Ref No:

< Sri Krishna Institute of Technology, Bangalore>

COURSE PLAN

Academic Year 2019

Program:	B E – Electrical and Electronics Engineering
Semester :	4
Course Code:	18EE42
Course Title:	Power Generation and Economics
Credit / L-T-P:	4 / 4-0-0
Total Contact Hours:	50
Course Plan Author:	Chaitra A S

Academic Evaluation and Monitoring Cell

< Sri Krishna Institute of Technology #29, Hesaraghatta Main Road Chimney Hills, Chikkabanavara Post> <Bangalore– 560090,Katakana, India.> <Phone / Fax :+91-STD-080 > <Web: skit.org.in, e-mail: >

Table of Contents

A. COURSE INFORMATION	4
<u>1. Course Overview</u>	
2. Course Content	4
3. Course Material	
<u>4. Course Prerequisites</u>	6
5. Content for Placement, Profession, HE and GATE	<u>6</u>
B. OBE PARAMETERS	6
<u>1. Course Outcomes</u>	6
2. Course Applications	7
3. Mapping And Justification	7
<u>4. Articulation Matrix</u>	8
<u>5. Curricular Gap and Content</u>	<u>8</u>
6. Content Beyond Syllabus	9
C. COURSE ASSESSMENT	9
<u>1. Course Coverage</u>	9
2. Continuous Internal Assessment (CIA)	
D1. TEACHING PLAN - 1	
Module - 1	<u></u> 10
Module – 2	<u></u> 11
<u>E1. CIA EXAM – 1</u>	
<u>a. Model Question Paper - 1</u>	<u>12</u>
<u>b. Assignment -1</u>	
D2. TEACHING PLAN - 2	<u>16</u>
Module – 3	
Module – 4	<u>17</u>
E2. CIA EXAM – 2	
<u>a. Model Question Paper - 2</u> <u>b. Assignment – 2</u>	
<u>b. Assignment – 2</u>	
D3. TEACHING PLAN - 3	<u>22</u>
Module – 5	
E3. CIA EXAM – 3	
a. Model Question Paper - 3	
<u>b. Assignment – 3</u>	
F. EXAM PREPARATION.	
1. University Model Question Paper	
2. SEE Important Questions	
G. Content to Course Outcomes	
<u>1. TLPA Parameters</u>	
2. Concepts and Outcomes:	

Note : Remove "Table of Content" before including in CP Book

Each Course Plan shall be printed and made into a book with cover page Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	EE
Semester:	4	Academic Year:	2019
Course Title:	Power Generation and Economics	Course Code:	18EE42
Credit / L-T-P:	4-0-0	SEE Duration:	180 Minutes
Total Contact Hours:	50 Hours	SEE Marks:	60 Marks
CIA Marks:	30 Marks	Assignment	1 / Module
Course Plan Author:	Chaitra A S	Sign	Dt:
Checked By:		Sign	Dt:
CO Targets	CIA Target : %	SEE Target:	%

Note: Define CIA and SEE % targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute. Identify 2 concepts per module as in G.

Mod	Content	Teachi	
ule		ng	Learning
		Hours	Levels
1	Hydroelectric Power Plants: Hydrology, run of f and stream flow, hydrograph, flow duration curve, Mass curve, reservoir capacity, dam storage. Hydrological cycle, merits and demerits of hydroelectric power plants, Selection of site General arrangement of hydel plant, elements of the plant, Classification of the plants based on water flow regulation water head and type of load the plant has to supply. Water turbines –Pelton wheel, Francis, Kaplan and propeller turbines, selection of water turbines. Underground, small hydro and pumped storage plants. Choice of size and number of units, plant layout and auxiliaries.		Understandi ngL2, Understandi ngL2
2	 Steam Power Plants: Introduction, Efficiency of steam plants, Merits and demerits of plants, selection of site. Working of steam plant, Power plant equipment and layout, Steam turbines, Fuels and fuel handling, Fuel combustion and combustion equipment, Coal burners, Fluidized bed combustion, Combustion control, Ash handling, Dust collection, Draught systems, Feed water, Steam power plant controls, plant auxiliaries. Diesel Power Plant: Introduction, Merits and demerits, selection site, elements of diesel power plant, applications. Gas Turbine Power Plant : Introduction, Merits and demerits, selection site, Fuels for gas turbines, Elements of simple gas turbine power plant, Methods of improving thermal efficiency of a simple steam power plant, Closed cycle gas turbine power plants. Comparison of gas power plant with steam and diesel power plants. 	(5, 5)	Understandi ngL2, Understandi ngL2
3	Nuclear Power Plants: Introduction, Economics of nuclear plants, Merits and demerits, selection of site, Nuclear reaction, Nuclear fission process, Nuclear chain reaction, Nuclear energy, Nuclear fuels, Nuclear plant and layout, Nuclear reactor and its control, Classification of reactors, power reactors in use, Effects of nuclear plants, Disposal of nuclear waste and effluent, shielding.		Understandi ngL2, Understandi ngL2

4	Substations: Introduction to Substation equipment; Transformers, High Voltage Fuses, High Voltage Circuit Breakers and Protective Relaying, High Voltage Disconnect Switches, Lightning Arresters, High Voltage Insulators and Conductors, Voltage Regulators, Storage Batteries, Reactors, Capacitors, Measuring Instruments, and power line carrier communication equipment. Classification of substations – indoor and outdoor, Selection of site for substation, Busbar arrangement schemes and single line diagrams of substations Interconnection of power stations. Introduction to gas insulated substation, Advantages and economics of Gas insulated substation. Grounding: Introduction, Difference between grounded and ungrounded system. System grounding – ungrounded, solid grounding, resistance grounding, reactance grounding, resonant grounding. Earthing transformer. Neutral grounding and neutral grounding transformer	10 (5, 5)	Understandi ng L2, Analyzing L4
5	Economics: Introduction, Effect of variable load on power system, classification of costs, Cost analysis. Interest and Depreciation, Methods of determination of depreciation, Economics of Power generation, different terms considered for power plants and their significance, load sharing. Choice of size and number of generating plants. Tariffs, objective, factors affecting the tariff, types. Types of consumers and their tariff. Power factor, disadvantages, causes, methods of improving power factor, Advantages of improved power factor, economics of power factor improvement and comparison of methods of improving the power factor. Choice of equipment.	10 (5, 5)	Analyzing L4, Analyzing L4
-	Total	50	-

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 – 30 minutes

2. Design: Simulation and design tools used – software tools used ; Free / open source

3. Research: Recent developments on the concepts – publications in journals; conferences etc.

Modul	Details	Chapters	Availability
es		in book	
Α	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
1, 2,3	Power Plant Engineering, P.K. Nag Mc GrawHill 4th Edition, 2014	1, 2, 3,	In Lib
		4, 5	
3	Generation of Electrical Energy B.R.Gupta S. Chand 2015		
	Electrical power Generation, Transmission and Distribution S.N. Singh		
	PHI 2 [™] Edition, 2009		
В	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
1, 2	Power Plant Engineering, P.K. Nag Mc GrawHill 4th Edition, 2014	?	In dept
1, 2	Electrical power Generation, Transmission and Distribution S.N. Singh PHI 2 [∞] Edition, 2009		
С	Concept Videos or Simulation for Understanding	-	-

C1	https://www.youtube.com/watch?v=uy9lZCdkQIM Lecture Series on Power System Generation, Transmission and Distribution		
C2	https://www.youtube.com/watch?v=gd1nruo4_iA		
C3	https://www.youtube.com/watch?v=lr1jgbR5ca8 https://www.youtube.com/watch?v=dhmY0IBcw0U		
C4	https://www.youtube.com/watch?v=lr1jgbR5ca8 https://www.youtube.com/watch?v=dhmYOIBcwOU		
C5	https://nptel.ac.in/courses/108102047/12		
C6	https://nptel.ac.in/courses/108102047/12		
C7	https://nptel.ac.in/courses/108105104/21		
C8	https://nptel.ac.in/courses/108102047/18		
C9	https://www.youtube.com/watch?v=_iz8ZkjD7z8		
C10	https://nptel.ac.in/courses/108107112/3		
D	Software Tools for Design	-	-
E	Recent Developments for Research	-	-
	https://ieeexplore.ieee.org/document/7836860		
F	Others (Web, Video, Simulation, Notes etc.)	-	-
1	<u>Www.youtube.com</u>		
?			

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Students must have learnt the following Courses / Topics with described Content

Mod	Course	Course Name	Topic / Description	Sem	Remarks	Blooms
ules	Code					Level
1	17ELE15/	Basic Electrical	Single phase AC circuits	1/2		L2
	25	Engineering	Synchronous Generator			

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Mod	Topic / Description	Area	Remarks	Blooms
ules				Level
1,2,3,	Electric Power system	Advanced		L3,L4
4,5		Topics		

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs

-	-	Total	50	-	-	L2-L4
					Assignme nt	
5	17EE42.5	Explain the importance of power factor improvement.	10	Lecture	unit Test and	Analyzing L4
4		Understand the economic aspects of power system operation and its effects.		Lecture / PPT	and Assignme nt	L4
3	17EE42.3	Explain the types of grounding and its importance.	10	Lecture / PPT		Understand ingL2,
2		Classify various substations and explain the operation of different equipment's in substations.		Lecture	and Assignme nt	
1	17EE42.1	Analyze the working of hydroelectric, steam, nuclear power plants and mention the functions of various equipment of the power plants.		Lecture		Understand ingL2,
ules	Code.#	At the end of the course, student should be able to			nt Method	Level
Mod	Course	Course Outcome	Teach. Hours	Instr Method	Assessme	Blooms'

2. Course Applications

Write 1 or 2 applications per Module

Students should be able to employ / apply the course learnings to

Mod	Application Area	CO	Level					
ules	Compiled from Module Applications.							
1	Used to in Hydroelectric power plant	CO1	L1,L2					
1	Used to in Hydroelectric power plant design	CO1	L4					
2	In design and installation of Stream power plants	CO1	L4					
2	In design and installation of Diesel power plants	CO1	L3					
3	In design of Nuclear power plants	CO1	L3					
3	In installation of Nuclear power plants	CO2	L4					
4	Substantiation inhalation and commissioning	CO2	L2					
4	Inhalation of grounding systems	CO3	L4					
5	Tariff building and revenue generation	CO5	L4					
5	Power factor improvements in real time applications	CO5	L2					

3. Articulation Matrix

CO - PO Mapping with mapping level for each CO-PO pair, with course average attainment.

		,			'									-				
-	-	Course Outcomes	Program Outcomes					-										
Mod	CO.#	At the end of the course	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	Lev
ules		student should be able to	1	2	3	4	5	6	7	8	9	10	11	12	O1	02	О3	el
1		Analyze the working of hydroelectric, steam, nuclear power plants and mention the functions of various equipment of the power plants.																
1		Classify various substations and explain the operation of different																

		equipment's in substations.														
2		Explain the types of grounding and its importance.														
2		Understand the economic aspects of power system operation and its effects.														
3	17EE42.5	Explain the importance of power factor improvement.														
-	15EE81	Average attainment (1, 2, or 3)														-
-		1.Engineering Knowledge; 2.Probled 4.Conduct Investigations of Complet Society; 7.Environment and Sus 10.Communication; 11.Project Mc S1.Software Engineering; S2.Data Ba	x Pro staine anag	obler abilit eme	ms; ty; ent	5.Me 8.Ei an	oderr thics; d F	n Toc : 9.1 - inan	l Us ndiv ce;	age idua 12.	e; 6.7 al	The anc	Eng d T	gine Tear	er o nwo	and ork;

4. Curricular Gap and Content

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

M		Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
ul	es					
1	1					
2	2					

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Mod	Title	Teach.			f quest		Exam		CO	Levels
ules		Hours	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE		
							Asg			
1	Hydroelectric Power Plants	10	2	-	-	1	1	2	CO1, CO2	L1, L2
2	Steam Power Plants, Diesel Power	10	2	-	-	1	1	2	CO1, CO2	L1,L2
	Plant, Gas Turbine Power Plant									
3	Nuclear Power Plants:	10	-	2	-	1	1	2	CO1, CO2	L1,L2
4	Substations	10	-	2	-	1	1	2	CO3	L4
	Grounding									
5	Economics	10	-	-	4	1	1	2	CO4,CO5	L4
-	Total	50	4	4	4	5	5	10	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Mod	Evaluation	Weightage in	СО	Levels
ules		Marks		
1, 2	CIA Exam – 1	30	CO1, CO2	L2, L2, L3,L3
3, 4	CIA Exam – 2	30	CO1, CO2, CO3	L4,L4,L2,L4
5	CIA Exam – 3	30	CO5	L4,L2
1, 2	Assignment - 1	10	CO1, CO2	L2, L2, L3,L3
3, 4	Assignment - 2	10	CO1, CO2, CO3	L4,L4,L2,L4
5	Assignment - 3	10	CO5	L4,L2

	Seminar - 1		-	-
3, 4	Seminar - 2		-	-
5	Seminar - 3		-	-
	Quiz - 1		-	-
3, 4	Quiz - 2		-	-
5	Quiz - 3		-	-
1 - 5	Other Activities – Mini Project	-		
	Final CIA Marks	40	-	-

D1. TEACHING PLAN - 1

Module - 1

Title:	Introduction to power systems, Overhead transmission lines and insulators	Appr Time:	12 Hrs
a	Course Outcomes	-	Blooms
-		-	Level
1	Analyze the working of hydroelectric, steam, nuclear power plants and mention the functions of various equipment of the power plants.		L2
2	Classify various substations and explain the operation of different equipment's in substations.	CO2	L2
b	Course Schedule	-	-
lass No	Module Content Covered	со	Level
1	Hydrology, run of f and stream flow, hydrograph, flow duration curve,	C01	L2
2	Mass curve, reservoir capacity	C01	L2
3	dam storage. Hydrological cycle, merits and demerits of hydroelectric power plants	C01	L2
4	, Selection of site. General arrangement of hydel plant,	C01	L2
5	elements of the plant, Classification of the plants based on water flow regulation,	C01	L2
6	water head and type of load the plant has to supply.	C02	L2
7	Water turbines –Pelton wheel, Francis, Kaplan and propeller turbines.	C02	L3
8	Characteristic of water turbines Governing of turbines, selection of water turbines.	C02	L3
9	Underground, small hydro and pumped storage plants.	C02	L2
10	Choice of size and number of units, plant layout and auxiliaries.	C02	L2
с	Application Areas	со	Level
1	Construction of hydroelectric power generating plans	CO1	L2
2	Design and installation of hydroelectric power plants	CO2	L4
d	Review Questions	-	-
1	Discuss the factor which affect-the thermal efficiency of thermal power plant in short.	CO1	L2
2	What is the function of storage and pondage in hydro power plant?	CO1	L2
3	Write factor considered for selection of nuclear power plant.	CO1	L2
4	Why water hammer creates & How?.	CO1	L1
5	What is hydrology?	CO1	L2
6	When & where diesel electric power plants are used	CO2	L1
7	What is function of air pre heater in steam power plant?	CO1	L2
,			

8	Explain condenser used in steam power plant.	CO1	L2
9	Discuss the factor which affect-the thermal efficiency of thermal power plant in short.	CO1	L2
10	What is the function of storage and pondage in hydro power plant?	CO2	L2
11	Write factor considered for selection of nuclear power plant.	CO2	L1
12	Why water hammer creates & How?.	CO1	L2
14			
е	Experiences	-	-
1		CO1	L2
2			
b	Course Schedule	-	-

Module – 2

Title:	Line Parameters	Appr	7 Hrs
		Time:	
a	Course Outcomes	CO	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Analyze the working of hydroelectric, steam, nuclear power plants and mention the functions of various equipment of the power plants.	CO1	L2
2	Classify various substations and explain the operation of different equipment's in substations.	CO2	L2
b	Course Schedule		
Class No	Portion covered per hour	СО	Level
1	Steam Power Plants: Introduction, Efficiency of steam plants, steam power plant, Closed cycle gas turbine power plants.	CO5	L4
2	Merits and demerits of plants, selection of site. Working of steam plant		
3	Power plant equipment and layout, Steam turbines, Fuels and fuel handling	-	-
4	Fuel combustion and combustion equipment	CO3	L1
5	Coal burners, Fluidized bed combustion	CO3	L1
6	Combustion control, Ash handling, Dust collection, Draught systems, Feed water, Steam power plant controls	CO3	L2
7	, plant auxiliaries. Diesel Power Plant	CO3	L1
8	Introduction, Merits and demerits, selection site, elements of diesel power plant, applications		
9	Gas Turbine Power Plant : Introduction, Merits and demerits, selection site		
10	or gas turbines, Elements of simple gas turbine power plant		
11	Comparison of gas power plant with steam and diesel power plants.		
с	Application Areas	со	Level
1	Installation and design of steam power plant	CO5	L4
2	Design and installation of gas turbine power plants	CO6	L4

d	Review Questions	-	-
1	What is the function of storage and pondage in hydro power plant?	CO3	L1
2	Write factor considered for selection of nuclear power plant.	CO3	L1
3	Why water hammer creates & How?.	CO3	L2
4	What is hydrology?	CO3	L1
5	When & where diesel electric power plants are used	CO3	L1
6	What is function of air pre heater in steam power plant?	CO4	L1
7	Explain condenser used in steam power plant.	CO4	L2
8	Discuss the factor which affect-the thermal efficiency of thermal power plant in short.	CO4	L2
9	What is the function of storage and pondage in hydro power plant?	CO4	L2
10	Write factor considered for selection of nuclear power plant.	CO4	L1

E1. CIA EXAM – 1

a. Model Question Paper - 1

Crs (Code	17EE42	Sem:		IV		Marks	: 3	0	Ti	me:	75	minute	S	
Cou	rse:	Power Gen	eration	and E	conor	nics									
-		Note: Ansv											Marks	СО	Level
1	а	Describe							ectric	Powe	er Plan	t?	5	CO1	L2
	b	What are											5	CO1	L2
	С	With bloc	k diagr	ram E	xplair	n the	workir	ng of t	ne stea	am Po	ower P	lant	5	CO1	L2
							OR								
2	а	Explain th advantage								plant	Statir	ng its	5	CO2	L2
	b	Explain th	Explain the underground hydro-electric power plant.										5	CO2	L2
	С	What are	What are the merits and demerits of Steam power plants										5	CO2	L2
										-					
3	а	Explain In	npulse	and F	Reacti	on ty	pes o	f turbir	nes				8	CO2	L2
	b	Explain th	e Com	pone	nts of	stea	m Po\	wer pla	ant.				7	CO1	L2
				-			OR	-							
4	а	Explain M	ini and	Micro	o hyd	ro ele	ectric	ower	plant.				6	CO2	L2
	b	The averabelow:								t a si	te is	given	9	CO1	L3
		Week	1	2	3	4	5	6	7	8	9	10			
		Q(m ^{3/} Sec)	50 0	50 0	35 0	20 0	30 0	800	110 0	90 0	400	20 0			
		a. Calcula b. Plot the c. Plot flov d. Plot ma	e Hydro w durat	ograpl tion C	п.	schar	ge ava	ailable							

b. Assignment -1

Crs Coc	le: 17EE42 Sem: IV Marks: 10 Time: 9	0 – 120 i	minute	S
Course:				
	ach assignment carries equal mark.			
SNo	Assignment Description	Marks	CO	Level
	Early the modifier of a model the second structure of the line its	10	CO1	
1	Explain the working of pumped storage power plant. Stating its advantages with the help of a schematic diagram	10	CO1	L2
2	Explain the underground hydro-electric power plant.	10	CO1	L2
3	What are the merits and demerits of Steam power plants	10	CO1	L2
	Explain the working of pumped storage power plant. Stating its advantages with the help of a schematic diagram	10	CO1	L2
5	Explain the underground hydro-electric power plant.	10	CO1	L2
6	What are the merits and demerits of Steam power plants	10	CO1	L2
7	Explain the working of pumped storage power plant. Stating its advantages with the help of a schematic diagram	10	CO1	L2
8	Explain the underground hydro-electric power plant.	10	CO2	L2
9	What are the merits and demerits of Steam power plants	10	CO2	L2
10	Explain the working of pumped storage power plant. Stating its advantages with the help of a schematic diagram	10	CO2	L2
	Explain the underground hydro-electric power plant.	10	CO2	L2
12	What are the merits and demerits of Steam power plants	10	CO2	L2
	Explain the working of pumped storage power plant. Stating its advantages with the help of a schematic diagram	10	CO2	L2
14	Explain the underground hydro-electric power plant.	10	CO2	L2
15	What are the merits and demerits of Steam power plants	10	CO2	L2
16	Derive from first principles, an expression for the inductance per phase per km of a 3 phase regularly transposed transmitting. Line. The conductors are of diameter d mt and placed at the corner of a triangle of sides a, b, c.		CO2	L3

D2. TEACHING PLAN - 2

Module – 3

Title:	Nuclear Power Plants	Appr	12 Hrs
		Time:	
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Analyze the working of hydroelectric, steam, nuclear power plants and mention the functions of various equipment of the power plants.	CO1	L2
2	Classify various substations and explain the operation of different equipment's in substations.	CO2	L2
	Courses Code a deda		
b	Course Schedule		
Class No	Module Content Covered	CO	Level
1	introduction, Economics of nuclear plants, Merits and demerits	CO1	L2
2	selection of site, Nuclear reaction, Nuclear fission process, Nuclear chain reaction	CO1	L3
3	Nuclear energy, Nuclear fuels,	CO1	L3
4	Nuclear reactor and its control,	CO1	L3
5	Classification of reactors,	CO2	L3
6	power reactors in use	CO2	L3

7	Effects of nuclear plants,	CO2	L4
8	Disposal of nuclear waste	CO1	L2
9	Effluent, shielding.	CO1	L4
10	Nuclear plant and layout,	CO1	L2
с	Application Areas	-	-
-	Students should be able employ / apply the Module learning to	-	-
1	Performance of transmission lines includes the calculation of sending end voltage, sending end current, sending end power factor, power loss in the lines, efficiency of transmission, regulation and limits of power flows during steady state and transient conditions. Performance calculations are helpful in system planning.	CO2	L4
2	Performance of transmission lines includes the calculation of sending end voltage, sending end current, sending end power factor, power loss in the lines, efficiency of transmission, regulation and limits of power flows during steady state and transient conditions. Performance calculations are helpful in system planning.	CO6	L4
d	Review Questions	_	_
_	The attainment of the module learning assessed through following questions	-	-
1	Explain the underground hydro-electric power plant.		
2	What are the merits and demerits of Steam power plants		
3	Explain the working of pumped storage power plant. Stating its advantages with the help of a schematic diagram		
4	Explain the underground hydro-electric power plant.		
5	What are the merits and demerits of Steam power plants		
6	Explain the working of pumped storage power plant. Stating its advantages with the help of a schematic diagram		
7	Explain the underground hydro-electric power plant.		
8	What are the merits and demerits of Steam power plants		
9	Derive from first principles, an expression for the inductance per phase per km of a 3 phase regularly transposed transmitting. Line. The conductors are of diameter d mt and placed at the corner of a triangle of sides a, b, c.		
10			
е	Experiences	-	-
1	· ·	CO6	L2

Module – 4

Title:	Substations and Grounding	Appr	13 Hrs
		Time:	
a	Course Outcomes	-	Blooms
-		-	Level
1	Explain the types of grounding and its importance.	CO3	L2
b			
Class No	Module Content Covered	СО	
1	Introduction to Substation equipment; Transformers,	CO3	-
2	High Voltage Fuses, High Voltage Circuit Breakers and Protective Relaying,	CO3	L2
	High Voltage Disconnect Switches,		
3	Lightning Arresters, High Voltage Insulators and Conductors, Voltage	CO3	L2
	Regulators, Storage Batteries, Reactors, Capacitors, Measuring Instruments,		

	and power			
4	line carrier communication equipment Classification	CO3	2	
4	of substations – indoor and outdoor, Selection of site for substation	003	LZ	
5	Busbar arrangement schemes and single line diagrams of substations	CO3	L2	
	Interconnection of power stations. Introduction to gas insulated substation,	CO3	L2	
6	Introduction, Difference between grounded and ungrounded system. System grounding – ungrounded,			
7	solid grounding, resistance grounding,	CO3	L4	
8	reactant grounding, resonant grounding.	CO3	L4	
9	Advantages and economics of Gas insulated substation.	CO3	L4	
10	Neutral grounding and neutral grounding transformer	CO3	L4	
			L4	
С	Application Areas	СО	L4	
1	Rectifiers are used in DC regulated power supply.	CO3	L4	
2	DAC and ADC are used in data acquition system.	CO3		
			-	
d	Review Questions	-	-	
1	Discuss factor to be taken into account while selecting site for a thermal power station.	CO3	L2	
2	Explain Ash handling in thermal power plant.	CO3	L4	
3	Explain stage of coal handling in thermal power plant	CO3		
4	Write in short about gas plant fuel.	CO3	-	
5	Write application where solar energy used.	CO3	-	
6	What are forms of geothermal energy?	CO3	L2	
7	Write in short about gas plant fuel.	CO3	L2	
8	Write application where solar energy used.	CO3	L2	
9	What are forms of geothermal energy?	CO3	L2	
10	Draw sketch of wind power mills.	CO3	L2	
11	List the method of finding out the depreciation cost.	CO3	L2	
		CO3		
е	Experiences	_	_	
1		CO7	L2	
2		1		

E2. CIA EXAM – 2

a. Model Question Paper - 2

Crs Code	e:	17EE42	Sem:	IV	Marks:	30	Time:	75 minute	S	
Cou	rse:	Transmission and Distribution								
-	-	Note: Answer all questions, each carry equal marks. Module : 3, 4							СО	Level
1	a	Write in s	hort abo	ut gas pla	ant fuel.			8	CO1	L4
	b	Write ap	plication	where so	olar energy	used.		7	CO2	L4
					OR					
2	a	Write in s	hort abo	ut gas pla	ant fuel.			8	CO2	L2
	b	Write ap	plication	where so	olar energy	used.		7	CO2	L2
	С	What are	e forms c	of geothe	rmal energy	/?		8	CO1	L2
3				be taken /er statior		nt while	selecting site	8	CO3	L2

	b	Explain Ash handling in thermal power plant.	7	CO3	L2
	С	Explain stage of coal handling in thermal power plant	8	CO3	L2
		OR		CO3	
4	a	Write short note on choice of size and number of generator	10	CO3	L2
		units.			
	b	Write short note on constrains of economic generation.	5	CO3	L2
	С	What is importance of solar power in present energy used in	10	CO3	L2
		world?			

b. Assignment – 2

	Model Assignment Questions			
Crs Coc		0 – 120 I	minute	S
Course:				
	ach assignment carries equal mark.			
SNo	Assignment Description	Marks	со	Level
1	Explain the working of pumped storage power plant. Stating its advantages with the help of a schematic diagram	10	CO1	L2
2	Explain the underground hydro-electric power plant.	10	CO1	L2
3	What are the merits and demerits of Steam power plants	10	CO1	L2
4	Explain the working of pumped storage power plant. Stating its advantages with the help of a schematic diagram	5 10	CO1	L2
5	Explain the underground hydro-electric power plant.	10	CO1	L2
6	What are the merits and demerits of Steam power plants	10	CO1	L2
7	Explain the working of pumped storage power plant. Stating its advantages with the help of a schematic diagram	10	CO1	L2
8	Explain the underground hydro-electric power plant.	10	CO2	L2
9	What are the merits and demerits of Steam power plants	10	CO2	L2
10	Explain the working of pumped storage power plant. Stating its advantages with the help of a schematic diagram	10	CO2	L2
11	Explain the underground hydro-electric power plant.	10	CO2	L2
12	What are the merits and demerits of Steam power plants	10	CO2	L2
13	Explain the working of pumped storage power plant. Stating its advantages with the help of a schematic diagram	10	CO2	L2
14	Explain the underground hydro-electric power plant.	10	CO2	L2
15	What are the merits and demerits of Steam power plants	10	CO2	L2
16	Derive from first principles, an expression for the inductance per phase per km of a 3 phase regularly transposed transmitting. Line. The conductors are of diameter d mt and placed at the corner of a triangle of sides a, b, c.		CO2	L3

D3. TEACHING PLAN - 3

Module – 5

Title: Economics:

Appr 10 Hrs Time:

-	Course Outcomes	СО	Blooms				
	At the end of the topic the student should be able to \ldots						
1	Understand the economic aspects of power system operation and its effects.						
2	Explain the importance of power factor improvement.	CO5	L4				
b	Course Schedule	-	-				
Class No	Portion covered per hour	-	-				
1	Introduction, Effect of variable load on power system	C04	L4				
2	Classification of costs, Cost analysis	C04	L4				
3	Interest and Depreciation, Methods of determination of depreciation	C04	L4				
4	Economics of Power generation, different terms considered for power plants	C04	L4				
	and their significance						
5	load sharing. Choice of size and number of generating plants. Tariffs, objective	C05	L4				
6	factors affecting the tariff, types. Types of consumers and their tariff	C05	L4				
7	Power factor, disadvantages, causes, methods of improving power factor	C05	L4				
8	Advantages of improved power factor	CO5	L2				
9	Economics of power factor improvement	CO5	L2				
10	comparison of methods of improving the power factor. Choice of equipment.	CO5	L2				
11							
С	Application Areas	_	-				
-	Students should be able employ / apply the Module learnings to	_	_				
1	Electric power distribution is the final stage in the delivery of electric power; it		L4				
T	carries electricity from the transmission system to individual consumers.		L4				
2	The distribution system reliability evaluation considers the ability of the distribution system to transfer energy from bulk supply points such as typical transmission system end -stations, and from local generation points, to customer loads.	CO5	L2				
d	Review Questions	_	-				
-	The attainment of the module learning assessed through following questions	-	_				
1	Write short note on radial and ring main distributors	C04	L4				
2	What is meant by DC distribution? Explain with diagram different types of DC	C04	L4				
	distribution and discuss their merits and demerits.						
3	Write short note on radial distribution system	C04	L4				
		C04	L4				
1	In a 2 core dc distributor cable 400m long supplies there are concentrated loads of 120, 80, 50 and 120A at 50, 150, 200 and 300m, respectively from the end A. Determine the position of the lowest voltage when the cable is fed at		L4				
4	end A. Determine the position of the lowest voltage when the cable is fed at 250V from both the ends.						
4	Ŭ	C04	L4				
	250V from both the ends. The points B and D of a d.c main ABCEDA are linked through a interconnector the supply is given at point "A". The resistances of both run and return conductors of various sections are shown in the figure. Calculate (i) current in	C04	L4				
5	250V from both the ends. The points B and D of a d.c main ABCEDA are linked through a interconnector the supply is given at point "A". The resistances of both run and return conductors of various sections are shown in the figure. Calculate (i) current in interconnector (ii) voltage drop in interconnector A two wire d.c distributor 1200m long is loaded as shown in the figure, B being the midpoint.The power factor at the two load points refer to voltage C . the impedance of each line is (0.15+j0.2) ohms . Calculate the sending end voltage,						
6	 250V from both the ends. The points B and D of a d.c main ABCEDA are linked through a interconnector the supply is given at point "A". The resistances of both run and return conductors of various sections are shown in the figure. Calculate (i) current in interconnector (ii) voltage drop in interconnector A two wire d.c distributor 1200m long is loaded as shown in the figure, B being the midpoint. The power factor at the two load points refer to voltage C . the impedance of each line is (0.15+j0.2) ohms . Calculate the sending end voltage, current and power factor . the voltage at point C is 220V A two wire d.c. distributor AB 600 m long is loaded as under. Distance from a 150,300,350,450. Loads in amperes 100,200,250,300. The feeding point A is maintained at 440 V and that of B at 430V. if each conductor has a resistance of 0.001 ohms / 100m calculate (1) the current supplied from A to B (2) the power dissipated in the distributor? List down the necessary power requirements of a 	C04	L4				

	load current of 80 a and power factor 0.8 lagging at 220v. The midpoint M of		
	the distributor has a load current of 50 A at pf of 0.707 lag with reference to a		
	voltage M. Calculate the sending end voltage and power factor.	0	1
9	A 2-wire d.c. distributor cable AB is 2 km long and supplies loads of 100A, 150A, 200A and 50A situated 500 m, 1000 m, 1600 m and 2000 m from the feeding	C05	L4
	point A. Each conductor has a resistance of 0.01Ω per 1000 m. Calculate the		
	p.d. at each load point if a p.d. of 300 V is maintained at point A		
10	A 2-wire d.c. ring distributor is 300 m long and is fed at 240 V at point A. At point	C05	L4
	B, 150 m from A, a load of 120 A is taken and at C, 100 m in the opposite		
	direction, a load of 80 A is taken. If the resistance per 100 m of single conductor		
	is 0·03 Ω, find : (i) current in each section of distributor		
	(ii) voltage at points B and C		
11	A single phase distributor one km long has resistance and reactance per	C05	L4
	conductor Of 0.1 Ω and 0.15 Ω respectively. At the far end, the voltage VB = 200		
	V and the current is 100 A at a p.f. of 0.8 lagging. At the mid-point M of the		
	distributor, a current of 100 A is tapped at a p.f. of 0.6 lagging with reference to		
	the voltage VM at the mid-point. Calculate :		
	(i) voltage at mid-point		
	(ii) sending end voltage VA		
	(iii) phase angle between VA and VB		
12	A 3-phase ring main ABCD fed at A at 11 kV supplies balanced loads of 50 A at	C05	L4
	0.8 p.f. lagging at B, 120 A at unity p.f. at C and 70 A at 0.866 lagging at D, the		
	load currents being Referred to the supply voltage at A. The impedances of the various sections are : Section AB = (1 + j 0.6) Ω ; Section BC = (1.2 + j 0.9) Ω Section		
	$CD = (0.8 + j 0.5) \Omega$; Section DA = $(3 + j 2) \Omega$. Calculate the currents in various		
	sections and station bus-bar voltages at B, C and D.		
13	Distinguish between reliability, availability, adequacy and security.	CO5	L2
14	Discuss the commonly used distributors for failure	CO5	L2
15	What are life failure rate curves?	CO5	L2
16	Why is PQ important?	CO5	L2
17	Define failure rate.	CO5	L2
18	Define under voltage, over voltage sag and swell.	CO5	L2
19	Distinguish between sag and interruption.	CO5	L2
20	What are transients?	CO5	L2
21	What are harmonics?	CO5	L2
22	Define THD.	CO4	L2
е	Experiences	-	-
1	•		L2
2			

E3. CIA EXAM – 3

a. Model Question Paper - 3

Crs		17EE42	Sem:	IV	Marks:	30	Time:	75 minute	S	
Code	e:									
Cour	rse:	se: Electric Power Generation								
-	-	Note: Answ	ver all quest	ions, each c	arry equal r	narks. Modu	ıle : 5	Marks	СО	Level
1	а	Write short	note on rad	al and ring r	main distribu	utors		7	C04	L4
		point B, 150 opposite di	m from A, a	load of 120 ad of 80 A is	A is taken a	nd at C, 100	V at point A. m in the per 100 m of		C05	L4

		(i) current in each section of distributor			
		(ii) voltage at points B and C			
		OR			
1	а	In a 2 core dc distributor cable 400m long supplies there are concentrated loads of 120, 80, 50 and 120A at 50, 150, 200 and 300m, respectively from the end A. Determine the position of the lowest voltage when the cable is fed at 250V from both the ends.	8	C05	L4
	b	The points B and D of a d.c main ABCEDA are linked through a interconnector the supply is given at point "A". The resistances of both run and return conductors of various sections are shown in the figure. Calculate (i) current in interconnector (ii) voltage drop in interconnector.	7	C04	L4
2	a	Define under voltage, over voltage sag and swell.	5	CO4	L2
	b	Distinguish between sag and interruption.	5	CO4	L2
	С	Define THD.	5	CO5	
		OR			
2	2		8	CO5	12
	а	Distinguish between reliability, availability, adequacy and security.	0	005	LC
	b	What are life failure rate curves and Define failure rate.	7	CO5	L2

b. Assignment – 3

	Mode	el Assignme	nt Quest	ions				
Crs Coc	de: 17EE42 Sem: IV	Marks:	10	Time:	90	0 – 120 r	minute	S
Course:	Power Generation and Econom	ics	Modu	le : 3,4				
Note: Ea	ach assignment carries equal mark.							
SNo	Assignme	nt Descript	ion			Marks	со	Level
1	Explain the working of pumpe advantages with the help of a sc	•	•	plant. Stating	its	10	CO1	L2
2	Explain the underground hydro-	electric pc	wer pla	nt.		10	CO1	L2
3	What are the merits and demeri	ts of Stean	n power	plants		10	CO1	L2
4	Explain the working of pumpe advantages with the help of a sc			plant. Stating	its	10	CO1	L2
5	Explain the underground hydro-	electric pc	wer pla	nt.		10	CO1	L2
6	What are the merits and demeri	ts of Stean	n power	plants		10	CO1	L2
7	Explain the working of pumpe advantages with the help of a sc	•	•	plant. Stating	its	10	CO1	L2
8	Explain the underground hydro-	electric pc	wer pla	nt.		10	CO2	L2
9	What are the merits and demeri	ts of Stean	n power	plants		10	CO2	L2
10	Explain the working of pumpe advantages with the help of a sc	•	•	plant. Stating	its	10	CO2	L2
11	Explain the underground hydro-	electric pc	wer pla	nt.		10	CO2	L2
12	What are the merits and demeri	ts of Stean	n power	plants		10	CO2	L2
13	Explain the working of pumpe advantages with the help of a sc			plant. Stating	its	10	CO2	L2
14	Explain the underground hydro-	electric po	wer pla	nt.		10	CO2	L2
15	What are the merits and demeri	ts of Stean	n power	plants		10	CO2	L2
16	Derive from first principles, an expre km of a 3 phase regularly transpo						CO2	L3

are of diameter d mt and placed at the corner of a triangle of sides a, b, c.		

F. EXAM PREPARATION

1. University Model Question Paper

Cours	se:	Transmission and Distribution Month	n / Year	May /	2019
		17EE42 Sem: IV Marks: 80 Time:			inutes
Mod ule	Note	Answer all FIVE full questions. All questions carry equal marks.	Marks	со	Level
1	a	Explain about advantage of high voltage transmission?	5	CO1	L2
	b	Why are bundled conductors used? Lits out the advantages.	5	CO2	L2
		Write the comparison between. Overhead and underground transmissionsystem	on 5	CO1	L2
		OR			
1	a	Obtain the expression for sag in a power conductor when the supports are at equal levels, taking into the effect of wind and ice loading	10	CO3	L2
	b	A transmission line conductor is supported by the towers of unequineight. The first has a height of 30m and the second tower has a height 50m. The distance between the towers is 150m. Tension in the conductor 2200Kg and cross section of the conductor is 2 cm2. The specific gravity the conductor material is 9.5gm/cm3 and the wind pressure 150kg/m2. Calculate the sag.	of is of	CO3	L2
2	а	Explain the terms self GMD and mutual GMD and prove that the inductance of a group of parallel wires carrying current can be represented in terms of their geometric distances.		CO5	L3
	b	Derive the expression for the capacitance of a 3 phase single circuit. Line with equilateral spacing	2 10	CO5	L3
2	a	OR Find the capacitance between the conductors of a single-phase 10 km long line. The diameter of each conductor is 1.213cm. The spacing between conductors is 1.25m. Also find the capacitance of each conductor to neutral.	10	CO5	L3
	b	Calculate the inductance of single phase two wire line starting from fundamentals	10	CO5	L3
3	a	Derive expressions for generalized ABCD constants for a lon transmission line using rigorous method of analysis	g ¹⁰	CO6	L4
	b	An overhead 3 phase transmitting line delivers 5000kw at 22kv at 0.8 pf lagging. The resistance and reactance of short transmitting line is 4 ohm and 6 ohms respectively. Determine (1) sending end voltage (ii) % reg (iii) transmitting	10	CO6	L4

		efficiency.			
		OR			
3	а	Derive expressions for ABCD constants for a medium transmission line using nominal T model. Hence prove AD-BC = 1.	10	CO6	L4
	b	Discuss the terms voltage regulation and transmission efficiency as applied to transmission line.	5	CO6	L4
	С	Write and explain the classification of overhead transmission lines	5	CO6	L4
4	a	Discuss the advantages and disadvantages of corona	5	C07	L2
	b	Explain the terms with reference to corona. i)disruptive critical voltage ii) Power loss due to corona	5	CO7	L2
	С	Write short note on factors affecting corona and methods of reducing corona effect	5	CO7	L2
		OR			
4	а	Draw the cross sectional view of a single core cable and explain the construction.	10	CO8	L4
	b	Calculate the most economical diameter of a single core cable to be used on 132kV, 3 phase system. Find also the overall diameter of the insulation, if the peak permissible stress does not exceed 60kV/cm. also derive the formula used here	10	CO8	L4
5	a	In a 2 core dc distributor cable 400m long supplies there are concentrated loads of 120, 80, 50 and 120A at 50, 150, 200 and 300m, respectively from the end A. Determine the position of the lowest voltage when the cable is fed at 250V from both the ends.	10	C09	L4
	b	Write short note on radial and ring main distributors	10	C09	L4
		OR			
5	а	Distinguish between reliability, availability, adequacy and security.	8	CO10	L2
	b	Define failure rate and What are life failure rate curves?	6	CO10	L2
	С	Define under voltage, over voltage sag and swell.	6	CO10	L2

2. SEE Important Questions

		•								
Cours	Course: Transmission and Distribution Month							/ Year	May /2	2018
Crs C	ode:	17EE42	Sem:	IV	Marks:	60	Time:		180 mi	nutes
	Note	Answer all Fl	VE full ques	tions. All qu	uestions carry equ	ual marks		-	-	
Mod	Qno.	Important Qu	lestion					Marks	СО	Year
ule										
1	а	Write short n		05	CO1	2017				
	b	Explain the c	ransmission	05	CO2	2018				
		lines.								
	С	Draw the line	05	CO1	2012					

		standard voltages.			
	d	Derive an expression for string efficiency of s 3 disc string	06	CO3	2014
	е	Explain pin type insulator	05	CO4	2016
2	a	Derive the expression for the inductance of a 3 phase unsymmetrically spaced but transmission line/km.	10	CO5	2017
	b	Derive the expression for the capacitance of a 3 phase single circuit. Line with equilateral spacing	10	CO5	2016
	С	Show how the inductance of 3 phase transmission. Line with equilateral and symmetrical spacing between conductors can be calculated.	10	CO5	2018
	d	Calculate the inductance of single phase two wire line starting from fundamentals	10	CO5	2017
	e	Find the capacitance between the conductors of a single-phase 10 km long line. The diameter of each conductor is 1.213cm. The spacing between conductors is 1.25m. Also find the capacitance of each conductor to neutral.	10	CO5	2016
3 a	а	Derive expressions for generalized ABCD constants for a long transmission line using rigorous method of analysis	10	C06	2016
	b	Derive expressions for ABCD constants for a medium transmission line using nominal T model. Hence prove AD-BC = 1.	10	CO6	2017
	С	Write short note on classification of transmission lines.	5	CO6	2018
		A 3 phase, 50hz transmission lines has the following constants R = 28 ohm, inductive reactance = 63 ohms, capacitive susceptance = 4*10-4. The load at the receiving end is 75MVA at 0.8 pf lag with 132 kv between lines. Calculate (1) voltage, (2) current (3) pf at sending end (4) reg and efficiency of the transmission for these loads using nominal t method?			
	е	Write short note on Ferranti effect	5	CO6	2016
			10		
4	а	What is corona? Derive expression for the disruptive critical voltage and visual critical voltage	10	CO7	2018
	b	What are the effects of corona?	5	CO7	2017
	С	Explain the terms with reference to corona. i)visual critical voltage ii) Power loss due to corona	5	CO7	2016
	d	Derive expressions for the maximum and minimum dielectric stress in a single core cable and obtain the criteria for keeping the dielectric stress to a minimum value.	10	CO8	2015
	е	Compare the merits and demerits of underground system overhead system	5	CO8	2014
5	а	Write short note on radial distribution system	5	Cog	2018
	b	In a 2 core dc distributor cable 400m long supplies there are concentrated loads of 120, 80, 50 and 120A at 50, 150, 200 and 300m, respectively from the end A. Determine the position of the lowest voltage when the cable is fed at 250V from both the ends.	10	C09	2017
		Distinguish between reliability, availability, adequacy and	10	CO10	

	security.			
d	What are life failure rate curves?	5	CO10	
е	Why is PQ important?	5	CO10	

Course Outcome Computation

Academic Year:

Odd / Even semester

INTERNAL TEST				T1					٦	[2			
Course	CO1		CO2		CO3		CO4		CO5		CO 6		C07
Outcome QUESTION NO	Q1	LV	Q2	LV	Q3	LV	Q1	LV	Q2	LV	Q3	LV	Q1
MAX MARKS USN-1													10
USN-2 USN-3													4 6
USN-4 USN-5													4 10
USN-6													9
Average CO Attainment													

LV Threshold : 3:>60%, 2:>=50% and <=60%, 1: <=49% CO1 Computation :(2+2+2+3)/4 = 10/4=2.5

PO Computation

Program Outcome	PO:	1	PC	D3	P	D3	PC)1	PC	D12	PC)12	PC	D6	
Weight of CO - PO	3		3 1		3		2	<u>></u>	2		3		3		
Course Outcome	CO	1	C	D2	C	03	CC	04	C	05	C	D6	CC	77	
Test/Quiz/			-	T1					Т	2				Т	Гз
Lab QUESTION NO MAX MARKS	Q1	LV	Q2	LV	Q3	LV	Q1	LV	Q2	LV	Q3	LV	Q1	LV -	Q; 10

USN-1		
USN-2	1	1 5
USN-3	2	2 10
USN-4	1	L
USN-5 USN-6	3	
Average CO Attainment	2	2