression for the copper savings in an autodc motor as compared with 2 winding dc motor.1KT17EE008A 400/100V, 10 KVA, 2 winding dc motor is to be employed as an autodc motor to supply a 400volts circuit from 500volts source. When tested as 2 winding dc motor at rated load o 0.85 p.f lagging, its efficiency is 97%. Determine its KVA rating and efficiency as an autodc motor1KT17EE009Explain the reason for tap changing in dc motor. State or which winding the taps are provided & why?1KT17EE010Explain the reason for tap changing in dc motor. State or which winding the taps are provided & why?1KT17EE012Explain the reason for tap changing in dc motor. State or which winding the taps are provided & why?1KT17EE013Derive an equation for a single phase dc motor.1KT17EE014Explain with neat sketch the construction of three phase core type and shell type dc motor.1KT17EE013Derive an equation for a single phase dc motor.1KT17EE014Explain open-delta connection with the help of neat diagram Show that open-delta connection with the help of neat diagram Show that open-delta connection so f a three-phase dc motor1KT17EE020A 50KVA, 4400/220V, dc motor has R ₁ -345ΩR ₂ =0.009Ω, The Values of reactance's areX ₁ -5.2Ω,X ₂ =0.015Ω, calculate for the dc motor (i) Equivalent resistance as referred to primary ii)Equivalent resistance as referred to both sides. <td>total load on the dc motors is 500KVA & at 0.707 lagging p.f.IKT17EE006What are the conditions to operate two dc motors in parallel?IKT17EE007Derive an expression for the copper savings in an autodc motor as compared with 2 winding dc motor.IKT17EE08A 400/100V, 10 KVA, 2 winding dc motor is to be employed as an autodc motor to supply a 400volts circuit from 500volts source. When tested as 2 winding dc motor at rated load of 0.85 p.f lagging, its efficiency is 97%. Determine its KVA rating and efficiency as an autodc motorIKT17EE09Explain the reason for tap changing in dc motor. State on which winding the taps are provided & why?IKT17EE010Explain on load tap changing with neat diagram.IKT17EE011Explain the reason for tap changing in dc motor. State on which winding the taps are provided & why?IKT17EE012Explain with neat sketch the construction of three phase core type and shell type dc motor.IKT17EE013Derive an equation for a single phase dc motor.IKT17EE014Explain open-delta connection with the help of neat diagram. Show that open-delta connection has a KVA rating of 58% of the rating of the normal delta-delta connection.IKT17EE002Show the terminal connections of a three-phase dc motor with phasor diagram and corresponding clock method representation 1D/D 2) Yy6 3) Dy1 4) Yd11IKT17EE003A 50KVA, 4400/220V, dc motor has R₁=3,450,R₂=0.009Q, The Values of reactance's areX₁=5.20,X₂=0.015Q, calculate for the dc motor (i) Equivalent resistance as referred to primary ii)Equivalent resistance as referred to both primaryand secondary iv) Total copper loss, first using individual resistances as referred to each side v) Equivalent impedance</td> <td>total load on the dc motors is 500KVA & at 0.707 lagging p.f.1KT17EE006What are the conditions to operate two dc motors in parallel?51KT17EE007Derive an expression for the copper savings in an autodc motor as compared with 2 winding dc motor.CO11KT17EE008A 400/100V, 10 KVA, 2 winding dc motor is to be employed as an autodc motor to supply a 400volts circuit from 500volts source. When tested as 2 winding dc motor at rated load of 0.85 p.f lagging, its efficiency is 97%. Determine its KVA rating and efficiency as an autodc motorCO21KT17EE009Explain the reason for tap changing in dc motor. State on which winding the taps are provided & why?CO11KT17EE010Explain on load tap changing with neat diagram.CO11KT17EE022Explain with neat sketch the construction of three phase core type and shell type dc motor.CO21KT17EE012Explain with neat sketch the construction of three phase core type and shell type dc motor.CO21KT17EE010Explain open-delta connection with the help of neat diagram.CO11KT17EE020Draw and explain vector diagram of dc motor loaded with Inductive and capacitive loadCO11KT17EE001Explain open-delta connection has a KVA rating of 58% of the rating of the normal delta-delta connection.CO21KT17EE003Show that open-delta connection so f a three-phase dc motor vith phasor diagram and corresponding clock method representation 10Ddo 2) Yy6 3) Dy1 4) Yd11CO11KT17EE003A 50KVA, 4400/220V, dc motor has R₁-3450, R₂=0.0090, The Values of reactance's areX₁-5.20, X₂=0.0150, calculate for the dc motor (i) Equivalent resistance as refe</td>	total load on the dc motors is 500KVA & at 0.707 lagging p.f.IKT17EE006What are the conditions to operate two dc motors in parallel?IKT17EE007Derive an expression for the copper savings in an autodc motor as compared with 2 winding dc motor.IKT17EE08A 400/100V, 10 KVA, 2 winding dc motor is to be employed as an autodc motor to supply a 400volts circuit from 500volts source. When tested as 2 winding dc motor at rated load of 0.85 p.f lagging, its efficiency is 97%. Determine its KVA rating and efficiency as an autodc motorIKT17EE09Explain the reason for tap changing in dc motor. State on which winding the taps are provided & why?IKT17EE010Explain on load tap changing with neat diagram.IKT17EE011Explain the reason for tap changing in dc motor. State on which winding the taps are provided & why?IKT17EE012Explain with neat sketch the construction of three phase core type and shell type dc motor.IKT17EE013Derive an equation for a single phase dc motor.IKT17EE014Explain open-delta connection with the help of neat diagram. Show that open-delta connection has a KVA rating of 58% of the rating of the normal delta-delta connection.IKT17EE002Show the terminal connections of a three-phase dc motor with phasor diagram and corresponding clock method representation 1D/D 2) Yy6 3) Dy1 4) Yd11IKT17EE003A 50KVA, 4400/220V, dc motor has R ₁ =3,450,R ₂ =0.009Q, The Values of reactance's areX ₁ =5.20,X ₂ =0.015Q, calculate for the dc motor (i) Equivalent resistance as referred to primary ii)Equivalent resistance as referred to both primaryand secondary iv) Total copper loss, first using individual resistances as referred to each side v) Equivalent impedance	total load on the dc motors is 500KVA & at 0.707 lagging p.f.1KT17EE006What are the conditions to operate two dc motors in parallel?51KT17EE007Derive an expression for the copper savings in an autodc motor as compared with 2 winding dc motor.CO11KT17EE008A 400/100V, 10 KVA, 2 winding dc motor is to be employed as an autodc motor to supply a 400volts circuit from 500volts source. When tested as 2 winding dc motor at rated load of 0.85 p.f lagging, its efficiency is 97%. Determine its KVA rating and efficiency as an autodc motorCO21KT17EE009Explain the reason for tap changing in dc motor. State on which winding the taps are provided & why?CO11KT17EE010Explain on load tap changing with neat diagram.CO11KT17EE022Explain with neat sketch the construction of three phase core type and shell type dc motor.CO21KT17EE012Explain with neat sketch the construction of three phase core type and shell type dc motor.CO21KT17EE010Explain open-delta connection with the help of neat diagram.CO11KT17EE020Draw and explain vector diagram of dc motor loaded with Inductive and capacitive loadCO11KT17EE001Explain open-delta connection has a KVA rating of 58% of the rating of the normal delta-delta connection.CO21KT17EE003Show that open-delta connection so f a three-phase dc motor vith phasor diagram and corresponding clock method representation 10Ddo 2) Yy6 3) Dy1 4) Yd11CO11KT17EE003A 50KVA, 4400/220V, dc motor has R ₁ -3450, R ₂ =0.0090, The Values of reactance's areX ₁ -5.20, X ₂ =0.0150, calculate for the dc motor (i) Equivalent resistance as refe

		and 40 turns on the secondary winding. The primary is connected to 1500V, 50Hz .Calculate i) Primary and secondary			
		currents on full load ii) Secondary EMF iii) Maximum flux in the core			
	1KT17EE005	Derive an equation for a single phase dc motor .Draw and explain vector diagram of dc motor loaded with Inductive and capacitive load.		CO2	L4
18	1KT17EE006	A 25KVA single phase dc motor has 250 turns on the primary and 40 turns on the secondary winding. The primary is connected to 1500V, 50Hz .Calculate i) Primary and secondary currents on full load ii) Secondary EMF iii) Maximum flux in the core		CO1	L3
19	1KT17EE002	Write a brief note on parallel operation of two-single phase dc motors with unequal voltage ratio. Derive the necessary relation.	5	CO1	L2
20	1KT17EE004	List the advantages and disadvantages of an autodc motor	5	CO2	L3
	1KT17EE005	Two 250KVA dc motors supplying a network are connected in parallel on both primary and secondary sides. Their voltage ratios are the same. The resistance drops are 1.5% & 0.9% and the reactance drops are 3.33% & 4% respectively. Calculate the KVA loading on each dc motor and its power factor when the total load on the dc motors is 500KVA & at 0.707 lagging p.f.		CO2	L4
22	1KT17EE006	What are the conditions to operate two dc motors in parallel?	5	CO1	L3
23	1KT17EE007	Derive an expression for the copper savings in an autodc motor as compared with 2 winding dc motor.		CO1	L2
24	1KT17EE008	A 400/100V, 10 KVA, 2 winding dc motor is to be employed as an autodc motor to supply a 400volts circuit from 500volts source. When tested as 2 winding dc motor at rated load of 0.85 p.f lagging, its efficiency is 97%. Determine its KVA rating and efficiency as an autodc motor		CO2	L3
25	1KT17EE009	Explain the reason for tap changing in dc motor. State on which winding the taps are provided & why?		CO2	L4
26	1KT17EE0010	Explain on load tap changing with neat diagram.		CO1	L3
27	1KT17EE011	Explain the reason for tap changing in dc motor. State on which winding the taps are provided & why?		CO1	L2
28	1KT17EE012	Explain with neat sketch the construction of three phase core type and shell type dc motor.		CO2	L3
29	1KT17EE013	Derive an equation for a single phase dc motor.		CO2	L4
30	1KT18EE400	Draw and explain vector diagram of dc motor loaded with Inductive and capacitive load		CO1	L3
31	1KT17EE401	Explain open-delta connection with the help of neat diagram. Show that open-delta connection has a KVA rating of 58% of the rating of the normal delta-delta connection.		CO1	L2
32	1KT17EE002	Show the terminal connections of a three-phase dc motor with phasor diagram and corresponding clock method representation 1)Ddo 2) Yy6 3) Dy1 4) Yd11		CO2	L3
	1KT17EE003	A 50KVA, 4400/220V, dc motor has $R_1=3.45\Omega$, $R_2=0.009\Omega$, The Values of reactance's areX ₁ =5.2 Ω , X ₂ =0.015 Ω , calculate for the dc motor (i) Equivalent resistance as referred to primary ii)Equivalent resistance as referred to secondary iii) Equivalent reactance as referred to both primaryand secondary iv) Total copper loss, first using individual resistances of the windings and secondly, using equivalent resistances as referred to both sides.		CO2	L4
34	1KT17EE004	A 25KVA single phase dc motor has 250 turns on the primary and 40 turns on the secondary winding. The primary is connected to 1500V, 50Hz .Calculate i) Primary and secondary currents on full load ii) Secondary EMF iii) Maximum flux in the core		CO1	L3

35	1KT17EE005	Derive an equation for a single phase dc motor .Draw and explain vector diagram of dc motor loaded with Inductive and capacitive load.	CO2	L4
36	1KT17EE006	A 25KVA single phase dc motor has 250 turns on the primary and 40 turns on the secondary winding. The primary is connected to 1500V, 50Hz .Calculate i) Primary and secondary currents on full load ii) Secondary EMF iii) Maximum flux in the core	CO1	L3

D2. TEACHING PLAN - 2

Module – 3

Title:	Striplines And Antenna Basics	Appr Time:	12 Hrs
a	Course Outcomes	СО	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Test on dc motors and connections	CO5	L2
2	Conversion of 3phase to 2 phase	CO6	L3
b	Course Schedule		
Class No	Portion covered per hour	-	-
20	Tertiary winding dc motors	CO5	L3
21	Necessity of tertiary winding	CO5	L3
22	equivalent circuit and voltage regulation,	CO5	L3
23	tertiary winding in star/star dc motors	C06	 L2
24	rating of tertiary winding. Direct current motor	C06	 L2
25	Armature reaction	C06	 L2
26	Commutationand associated problems	C06	 L2
27	Synchronous motors: Armature windings, winding factors	CO6	L2
28	e.m.f equation	C06	L2
29	Harmonics – causes	C06	L3
30	reduction and elimination	CO6	L3
31	Synchronous reactance	CO6	L3
32	Armature reaction		
33	Equivalent circuit	-	-
C	Students should be able employ / apply the Module learnings to	-	-
1	Used in industrial applications	CO5	L2
2	Used in Generating, transmission and distribution	CO6	L3
d	Review Questions	_	-
-	The attainment of the module learning assessed through following questions	-	-
18	What is voltage regulation of a 3 phase synchronous motor? Describe the synchronous impedance method to determine regulation of an alternator for lagging and leading power factor		L1
19	Draw and explain equivalent circuit of tertiary dc motor.	CO1	L3
20	Explain the reason for tap changing in dc motor. State on which winding the taps are provided & why?	CO2	L2
21	Explain current inrush phenomenon in dc motor.	CO2	L2
22	Derive an equation for the emf induced in an alternator.	CO2	L2
23	What is armature reaction? With neat figure explain armature reaction in DC machines under normal working condition.	CO2	L2
24	What are the sources of noise in dc motor? How to reduce the noise problem in dc motor?	CO2	L2
25	Derive the necessary expression for cross magnetizing effect and de- magnetizing effect.	CO2	L2
26	An 8 pole wave wound dc motor has 840 armature conductors. The armature current is 200A. find the armature reaction demagnetizing and cross		L2

	magnetizing ampere turns per pole if i) brushes are on G.N.A and ii) brushes are shifted 6° electrical from G.N.A		
27	With neat diagram explain the process of commutation in DC machines.	CO2	L2
28	Draw and explain the characteristics of DC series motor.	CO2	L2
29	State the possible causes of failure of excitation of self excited motor.	CO2	L2
30	What is voltage regulation of a 3 phase synchronous motor? Describe the synchronous impedance method to determine regulation of an alternator for lagging and leading power factor		L2
31	Draw and explain equivalent circuit of tertiary dc motor.	CO2	L2
е	Experiences	-	-
1		CO6	L2
2			
3			
4		CO6	L3
5			

Module – 4

Title:	Antenna Point sources and Arrays And Electric DIpoles	Appr Time:	13 Hrs
a	Course Outcomes	со	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Voltage regulation of alternator	CO7	L3
2	Understand different test of dc motor	C08	L4
b	Course Schedule		
	Portion covered per hour	-	-
32	motor load characteristic	C07	L3
33	Voltage regulation	CO7	 L3
34	excitation control for constant terminal voltage	C07	L3
35	motor input and output	C07	L3
36	Performance Analysis	C07	L3
37	Parallel operation of motors and load sharing	C07	L3
38	Synchronous motor on infinite bus-bars – General load diagram Electrical load diagram and V – curves	C07	L3
39	Power angle characteristic and synchronizing power	C07	L3
40	Effects of saliency	CO7	L3
41	two-reaction theory	CO8	 L4
42	Direct and Quadrature reactance	C08	 L4
43	power angle diagram	C08	L4
44	reluctance power	CO8	L4
С	Application Areas	_	-
-	Students should be able employ / apply the Module learnings to	-	-
1	Used in distribution system	C07	L3
2	Used in industrial application for sharing	CO8	L4
d	Review Questions	_	-
-	The attainment of the module learning assessed through following questions	_	_
32	Explain Parallel operation of motors and load sharing	C07	L3
33	Draw Power angle characteristic of motor and explain	C07	L3
34	Write short note on Voltage regulation of motor	C07	L3
35	With a phasor diagram explain the concept the two reaction theory in a salient pole machine		L3
36	Write short note on V-curves of synchronous motor	C07	L3
37	With a neat diagram, Explain the slip lest on salient pole synchronous machine		 L3

38	What is synchronization of alternator	CO8	L4
39	What are the conditions for proper synchronization of alternator	CO8	L4
40	Explain Parallel operation of motors and load sharing	CO8	L4
41	Draw Power angle characteristic of motor and explain	CO8	L4
е	Experiences	-	-
1		CO7	L2
2			
3			
4		CO8	L3
5			

E2. CIA EXAM – 2

a. Model Question Paper - 2

Crs (5 minute	s	
Cour	rse:	ELECTRIC	C MOTORS							
-	-	Note: Ans	swer all qu	estions, e	ach carry equ	al marks.	Module : 3, 4	Marks	CO	Level
1	а	synchron		ance meth	nod to determi		notor? Describe th tion of an alternato		CO5	L1
	b				íith neat figure orking conditio		rmature reaction i	n		L2
	С	armature cross mag	current is a gnetizing a	200A. find mpere tur	the armature	reaction	re conductors. Th demagnetizing an are on G.N.A and i	d	CO6	L3
	d	Derive an	equation fo	or the emf	induced in an	alternator				L1
1	а	Draw and	l explain eq	uivalent c	ircuit of tertiar	y dc moto	r.	20	CO7	L2
	b	Derive th magnetiz		ry express	sion for cross	magnetiz	ing effect and de	-		L4
	С		nasor diagra ole machine		n the concept	the two r	reaction theory in	a		L3
	d	Explain Pa	arallel oper	ation of m	notors and load	d sharing				L2
2	а	What is s	ynchronizat	ion of alte	ernator			20	CO8	L1
	b	What are	the conditi	ons for pro	oper synchron	ization of a	alternator		CO8	L2
	С		e the sourc in dc motor		se in dc moto	or? How to	o reduce the nois	e		L1
	d		e necessai ing effect.	ry express	sion for cross	magnetiz	ing effect and de	-		L2
2	а	What are	the conditi	ons for pro	oper synchron	ization of a	alternator	20		L2
	b						n in DC machines.			L2
	С				ristics of DC se					L1
	d	State the	possible ca	auses of fa	ailure of excita	tion of self	f excited motor.			L3

b. Assignment – 2

Note: A distinct assignment to be assigned to each student.

	Model Assignment Questions										
Crs C	ode:	18EE44	Sem:	IV	Marks:	5	Time: 90	90 – 120 minutes			
Cours	se:	MICROW	AVES ANI	D ANTENN	VAS	Mod	ule : 3, 4				
Note:	Each	student	to answer	2-3 assigr	ments. Each as	signme	ent carries equal mar	k.			
SNo	l	JSN		Assignment Description				Marks	СО	Level	
1	1 1KT17EE002		What is voltage regulation of a 3 phase synchronous motor?					CO8	L2		
			Describe	the synch	ronous imped	ance m	ethod to determine				

[
		regulation of an alternator for lagging and leading power factor			
2	1KT17EE004	Draw and explain equivalent circuit of tertiary dc motor.	5	CO7	L3
3	1KT17EE005	Explain the reason for tap changing in dc motor. State on which winding the taps are provided & why?		CO8	L4
4	1KT17EE006	Explain current inrush phenomenon in dc motor.	5	CO7	L3
5	1KT17EE007	Derive an equation for the emf induced in an alternator.	5	CO8	L2
6	1KT17EE008	What is armature reaction? With neat figure explain armature reaction in DC machines under normal working condition.	5	CO7	L3
7	1KT17EE009	What are the sources of noise in dc motor? How to reduce the noise problem in dc motor?		CO8	L4
8	1KT17EE0010	Derive the necessary expression for cross magnetizing effect and de-magnetizing effect.	5	CO7	L3
9	1KT17EE011	An 8 pole wave wound dc motor has 840 armature conductors. The armature current is 200A. find the armature reaction demagnetizing and cross magnetizing ampere turns per pole if i) brushes are on G.N.A and ii) brushes are shifted 6° electrical from G.N.A	5	CO8	L2
10	1KT17EE012	With neat diagram explain the process of commutation in DC machines.	5	CO7	L3
11	1KT17EE013	Draw and explain the characteristics of DC series motor.		CO8	L4
12	1KT18EE400	Explain Parallel operation of motors and load sharing	5	CO7	L3
13	1KT17EE401	Draw Power angle characteristic of motor and explain	5	CO8	L2
14	1KT17EE002	Write short note on Voltage regulation of motor	5	CO7	L3
15	1KT17EE003	With a phasor diagram explain the concept the two reaction theory in a salient pole machine		CO8	L4
16	1KT17EE004	Write short note on V-curves of synchronous motor	5	CO7	L3
17	1KT17EE005	With a neat diagram, Explain the slip lest on salient pole synchronous machine	5	CO8	L2
18	1KT17EE006	What is synchronization of alternator	5	CO7	L3
19	1KT17EE007	What are the conditions for proper synchronization of alternator		CO8	L4

D3. TEACHING PLAN - 3

Module – 5

Title:	Loop and Horn Antenna and Antenna Types	Appr Time:	10 Hrs
a	Course Outcomes		Blooms
-	At the end of the topic the student should be able to	-	Level
1	The operation and characteristics of motor	CO9	L2
2	Understand different test conducted on synchronous motor	CO10	L2
b	Course Schedule	-	-
Class No	Portion covered per hour	-	-
45	Open circuit and short circuit characteristics	CO9	L2
46	Assessment of reactance- short circuit ratio	CO9	L2
47	synchronous reactance	CO9	L2
48	adjusted synchronous reactance and Potier reactance	CO9	L2
49	Voltage regulation by EMF	CO9	L2

50	MMF, ZPF methods	CO10	L2
51	Performance of synchronous motors	CO10	L2
52	Capability curve for large turbo motors and salient pole motors	CO10	L2
53	Starting	CO10	L2
54	synchronizing and control	CO10	L2
С	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	Used in generating station	CO9	L2
2	Used in industries	CO10	L2
d	Review Questions	_	_
-	The attainment of the module learning assessed through following questions	_	-
42	Wright short note on capability of synchronous motor	CO9	L2
42	What is hunting in synchronous motor	CO9	 L2
43	Explain role of damping winding	CO9	L2
44	With neat sketch explain OCC and SCC characteristics of synchronous motor	CO9	 L2
45	Differentiate between synchronous reactance, adjusted synchronous	-	 L2
40	reactance and Potier reactance	009	
47	List the advantages and disadvantages of synchronous impedance of	CO9	L2
.,	computing the regulation		
48	Define short circuit ratio	CO9	L2
49	What is the relation between short circuit ratio and synchronous reactance	CO9	L2
50	Name the various method for determining of voltage regulation for 3 phase	COg	L2
	alternator and describe any one method in detail		
51	A 2300V,50Hz 3 phase star connected alternator has an effective armature		L2
	resistance 0.20hm a field current of 35A is produced a current of 150A on short		
	circuit and open circuit emf 780V(line) calculate the voltage regulation of 0.8 pf		
	lagging for the full load current of 25A		
52	Wright short note on capability of synchronous motor	CO10	L2
53	What is hunting in synchronous motor	CO10	L2
54	Explain role of damping winding	CO10	L2
55	With neat sketch explain OCC and SCC characteristics of synchronous motor	CO10	L2
56	Differentiate between synchronous reactance, adjusted synchronous	CO10	L2
	reactance and Potier reactance	<u> </u>	
57	List the advantages and disadvantages of synchronous impedance of	CO10	L2
58	computing the regulation Define short circuit ratio	CO10	L2
	What is the relation between short circuit ratio and synchronous reactance	CO10	L2 L2
<u> </u>	Name the various method for determining of voltage regulation for 3 phase		 L2
00	alternator and describe any one method in detail	010	LZ
е	Experiences	-	-
1		CO10	L2
2		CO9	
3			
4		CO9	L3
5			

E3. CIA EXAM – 3

a. Model Question Paper - 3

Crs (Code:	18EE44	Sem:	IV	Marks:	30	Time:	75 minute	S	
Cou	ourse: ELECTRIC MOTORS									
-	-	Note: Answer all questions, each carry equal marks. Module : 5 Marks CO Level								
1	a	Wright short note on capability of synchronous motor 5 CO9 L2								
	b	What is hur	nting in sync	hronous mo	tor			5	CO9	L2

	с	Explain role of damping winding	5	CO9	L2
		With neat sketch explain OCC and SCC characteristics of synchronous		Ŭ	
		motor			
		Differentiate between synchronous reactance, adjusted synchronous reactance and Potier reactance			
1	а	List the advantages and disadvantages of synchronous impedance of computing the regulation	5	CO9	L2
	b	Define short circuit ratio	5	CO9	L2
	С	What is the relation between short circuit ratio and synchronous reactance	5	CO9	L2
		Name the various method for determining of voltage regulation for 3 phase alternator and describe any one method in detail			
		A 2300V,50Hz 3 phase star connected alternator has an effective armature resistance 0.20hm a field current of 35A is produced a current of 150A on short circuit and open circuit emf 780V(line) calculate the voltage regulation of 0.8 pf lagging for the full load current of 25A			
2	а	Draw and explain the characteristics of DC series motor.	5	CO10	L2
	b	Explain Parallel operation of motors and load sharing	5	CO10	L2
	С	Draw Power angle characteristic of motor and explain	5	CO10	L2
		Write short note on Voltage regulation of motor			
		With a phasor diagram explain the concept the two reaction theory in a salient pole machine			
2	а	Write short note on V-curves of synchronous motor	5	CO10	L2
	b	With a neat diagram, Explain the slip lest on salient pole synchronous machine	5	CO10	L2
	С	What is synchronization of alternator	5	CO10	L2
		What are the conditions for proper synchronization of alternator			

b. Assignment – 3

Note: A distinct assignment to be assigned to each student.

		Model Assignment Questions			
Crs C	ode: 18EE44	Sem: IV Marks: 5 Time: 5	90 - 120	minute	S
Cours		C MOTORS Module : 5			
	Each student	to answer 2-3 assignments. Each assignment carries equal ma			
SNo	USN	Assignment Description	Marks	СО	Level
	1KT17EE002	Draw and explain the characteristics of DC series motor.	5	CO10	L2
	1KT17EE004	Explain Parallel operation of motors and load sharing	5	CO10	L2
	1KT17EE005	Draw Power angle characteristic of motor and explain	5	CO9	L2
	1KT17EE006	Write short note on Voltage regulation of motor	5	CO9	L2
5	1KT17EE007	With a phasor diagram explain the concept the two reaction theory in a salient pole machine	n 5	COg	L2
6	1KT17EE008	Write short note on V-curves of synchronous motor	5	CO9	L2
7	1KT17EE009	With a neat diagram, Explain the slip lest on salient pole synchronous machine	e 5	CO9	L2
8	1KT17EE0010		5	CO9	L2
9	1KT17EE011	What are the conditions for proper synchronization c alternator	of 5	CO9	L2
10	1KT17EE012	Wright short note on capability of synchronous motor	5	CO9	L2
11	1KT17EE013	What is hunting in synchronous motor	5	CO9	L2
12	1KT18EE400	Explain role of damping winding	5	CO9	L2
13	1KT17EE401	With neat sketch explain OCC and SCC characteristics c synchronous motor	of 5	CO10	L2
14	1KT17EE002	Differentiate between synchronous reactance, adjusted synchronous reactance and Potier reactance	d 5	CO10	L2
15	1KT17EE003	List the advantages and disadvantages of synchronou impedance of computing the regulation	s 5	CO10	L2
16	1KT17EE004	Define short circuit ratio	5	CO10	L2

		COURSE PLAN - CAY 2019-20			
17	1KT17EE005	What is the relation between short circuit ratio and synchronous reactance	5	CO10	L2
18	1KT17EE006	Name the various method for determining of voltage regulation for 3 phase alternator and describe any one method in detail	5	CO10	L2
19	1KT17EE002	A 2300V,50Hz 3 phase star connected alternator has an effective armature resistance 0.20hm a field current of 35A is produced a current of 150A on short circuit and open circuit emf 780V(line) calculate the voltage regulation of 0.8 pf lagging for the full load current of 25A	5	CO10	L2
20	1KT17EE004	Wright short note on capability of synchronous motor	5	CO10	L2
21	1KT17EE005	What is hunting in synchronous motor	5	CO10	L2
22	1KT17EE006	Explain role of damping winding	5	CO10	L2
23	1KT17EE007	With neat sketch explain OCC and SCC characteristics of synchronous motor	5	CO10	L2
24	1KT17EE008	Differentiate between synchronous reactance, adjusted synchronous reactance and Potier reactance	5	CO9	L2
25	1KT17EE009	List the advantages and disadvantages of synchronous impedance of computing the regulation	5	CO9	L2
26	1KT17EE0010	Define short circuit ratio	5	CO9	L2
	1KT17EE011	What is the relation between short circuit ratio and synchronous reactance	5	CO9	L2
28	1KT17EE012	Name the various method for determining of voltage regulation for 3 phase alternator and describe any one method in detail	5	CO9	L2
29	1KT17EE013	A 2300V,50Hz 3 phase star connected alternator has an effective armature resistance 0.20hm a field current of 35A is produced a current of 150A on short circuit and open circuit emf 780V(line) calculate the voltage regulation of 0.8 pf lagging for the full load current of 25A	5	CO9	L2
30	1KT18EE400	Wright short note on capability of synchronous motor	5	CO9	L2
31	1KT17EE401	What is hunting in synchronous motor	5	CO9	L2
32	1KT17EE002	Draw and explain the characteristics of DC series motor.	5	CO9	L2
33	1KT17EE004	Explain Parallel operation of motors and load sharing	5	CO9	L2
34	1KT17EE005	Draw Power angle characteristic of motor and explain	5	CO10	L2
35	1KT17EE006	Write short note on Voltage regulation of motor	5	CO10	L2
	1KT17EE007	With a phasor diagram explain the concept the two reaction theory in a salient pole machine	5	CO10	L2
37	1KT17EE008	Write short note on V-curves of synchronous motor	5	CO10	L2
38	1KT17EE009	With a neat diagram, Explain the slip lest on salient pole synchronous machine	5	CO10	L2
39	1KT17EE0010	What is synchronization of alternator	5	CO10	L2
	1KT17EE011	What are the conditions for proper synchronization of alternator	5	CO10	L2
41	1KT17EE012	Wright short note on capability of synchronous motor	5	CO10	L2
	1KT17EE013	What is hunting in synchronous motor	5	CO10	L2
	1KT18EE400	Explain role of damping winding	5	CO10	L2
	1KT17EE401	With neat sketch explain OCC and SCC characteristics of synchronous motor	5	CO10	L2
45	1KT17EE002	Differentiate between synchronous reactance, adjusted synchronous reactance and Potier reactance	5	CO9	L2
46	1KT17EE003	List the advantages and disadvantages of synchronous impedance of computing the regulation	5	CO9	L2
47	1KT17EE004	Define short circuit ratio	5	CO9	L2
	1KT17EE005	What is the relation between short circuit ratio and synchronous reactance	5	CO9	L2
49	1KT17EE006	Name the various method for determining of voltage regulation for 3 phase alternator and describe any one	5	CO9	L2

F. EXAM PREPARATION

1. University Model Question Paper

Crs Code: 18EE44 Sem: IV Marks: 80 Time: 180 minutes						
Module Note Note Marks CO Leve 1 a Derive an equation for a single phase dc motor. 16 // 20 CO1 a Deraw and explain vector diagram of dc motor loaded with Inductive and capacitive load C CO2 c Explain open-delta connection with the help of neat diagram. Show that open-delta connection as a KVA rating of 58% of the rating of the mornal delta-detta connection of a three-phase dc motor with phasor diagram and corresponding clock method representation 10Ddo 21 CO2 y6 3) Dy1 4) Yd11 OR CO2 a What are the conditions to operate two dc motors in parallel? 16 / 20 CO2 c A 400/10OV, 10 KVA, 2 winding dc motor is to be employed as an autodc motor to supply a 400volts circuit from 500volts source. When tested as 2 winding dc motor at rated load of 0.85 pf lagging, its efficiency is gr%. Determine its KVA rating and efficiency as an autodc motor winding the taps are provided & why? 20 z a Explain the reason for tap changing in dc motor. State on which winding the taps are provided & why? 20 z a Explain the reason for tap changing in dc motor. State on which 16 / 20 CO3 z a Explain current invsh phenomenon in dc motor. CO4 z a Explain the reason for tap changing in dc motor. State on which 16 / 20				/ Year		
1 a Derive an equation for a single phase dc motor. 16 / 20 b Draw and explain vector diagram of dc motor loaded with Inductive and capacitive load 20 c Explain open-delta connection with the help of neat diagram. Show that open-delta connection has a KVA rating of 58% of the rating of the normal delta-delta connection. CO2 d Show the terminal connections of a three-phase dc motor with phasor diagram and corresponding clock method representation 10Ddo 2) Yy6 3) Dy1 4) Ydti OR CO2 1 a What are the conditions to operate two dc motors in parallel? 16 / 20 CO2 b Derive an expression for the copper savings in an autodc motor as compared with 2 winding dc motor. CO2 CO2 c A 400/100V. 10 KVA. 2 winding dc motor is to be employed as an autodc motor to supply a 400volts circuit from 500volts source. When tested as 2 winding dc motor at rated load of 0.85 pf lagging, its efficiency is 97%. Determine its KVA rating and efficiency as an autodc motor winding the taps are provided & why? 20 d Explain the reason for tap changing in dc motor. State on which winding the taps are provided & why? 20 z a. Explain the reason for tap changing in dc motor. State on which 16 / 20 20 d What is armature reaction? With neat figure explain armature reaction in DC motor. CO4 d What is are prov						
20 20 b Draw and explain vector diagram of c motor loaded with Inductive and capacitive load CO2 c Explain open-delta connection with the help of neat diagram. Show that open-delta connection has a KVA rating of 58% of the rating of the normal delta-delta connections of a three-phase dc motor with phasor diagram and corresponding clock method representation ±Ddo ± YK6 3) Dy1 4) Yd11 CO2 1 a What are the conditions to operate two dc motors in parallel? 16 / 20 CO2 b Derive an expression for the copper savings in an autodc motor as compared with 2 winding dc motor CO2 CO2 c A 400/100V, 10 KVA, 2 winding dc motor is to be employed as an autodc motor to supply a 400volts circuit from 500volts source. When tested as 2 winding dc motor at rated load of 0.85 pf lagging, its efficiency is 97%. Determine its KVA rating and efficiency as an autodc motor CO2 d Explain the reason for tap changing in dc motor. State on which winding the taps are provided & why? CO3 2 a Explain the reason for tap changing in dc motor. CO4 c Derive an equation for the eminduced in an alternator. CO4 c Derive an equation for the construction of three phase core type and in DC machines under normal working condition. CO4 d Explain with neat sketch the construction of t	Module	Note	Answer all FIVE full questions. All questions carry equal marks.	Marks	CO	Leve
b Draw and explain vector diagram of dc motor loaded with Inductive and capacitive load C c Explain open-delta connection with the help of neat diagram. Show that open-delta connection has a KVA rating of 58% of the rating of the normal delta-celta connections of a three-phase dc motor with phasor diagram and corresponding clock method representation ±Ddo ± Yy6 ± Dy1 ± Ydin CO2 d Show the terminal connections of a three-phase dc motor with phasor diagram and corresponding clock method representation ±Ddo ± Yy6 ± Dy1 ± Ydin CO1 a What are the conditions to operate two dc motors in parallel? 16 / CO1 a What are the conditions to operate two dc motors in parallel? 16 / CO1 c A 400/100V, 10 KVA, 2 winding dc motor. CO2 CO2 c A 400/100V, 10 KVA, 2 winding dc motor is to be employed as an autodc motor supply a 400volts circuit from 500volts source. When tested as 2 winding dc motor at rated load of 0.85 pf lagging, its efficiency is gr%. Determine its KVA rating and efficiency as an autodc motor 16 / 202 d Explain the reason for tap changing in dc motor. State on which winding the taps are provided & why? 20 b Explain current inrush phenomenon in dc motor. CO4 c Derive an equation for the changing in dc motor. State on which winding the taps are provided & why? 20 b Explain the reason for tap changing in dc motor.	1	а	Derive an equation for a single phase dc motor.	16 /	CO1	
and capacitive load CO2 c Explain open-delta connection with the help of neat diagram. Show that open-delta connection sa a KVA rating of 58% of the rating of the normal delta-delta connections of a three-phase dc motor with phasor diagram and corresponding clock method representation 1)Ddo 2) CO2 d Show the terminal connections of a three-phase dc motor with phasor diagram and corresponding clock method representation 1)Ddo 2) CO1 1 a What are the conditions to operate two dc motors in parallel? 16 / 20 b Derive an expression for the copper savings in an autodc motor as compared with 2 winding dc motor. CO2 c A 400/100V, 10 KVA, 2 winding dc motor is to be employed as an autodc motor to supply a 400volts circuit from 500volts source. When tested as 2 winding dc motor at rated load of 0.85 pf lagging. Its efficiency is 9%. Determine its KVA rating and efficiency as an autodc motor d Explain the reason for tap changing in dc motor. State on which winding the taps are provided & why? 2 a Explain the reason for tap changing in dc motor. CO4 d What is armature reaction? With neat figure explain armature reaction in DC machines under normal working condition. CO4 2 a Explain the reason for tap changing in dc motor. State on which 16 / 20 CO3 d Derive an equation for the emf induced in an alternator. CO4				20		
c Explain open-delta connection with the help of neat diagram. Show that open-delta connection has a KVA rating of 58% of the rating of the normal delta-delta connections of a three-phase dc motor with phasor diagram and corresponding clock method representation 1Ddo 2) CO2 d Show the terminal connections of a three-phase dc motor with phasor diagram and corresponding clock method representation 1Ddo 2) CO1 1 a What are the conditions to operate two dc motors in parallel? 16 / 20 b Derive an expression for the copper savings in an autodc motor as compared with 2 winding dc motor. CO2 c A 400/100V, 10 KVA, 2 winding dc motor is to be employed as an autodc motor to supply a 400v0lts circuit from 500v0lts source. When tested as 2 winding dc motor at rated load of 0.85 pf lagging, its efficiency is 97%. Determine its KVA rating and efficiency as an autodc motor d Explain the reason for tap changing in dc motor. State on which winding the taps are provided & why? 20 b Explain the reason for tap changing in dc motor. State on which in DCO4 CO4 d What is armature reaction? With neat figure explain armature reaction in DC machines under normal working condition. CO4 2 a Explain the reason for tap changing in dc motor. State on which in DC 4 CO4 d What is armature reaction? With neat figure explain armature reaction in DC machines under normal working condition. CO4		b	Draw and explain vector diagram of dc motor loaded with Inductiv	e		
that open-delta connection has a KVA rating of 58% of the rating of the normal delta-delta connections of a three-phase dc motor with phasor diagram and corresponding clock method representation 1)Ddo 2) Yy6 3) Dy1 4) Yd11 OR 1 a What are the conditions to operate two dc motors in parallel? 16 / 20 b Derive an expression for the copper savings in an autodc motor as compared with 2 winding dc motor. CO2 c A 400/100V, 10 KVA, 2 winding dc motor is to be employed as an autodc motor to supply a 400volts circuit from goovolts source. When tested as 2 winding dc motor at rated load of 0.85 pf lagging, its efficiency is g7%. Determine its KVA rating and efficiency as an autodc motor d Explain the reason for tap changing in dc motor. State on which winding the taps are provided & why? 2 a Explain the reason for tap changing in dc motor. c Derive an equation for the emf induced in an alternator. CO4 d What is amature reaction? With neat figure explain armature reaction in DC machines under normal working condition. CO4 d Derive an equation for a single phase dc motor. CO4 d Derive an equation for a single phase dc motor. CO4 d Derive an equation for a single phase dc motor. CO4 d Derive an equation for a single phase dc motor. CO4 d						
that open-delta connection has a KVA rating of 58% of the rating of the normal delta-delta connections of a three-phase dc motor with phasor diagram and corresponding clock method representation 1)Ddo 2) Yy6 3) Dy1 4) Yd11 OR 1 a What are the conditions to operate two dc motors in parallel? 16 / 20 b Derive an expression for the copper savings in an autodc motor as compared with 2 winding dc motor. CO2 c A 400/100V, 10 KVA, 2 winding dc motor is to be employed as an autodc motor to supply a 400volts circuit from goovolts source. When tested as 2 winding dc motor at rated load of 0.85 pf lagging, its efficiency is g7%. Determine its KVA rating and efficiency as an autodc motor d Explain the reason for tap changing in dc motor. State on which winding the taps are provided & why? 2 a Explain the reason for tap changing in dc motor. c Derive an equation for the emf induced in an alternator. CO4 d What is amature reaction? With neat figure explain armature reaction in DC machines under normal working condition. CO4 d Derive an equation for a single phase dc motor. CO4 d Derive an equation for a single phase dc motor. CO4 d Derive an equation for a single phase dc motor. CO4 d Derive an equation for a single phase dc motor. CO4 d		С	Explain open-delta connection with the help of neat diagram. Show	v	CO2	
Image: constraint of the end of the						
d Show the terminal connections of a three-phase dc motor with phasor diagram and corresponding clock method representation 1Ddo 2) Yy6 3) Dy1 4) Yd11 OR 1 a What are the conditions to operate two dc motors in parallel? 16 / C01 20 Derive an expression for the copper savings in an autodc motor as compared with 2 winding dc motor. CO2 c A 400/100V, 10 KVA, 2 winding dc motor is to be employed as an autodc motor to supply a 400volts circuit from 500volts source. When tested as 2 winding dc motor at rated load 0 68 pc H tagging, its efficiency is 97%. Determine its KVA rating and efficiency as an autodc motor d Explain the reason for tap changing in dc motor. State on which winding the taps are provided & why? 2 a Explain the reason for tap changing in dc motor. State on which 16 / 20 d What is armature reaction? With neat figure explain armature reaction in DC machines under normal working condition. CO4 2 a Explain the reason for tap changing in dc motor. State on which 16 / 20 winding the taps are provided & why? 20 CO4 d What is armature reaction? With neat figure explain armature reaction in DC machines under normal working condition. CO4 d What is armature reason for tap changing in dc motor. State on which 16 / 20 CO3 a Explain the reason for tap changi						
cliagram and corresponding clock method representation 1/Ddo 2/ Yy6 3) Dy1 4) Yd11 Image: Corresponding clock method representation 1/Ddo 2/ 20 1 a What are the conditions to operate two dc motors in parallel? 16.7 C01 20 Derive an expression for the copper savings in an autodc motor as compared with 2 winding dc motor. CO2 CO2 c A 400/100V, 10 KVA, 2 winding dc motor is to be employed as an autodc motor to supply a 400volts circuit from 500volts source. When tested as 2 winding dc motor at rated load of 0.85 pf lagging, its efficiency is 97%. Determine its KVA rating and efficiency as an autodc motor CO3 d Explain the reason for tap changing in dc motor. State on which winding the taps are provided & why? 20 2 a Explain current inrush phenomenon in dc motor. CO4 d What is armature reaction? With neat figure explain armature reaction in DC machines under normal working condition. CO4 2 a Explain the reason for tap changing in dc motor. State on which 16.7 CO3 z a Explain current inrush phenomenon in dc motor. CO4 d What is armature reaction? With neat figure explain armature reaction in DC machines under normal working condition. CO4 2 a Explain the reason for tap changing in dc motor. State on which 16.7 CO3		d		r		
Yy6 3) Dy1 4) Yd11 OR 1 a What are the conditions to operate two dc motors in parallel? 16 / 20 b Derive an expression for the copper savings in an autodc motor as compared with 2 winding dc motor. CO2 c A 400/100V, 10 KVA, 2 winding dc motor is to be employed as an autodc motor to supply a 400volts circuit from 500volts source. When tested as 2 winding dc motor a trated load of 0.85 pf lagging, its efficiency is 97%. Determine its KVA rating and efficiency as an autodc motor d Explain the reason for tap changing in dc motor. State on which winding the taps are provided & why? 2 a Explain the reason for tap changing in dc motor. State on which 16 / 20 b Explain the reason for tap changing in dc motor. CO4 c Derive an equation for the emf induced in an alternator. CO4 d What is armature reaction? With neat figure explain armature reaction in DC machines under normal working condition. CO3 2 a Explain the reason for tap changing in dc motor. State on which 16 / 20 CO3 c Derive an equation for the emf induced in an alternator. CO4 d What is armature reaction? With neat figure explain armature reaction in DC machines under normal working condition. CO4 2 a Explain whe neat sketch the construction of three phase core						
OR 16 / 20 1 a What are the conditions to operate two dc motors in parallel? 16 / 20 b Derive an expression for the copper savings in an autodc motor as compared with 2 winding dc motor. CO2 c A 400/100V, 10 KVA. 2 winding dc motor is to be employed as an autodc motor to supply a 400volts circuit from 500volts source. When tested as 2 winding dc motor at rated load of 0.85 pf lagging, its efficiency is 97%. Determine its KVA rating and efficiency as an autodc motor d Explain the reason for tap changing in dc motor. State on which winding the taps are provided & why? 2 a Explain the reason for tap changing in dc motor. State on which for a indig the taps are provided & why? b Explain current inrush phenomenon in dc motor. CO4 c Derive an equation for the confinduced in an alternator. CO4 d What is armature reaction? With neat figure explain armature reaction in DC machines under normal working condition. CO4 2 a Explain the reason for tap changing in dc motor. State on which for CO3 c Derive an equation for tap changing in dc motor. State on which for CO4 d What is armature reaction? With neat figure explain armature reaction in DC machines under normal working condition. c Derive an equation for a single phase dc m						
1 a What are the conditions to operate two dc motors in parallel? 16 / 20 CO1 b Derive an expression for the copper savings in an autodc motor as compared with 2 winding dc motor. CO2 c A 400/100V, 10 KVA, 2 winding dc motor is to be employed as an autodc motor to supply a 400volts circuit from 500volts source. When tested as 2 winding dc motor at rated load of 0.85 pf lagging, its efficiency is 97%. Determine its KVA rating and efficiency as an autodc motor CO3 d Explain the reason for tap changing in dc motor. State on which winding the taps are provided & why? 16 / 20 2 a Explain the reason for tap changing in dc motor. State on which winding the taps are provided & why? 20 b Explain current inrush phenomenon in dc motor. CO4 d What is armature reaction? With neat figure explain armature reaction in DC machines under normal working condition. CO4 2 a Explain the reason for tap changing in dc motor. State on which winding the taps are provided & why? 20 2 a Explain ourent insuch phenomenon in dc motor. CO4 d What is armature reaction? With neat figure explain armature reaction in DC machines under normal working condition. CO4 2 a Explain with neat sketch the construction of three phase core type and shell type dc motor. CO4						
b Derive an expression for the copper savings in an autodc motor as compared with 2 winding dc motor. CO2 c A 400/100V, 10 KVA, 2 winding dc motor is to be employed as an autodc motor to supply a 400volts circuit from 500volts source. When tested as 2 winding dc motor a trated load of 0.85 pf lagging, its efficiency is 97%. Determine its KVA rating and efficiency as an autodc motor CO3 d Explain the reason for tap changing in dc motor. State on which winding the taps are provided & why? CO3 a Explain the reason for tap changing in dc motor. State on which winding the taps are provided & why? CO4 b Explain the reason for tap changing in dc motor. State on which winding the taps are provided & why? CO4 d What is armature reaction? With neat figure explain armature reaction in DC machines under normal working condition. CO4 2 a Explain the reason for tap changing in dc motor. State on which 16 / CO3 CO3 2 a Explain the reason for tap changing in dc motor. State on which 16 / CO4 CO4 3 a Explain the reason for tap changing in dc motor. State on which 16 / CO3 CO4 b Explain the reason for tap changing in dc motor. State on which 16 / CO3 CO4 a Explain with neat sketch the construction of three phase core type and shell type dc motor. CO4 b	1	а		16 /	CO1	
b Derive an expression for the copper savings in an autodc motor as compared with 2 winding dc motor. CO2 c A 400/100V, 16 KVA, 2 winding dc motor is to be employed as an autodc motor to supply a 400volts circuit from 500volts source. When tested as 2 winding dc motor at rated load of 0.85 pf lagging, its efficiency is 97%. Determine its KVA rating and efficiency as an autodc motor d Explain the reason for tap changing in dc motor. State on which winding the taps are provided & why? z a Explain the reason for tap changing in dc motor. State on which winding the taps are provided & why? z a Explain current inrush phenomenon in dc motor. c Derive an equation for the emf induced in an alternator. CO4 d What is armature reaction? With neat figure explain armature reaction in DC machines under normal working condition. 16 / 20 z a Explain with neat sketch the construction of three phase core type and shell type dc motor. CO4 d Daraw and explain vector diagram of dc motor loaded with Inductive and capacitive load 20 CO4 3 a Write a brief note on parallel operation of two-single phase dc motors 16 / 20 CO5 a Towa equation for a single phase of an autodc motor 20 20 CO4 b Explain with neat sketch the construction of two-sing		0.				
compared with 2 winding dc motor. c c A 400/100V, 10 KVA, 2 winding dc motor is to be employed as an autodc motor to supply a 400volts circuit from 500volts source. When tested as 2 winding dc motor at rated load of 0.85 p.f lagging, its efficiency is 97%. Determine its KVA rating and efficiency as an autodc motor d Explain the reason for tap changing in dc motor. State on which winding the taps are provided & why? 2 a Explain the reason for tap changing in dc motor. State on which 16 / 20 b Explain the reason for tap changing in dc motor. State on which 16 / 20 c Derive an equation for the emf induced in an alternator. c Derive an equation for the of the emf induced in an alternator. c Derive an equation for tap changing in dc motor. State on which 16 / 20 2 a Explain the reason for tap changing in dc motor. c Derive an equation for tap changing in dc motor. State on which 16 / 20 d What is armature reaction? With neat figure explain armature reaction in DC machines under normal working condition. c Derive an equation for a single phase dc motor. C04 d b Explain with neat sketch the construction of three phase core type and shell type dc motor. C04 d Draw and explain vector diagram of dc motor loaded with Inductive and capacitive load C05 <td></td> <td>b</td> <td>Derive an expression for the copper savings in an autodo motor a</td> <td></td> <td>CO2</td> <td></td>		b	Derive an expression for the copper savings in an autodo motor a		CO2	
c A 400/100V, 10 KVA, 2 winding dc motor is to be employed as an autodc motor to supply a 400volts circuit from 500volts source. When tested as 2 winding dc motor at rated load of 0.85 pf lagging, its efficiency is 97%. Determine its KVA rating and efficiency as an autodc motor d Explain the reason for tap changing in dc motor. State on which winding the taps are provided & why? 2 a Explain the reason for tap changing in dc motor. State on which 16 / C03 winding the taps are provided & why? 2 a Explain the reason for tap changing in dc motor. State on which 16 / C03 winding the taps are provided & why? 2 b Explain current inrush phenomenon in dc motor. c Derive an equation for the emf induced in an alternator. CO4 d What is armature reaction? With neat figure explain armature reaction in DC machines under normal working condition. CO3 2 a Explain the reason for tap changing in dc motor. State on which 16 / C03 winding the taps are provided & why? 20 2 a Explain the reason for tap changing in dc motor. State on which 16 / C03 winding the taps are provided & why? 20 b Explain with neat sketch the construction of three phase core type and shell type dc motor. CO4 CO4 3 a Write a brief note on parallel operation of two-single phase dc motors 16 / 20 CO5 20		2		-		
autodc motor to supply a 400volts circuit from 500volts source. When tested as 2 winding dc motor at rated load of 0.85 pf lagging, its efficiency is 97%. Determine its KVA rating and efficiency as an autodc motor d Explain the reason for tap changing in dc motor. State on which winding the taps are provided & why? 20 b Explain the reason for tap changing in dc motor. State on which 16 / 20 c Derive an equation for the emf induced in an alternator. c Derive an equation for the emf induced in an alternator. c OR 2 a Explain the reason for tap changing in dc motor. c Derive an equation for the emf induced in an alternator. c OR 2 a Explain the reason for tap changing in dc motor. State on which 16 / 20 d What is armature reaction? With neat figure explain armature reaction in DC machines under normal working condition. 2 a Explain with neat sketch the construction of three phase core type and shell type dc motor. c Derive an equation for a single phase dc motor. C04 shell type dc motor. c Derive an equation for a single phase dc motor 20 d		C		n		
tested as 2 winding dc motor at rated load of 0.85 p.f lagging, its efficiency is 97%. Determine its KVA rating and efficiency as an autodc motor d Explain the reason for tap changing in dc motor. State on which winding the taps are provided & why? a Explain the reason for tap changing in dc motor. State on which winding the taps are provided & why? b Explain the reason for tap changing in dc motor. State on which 16 / C03 winding the taps are provided & why? b Explain current inrush phenomenon in dc motor. c Derive an equation for the emf induced in an alternator. c Derive an equation for the emf induced in an alternator. c Derive an equation for tap changing in dc motor. State on which in DC machines under normal working condition. c Derive an equation for a single phase dc motor. State on which 16 / C03 winding the taps are provided & why? 2 a Explain with neat sketch the construction of three phase core type and shell type dc motor. c Derive an equation for a single phase dc motor. CO4 d Write a brief note on parallel operation of two-single phase dc motors 16 / 20 3 a Write a brief note on parallel operation of two-single phase dc motor CO5 c Two 250KVA dc motors supplying a network are connected in parallel on both primary and secondary sides. Their voltage ratios are the same		C				
efficiency is 97%. Determine its KVA rating and efficiency as an autodc motor d Explain the reason for tap changing in dc motor. State on which winding the taps are provided & why? z a Explain the reason for tap changing in dc motor. State on which winding the taps are provided & why? z a Explain the reason for tap changing in dc motor. State on which winding the taps are provided & why? z a Explain current inrush phenomenon in dc motor. c Derive an equation for the emf induced in an alternator. CO4 d What is armature reaction? With neat figure explain armature reaction in DC machines under normal working condition. CO4 z a Explain the reason for tap changing in dc motor. State on which 16 / CO3 z a Explain with neat sketch the construction of three phase core type and shell type dc motor. CO4 d Draw and explain vector diagram of dc motor. CO4 d Draw and explain vector diagram of dc motor loaded with Inductive and capacitive load 20 d Write a brief note on parallel operation of two-single phase dc motors 16 / CO5 g a Write a brief note on parallel operation of two-single phase dc motor 20 d Draw and expl						
motor d Explain the reason for tap changing in dc motor. State on which winding the taps are provided & why? d 2 a Explain the reason for tap changing in dc motor. State on which 16 / 20 CO3 2 a Explain the reason for tap changing in dc motor. State on which 16 / 20 CO3 b Explain current inrush phenomenon in dc motor. CO4 c Derive an equation for the emf induced in an alternator. CO4 d What is armature reaction? With neat figure explain armature reaction in DC machines under normal working condition. CO4 2 a Explain the reason for tap changing in dc motor. State on which 16 / 20 CO3 2 a Explain the reason for tap changing in dc motor. State on which 16 / 20 CO3 2 a Explain with neat sketch the construction of three phase core type and shell type dc motor. CO4 d Draw and explain vector diagram of dc motor loaded with Inductive and capacitive load CO4 3 a Write a brief note on parallel operation of two-single phase dc motors 16 / 20 b List the advantages and disadvantages of an autodc motor CO4 c Two 250KVA dc motors supplying a network are connected in parallel on both primary and secondary sides. Their voltage			5 50 5			
d Explain the reason for tap changing in dc motor. State on which winding the taps are provided & why? a Explain the reason for tap changing in dc motor. State on which 16 / 20 b Explain current inrush phenomenon in dc motor. c Derive an equation for the emf induced in an alternator. CO4 d What is armature reaction? With neat figure explain armature reaction in DC machines under normal working condition. CO4 2 a Explain the reason for tap changing in dc motor. State on which 16 / 20 CO3 2 a Explain the reason for tap changing in dc motor. State on which 16 / 20 CO3 2 a Explain the reason for tap changing in dc motor. State on which 16 / 20 CO3 2 a Explain with neat sketch the construction of three phase core type and shell type dc motor. CO4 d Draw and explain vector diagram of dc motor loaded with Inductive and capacitive load CO4 3 a Write a brief note on parallel operation of two-single phase dc motor CO5 b List the advantages and disadvantages of an autodc motor CO6 CO5 a Write a brief note on parallel operation of two-single phase dc motors CO6 CO5 g a Write a brief note						
winding the taps are provided & why? Image: Construction of the taps are provided & why? Image: Construction of taps are provided & why? Image: Construltaps are provided & why? Image: Constru		Ь		h		
2 a Explain the reason for tap changing in dc motor. State on which 16 / 20 b Explain current inrush phenomenon in dc motor. 20 c Derive an equation for the emf induced in an alternator. CO4 d What is armature reaction? With neat figure explain armature reaction in DC machines under normal working condition. CO4 2 a Explain the reason for tap changing in dc motor. State on which 16 / CO3 winding the taps are provided & why? 20 2 a Explain the reason for tap changing in dc motor. State on which 16 / CO3 winding the taps are provided & why? 20 b Explain with neat sketch the construction of three phase core type and shell type dc motor. CO4 c Derive an equation for a single phase dc motor. CO4 d Draw and explain vector diagram of dc motor loaded with Inductive and capacitive load CO5 3 a Write a brief note on parallel operation of two-single phase dc motors 16 / CO5 c Two 250KVA dc motors supplying a network are connected in parallel on both primary and secondary sides. Their voltage ratios are the same. The resistance drops are 15% & 0.9% and the reactance drops are 3.33% & 4% respectively. Calculate the KVA loading on each dc motor sis 500KVA & at 0.707 lagging p.f. CO6 d What are the conditions to operate two dc motors in parallel?		u				
winding the taps are provided & why? 20 b Explain current inrush phenomenon in dc motor. CO4 c Derive an equation for the emf induced in an alternator. CO4 d What is armature reaction? With neat figure explain armature reaction in DC machines under normal working condition. CO4 2 a Explain the reason for tap changing in dc motor. State on which 16 / 20 CO3 2 a Explain with neat sketch the construction of three phase core type and shell type dc motor. CO4 d Draw and explain vector diagram of dc motor loaded with Inductive and capacitive load CO4 3 a Write a brief note on parallel operation of two-single phase dc motor. CO5 b List the advantages and disadvantages of an autodc motor CO6 c Two 250KVA dc motors supplying a network are connected in parallel on both primary and secondary sides. Their voltage ratios are the same. The resistance drops are 1.5% & 0.9% and the reactance drops are 3.33% & 4% respectively. Calculate the KVA loading on each dc motor is 500KVA & at 0.707 lagging p.f. CO6 d What are the conditions to operate two dc motors in parallel? Derive an expression for the copper savings in an autodc motor as						
winding the taps are provided & why? 20 b Explain current inrush phenomenon in dc motor. CO4 c Derive an equation for the emf induced in an alternator. CO4 d What is armature reaction? With neat figure explain armature reaction in DC machines under normal working condition. CO4 2 a Explain the reason for tap changing in dc motor. State on which 16 / 20 CO3 2 a Explain with neat sketch the construction of three phase core type and shell type dc motor. CO4 d Draw and explain vector diagram of dc motor loaded with Inductive and capacitive load CO4 3 a Write a brief note on parallel operation of two-single phase dc motor. CO5 b List the advantages and disadvantages of an autodc motor CO6 c Two 250KVA dc motors supplying a network are connected in parallel on both primary and secondary sides. Their voltage ratios are the same. The resistance drops are 1.5% & 0.9% and the reactance drops are 3.33% & 4% respectively. Calculate the KVA loading on each dc motor is 500KVA & at 0.707 lagging p.f. CO6 d What are the conditions to operate two dc motors in parallel? Derive an expression for the copper savings in an autodc motor as	2	2	Evolain the reason for tan changing in de motor. State on which	h 16 /	602	
b Explain current inrush phenomenon in dc motor. CO4 c Derive an equation for the emf induced in an alternator. CO4 d What is armature reaction? With neat figure explain armature reaction in DC machines under normal working condition. CO4 2 a Explain the reason for tap changing in dc motor. State on which 16 / CO3 winding the taps are provided & why? 20 b Explain with neat sketch the construction of three phase core type and shell type dc motor. CO4 c Derive an equation for a single phase dc motor. CO4 d Draw and explain vector diagram of dc motor loaded with Inductive and capacitive load 16 / CO5 3 a Write a brief note on parallel operation of two-single phase dc motors 16 / CO5 c Two 250KVA dc motors supplying a network are connected in parallel on both primary and secondary sides. Their voltage ratios are the same. The resistance drops are 15% & 0.9% and the reactance drops are 3.3% & 4% respectively. Calculate the KVA loading on each dc motor is 500KVA & at 0.707 lagging p.f. CO6 d What are the conditions to operate two dc motors in parallel? Derive an expression for the copper savings in an autodc motor as	2	d			03	
c Derive an equation for the emf induced in an alternator. CO4 d What is armature reaction? With neat figure explain armature reaction in DC machines under normal working condition. Image: Condition of the conditis in an autodc motor of the condition of t		<u>ل</u>		20		
d What is armature reaction? With neat figure explain armature reaction in DC machines under normal working condition. Image: Construction of the construction of the construction of the construction of three phase core type and shell type dc motor. Image: Construction of three phase core type and shell type dc motor. c Derive an equation for a single phase dc motor. Image: Construction of three phase core type and construction of three phase core type and capacitive load Image: Construction of three phase core type and capacitive load 3 a Write a brief note on parallel operation of two-single phase dc motors with unequal voltage ratio. Derive the necessary relation. Image: Construction of two-single phase dc motors and capacitive load 3 a Write a brief note on parallel operation of two-single phase dc motors and capacitive load Image: Construction of two-single phase dc motors and capacitive load b List the advantages and disadvantages of an autodc motor Image: Construction of two supplying a network are connected in parallel on both primary and secondary sides. Their voltage ratios are the same. The resistance drops are 1.5% & 0.9% and the reactance drops are 3.33% & 4% respectively. Calculate the KVA loading on each dc motor and its power factor when the total load on the dc motors is 500KVA & at 0.707 lagging p.f. CO6 d What are the conditions to operate two dc motors in parallel? Image: Construction of two construction of two construction of two constructions in an autodc motor as		-			<u> </u>	
in DC machines under normal working condition. Image: condition in the image: conditing in the image: condithe image: condition in the image: condition					C04	
OR OR 2 a Explain the reason for tap changing in dc motor. State on which 16 / 20 b Explain with neat sketch the construction of three phase core type and shell type dc motor. CO4 c Derive an equation for a single phase dc motor. CO4 d Draw and explain vector diagram of dc motor loaded with Inductive and capacitive load CO5 3 a Write a brief note on parallel operation of two-single phase dc motors 16 / 20 3 a Write a brief note on parallel operation of two-single phase dc motors 20 b List the advantages and disadvantages of an autodc motor 20 c Two 250KVA dc motors supplying a network are connected in parallel on both primary and secondary sides. Their voltage ratios are the same. The resistance drops are 1.5% & 0.9% and the reactance drops are 3.33% & 4% respectively. Calculate the KVA loading on each dc motor and its power factor when the total load on the dc motors is 500KVA & at 0.707 lagging p.f. CO6 d What are the conditions to operate two dc motors in parallel? Derive an expression for the copper savings in an autodc motor as		d		n		
2 a Explain the reason for tap changing in dc motor. State on which 16 / 20 CO3 a Explain with neat sketch the construction of three phase core type and shell type dc motor. CO4 c Derive an equation for a single phase dc motor. CO4 d Draw and explain vector diagram of dc motor loaded with Inductive and capacitive load CO5 3 a Write a brief note on parallel operation of two-single phase dc motor 20 3 a Write a brief note on parallel operation of two-single phase dc motors 16 / 20 b List the advantages and disadvantages of an autodc motor 20 c Two 250KVA dc motors supplying a network are connected in parallel on both primary and secondary sides. Their voltage ratios are the same. The resistance drops are 1.5% & 0.9% and the reactance drops are 3.33% & 4% respectively. Calculate the KVA loading on each dc motor and its power factor when the total load on the dc motors is 500KVA & at 0.707 lagging p.f. CO6 d What are the conditions to operate two dc motors in parallel? Derive an expression for the copper savings in an autodc motor as						
winding the taps are provided & why? 20 b Explain with neat sketch the construction of three phase core type and shell type dc motor. CO4 c Derive an equation for a single phase dc motor. d Draw and explain vector diagram of dc motor loaded with Inductive and capacitive load 3 a Write a brief note on parallel operation of two-single phase dc motors 16 / 3 a Write a brief note on parallel operation of two-single phase dc motors 20 b List the advantages and disadvantages of an autodc motor 20 c Two 250KVA dc motors supplying a network are connected in parallel on both primary and secondary sides. Their voltage ratios are the same. The resistance drops are 1.5% & 0.9% and the reactance drops are 3.33% & 4% respectively. Calculate the KVA loading on each dc motor and its power factor when the total load on the dc motors is 500KVA & at 0.707 lagging p.f. d What are the conditions to operate two dc motors in parallel? Derive an expression for the copper savings in an autodc motor as						
b Explain with neat sketch the construction of three phase core type and shell type dc motor. CO4 c Derive an equation for a single phase dc motor. Image: Cost of the single phase dc motor. d Draw and explain vector diagram of dc motor loaded with Inductive and capacitive load Image: Cost of the single phase dc motors. 3 a Write a brief note on parallel operation of two-single phase dc motors with unequal voltage ratio. Derive the necessary relation. 16 / 20 b List the advantages and disadvantages of an autodc motor Image: Cost of the same. The resistance drops are 15% & 0.9% and the reactance drops are 3.33% & 4% respectively. Calculate the KVA loading on each dc motor and its power factor when the total load on the dc motors is 500KVA & at 0.707 lagging p.f. CO6 d What are the conditions to operate two dc motors in parallel? Derive an expression for the copper savings in an autodc motor as	2	а			CO3	
shell type dc motor. Image: constraint of the single phase dc motor. Image: constraint of the single phase dc motor. c Derive an equation for a single phase dc motor. Image: constraint of the single phase dc motor. Image: constraint of the single phase dc motor. d Draw and explain vector diagram of dc motor loaded with Inductive and capacitive load Image: constraint of the single phase dc motors. Image: constraint of the single phase dc motor. Image: constraint of the si						
c Derive an equation for a single phase dc motor. d Draw and explain vector diagram of dc motor loaded with Inductive and capacitive load 3 a Write a brief note on parallel operation of two-single phase dc motors 16 / with unequal voltage ratio. Derive the necessary relation. 20 b List the advantages and disadvantages of an autodc motor 20 c Two 250KVA dc motors supplying a network are connected in parallel on both primary and secondary sides. Their voltage ratios are the same. The resistance drops are 1.5% & 0.9% and the reactance drops are 3.33% & 4% respectively. Calculate the KVA loading on each dc motor and its power factor when the total load on the dc motors is 500KVA & at 0.707 lagging p.f. CO6 d What are the conditions to operate two dc motors in parallel? Derive an expression for the copper savings in an autodc motor as		b		d	CO4	
d Draw and explain vector diagram of dc motor loaded with Inductive and capacitive load Image: Construction of two-single phase dc motors and capacitive load 3 a Write a brief note on parallel operation of two-single phase dc motors with unequal voltage ratio. Derive the necessary relation. 16 / 20 b List the advantages and disadvantages of an autodc motor 20 c Two 250KVA dc motors supplying a network are connected in parallel on both primary and secondary sides. Their voltage ratios are the same. The resistance drops are 1.5% & 0.9% and the reactance drops are 3.33% & 4% respectively. Calculate the KVA loading on each dc motor and its power factor when the total load on the dc motors is 500KVA & at 0.707 lagging p.f. CO6 d What are the conditions to operate two dc motors in parallel? Derive an expression for the copper savings in an autodc motor as						
and capacitive load Image: Construct of the coperation of two-single phase dc motors is 500KVA & at 0.707 lagging p.f. 16 / CO5 3 a Write a brief note on parallel operation of two-single phase dc motors in parallel 20 3 a Write a brief note on parallel operation of two-single phase dc motors in parallel CO5 4 b List the advantages and disadvantages of an autodc motor 16 / 20 5 c Two 250KVA dc motors supplying a network are connected in parallel on both primary and secondary sides. Their voltage ratios are the same. The resistance drops are 1.5% & 0.9% and the reactance drops are 3.33% & 4% respectively. Calculate the KVA loading on each dc motor and its power factor when the total load on the dc motors is 500KVA & at 0.707 lagging p.f. CO6 6 What are the conditions to operate two dc motors in parallel? Image: Condition of the copper savings in an autodc motor as						
3 a Write a brief note on parallel operation of two-single phase dc motors 16 / 20 3 a Write a brief note on parallel operation of two-single phase dc motors 16 / 20 b List the advantages and disadvantages of an autodc motor 20 c Two 250KVA dc motors supplying a network are connected in parallel on both primary and secondary sides. Their voltage ratios are the same. The resistance drops are 1.5% & 0.9% and the reactance drops are 3.33% & 4% respectively. Calculate the KVA loading on each dc motor and its power factor when the total load on the dc motors is 500KVA & at 0.707 lagging p.f. CO6 d What are the conditions to operate two dc motors in parallel? Derive an expression for the copper savings in an autodc motor as		d		e		
with unequal voltage ratio. Derive the necessary relation.20bList the advantages and disadvantages of an autodc motorcTwo 250KVA dc motors supplying a network are connected in parallel on both primary and secondary sides. Their voltage ratios are the same. The resistance drops are 1.5% & 0.9% and the reactance drops are 3.33% & 4% respectively. Calculate the KVA loading on each dc motor and its power factor when the total load on the dc motors is 500KVA & at 0.707 lagging p.f.CO6dWhat are the conditions to operate two dc motors in parallel?Derive an expression for the copper savings in an autodc motor as			and capacitive load			
with unequal voltage ratio. Derive the necessary relation.20bList the advantages and disadvantages of an autodc motorcTwo 250KVA dc motors supplying a network are connected in parallel on both primary and secondary sides. Their voltage ratios are the same. The resistance drops are 1.5% & 0.9% and the reactance drops are 3.33% & 4% respectively. Calculate the KVA loading on each dc motor and its power factor when the total load on the dc motors is 500KVA & at 0.707 lagging p.f.CO6dWhat are the conditions to operate two dc motors in parallel?Derive an expression for the copper savings in an autodc motor as						
bList the advantages and disadvantages of an autodc motorcTwo 250KVA dc motors supplying a network are connected in parallel on both primary and secondary sides. Their voltage ratios are the same. The resistance drops are 1.5% & 0.9% and the reactance drops are 3.33% & 4% respectively. Calculate the KVA loading on each dc motor and its power factor when the total load on the dc motors is 500KVA & at 0.707 lagging p.f.CO6dWhat are the conditions to operate two dc motors in parallel?Derive an expression for the copper savings in an autodc motor as	3	а		s 16 /	CO5	
cTwo 250KVA dc motors supplying a network are connected in parallel on both primary and secondary sides. Their voltage ratios are the same. The resistance drops are 1.5% & 0.9% and the reactance drops are 3.33% & 4% respectively. Calculate the KVA loading on each dc motor and its power factor when the total load on the dc motors is 500KVA & at 0.707 lagging p.f.CO6dWhat are the conditions to operate two dc motors in parallel? Derive an expression for the copper savings in an autodc motor asCO6			with unequal voltage ratio. Derive the necessary relation.	20		
on both primary and secondary sides. Their voltage ratios are the same. The resistance drops are 1.5% & 0.9% and the reactance drops are 3.33% & 4% respectively. Calculate the KVA loading on each dc motor and its power factor when the total load on the dc motors is 500KVA & at 0.707 lagging p.f.dWhat are the conditions to operate two dc motors in parallel?Derive an expression for the copper savings in an autodc motor as		b	List the advantages and disadvantages of an autodc motor			
on both primary and secondary sides. Their voltage ratios are the same. The resistance drops are 1.5% & 0.9% and the reactance drops are 3.33% & 4% respectively. Calculate the KVA loading on each dc motor and its power factor when the total load on the dc motors is 500KVA & at 0.707 lagging p.f.dWhat are the conditions to operate two dc motors in parallel?Derive an expression for the copper savings in an autodc motor as		С	Two 250KVA dc motors supplying a network are connected in paralle	əl	CO6	
same. The resistance drops are 1.5% & 0.9% and the reactance drops are 3.33% & 4% respectively. Calculate the KVA loading on each dc motor and its power factor when the total load on the dc motors is 500KVA & at 0.707 lagging p.f.dWhat are the conditions to operate two dc motors in parallel?Derive an expression for the copper savings in an autodc motor as			on both primary and secondary sides. Their voltage ratios are th	e		
motor and its power factor when the total load on the dc motors is 500KVA & at 0.707 lagging p.f. d d What are the conditions to operate two dc motors in parallel? Derive an expression for the copper savings in an autodc motor as			same. The resistance drops are 1.5% & 0.9% and the reactance drop	s		
motor and its power factor when the total load on the dc motors is 500KVA & at 0.707 lagging p.f. d d What are the conditions to operate two dc motors in parallel? Derive an expression for the copper savings in an autodc motor as			are 3.33% & 4% respectively. Calculate the KVA loading on each d	c		
500KVA & at 0.707 lagging p.f. 6 d What are the conditions to operate two dc motors in parallel? Derive an expression for the copper savings in an autodc motor as						
dWhat are the conditions to operate two dc motors in parallel?Derive an expression for the copper savings in an autodc motor as						
Derive an expression for the copper savings in an autodc motor as		d				
				s		

3	a	A 400/100V, 10 KVA, 2 winding dc motor is to be employed as an autodc motor to supply a 400volts circuit from 500volts source. When		CO5	
		tested as 2 winding dc motor at rated load of 0.85 p.f lagging, its efficiency is 97%. Determine its KVA rating and efficiency as an autodc			
	b	motor Derive an equation for the emf induced in an alternator.			
		What is armature reaction? With neat figure explain armature reaction		CO6	
		in DC machines under normal working condition.			
	d				
		Draw and explain the characteristics of DC series motor.			
4	a	Explain Parallel operation of motors and load sharing	16 / 20	CO7	
	b	Draw Power angle characteristic of motor and explain			
	С	Write short note on Voltage regulation of motor		C08	
	d	OR			
		Wright short note on capability of synchronous motor			
4	а	What is hunting in synchronous motor	16 / 20	C07	
	b	Explain role of damping winding		CO8	
	С	With neat sketch explain OCC and SCC characteristics of synchronous motor			
	d	Differentiate between synchronous reactance, adjusted synchronous reactance and Potier reactance			
		List the advantages and disadvantages of synchronous impedance of computing the regulation			
5	а	Define short circuit ratio	16 / 20	CO9	
	b	What is the relation between short circuit ratio and synchronous reactance		CO10	
	С	Explain role of damping winding			
	d	OR			
		Define short circuit ratio			
5	а	What is the relation between short circuit ratio and synchronous reactance	16 / 20	CO9	
	b	Name the various method for determining of voltage regulation for 3 phase alternator and describe any one method in detail			
	С	A 2300V,50Hz 3 phase star connected alternator has an effective armature resistance 0.20hm a field current of 35A is produced a current of 150A on short circuit and open circuit emf 780V(line) calculate the voltage regulation of 0.8 pf lagging for the full load current of 25A		C010	
	d	Analyze precisely the computing time and space requirements of this new version of Prim's algorithm using adjacency lists.			

2. SEE Important Questions

Course:		ELECTRIC MO	TORS				Month	/ Year	May /	2018
Crs Cod	e:	18EE44	Sem:	7	Marks:	80	Time:		180 mi	inutes
	Note Answer all FIVE full questions. All questions carry equal marks.			-	-					
Module	Qno.	Important Que	estion					Marks	СО	Year
1		Explain the reason for tap changing in dc motor. State on which					10	CO1	2004	
		winding the ta	winding the taps are provided & why?							
	b Explain with neat sketch the construction of three phase core type and					10	CO2	2013		
		shell type dc r	shell type dc motor.							
	c Derive an equation for a single phase dc motor.				10	CO2	2013			
	d	Draw and exp	lain vect	or diagram of c	lc motor loa	ded with Ind	ductive	10	CO2	2013
	and capacitive load									

	е	Explain open-delta connection with the help of neat diagram. Show	10	CO2	2012
		that open-delta connection has a KVA rating of 58% of the rating of the normal delta-delta connection.			
		Show the terminal connections of a three-phase dc motor with phasor			
		diagram and corresponding clock method representation 1)Dd0 2) Yy6 3) Dy1 4) Yd11			
2	a	Draw and explain equivalent circuit of tertiary dc motor.	10	CO3	201
	b	Explain the reason for tap changing in dc motor. State on which winding the taps are provided & why?	8	CO3	201
	С	Explain current inrush phenomenon in dc motor.	8	CO3	201
	d	Derive an equation for the emf induced in an alternator.	10	CO4	201
	е	What is armature reaction? With neat figure explain armature reaction in DC machines under normal working condition.	10	CO4	201
3	а	Draw and explain equivalent circuit of tertiary dc motor.	8	CO5	201
<u> </u>	b	Explain the reason for tap changing in dc motor. State on which	8	CO5	201
		winding the taps are provided & why?			
	С	Explain current inrush phenomenon in dc motor.	8	CO5	201
	d	Derive an equation for the emf induced in an alternator.	9	CO6	201
	е	What is armature reaction? With neat figure explain armature reaction in DC machines under normal working condition.	9	CO6	201
		What are the sources of noise in dc motor? How to reduce the noise problem in dc motor?			
4	а	Explain Parallel operation of motors and load sharing	10	CO7	200
	b	Draw Power angle characteristic of motor and explain	10	CO7	200
	С	Write short note on Voltage regulation of motor	10	CO7	201
	d	With a phasor diagram explain the concept the two reaction theory in a salient pole machine	10	CO8	200
	е	Write short note on V-curves of synchronous motor	14	CO8	200
5	a	Wright short note on capability of synchronous motor	10	CO9	201
0	b	What is hunting in synchronous motor	10	CO9	201
	С	Explain role of damping winding	10	CO9	201
	d	With neat sketch explain OCC and SCC characteristics of synchronous motor	12	CO10	-
	е	Differentiate between synchronous reactance, adjusted synchronous reactance and Potier reactance	12	CO10	200
		List the advantages and disadvantages of synchronous impedance of computing the regulation			
		Define short circuit ratio			
		What is the relation between short circuit ratio and synchronous reactance			

G. Content to Course Outcomes

1. TLPA Parameters

Table 1: TLPA – Example Course

Module-	Course Content or Syllabus	Content	Blooms'	Final	Identified	Instruction	Assessment
#	(Split module content into 2	Teaching	Learning	Blooms'	Action	Methods	Methods to
	parts which have similar	Hours	Levels	Level	Verbs for	for	Measure
	concepts)		for		Learning	Learning	Learning
			Content				
A	В	С	D	E	F	G	Н
	DC Motors: Classification, Back	3	- L1	L2	-	- Lecture	- Slip Test
	emf, Torque equation, and		- L2		-	-	-
	significance of back emf,					-	-
	Characteristics of shunt, series &						
	compound motors. Speed control						

	of shunt, series and compound motors. Application of motors						
1	DC motor starters –3 point and 4 point Losses and efficiency- Losses in DC motors, power flow diagram,efficiency, condition for maximum efficiency	9	- L3 - L4	L4	-	- Lecture - Tutorial -	- Assignmen - -
2	Testing of dc motors: Direct & indirect methods of testing of DC motors-Brake test, Swinburne's test, Retardation test, Hopkinson's test, Field's test, merits and demerits of tests Three phase Induction motors: Review of concept and generation of rotating magnetic field, Principle of operation, construction	4	- L2 - L3	L3	-	- Lecture -	- Assignment -
2	classification and types; squirrel- cage, slip-ring (No question shall be set from the review portion). Slip, Torque equation, torque- slipcharacteristic covering motoring, generating and braking regions of operation, Maximum torque, significance of slip	3	- L2 - L2	L2	-	- Lecture -	- Slip Test -
3	Performance of three-phase Induction Motor: Phasor diagram of induction motor on no-load and on load, equivalent circuit, losses, efficiency, No-load and blocked rotor tests. Performance of the motor from the circle diagram and equivalent circuit.	5	- L1 - L3	L3	-	- Lecture -	- Slip Test -
3	Cogging and crawling High torque rotors-double cage and deep rotor bars. Equivalent circuit and performance evaluation of double cage induction motor. Induction motor working as induction generator;standalone operation and grid connected operation.	12	- L3 - L2	L3	-	- Lecture - Tutorial -	- Assignmen - -
4	Starting and speed Control of Three-phase Induction Motors: Need for starter. Direct on line, Star-Delta and auto transformer starting. Rotor resistance starting. Speed control by voltage, frequency, and rotor resistance methods Single-phase Induction Motor:	8	- L3 - L1	L3	-	- Lecture - Tutorial -	- Assignment - -
4	Double revolving field theory and principle of operation. Construction and operation of split-phase, capacitor start, capacitor run, and shaded pole	8	- L2 - L4	L4	-	- Lecture - Tutorial -	- Assignment - -

Copyright ©2017. cAAS. All rights reserved.

	operation, phasor diagrams, torque and torque angle, Blondel diagram, effect of change in load, effect of change in excitation, V and inverted V curves		- L2		-	-	Assignment - -
5	Synchronous con denser, hunting and damping. Methods of starting synchronous motors Other motors:Construction and operation of Universal motor, AC servomotor, Linear induction motor and stepper motors.	5	- L2 - L2	L2	-	- Lecture - -	- Assignment - -

2. Concepts and Outcomes:

Table 2: Concept to Outcome – Example Course

			-	-		
Modul e-#	/	Identified Concepts from Content	Final Concept	Concept Justification (What all	CO Components (1.Action	Course Outcome
	Content or Syllabus			Learning Happened from the study of Content / Syllabus. Ashort	3.Condition / Methodology	Student Should be able to
				word for learning or outcome)	4.Benchmark)	
A	1	J	K	L	М	Ν
1		cs and operation	cs and operation DC motor	DC motor	- DC motor - -	Understand the working of DC motor
1	Three-phase D C Motors			motors		Analyze the Testing in DC motors.
2	Parallel Operation of D C Motors			Working andCharacteristi cs of Induction motor	- Induction	Analyze the Characteristics of Induction motor.
		Copper saving in transformer			- Starting methods	Understand the working of differentStarting methods of induction motor.
3	winding D C Motors	Tertiary winding	cs of Induction motor	of Synchronous Motor	- Synchronous Motor 	UnderstandSynchron ous Motor
3		Characteristi cs of DC generator	induction	Characteristics and operation DC motor		Understand operation DC motor.

					-	
4		Operation of AC generator				Understand the testing Induction
	THOLOIS	AC generator	induction	motors	- resurig	motor.
			motor			
4		Characteristi				Analyze the working
	5			andCharacteristi		of single phase
	characteristics	generator	induction	cs of Induction	phase	induction motor.
			motor	motor	induction	
					motor	
5	Synchronous	Test on	Characteristi	Starting		Explain the working of
		Synchronous				Starting methods
	voltage	generator	Synchronous	induction motor	methods	
	regulation		Moto			
5	Performance	Hunting in	characteristic	Characteristics	- Understand	Understand of
	of	AC motors	s of different	of Synchronous	-	characteristics of
	Synchronous		motor	Motor	characteristic	synchronous motor
	generator				S	