Ref No:

Sri Krishna Institute of Technology, Bangalore

COURSE PLAN

Academic Year 2019-2020

Program:	UG
Semester :	8 th sem
Course Code:	15ec82
Course Title:	FIBER OPTICS AND NETWORKS
Credit / L-T-P:	4
Total Contact Hours:	50
Course Plan Author:	Dr. Devananda S.N

Academic Evaluation and Monitoring Cell

Sri Krishna Institute of Technology #29,Chimney hills,Hesaraghata Main road, Chikkabanavara Post Bangalore – 560090, Karnataka, INDIA Phone / Fax :08023721477/28392221/23721315 Web: www.skit.org.in , e-mail: <u>skitprinci@gmail.com</u>

Table of Contents

A. COURSE INFORMATION	2
1. Course Overview	2
2. Course Content	
<u>3. Course Material</u>	
4. Course Prereauisites	
5. Content for Placement, Profession, HE and GATE	4
B. OBE PARAMETERS.	4
<u>1. Course Outcomes</u>	4
2. Course Applications	4
3. Articulation Matrix	4
4. Curricular Gap and Content	5
C. COURSE ASSESSMENT.	5
<u>1. Course Coverage</u>	5
2. Continuous Internal Assessment (CIA)	
D1. TEACHING PLAN - 1	5
Module - 1	5
Module – 2	
E1. CIA EXAM – 1	7
<u>a. Model Question Paper - 1</u>	<u>7</u>
<u>b. Assignment -1</u>	7
D2. TEACHING PLAN - 2	7
Module – 3	7
Module – 4	8
E2. CIA EXAM – 2	9
a. Model Question Paper - 2	9
b. Assignment – 2	
D3. TEACHING PLAN - 3	
Module – 5	10
E3. CIA EXAM – 3	
a. Model Question Paper - 3	
b. Assignment – 3	
F. EXAM PREPARATION	
1. University Model Question Paper	

Copyright ©2017. cAAS. All rights reserved.

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	UG
Semester:	8	Academic Year:	2019-20
Course Title:	FIBER OPTICS AND NETWORKS	Course Code:	15ec82
Credit / L-T-P:	4	SEE Duration:	3 Hours
Total Contact Hours:	50	SEE Marks:	80
CIA Marks:	20	Assignment	5
Course Plan Author:	Dr. devananda S.N	Sign	
Checked By:	Syada N	Sign	
CO Targets	CIA Target :	SEE Target:	

Note: Define CIA and SEE % targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute.

Mod	Content	Teaching Hours	
ule		reaching riours	Levels
1	Optical fiber Communications: Historical	10	L1,L2
	development, The general system, Advantages of		
	optical fiber communication, Optical fiber		
	waveguides: Ray theory transmission, Modes in		
	planar guide, Phase and group velocity, Cylindrical		
	fiber: Modes, Step index fibers, Graded index fibers,		
	Single mode fibers,		
	Cutoff wavelength, Mode field diameter, effective		
	refractive index. Fiber Materials, Photonic crystal		
	fibers		
2	Transmission characteristics of optical fiber:	10	L1,L2
	Attenuation, Material absorption losses, Linear		
	scattering losses, Nonlinear scattering losses, Fiber		
	bend loss, Dispersion, Chromatic dispersion,		
	Intermodal dispersion: Multimode step index fiber.		

	Optical Fiber Connectors: Fiber alignment and joint loss, Fiber splices, Fiber connectors, Fiber couplers.	
3	Optical sources: Energy Bands, Direct and Indirect Bandgaps, Light Emitting diodes: LED Structures, Light Source Materials, Quantum Efficiency and LED Power, Modulation. Laser Diodes: Modes and Threshold conditions, Rate equation, External Quantum Efficiency, Resonant frequencies, Laser Diode structures and Radiation Patterns: Single mode lasers.	L1,L2
	Photodetectors: Physical principles of Photodiodes, Photodetector noise, Detector response time.	
	Optical Receiver: Optical Receiver Operation: Error sources, Front End Amplifiers, Receiver sensitivity, Quantum Limit.	
4	WDM Concepts and Components: Overview of WDM: Operational Principles of WDM, WDM standards, Mach-Zehnder Interferometer Multiplexers, Isolators and Circulators, Fiber grating filters, Dielectric Thin-Film Filters, Diffraction Gratings, Active Optical Components, Tunable light sources,	L1,L2
	Optical amplifiers: Basic application and Types, Semiconductor	
	optical amplifiers, Erbium Doped Fiber Amplifiers, Raman Amplifiers, Wideband Optical Amplifiers. (Text 1	
5	Optical Networks: Optical network evolution and concepts: Optical networking terminology, Optical network node and switching elements, Wavelength division multiplexed networks, Public telecommunication network overview. Optical network transmission modes, layers and protocols: Synchronous networks, Asynchronous transfer mode, OSI reference model, Optical transport network, Internet protocol, Wavelength routing networks: Routing and wavelength assignment, Optical switching networks: Optical circuit switched networks, packet switched networks, Multiprotocol Label Switching, Optical burst switching networks, Metropoliton area networks, Access networks, Local area networks.	L1,L2

- 10tat 50

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 – 30 minutes

2. Design: Simulation and design tools used – software tools used ; Free / open source

3. Research: Recent developments on the concepts – publications in journals; conferences etc.

Modul	Details	Chapters	Availability
es A	Text books (Title, Authors, Edition, Publisher, Year.)	in book	
	1.Gerd Keiser, Optical Fiber Communication, 5th Edition McGraw Hill Education(India) Private Limited, 2015. ISBN:1- 25-900687-5.	3,4	DEPART LIB
	 2.John M Senior, Optical Fiber Communications, Principles and Practice, 3rdEdition, Pearson Education, 2010, ISBN:978- 81-317-3266-3 B Reference books (Title, Authors, Edition, Publisher, Year.) Joseph C Palais, Fiber Optic Communication, Pearson Education, 2005, ISBN:0130085103 C Concept Videos or Simulation for Understanding 		DEPART LIB
В		-	-
С	Concept Videos or Simulation for Understanding	-	-
C1			
C2			
C3			
C4			
C5			
D	Software Tools for Design	-	-
	NS2		
E	Recent Developments for Research	-	-
	Networking		
	Splicing, connectors,couplers		
F	Others (Web, Video, Simulation, Notes etc.)	-	-
1	Notes		

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Students must have learnt the following Courses / Topics with described Content

Mod	Course	Course Name	Topic / Description	Sem	Remarks	Blooms
ules	Code					Level
1	Ŭ	Fiber optic and networks	Basic of ray theory	8	Fundamental of light propagation	L1

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

110,0		gin TEE Hadde		
Mod	Topic / Description	Area	Remarks	Blooms
ules				Level
5	WDM ,SWITCHING NETWORKING	NETWORKING		L2

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs.

			LO F OS.		1
	urse Course Outcome	Teach.	Instr Method	Assessment	Blooms'
ules Co	de. At the end of the course, s should be able to .			Method	Level
¹ 15ec	82 Classification and workir optical fiber with differer modes of signal propaga	nt	LECTURE/ PPT/ TUTORIAL	Assignment and Slip Test	
² 15ec	82 Describe the transmission characteristics and losse optical fiber communica	es in	LECTURE/ PPT/ TUTORIAL	Assignment and Slip Test	
³ 15ec	82 Describe the construction working principle of optica connectors, multiplexers amplifiers	al	LECTURE/ PPT/ TUTORIAL	Assignment and Slip Test	
4 <u>15</u> ec	82 Describe the constructional features a the characteristics of optical sources and detectors.	and 10	LECTURE/ PPT/ TUTORIAL	Assignment and Slip Test	
5 <u>15</u> ec	of optical fiber and descri various standards associ with it.	ibe	LECTURE/ PPT/ TUTORIAL	Assignment and Slip Test	
	- Total	50	-	-	L2

2. Course Applications

Write 1 or 2 applications per CO.

Students should be able to employ / apply the course learnings to ...

Mod	Application Area	CO	Level
ules	Compiled from Module Applications.		
1	Sensors,photo electronics	CO1	L2
2	Dynamic light scattering, Tunable laser diodes	CO2	L2
3	Multifrequency Lasers, Multimedia MAC protocol	CO3	L2
4	Optical neural networks	CO4	L2
5	Cable Televisison signals, Long distance communication	CO5	L2

3. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	-	Course Outcomes		Program Outcomes							-							
Mod	CO.#	At the end of the course	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	Lev
ules		student should be able to	1	2	3	4	5	6	7	8	9	10	11	12	O1	02	О3	el
1	15EC82.1	Understand the basic principle	3	2	1													

		of optical fiber communication																
		with Ray theory.																
2	15EC82.2	Understand the different modes	2	2	1													
	0	used in optical fiber		-	-													
		communication.																
		communication.																
3	15EC82.3	Understand the transmission		2	1													
		characteristics and losses in																
		optical fiber																
4	15EC82.4	Understand the optical fiber	3	2	1													
		joints and connectors used in			_													
		optical fiber communication.																
5	15EC82.5	Explain the optical sources used	2	2	1													
		in optical fiber communication.	5	-	-													
-	15EE662.	· ·																_
	-	1.Engineering Knowledge; 2.Probl	om	Λr	al	icic'	21	Doci	an	/		1010	nm	ont	of	50	1+i	onci
-																		
		4.Conduct Investigations of Compl																
		Society; 7.Environment and Su																
		10.Communication; 11.Project N											.Lif€	e-lo	ng	Le	earn	ning;
		S1.Software Engineering; S2.Data B	ase	e Ma	ana	ger	nen	t; S3	3.W	eb l	Desi	ign						

4. Curricular Gap and Content

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Mod	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
ules					
	Basic of ray theory, and fundamental of light propagation and nature of light		2 nd week / date feb 22 nd	Dr Devananda S.N	List from B4 above

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation.

Mod	Title	Teach.			f quest				CO	Levels
							1			Levels
ules		Hours	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE		
							Asg			
1	Optical fiber Communications	10	2	-	-	1	1	2	CO1, CO2	L1
2	Transmission characteristics of	10	2	-	-	1	1	2	CO2, CO3	L2
	optical fiber, Optical Fiber									
	Connectors									
3	Optical sources, Photodetectors	10	-	2	-	1	1	2	CO3, CO4	L2
	and Optical Receiver									
4	WDM Concepts and Components,	10	-	2	-	1	1	2	CO3, CO4	L2
	Optical amplifiers									
5	Optical Networks	10	-	-	4	1	1	2	CO4, CO5	L2
-	Total	50	4	4	4	5	5	10	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Mod	Evaluation	Weightage in	CO	Levels
ules		Marks		
1, 2	CIA Exam – 1	15	CO1, CO2, CO3, CO4	L2
3, 4	CIA Exam – 2	15	CO5, CO5, CO5, C05	L2
5	CIA Exam – 3	15	CO5, CO5	L2

1, 2	Assignment - 1	03	CO1, CO2, CO3, CO4	L2
3, 4	Assignment - 2	03	CO5, CO5, CO5, C05	L2
5	Assignment - 3	03	CO5, CO5	L2
1, 2	Seminar - 1	02	CO1, CO2, CO3, CO4	L2
3, 4	Seminar - 2	02	CO5, CO5, CO5, CO5	L2
5	Seminar - 3	02	CO5, CO5	L2
	Quiz - 1		-	-
3, 4	Quiz - 2		-	-
5	Quiz - 3		-	-
1 - 5	Other Activities – Mini Project	_		
	Final CIA Marks		-	-

D1. TEACHING PLAN - 1

Module - 1

Title:		Appr Time:	10 Hrs
a	Course Outcomes	СО	Blooms
-	The student should be able to:	-	Level
1		CO1	L2
2		CO2	L2
b	Course Schedule	-	-
Class No	Portion covered per hour	-	-
1	Optical fiber Communications: Historical development, The general system	CO1	L1
2	Advantages of optical fiber communication	CO1	L2
3	Optical fiber waveguides: Ray theory transmission	CO1	L2
4	Ray theory transmission	CO1	L2
5	Modes in planar guide	CO1	L2
6	Phase and group velocity	CO1	L2
7	Cylindrical fiber: Modes	CO2	L2
8	Step index fibers, Graded index fibers	CO2	L2
9	Single mode fibers, Cutoff wavelength	CO2	L2
10	Mode field diameter, effective refractive index	CO2	L2
11	Fiber Materials, Photonic crystal fibers.	CO2	L2
С	Application Areas		
-	Students should be able employ / apply the Module learnings to		
1	Transmit telephone signals, Internet communication	CO1	L2
2	Cable Televisison signals, Long distance communication	CO2	L2
d	Review Questions		
1	Using Snell's law derive an expression for numerical aperture of a fiber optic cable.	CO1	L2
2	Explain total internal reflection and photonic crystal fibers.	CO1	L2
3	Derive an expression for pulse spreading due to material desperation.	CO1	L2
4	What are the advantages and disadvantages of OFC.	CO2	L2
5	Derive necessary mathematical condition that the angle of incidence e(teta) must satisfy optical skew ray to propagate in the step index fiber.	CO2	L2
6	Explain the different types of absorption loss in optical fiber communication	CO1	L2
7	Derive an expression for NA using ray theory.	CO1	L2
8	In brief discuss the different design approaches for single mode fibers	CO1	L2

9	In brief explain linear scattering losses.	CO1	L2
10	Derive the expression for RMS – Pulse broadening due to inter modal	CO1	L2
	dispersion in step index fiber.		
11	Explain the GaAlAs double – hetero junction LED structure.	CO2	L2
12	Explain the structure of RAPD and its working	CO2	L2
13	Explain lensing schemes for coupling improvement.	CO2	L2
14	Discuss different types of non linear losses	CO2	L2
15	Explain with the help of neat diagram, distributed feedback laser diode.	CO1	L2
16	With appropriate mathematical equations explain single-mode fiber joints	CO1	L2
е	Experiences	-	-
1		CO1	L2
2			

Module – 2

Title:		Appr	10 Hrs
		Time:	DI
a	Course Outcomes	со	Blooms
-	The student should be able to:	-	Level
1		CO3	L2
2		CO4	L2
b	Course Schedule	-	-
Class No	Portion covered per hour	-	-
12	Transmission characteristics of optical fiber: Attenuation	CO3	L2
13	Material absorption losses, Linear scattering losses	CO3	L2
14	Nonlinear scattering losses	CO3	L2
15	Fiber bend loss	CO3	L2
16	Dispersion, Chromatic dispersion	CO3	L2
17	Intermodal dispersion: Multimode step index fiber	CO3	L2
18	Optical Fiber Connectors: Fiber alignment and joint loss	CO4	L2
19	Fiber alignment and joint loss	CO4	L2
20	Fiber splices	CO4	L2
21	Fiber connectors	CO4	L2
22	Fiber couplers	CO4	L2
с	Application Areas	_	_
-	Students should be able employ / apply the Module learnings to	-	_
1	Sensors, photo electronics	CO3	L2
2	Green house gas measurements, Lasers	CO4	 L2
d	Review Questions	-	-
17	Explain fiber bending loss with a neat diagram.	CO3	L2
18	Explain GaAs homo junction injection laser with fabriperot cavity and also derive its quantum efficiency of the above laser.	CO3	L3
19	Derive an expression for pulse spreading due to material disperssion which is a function of wavelength and time delay.	CO3	L2
20	Explain different types of bending losses in optical fiber.	CO3	L2
21	Draw the cross section of GaAlAs double hetero structure LED energy band diagram and refrative index variation. Explain their importance.	CO3	L3
22	Derive an expression for Lacing condition and hence for optical gain in lasers.	CO3	L3
23	With proper sketch briefly explain the structure of RPAD photo diode.	CO3	L3
24	Show that optical power coupled into a step index fiber due to an Led with Lambartian distribution is given by $P=P_s(NA)^2$ For $r_s<=a$, with usual notation.	CO3	L3
25	List out the requirement that a good connector design has to meet.	CO3	L3

15EE

Copyright ©2017. cAAS. All rights reserved.

26	In brief explain basic structure of an optical receiver.	CO3	L3
27	Discuss the features of eye pattern.	CO4	L3
28	Write a short note on "Burst mode receiver".	CO4	L3
29	Explain fusion splicing of optical fibers with appropriate equations.	CO4	L2
30	Illustrate the different types of scattering losses in optical fiber with suitable equations	CO4	L3
31	Explain what is meant by critical bending radius for an optical fiber	CO4	L2
е	Experiences	-	-
1		CO3	L2
2			

E1. CIA EXAM – 1

a. Model Question Paper - 1

		1	•							
Cod	e:	15EC82	Sem:	VIII	Marks:	30	Time:	75 minute	S	
Cour	rse:	Fiber Opti	cs and Net	vorks						
-	-	Note: Ans	wer all que	stions, ea	ch carry equa	l marks.	Module : 1, 2	Marks	СО	Level
					PART A					
1	а	Derive an	expression	for pulse :	spreading due	e to mate	erial desperation.	8	CO1	L2
	b	Derive th	Perive the expression for RMS – Pulse broadening due to inter modal							L2
		dispersior	ispersion in step index fiber.							
2	а	Explain th	e GaAlAs de	ouble – he	tero junction l	_ED stru	cture.	8	CO2	L2
	b	What are	the advanta	ages and c	lisadvantages	of OFC.		7	CO2	L2
					PART-B					
3	а	List out th	ne requirem	ent that a	good connect	or desig	n has to meet.	8	C03	L2
	b	In brief ex	kplain basic	structure	of an optical re	eceiver.		7	C03	L3
					OR					
4	а	Write a sł	nort note or	8	C04	L3				
	b	Explain fu	sion splicing	g of optica	l fibers with ap	opropriat	e equations.	7	C04	L3

b. Assignment -1

						М	odel A	Assignme	ent Que	stion	S		
Crs Code:	15EC 82					Sem:	8	Marks:	5 / 10	Tim	-	– utes	120
Cours e:					Fiber (Optics a	and Ne	etworks					
				Note: E carries			to ans	swer 2-3	assignr	nent	s. Each	assig	nment
SN	SNo USN				signme	ent Des	scripti	on			Marks	со	Level
1			Using Snell's la aperture of a fi				sion fo	or numeri	cal		8	CO1	L2
2	2		Explain total ir	nternal	reflec	tion and	d phot	onic crys	stal fibe	rs.	8	CO1	L2
3	3		Derive an exp desperation.	ressior	n for pu	ulse spr	eadin	g due to	materia	al	6	CO1	L2
4	-		What are the advantages and disadvantages of OFC.								6	CO2	L2
5	5		Derive necess incidence e(te in the step ind	ta) mu	st satis				0		4	CO2	L2

6	Explain the different types of absorption loss in optical fiber communication	7	CO1	L2
7	Derive an expression for NA using ray theory.	7	CO1	L2
8	In brief discuss the different design approaches for single mode fibers	7	CO1	L2
9	In brief explain linear scattering losses.	7	CO1	L2
10	Derive the expression for RMS – Pulse broadening due to inter modal dispersion in step index fiber.	5	CO1	L2
11	Explain the GaAlAs double – hetero junction LED structure.	4	CO2	L2
12	Explain the structure of RAPD and its working	6	CO2	L2
13	Explain lensing schemes for coupling improvement.	6	CO2	L2
14	Discuss different types of non linear losses	6	CO2	L2
15	Explain with the help of neat diagram, distributed feedback laser diode.	6	CO1	L2
16	With appropriate mathematical equations explain single- mode fiber joints	4	CO1	L2
17	Explain fiber bending loss with a neat diagram.	6	CO3	L2
18	Explain GaAs homo junction injection laser with fabriperot cavity and also derive its quantum efficiency of the above laser.	10	CO3	L3
19	Derive an expression for pulse spreading due to material disperssion which is a function of wavelength and time delay.	7	CO3	L2
20	Explain different types of bending losses in optical fiber.	8	CO3	L2
21	Draw the cross section of GaAlAs double hetero structure LED energy band diagram and refrative index variation. Explain their importance.	9	CO3	L3
22	Derive an expression for Lacing condition and hence for optical gain in lasers.	9	CO3	L3
23	With proper sketch briefly explain the structure of RPAD photo diode.	9	CO3	L3
24	Show that optical power coupled into a step index fiber due to an Led with Lambartian distribution is given by P=P₅(NA)² For r₅<=a, with usual notation.	9	CO3	L3
25	List out the requirement that a good connector design has to meet.	9	CO3	L3
26	In brief explain basic structure of an optical receiver.	9	CO3	L3
27	Discuss the features of eye pattern.	8	CO4	L3
28	Write a short note on "Burst mode receiver".	8	CO4	L3
29	Explain fusion splicing of optical fibers with appropriate equations.	4	CO4	L2
30	Illustrate the different types of scattering losses in optical fiber with suitable equations	6	CO4	L3
31	Explain what is meant by critical bending radius for an optical fiber	6	CO4	L2

D2. TEACHING PLAN - 2

Module – 3

Title:		Appr	10 Hrs
		Time:	
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1		CO5	L3
2		CO6	L2
b	Course Schedule		
Class No	Module Content Covered	CO	Level

23	Optical sources: Energy Bands, Direct and Indirect Bandgaps,	CO5	L3
24	Light Emitting diodes: LED Structures, Light Source Materials, Quantum Efficiency and LED Power,	CO5	L3
25	Modulation. Laser Diodes: Modes and Threshold conditions, Rate equation, External Quantum Efficiency,	CO5	L3
26	Resonant frequencies, Laser Diode structures and Radiation Patterns: Single mode lasers.	CO5	L3
27	Photodetectors: Physical principles of Photodiodes,	CO6	L2
28	Photodetector noise,	CO6	L2
29	Detector response time.	CO6	L2
30	Optical Receiver: Optical Receiver Operation:	CO6	L2
31	Error sources,Front End Amplifiers,	CO6	L2
32	Receiver sensitivity, Quantum Limit.	CO6	L2
с	Application Areas	СО	Leve
1	Dynamic light scattering, Tunable laser diodes	CO5	L3
2	Organic light detectors, Burst mode receiver	CO6	L3
d	Review Questions	-	_
32	Explain the three types of misalignment which occur when joining optical fibers.	CO5	L3
33	Discuss about star coupler and also give its splitting and excess loss.	CO5	L2
34	Derive SNR for analog receiver.	CO5	L2
35	Explain the term receiver sensitivity , derive an equation for receiver sensitivity in terms of photo detector noise.	CO5	L2
36	What are different types of mis alignments.	CO5	L3
37	Explain briefly the various fiber splicing techniques.	CO6	L3
38	With neat diagram explain the operation of transimpedance pre ampliifer equivalent circuit.	CO6	L2
39	Derive an expression for receiver sensitivity and also explain quantum limit.	CO6	L2
40	Derive the expression for rise time budget analysis.	CO6	L2
41	In brief explain multichannel AM technique.	CO6	L2
42	Write a short note on "microwave photonics"	CO6	L2
43	Explain in brief design and operation of polarization – independent isolator.	CO6	L2
е	Experiences	-	_
1		CO6	L2
2			

Module – 4

Title:	Data Transmission and Telemetry	Appr	10 Hrs
	Measurement of Non – Electrical Quantities	Time:	
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1		CO7	L2
2		CO8	L3
b	Course Schedule		
Class No	Module Content Covered	СО	Level
33	WDM Concepts and Components: Overview of WDM:	C07	L2
34	Operational Principles of WDM, WDM standards,	C07	L2
35	Mach-Zehnder Interferometer Multiplexers, Isolators and Circulators,	CO7	L3
36	Fiber grating filters, Dielectric Thin-Film Filters, Diffraction Gratings,	CO7	L2
37	Active Optical Components, Tunable light sources,	CO7	L2
	Optical amplifiers: Basic application and types Semiconductor optical amplifiers,	CO8	L2

39	types Semiconductor optical amplifiers	CO8	L2
40	Erbium Doped Fiber Amplifiers,	CO8	L2
41	Raman Amplifiers,	CO8	L2
42	Wideband Optical Amplifiers.	CO8	L2
С	Application Areas	СО	Level
1	Multifrequency Lasers, Multimedia MAC protocol	CO7	L2
2	Fourier Domain mode locking	CO8	L2
d	Review Questions	-	-
44	Explain the basic sections of an optical receiver with a neat diagram.	CO7	L2
45	Derive an expression for carrier to noise ratio of an analog optical fiber	CO7	L2
	communication.	<u> </u>	
46	Explain sub carrier multiplexing technique in detail with a neat diagram.	CO7	L2
47	Explain radio over fiber links.	CO8	L2
48	Discuss how the eye diagram is powerful measurement tool for assessing the data handling capability in digital transmission system.	CO7	L2
49	Explain with block diagram the elements of analog link. List the signal imperments in analog systems.	CO7	L2
50	Explain sub-carrier multiplexing techniques in OFC.	CO8	L2
51	Derive an equation for receiver sensitivity in terms of photo detector noise .	CO7	L2
52	Discuss coherent detection with relevant block diagram.	CO7	L2
53	Discuss subcarrier multiplexing	CO8	L2
54	Explain link power budget with relevant diagram.	CO8	L2
55	Write short note on 1) Chirping 2) Extinction ratio penalty.	CO8	L2
е	Experiences	-	-
1		CO7	L2
2			

E2. CIA EXAM – 2

a. Model Question Paper - 2

Crs Code	e:	15EC82	Sem:	8	Marks:	20		Time:	75 minut	minutes		
Cour	Course: Fiber Optics and Networks											
-	-	Note: Answ	ver any 1 d	question f	rom each part.				Mark	s CO	Level	
					Part A							
1	а				tivity , derive aı tector noise.	n equatio	on for	receiver	8	CO5	L3	
	b	What are c	different ty	pes of mis	alignments.				7	CO5	L2	
					OR							
2	а	Derive the	expressio	n for rise t	ime budget an	alysis.			8	CO6	L2	
	b	In brief exp	olain multi	channel A	M technique.				7	CO6	L2	
					Part B							
3	а	Explain rac	dio over fik	per links.					8	C07	L2	
	b				s powerful me pability in digit				7	CO7	L2	
					OR							
4	а	Explain lin	k power b	udget with	n relevant diagi	am.			8	CO8	L2	
	b	Write shor	t note on :	L) Chirping	2) Extinction ra	atio pena	alty.		7	CO8	L2	

b. Assignment – 2

Note: A distinct assignment to be assigned to each student.

			Model	Assignment	Questions		
Crs Code:	15EC82	Sem:	8	Marks:	5 / 10	Time:	90 – 120 minutes
15EE					Copyrig	ght ©2017. cAA	S. All rights reserved.

		t to answer 2-3 assignments. Each assignment carries equal mar			
SNo	USN	Assignment Description	Marks	СО	Level
32		Explain the three types of misalignment which occur when joining optical fibers.	8	CO5	L3
33		Discuss about star coupler and also give its splitting and excess loss.	8	CO6	L2
34		Derive SNR for analog receiver.	8	CO6	L2
35		Explain the term receiver sensitivity , derive an equation for receiver sensitivity in terms of photo detector noise.	8	CO6	L2
36		What are different types of mis alignments.	8	CO5	L3
37		Explain briefly the various fiber splicing techniques.	8	CO6	L3
38		With neat diagram explain the operation of transimpedance pre ampliifer equivalent circuit.	8	CO6	L2
39		Derive an expression for receiver sensitivity and also explain quantum limit.	8	CO6	L2
40		Derive the expression for rise time budget analysis.	8	CO6	L2
41		In brief explain multichannel AM technique.	8	CO6	L2
42		Write a short note on "microwave photonics"	5	CO7	L2
43		Explain in brief design and operation of polarization – independent isolator.	7	C07	L2
44		Explain the basic sections of an optical receiver with a neat diagram.	4	C07	L2
45		Derive an expression for carrier to noise ratio of an analog optical fiber communication.	8	C07	L2
46		Explain sub carrier multiplexing technique in detail with a neat diagram.	8	CO8	L2
47		Explain radio over fiber links.	8	CO7	L2
48		Discuss how the eye diagram is powerful measurement tool for assessing the data handling capability in digital transmission system.	8	CO7	L2
49		Explain with block diagram the elements of analog link. List the signal imperments in analog systems.	5	CO8	L2
50		Explain sub-carrier multiplexing techniques in OFC.	5	CO8	L2
51		Derive an equation for receiver sensitivity in terms of photo detector noise	6	CO8	L2
52		Discuss coherent detection with relevant block diagram.	8	CO7	L2
53		Discuss subcarrier multiplexing	5	CO8	L2
54		Explain link power budget with relevant diagram.	5	CO8	L2
55		Write short note on 1) Chirping 2) Extinction ratio penalty.	6	CO8	L2

D3. TEACHING PLAN - 3

Module – 5

Title:	Divide and Conquer	Appr	16 Hrs
		Time:	
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1		CO9	L2
2		CO10	L2
b	Course Schedule		
Class No	Module Content Covered	СО	Level
43	Optical Networks: Optical network evolution and concepts:		
44	Optical networking terminology, Optical network node and switching elements,		
45	Wavelength division multiplexed networks, Public telecommunication network	CO9	L2
15EE	Copyright ©2017. cAAS. All rights	reserve	d.

	overview.		
46	Optical network transmission modes, layers and protocols: Synchronous networks, Asynchronous transfer mode,	CO9	L2
47	OSI reference model, Optical transport network, Internet protocol	CO9	L2
48	Wavelength routing networks: Routing and wavelength assignment, Optical switching networks:	CO9	L2
49	Optical circuit switched networks, packet switched networks, Multiprotocol Label Switching,	CO10	L2
50	Optical burst switching networks, Optical network deployment:	CO10	L2
51	Longhaul networks, Metropoliton area networks,	CO10	L2
52	Access networks, Local area networks.	CO10	L3
с	Application Areas	СО	Level
1	High security features of UOWC	CO9	L2
2	Optical neural networks	CO10	L2
d	Review Questions	-	-
52	Explain the operation of a polarization independent isolater with a neat diagram		L2
53	Discuss about chromatic dispersion compensator.	CO10	L2
54	Derive an equation for amplifier gain in semiconductor optical amplifiers.	CO10	L2
55	Explain ultra fast point to point transmission system using optical TDM.	CO9	L3
56	Breifly explain the rise time budget analysis with its basic elements contribute to system rise time.	CO9	L2
57	With a neat sketch explain WDM scheme.	CO10	L1
58	Derive an expression for difference in length in MZI multiplexers.	CO10	L2
59	Write a note on optical add/drop multiplexers.	CO9	L2
60	Explain in detail the amplification mechanism with energy level diagram in an EDFA.	CO10	L2
61	With suitable diagram describe SONET /SDH optical network function.	CO9	L2
62	Explain the principal of operation of WDM with relevant block diagram.	CO9	L2
63	Discuss the design and operation of a polarization independent isolator made of three miniature optical components.	CO10	L2
64	Explain with the help of relevant diagrams various applications of fiber bragg gratings.	CO10	L2
65	With the help of energy level diagram explain the working of Erbiun – Doped Fiber Amplifiers.	CO10	L2
66	Write short note on high speed light wave links.	CO10	L2
е	Experiences	_	-
1		CO10	L2
-		CO9	

E3. CIA EXAM – 3

a. Model Question Paper - 3

Crs (Code	15EC82	Sem:	8	Marks:	30	Time:	75 minute	S	
Cour	urse: Fiber Optics and Netwoks									
-	-	Note: Ansv	wer any 2 qu	lestions, eac	ch carry equ	al marks	5.	Marks	СО	Level
1	1	Explain the diagram	e operation o	of a polarizat	ion indepen	dent isola	ater with a neat	8	CO9	L2
			out chroma	tic dispersior	n compensa	tor.		7	CO9	L2
					or					
2	a	Derive an	expression fo	or difference	in length in	MZI mult	tiplexers.	8	CO9	L2
	b	Write a no	te on optical	.add/drop n	nultiplexers.			7	COg	L2
3	а	Explain the	e principal of	^f operation o	f WDM with	relevant	block diagram.	8	CO10	L2
	b			d operation o re optical com		ion indep	pendent isolator	7	CO10	L2

		or			
4	a	With the help of energy level diagram explain the working of Erbiun –	8	CO10	L2
		Doped Fiber Amplifiers.			
	b	Write short note on high speed light wave links.	7	CO10	L2

b. Assignment – 3

Note: A distinct assignment to be assigned to each student.

	Aus				odel Assignme		~			
Crs C	odo'	15EC63	Sem:	6	Marks:	5 / 10		90 – 120	minuto	-
Cours		VLSI De		0	IMAINS.	5710		90 - 120	minutes	5
			0		ments. Each as		arriag agual ma	rla		
SNo			Assignment			signment c	ames equal ma	Marks	со	Level
		0314			on of a polarizat	ion indonon	donticolator	8	CO9	Level L2
52			with a neat of			ion indepen		0	COG	
53					natic dispersio	n compensa	ator.	8	CO10	L2
54					for amplifier gai			l 8	CO10	L2
55			Explain ultra optical TDM		int to point tran	ismission sy	stem using	8	COg	L3
56					se time budget e to system rise		th its basic	6	CO9	L2
57			With a neat :	sketch e	explain WDM so	cheme.		4	CO10	L1
58			Derive an ex multiplexers		n for difference	in length in	MZI	6	CO10	L2
59			Write a note	on opti	cal add/drop n	nultiplexers.		8	CO9	L2
60			Explain in de level diagrar		amplification m EDFA.	nechanism v	with energy	8	CO10	L2
61			With suitable function.	e diagra	am describe SO	NET /SDH	optical network	< 7	CO9	L2
62			Explain the p diagram.	orincipa	l of operation o	f WDM with	relevant block	9	CO9	L2
63			Discuss the	t isolatc	and operation o or made of three			6	CO10	L2
64			of fiber brag	g gratin		2			CO10	L2
65					ergy level diagr per Amplifiers.	am explain ⁻	the working of	4	CO10	L2
66			Write short r	note on	high speed ligh	nt wave links	6.	6	CO10	L2

F. EXAM PREPARATION

1. University Model Question Paper

Cou	rse:	Fiber Optics and N	∕ Year	JULY /	′2019								
Crs (Code:	15EC82 Sen	n: 8	Marks:	80	Time:		180 mi	inutes				
-	Note	Answer any FIVE f	ull questions, c	hoosing ONE full	question ⁻	from each	Marks	СО	Level				
		module											
1	a	Explain total intern	plain total internal reflection and photonic crystal fibers.										
	b	Derive an expressi	8	CO1	L2								
2	a	Explain the GaAlAs	s double – heter	o junction LED stru	ucture.		9	CO2	L2				
	b	Explain the structu	ire of RAPD and	its working			7	CO2	L2				
3	а	List out the require	List out the requirement that a good connector design has to meet.										
	b	In brief explain bas	ic structure of a	n optical receiver.			5	CO3	L3				

	с	Discuss the features of eye pattern.	6	CO3	L2
		or			
4	a	Explain fusion splicing of optical fibers with appropriate equations.	5	CO4	L2
	b	Illustrate the different types of scattering losses in optical fiber with suitable equations	8	CO4	L2
	С	Explain what is meant by critical bending radius for an optical fiber	3	CO3	L3
5	a	Discuss about star coupler and also give its splitting and excess loss.	6	CO5	L2
	b	Derive SNR for analog receiver.	5	CO5	L2
	С	Explain the term receiver sensitivity , derive an equation for receiver sensitivity in terms of photo detector noise.	5	CO5	L2
		or			
6	a	In brief explain multichannel AM technique.	7	CO6	L2
	b	Write a short note on "microwave photonics"	5	CO6	L2
	С	Explain in brief design and operation of polarization – independent isolator.	4	CO6	L2
7	a	Explain the basic sections of an optical receiver with a neat diagram.	5	CO7	L2
	b	Derive an expression for carrier to noise ratio of an analog optical fiber communication.	6	CO7	L2
	С	Explain sub carrier multiplexing technique in detail with a neat diagram.	5	CO7	L2
		or			
8	a	Discuss subcarrier multiplexing	10	CO8	L2
	b	Explain link power budget with relevant diagram.	6	CO8	L2
9	a	With suitable diagram describe SONET /SDH optical network function.	7	CO9	L2
	b	Explain the principal of operation of WDM with relevant block diagram.	9	CO9	L2
		or			
10	a	Explain with the help of relevant diagrams various applications of fiber bragg gratings.	6	CO10	L2
	b	With the help of energy level diagram explain the working of Erbiun – Doped Fiber Amplifiers.	6	CO10	L2
	С	Write short note on high speed light wave links.	4	CO10	L2

E3. CIA EXAM – 3

a. Model Question Paper - 3

Crs	Code	15EC82	Sem:	8	Marks:	30	Time:	75 minute	s	
Cou	rse:	Fiber Opt								
-	-	Note: Ans	swer any 2 c	uestions,	, each carry eo	qual mark	S.	Marks	СО	Level
1	a	Explain th	t 8	CO9	L2					
		diagram								
	b	Discuss a	bout chrom	7	CO9	L2				
2	a	Derive an	expression	for differe	ence in length i	n MZI mu	ltiplexers.	8	CO9	L2
	b	Write a no	ote on optica	al add/dro	op multiplexer	S.		7	CO9	L2
3	a	Explain th	ne principal (of operation	on of WDM wit	h relevan	t block diagram	. 8	CO10	L2
	b	Discuss tl	he design ar	nd operati	on of a polariz	ation inde	pendent isolato	or 7	CO10	L2
		made of t	hree miniatu	ure optica	l components					
					or					
4	a	With the	With the help of energy level diagram explain the working of Erbiun –							L2
			iber Amplifi							
	b	Write sho	ort note on h	igh speed	l light wave lin	ks.		7	CO10	L2

b. Assignment – 3

Note: A distinct assignment to be assigned to each student.

			5	M	odel Assignmer	nt Questions	S			
Crs C	ode:	15EC63	Sem:	6	Marks:	5 / 10	Time:	90 - 120	minutes	5
Cours	se:	VLSI De	sign	·						
Note:	Each	student	to answer 2-	3 assigr	nments. Each as	signment c	arries equal ma	irk.		
SNo		USN	Assignment					Marks	со	Level
52			Explain the with a neat		on of a polarizat 1	ion indeper	ident isolater	8	CO9	L2
53			Discuss abo	out chro	matic dispersior	n compensa	ator.	8	CO10	L2
54			Derive an eo amplifiers.	quation	8	CO10	L2			
55			Explain ultra optical TDM		8	CO9	L3			
56			Breifly expla elements co		6	CO9	L2			
57			With a neat	sketch	4	CO10	L1			
58			Derive an ex multiplexers		n for difference	in length in	MZI	6	CO10	L2
59			Write a note	e on opt	ical add/drop n	nultiplexers.		8	CO9	L2
60			Explain in d level diagra		amplification m EDFA.	nechanism \	with energy	8	CO10	L2
61			With suitab function.	le diagra	am describe SO	NET /SDH	optical network	7	CO9	L2
62			Explain the diagram.	principa	Il of operation o	f WDM with	relevant block	9	CO9	L2
63			Discuss the independer component	6	CO10	L2				
64			of fiber brac	ig gratir				s 6	CO10	L2
65					ergy level diagr oer Amplifiers.	am explain	the working of	4	CO10	L2
66					high speed ligh	nt wave links	5.	6	CO10	L2

F. EXAM PREPARATION

1. University Model Question Paper

Cou	rse:	Fiber Optics and Networks				Month /	′ Year	JULY /	′2019			
Crs (Code:	15EC82 Sem:	8	Marks:	80	Time:		180 mi	nutes			
-	Note	Answer any FIVE full ques	tions, choosir	ng ONE full	question fro	m each	Marks	СО	Level			
		module										
1	a	Explain total internal reflect	xplain total internal reflection and photonic crystal fibers.									
	b	Derive an expression for pu	8	CO1	L2							
2	a	Explain the GaAlAs double	– hetero junc	tion LED stru	cture.		9	CO2	L2			
	b	Explain the structure of RA	PD and its wo	rking			7	CO2	L2			
3	a	List out the requirement the	5	CO3	L2							
	b	In brief explain basic struct	ure of an optio	cal receiver.			5	CO3	L3			

	С	Discuss the features of eye pattern.	6	CO3	L2
		or			
4	а	Explain fusion splicing of optical fibers with appropriate equations.	5	CO4	L2
	b	Illustrate the different types of scattering losses in optical fiber with suitable equations	8	CO4	L2
	С	Explain what is meant by critical bending radius for an optical fiber	3	CO3	L3
5	а	Discuss about star coupler and also give its splitting and excess loss.	6	CO5	L2
	b	Derive SNR for analog receiver.	5	CO5	L2
	С	Explain the term receiver sensitivity , derive an equation for receiver sensitivity in terms of photo detector noise.	5	CO5	L2
		or			
6	а	In brief explain multichannel AM technique.	7	CO6	L2
	b	Write a short note on "microwave photonics"	5	CO6	L2
	С	Explain in brief design and operation of polarization – independent isolator.	4	CO6	L2
7	а	Explain the basic sections of an optical receiver with a neat diagram.	5	CO7	L2
	b	Derive an expression for carrier to noise ratio of an analog optical fiber communication.	6	CO7	L2
	С	Explain sub carrier multiplexing technique in detail with a neat diagram.	5	C07	L2
		or			
8	а	Discuss subcarrier multiplexing	10	CO8	L2
	b	Explain link power budget with relevant diagram.	6	CO8	L2
9	a	With suitable diagram describe SONET /SDH optical network function.	7	CO9	L2
	b	Explain the principal of operation of WDM with relevant block diagram.	9	CO9	L2
		Or			
10	а	Explain with the help of relevant diagrams various applications of fiber bragg gratings.	6	CO10	L2
	b	With the help of energy level diagram explain the working of Erbiun – Doped Fiber Amplifiers.	6	CO10	L2
	С	Write short note on high speed light wave links.	4	CO10	L2

2. SEE Important Questions

Cou	rse:	Fiber Optics and Networks		Month	/ Year	May/2	019
Crs	Code:	15EC82 Sem: 8 Marks:	80	Time:		180 mi	
	Note	Answer all FIVE full questions. All questions carry equ	ial marks.		-	-	
	Qno.	Important Question			Marks	СО	Year
dul							
е							
1	1	Derive an expression for NA using ray theory.			8	CO1	L2
	2	In brief discuss the different design approaches for si	oers	6	CO1	L2	
	3	In brief explain linear scattering losses.	6	CO2	L2		
	4	Derive the expression for RMS – Pulse broadening du	odal	4	CO2	L2	
		dispersion in step index fiber.					
	5	Explain the GaAlAs double – hetero junction LED stru	ucture.		7	CO1	L2
2	1	Draw the cross section of GaAlAs double hetero struc	cture LED en	ergy	9	CO3	L3
		band diagram and refrative index variation. Explain the	eir importanc	e.			
	2	Derive an expression for Lacing condition and hence	for optical ga	in in	8	CO4	L3
		lasers.					
	3	With proper sketch briefly explain the structure of RP/	AD photo dio	de.	8	CO4	L3
	4	Show that optical power coupled into a step index fibe	er due to an l	_ed	4	CO4	L2
		with Lambartian distribution is given by P=P _s (NA) ² For	r₅<=a, with us	ual			
		notation.					
	5	List out the requirement that a good connector design	t.	6	CO4	L3	

3	1	Explain the term receiver sensitivity , derive an equation for receiver sensitivity in terms of photo detector noise.	8	CO6	L2
	2	What are different types of mis alignments.	8	CO5	L3
	3	Explain briefly the various fiber splicing techniques.	8	CO6	L3
	4	With neat diagram explain the operation of transimpedance pre ampliifer equivalent circuit.	8	CO6	L2
	5	Derive an expression for receiver sensitivity and also explain quantum limit.	8	CO6	L2
4	1	Explain sub-carrier multiplexing techniques in OFC.	8	CO7	L2
	2	Derive an equation for receiver sensitivity in terms of photo detector noise .	8	CO7	L2
	3	Discuss coherent detection with relevant block diagram.	5	CO8	L2
	4	Discuss subcarrier multiplexing	5	CO8	L2
	5	Explain link power budget with relevant diagram.	6	CO8	L2
5	1	Breifly explain the rise time budget analysis with its basic elements contribute to system rise time.	8	CO9	L2
	2	With a neat sketch explain WDM scheme.	8	CO10	L2
	3	Derive an expression for difference in length in MZI multiplexers.	8	CO10	L2
	4	Write a note on optical add/drop multiplexers.	8	CO9	L3
	5	Explain in detail the amplification mechanism with energy level diagram in an EDFA.	6	COg	L2

Course Outcome Computation

Academic Year:

.

Odd / Even se	emes	ter													
INTERNAL TES	T		T1						T2						
Course Outcor	ne	CO1		CO2		CO3		CO4		CO5		CO6			
QUESTION NO)	Q1	LV	Q2	LV	Q3	LV	Q1	LV	Q2	LV	Q3	LV		
MAX MARKS		10	-	10	-	10	-	10	-	10	-	10	-		
USN-1		5	2	10				10	3	9	3	4	1		
USN-2		5	2	8	3										
USN-3		7	3	7	3	10	3	8	3	8	3	5	2		
USN-4						4	1	10	3	8	3	6	2		
USN-5		8	3	6	2	9	3	10	3	8	3				
USN-6								10	3	9	3	4	1		
Average Attainment	СО		2.5		2.75		2.33		3		3		1.5		

LV Threshold : 3:>60%, 2:>=50% and <=60%, 1: <=49%

CO1 Computation :(2+2+2+3)/4 = 10/4=2.5

PO Computation

Program Outcome	PO1		PC	PO3		PO3)1	PO12		PC)12	
Weight of CO - PO	3		-	L		3	2	2	ź	2	Ç	3	
Course Outcome	CO1	1 C(D2 CO		03	CO4		CO5		CO6		
Test/Quiz/Lab			T1						T	2			
QUESTION NO	Q1	LV	Q2	LV	Q3	LV	Q1	LV	Q2	LV	Q3	LV	¢
MAX MARKS	10	-	10	-	10	-	10	-	10	-	10	-	1
USN-1	5	2	10	3			10	3	9	3	4	1	
USN-2	5	2	8	3									
USN-3	7	3	7	3	10	3	8	3	8	3	5	2	
USN-4					4	1	10	3	8	3	6	2	
USN-5	8	3	6	2	9	3	10	3	8	3			
USN-6							10	3	9	3	4	1	
Average CO Attainment		2.5		2.75		2.33		3		3		1.5	
15EE				.		Copyri	ght ©2017.	cAAS. All	l rights re	served.			