Sri Krishna Institute of Technology, Bangalore

COURSE PLAN

Academic Year 2019-2020

Program:	B E - Electronics \& Communication Engineering
Semester:	6
Course Code:	17 EC654
Course Title:	Digital switching Systems
Credit /L-T-P:	$3 / 3-0-0$
Total Contact Hours:	40
Course Plan Author:	Shilpa Rani P

Academic Evaluation and Monitoring Cell

Sri Krishna Institute of Technology
\#29,Chimney hills,Hesaraghata Main road, Chikkabanavara Post Bangalore - 560090, Karnataka, INDIA
Phone / Fax :08023721477/28392221/23721315
Web: www.skit.org.in , e-mail: skitprinci@gmail.com

Table of Contents

A. COURSE INFORMATION 2

1. Course Overview 2
2. Course Content 3
3. Course Material 4
4. Course Prerequisites 4
5. Content for Placement, Profession, HE and GATE 4
B. OBE PARAMETERS 5
6. Course Outcomes5
7. Course Applications 5
8. Articulation Matrix 5
9. Curricular Gap and Content6
C. COURSE ASSESSMENT. 6
10. Course Coverage 6
11. Continuous Internal Assessment (CIA) 6
D1. TEACHING PLAN - 1 7
Module - 17
Module - 28
E1. CIA EXAM - 1 9
a. Model Question Paper - 1 9
b. Assignment -19
D2. TEACHING PLAN - 2 10
Module-3. 10
Module-4. 11
E2. CIA EXAM - 2 12
a. Model Question Paper - 2 12
b. Assignment - 2 13
D3. TEACHING PLAN - 3 14
Module - 5 14
E3. CIA EXAM - 3 15
a. Model Question Paper - 3 15
b. Assignment - 3 16
F. EXAM PREPARATION. 16
12. University Model Question Paper 16
13. SEE Important Questions 18

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	EC
Semester:	6	Academic Year:	$2019-20$
Course Title:	Digital Switching Systems	Course Code:	17 EC654
Credit / L-T-P:	$3-0-0$	SEE Duration:	180 Minutes
Total Contact Hours:	40	SEE Marks:	80 Marks
CIA Marks:	30	Assignment	$1 /$ Module
Course Plan Author:	Shilpa Rani P	Sign ..	Dt:
Checked By:		Sign ..	Dt:
CO Targets	CIA Target : 83 \%	SEE Target:	83%

Note: Define CIA and SEE \% targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute.

Mod ule	Content	Teaching Hours	Blooms Learning Levels
1	DEVELOPMENT OF TELECOMMUNICATIONS: Network structure, Network services, terminology, Regulation, Standards. Introduction to telecommunications transmission, Power levels, Four wire circuits, Digital transmission, FDM,TDM, PDH and SDH	8	L1,L2
2	EvOLUTION OF SWITCHING SYSTEMS: Introduction, Message switching, Circuit switching, Functions of switching systems, Distribution systems, Basics of crossbar systems, Electronic switching. DIGITAL SWITCHING SYSTEMS: Switching system hierarchy, Evolution of digital switching systems, Stored program control switching systems, Building blocks of a digital switching system, Basic call processing.	8	L1,L2
3	TELECOMMUNICATIONS TRAFFIC: Introduction, Unit of traffic, Congestion, Traffic measurement, Mathematical model, lost call systems, Queuing systems. SWITCHING SYSTEMS: Introduction, Single stage networks, Gradings, LinkSystems, GOS of Linked systems	8	L1,L2
4	TIME DIVISION SWITCHING: Introduction, space and time switching, Timeswitching networks, Synchronisation.SWITCHING SYSTEM SOFTWARE: Introduction, Basic software architecture, Software architecture for level 1to 3 control, Digital switching system software classification, Call models, Software linkages during call, Feature flow diagram, Feature interaction.	8	L1,L2
5	MAINTENANCE OF DIGITAL SWITCHING SYSTEM: Introduction, Software maintenance, Interface of a typical digital switching system central office, System outage and its impact on digital switching system reliability, Impact of software patches on digital switching system maintainability, A methodology for proper maintenance of digital switching system A GENERIC DIGITAL SWITCHING SYSTEM MODEL: Introduction, Hardware architecture, Software architecture, Recovery strategy, Simple call through a digital system, Common characteristics of digital switching systems. Reliability analysis.	8	L1,L2
-	Total	40	-

3. Course Material

Books \& other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15-30 minutes
2. Design: Simulation and design tools used - software tools used ; Free / open source
3. Research: Recent developments on the concepts - publications in journals; conferences etc.

$\begin{gathered} \text { Modul } \\ \text { es } \end{gathered}$	Details	Chapters in book	Availability
A	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
1	Telecommunication and Switching, Traffic and Networks - J E Flood: Pearson Education, 2002.	1,2,3,4	In LIB
2	Digital Switching Systems, Syed R. Ali, TMH Ed 2002.	2.5	In LIB
B	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
1	Digital Telephony - John C Bellamy: Wiley India Pvt. Ltd, 3rd Ed, 2008.		In LIB
C	Concept Videos or Simulation for Understanding	-	-
C1	https://www.youtube.com/watch?v=UAKokowg1p8		
C2	https://www.youtube.com/watch?v=uYXOGdEkS6A		
C3	https://www.youtube.com/watch?v=CmFoNScwxdg		
C4	https://www.youtube.com/watch?v=PEzhUtAsXog		
C5	https://www.youtube.com/watch?v=IGJzFu6_BCw		
D	Software Tools for Design	-	-
E	Recent Developments for Research	-	-
F	Others (Web, Video, Simulation, Notes etc.)	-	-
1			

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.
Students must have learnt the following Courses / Topics with described Content ...

Mod ules	Course Code	Course Name	Topic / Description	Sem	Remarks	Blooms Level
1	17 ELN15	Basic Electronics	1. Knowledge on Basic working of switch	1	-	L2
2,3	17 MAT41	Engineering Mathematic-IV	Probability, random variables	4	-	L3
1,4	17 EC45	Principle of Data transmission Communicatio n Systems	4	-	L2	

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry \& profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Mod ules	Topic / Description	Area	Remarks	Blooms Level

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs.

Mod ules	Course Code.\#	Course Outcome At the end of the course, student should be able to ...	Teach. Hours	Instr Method	$\begin{gathered} \text { Assessme } \\ \text { nt } \\ \text { Method } \end{gathered}$	Blooms' Level
1	17EC654.1	Describe the electromechanical switching systems and its comparison with the digital switching.	16	Lecture	Test/ Assignme nt	L2
2	17EC654.2	Determine the telecommunication traffic and its measurements.	8	Lecture	Test/ Assignme nt	L3
3	17EC654.3	Define the technologies associated with the data switching operations.	8	Lecture	Test/ Assignme nt	L2
4	17EC654.4	Describe the software aspects of switching systems and its maintenance.	8	Lecture	Test/ Assignme nt	L2
5						
-	-	Total	40	-	-	L2-L3

2. Course Applications

Write 1 or 2 applications per CO.
Students should be able to employ / apply the course learnings to ...

Mod ules	Application Area Compiled from Module Applications.	CO	Level
1	Development of telecommunications is used in network topology, broadcasting	CO 1	L 2
2	Telecommunication trafficsare used in TCP control, throughput measuring in systems	CO 2	L 2
3	It is used in wired communication, analog signals multiplexing	CO 2	L 2
4	Used to measure strowger switching sytems	CO 3	L 2
5	TDM is used in ISDN,PSTN, wired and aireless telephone system	CO 4	L 2
6	Switching system software is used to make or break calls	CO 4	L 2

3. Articulation Matrix

CO - PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	-	Course Outcomes	Program Outcomes															-
Mod ules	CO.\#	At the end of the course student should be able to .			3	$\begin{gathered} \mathrm{PO} \\ 4 \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ 5 \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ 6 \end{gathered}$	PO	$\begin{gathered} \mathrm{PO} \\ 8 \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ 9 \end{gathered}$	PO	11	12	PS	$\begin{array}{\|l\|} \mathrm{PS} \\ \mathrm{O} 2 \end{array}$	$\begin{aligned} & \mathrm{PS} \\ & \mathrm{O} 3 \end{aligned}$	$\begin{gathered} \text { Lev } \\ \text { el } \end{gathered}$
1,2	CO. 1	Describe the electromechanical switching systems and its comparison with the digital switching.	1	1	1							1			2			
3	CO. 2	Determine the	2	2	2							1			2			

 1.Engineering Knowledge; 2.Problem Analysis; 3.Design / Development of Solutions; 4. Conduct Investigations of Complex Problems; 5.Modern Tool Usage; 6.The Engineer and Society; 7.Environment and Sustainability; 8.Ethics; 9.Individual and Teamwork; 10.Communication; 11.Project Management and Finance; 12.Life-long Learning; S1.Software Engineering: S2.Data Base Management; S3.Web Design

4. Curricular Gap and Content

Topics \& contents not covered (from A.4), but essential for the course to address POs and PSOs.

Mod ules	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation.

Mod ules	Title	Teach. Hours	No. of question in Exam						CO	Levels
			CIA-1	CIA-2	CIA-3	Asg	Extra Asg	SEE		
1	DEVELOPMENT TELECOMMUNICATIONS: OF	8	2	-	-	1	1	2	CO1	L1
2	EVOLUTION OF SWITCHING SYSTEMS DIGITAL SWITCHING SYSTEMS	8	2	-	-	1	1	2	CO1	L2
3	TELECOMMUNICATIONS TRAFFIC SWITCHING SYSTEMS	8	-	2	-	1	1	2	CO 2	L3
4	TIME DIVISION SWITCHING SWITCHING SYSTEM SOFTWARE	8	-	2	-	1	1	2	CO 3	L2
5	MAINTENANCE OF DIGITAL SWITCHING SYSTEM	8	-	-	4	1	1	2	CO 4	L2
-	Total	40	8	8	8	5	5	10	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A. 2.

Mod ules	Evaluation	Weightage in Marks	CO	Levels
1, 2	CIA Exam - 1	30	CO1	L2
3, 4	CIA Exam - 2	30	$\mathrm{CO} 2, \mathrm{CO} 3$	L2
5	CIA Exam-3	30	CO 4	L2
1,2	Assignment - 1	10	CO 1	L2
3, 4	Assignment - 2	10	$\mathrm{CO}_{2} \mathrm{CO}_{3}$	L2
5	Assignment - 3	10	CO 4	L2

1, 2	Seminar -1		-	-
3,4	Seminar -2		-	-
5	Seminar -3		-	-
				-
1,2	Quiz - 1		-	-
3,4	Quiz -		-	-
5	Quiz - 3		-	-
1 - 5	Other Activities - Mini Project	-	-	-
	Final CIA Marks		-	-

D1. TEACHING PLAN - 1

Module - 1

Title:	DEVELOPMENT OF TELECOMMUNICATIONS:	Appr Time:	8 Hrs
a	Course Outcomes	CO	Blooms
-	At the end of the topic the student should be able to .		Level
1	Describe the electromechanical switching systems and its comparison with the digital switching.	CO1	L2
b	Course Schedule	-	
Class No	Portion covered per hour	-	-
1	Network structure,	CO1	L1
2	Network services, terminology,	CO1	L1
3	Regulation, Standards.	CO1	L1
4	Introduction to telecommunications transmission,	CO1	L1
5	Power levels,	CO1	L2
6	Four wire circuits,	CO1	L2
7	Digital transmission, FDM,TDM,	CO1	L1
8	PDH and SDH	CO1	L1
c	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to . . .	-	-
1	Development of telecommunications is used in network topology, broadcasting, transmission of	CO1	L2
2	It is used in wired communication, analog signals multiplexing	CO1	L2
d	Review Questions	-	
-	The attainment of the module learning assessed through following questions	-	-
1	Explain briefly with neat diagram,the national telecommunication network	CO_{1}	L1
2	Explain the principle operation of a Four wire circuit with neat diagram	CO1	L2
3	Explain the following power levels in dBW I) 1 mW ii) 1 W iii) 2 mW iv) 100 mW	CO1	L3
4	Explain various types of network structures	CO1	L2
5	Explain FDM with respect to a suitable block diagram	CO1	L2
6	Design any one type of PDH with a suitable diagram	CO1	L2
7	Briefly explaint he regulations, standards in a telecommunication network	CO1	L2
8	Explain in brief power levels encountered in telecommunication transmission system	CO1	L2
9	Calculate the total bit rate for a 30 channel PCM system and draw figure for the same with all the details included. Also show calculation for length of the frame	CO1	L2
10	Derive the expressions for the stability margin M ina four wire circuit	CO1	L3
11	With frame structure explain the SDH.	CO1	L2
12	Give the need for Echo compressor and define i)AAR iii)PBX iii)BRL	CO1	L2
13	An amplifier has an input resistance of 600Ω and a resistive load of 75Ω. When it has an rms input voltage of 100 mv , the rms output current is 20ma. Find the	CO1	L3

	gain in dB.		
	Experiences		
\mathbf{e}	P	-	-
1			
2			

Module - 2

Title:	EVOLUTION OF SWITCHING SYSTEMS DIGITAL SWITCHING SYSTEMS	Appr Time:	8 Hrs
a	Course Outcomes	CO	Blooms
-	At the end of the topic the student should be able to ...	-	Level
1	Describe the electromechanical switching systems and its comparison with the digital switching.	CO1	L2
b	Course Schedule	-	-
Class No	Portion covered per hour	-	-
1	Introduction, Message switching,Circuit switching,	CO1	L2
2	Functions of switching systems,	CO1	L2
3	Distribution systems,	CO1	L2
4	Basics of crossbar systems, Electronic switching.	CO1	L2
5	Switching system hierarchy, Evolution of digital switching systems,	CO1	L2
6	Stored program control switching systems,	CO1	L2
7	Building blocks of a digital switching system,	CO 1	L2
8	Basic call processing.	CO1	L2
C	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to . . .	-	-
1	Switching systems are used in packet switching of data, emails	CO1	L2
2	Digital signals can be coded signalled, \& controlled	CO1	L2
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	Explain message switching and circuit switching. Bring out the difference between them	CO 1	L3
2	Define traffic: list different functions of switching systems	CO1	L2
3	Explain the working of basic central office linkages	CO1	L2
4	Highlight the advantages \& disadvantages of crossbar switch	CO1	L2
5	Explain the working of distributionn frame in strowger exchange	CO1	L1
6	What are the functions of distribution frame in switching system	CO1	L2
7	Explain neatly with diagramthe evolution of digital switching systems	CO1	L1
8	Explain the functions of IDF,TDF in strowger exchange	CO1	L2
9	List the advantages of i)electronic switching system ii) cross point switch over step by step switch	CO1	L2
10	Describe the fundamentals of DSS with a neat diagram	CO1	L1
11	Explain the process of basic Call processing.	CO1	L1
e	Experiences	-	-
1			
2			

E1. CIA EXAM - 1

a. Model Question Paper - 1

| Crs Code: $17 \mathrm{EC6} 54$ Sem: | VI | Marks: | 30 | Time: | 75 minutes |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Course: | Digital switching systems | | | | |

-	-	Note: Answer all questions, each carry equal marks. Module : 1,2	Marks	CO	Level
1	a	Explain briefly with neat diagram,the national telecommunication network	5	CO1	L3
	b	Explain the principle operation of a Four wire circuit with neat diagram	5	CO1	L2
	c	Explain message switching and circuit switching. Bring out the difference between them	5	CO1	L3
		OR			
2	a	Explain the following power levels in dBW I) 1 mW ii) 1 W iii) 2 mW iv) 100mW	5	CO1	L2
	b	Explain various types of network structures	5	CO1	L2
	c	Explain the working of basic central office linkages	5	CO1	L2
3	a	Explain FDM with respect to a suitable block diagram16	5	CO1	L1
	b	Design any one type of PDH with a suitable diagram	5	CO1	L2
	c	Describe the fundamentals of DSS with a neat diagram	5	CO1	L1
		OR			
4	a	Briefly explaint he regulations, standards in a telecommunication network	5	CO1	L1
	b	Explain in brief power levels encountered in telecommunication transmission system	5	CO1	L2
	c	Explain the working of distributionn frame in strowger exchange	5	CO1	L1

b. Assignment -1

Note: A distinct assignment to be assigned to each student

Model Assignment Questions							
Crs Code:	$17 E C 654$	Sem:	VI	Marks:	30	Time:	
Course:	Digital Switching Systems		Module: 1, 2				

Note: Each student to answer 2-3 assignments. Each assignment carries equal mark.

SNo	Assignment Description	Marks	CO	Level
1	Explain briefly with neat diagram,the national telecommunication network	5	CO1	L1
2	Explain the principle operation of a Four wire circuit with neat diagram	5	CO1	L2
3	Explain the following power levels in dBW I) 1 mW ii) 1 W iii) 2 mW iv) 100mW	5	CO1	-3
4	Explain various types of network structures	5	CO1	2
5	Explain FDM with respect to a suitable block diagram	5	CO1	-2
6	Design any one type of PDH with a suitable diagram	5	CO1	L2
7	Briefly explaint he regulations, standards in a telecommunication network	5	CO1	L2
8	Explain in brief power levels encountered in telecommunication transmission system	5	CO1	L2
9	Calculate the total bit rate for a 30 channel PCM system and draw figure for the same with all the details included. Also show calculation for length of the frame	5	CO1	L2
10	Derive the expressions for the stability margin M ina four wire circuit	5	CO1	-3
11	With frame structure explain the SDH.	5	CO1	-2
12	Give the need for Echo compressor and define i)AAR ii)PBX iii)BRL	5	CO1	L2
13	An amplifier has an input resistance of 600Ω and a resistive load of 75Ω. When it has an rms input voltage of 100 mv , the rms output current is 20 ma . Find the gain in dB.	5	CO1	L3
14	Explain message switching and circuit switching. Bring out the difference between them	5	CO1	-3
15	Define traffic: list different functions of switching systems	5	CO1	L2
16	Explain the working of basic central office linkages	5	CO1	-2
17	Highlight the advantages \& disadvantages of crossbar switch	5	CO1	-2
18	Explain the working of distributionn frame in strowger exchange	5	CO1	L1
19	What are the functions of distribution frame in switching system	5	CO1	-2
20	Explain neatly with diagramthe evolution of digital switching systems	5	CO1	L1
21	Explain the functions of DF,IDF,TDF in strowger exchange	5	CO1	L2

22	List the advantages of i)electronic switching system ii) cross point switch over step by step switch	5	CO 1	L 2
23	Describe the fundamentals of DSS with a neat diagram	5	CO 1	L 1
24	Explain the process of basic Call processing.	5	CO 1	L 1

D2. TEACHING PLAN - 2

Module - 3

Title:	TELECOMMUNICATIONS TRAFFIC SWITCHING SYSTEMS	Appr Time:	8 Hrs
a	Course Outcomes	CO	Blooms
-	At the end of the topic the student should be able to ...	-	Level
1	Determine the telecommunication traffic and its measurements.	CO 2	L2
b	Course Schedule		
Class No	Portion covered per hour	-	-
1	TELECOMMUNICATIONS TRAFFIC: Introduction,	CO 2	L1
2	Unit of traffic, Congestion,	CO 2	L2
3	Traffic measurement, Mathematical model,	CO 2	L3
4	lost call systems, Queuing systems.	CO 2	L3
5	SWITCHING SYSTEMS: Introduction,	CO 2	L2
6	Single stage networks, Gradings,	CO 2	L1
7	Link Systems, GOS of Linked systems.	CO 2	L2
8	Effective height, Antenna efficiency, Antenna Field Zones and Polarization	CO 2	L3
c	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to . . .	-	-
1	Telecommunication trafficsare used in TCP control, throughput measuring in systems	CO 2	L2
2	To measure the Quality \& oerformance of network\& its linkages	CO 2	L2
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	Define i) busy hour ii) holding time iii) unit of traffic iv) Grade of service	CO 2	L1
2	During the busy hour a group of trunks is offered 100 calls having an average duration of 3 min one of the call fails to find a designated trunk. Find the traffic offered to the group, traffic carried by the group and the traffic lost.	CO 2	L3
3	Derive an expression for iterative form of Erlangs lost call formula with explanation of assumptions made	CO 2	L2
4	A progressive grading for connecting 20 trunks to switches having 10 outlets	CO 2	L3
5	Explain traffic capacity of gradings with a curve, traffic in Erlangs (A)v/s number of trunks required(N)	CO 2	L2
6	On an average, during the busy hour, a company makes 180 outgoing calls of average duration of 3 min. it receives 400 incoming calls of average duration 6 min. find outgoing traffic, incoming traffic, total traffic	CO 2	L3
7	A group of 20 trunks provides a GOS of 0.01 when offered is the GOS improved if one extra trunk is added to the group. How much does the GOS deteriorate if one trunk is out of service	CO 2	L3
8	Define and explain plain the following terms I) traffic intensity ii) blocking probability iii) blocking network. iv) statistical equilibrium	CO 2	L2
9	During the Busy hour on average 30E is offered to a group of Trunks. On average total period during which all trunks are busy is 12secs and two calls are lost. Find the average no of calls carried by the group and average call duration	CO 2	L3
10	What is grading exaplain any two types of gradings	CO 2	L2
11	Derive an expression for gradee of service of a three stage network	CO 2	L3

12	Derive a three stage network for connecting 100 incoming trunks to 100 outgoing trunks	CO 2	L 3
13	Design a progressive grading system connecting 30 outgoing trunks and having an availability of only 10 switches. Draw the grading diagram.	CO 2	L 3
14	Define I) graded groups ii) availability iii) skipped grading iv) homogeneous grading v) Congestion vi) CCR vii) peak busy hour	CO 2	L 2
15	Design a two stage switching network for connecting 200 incoming trunks to 200 outgoing trunks.	CO 2	L 2
\mathbf{e}	Experiences		-
1			
2			

Module - 4

Title:	TIME DIVISION SWITCHING SWITCHING SYSTEM SOFTWARE	Appr Time:	8 Hrs
a	Course Outcomes	CO	Blooms
-	At the end of the topic the student should be able to ...	-	Level
1	Define the technologies associated with the data switching operations.	CO3	L2
b	Course Schedule		
Class No	Portion covered per hour	-	-
1	TIME DIVISION SWITCHING: Introduction,	CO_{3}	L1
2	space and time switching,.	CO_{3}	L2
3	Time switching networks, Synchronisation	CO_{3}	L2
4	SWITCHING SYSTEM SOFTWARE: Introduction, Basic software architecture,	CO3	L1
5	Software architecture for level 1to 3 control,	CO3	L2
6	Digital switching system software classification,	CO 3	L2
7	Call models, Software linkages during call,	CO 3	L2
8	Feature flow diagram, Feature interaction.	CO_{3}	L2
c	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to .	-	-
1	Used to measure strowger switching sytems	CO_{3}	L2
2	Switching system software is used to make or break calls	CO_{3}	L2
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	Explain the principle of operation of TST and STS network	CO_{3}	L2
2	Explain with block diagram the frame alignment of PCM signal in digital exchange	CO 3	L2
3	Explain in brief digital switching system software classification	CO_{3}	L2
4	With the help of feature flow diagram, explain feature activation, feature operation and feature de-activation	CO_{3}	L2
5	A TST network has 20 incoming and 20 outgoing PCM highway each conveys 30 channels the required GOS is $0.01,0.02$. find the traffic capacity of network in mode 1 and mode 2.	CO3	L3
6	Explain frame synchronization	CO_{3}	L1
7	With a suitable diagram, explain software linkages during a call	CO_{3}	L1
8	With a neat sketch explain a space switch for K incoming PCM highways and m outgoing PCM highways	CO_{3}	L1
9	Discuss the need for frame alignment in time division switching networks. Explain double ended unilateral and bilateral synchronization systems	CO 3	L2
10	Briefly explain the basic call model.	CO_{3}	L1
11	An STS switch has 16 incoming and 16 outgoing highways, each of which conveys 24 PCM channels. Between the incoming and outgoing space	CO3	L3

	Switches, there are 20 links containing time switches. During busy hour the network is offered 300 Erlangs of traffic. Estimate GOS if I) connection is required to aparticular free channel on a selected outgoing highway. ii) connection is required to a particular outgoing highway, but any free channel on it may be used.		
12	Explain in brief digital switching system software classification	CO3	L2
\mathbf{e}	Experiences	-	-
1			
2			
3			
4			
5			

E2. CIA EXAM - 2

a. Model Question Paper - 2

b. Assignment - 2

Note: A distinct assignment to be assigned to each student

Model Assignment Questions							
Crs Code:	17EC654	Sem:	VI	Marks:	5	Time:	$90-120$ minutes
Course:	Digital Switching systems		Module: 3, 4				

Note: Each student to answer 2-3 assignments. Each assignment carries equal mark.

SNo	Assignment Description	Marks	CO	Level
1	Define i) busy hour ii) holding time iii) unit of traffic iv) Grade of service	5	CO 2	L1
2	During the busy hour a group of trunks is offered 100 calls having an average duration of 3 min one of the call fails to find a designated trunk. Find the traffic offered to the group, traffic carried by the group and the traffic lost.	5	CO 2	L3
3	Derive an expression for iterative form of Erlangs lost call formula with explanation of assumptions made	5	CO 2	L2
4	A progressive grading for connecting 20 trunks to switches having 10 outlets	5	CO 2	-3
5	Explain traffic capacity of gradings with a curve, traffic in Erlangs (A)v/s number of trunks required(N)	5	CO	L2
6	On an average, during the busy hour, a company makes 180 outgoing calls of average duration of 3 min . it receives 400 incoming calls of average duration 6 min . find outgoing traffic, incoming traffic, total traffic	5	CO2	L3
7	A group of 20 trunks provides a GOS of 0.01 when offered is the GOS improved if one extra trunk is added to the group. How much does the GOS deteriorate if one trunk is out of service	5	CO 2	L3
8	Define and explain plain the following terms I) traffic intensity ii) blocking probability iii) blocking network. iv) statistical equilibrium	5	CO 2	L2
9	During the Busy hour on average 30 E is offered to a group of Trunks. On average total period during which all trunks are busy is 12 secs and two calls are lost. Find the average no of calls carried by the group and average call duration	5	CO 2	L3
10	What is grading exaplain any two types of gradings	5	CO 2	L2
11	Derive an expression for gradee of service of a three stage network	5	CO 2	L3
12	Derive a three stage network for connecting 100 incoming trunks to 100 outgoing trunks	5	CO 2	L3
13	Design a progressive grading system connecting 30 outgoing trunks and having an availability of only 10 switches. Draw the grading diagram.	5	CO 2	L3
14	Define I) graded groups ii) availability iii) skipped grading iv) homogeneous grading v) Congestion vi) CCR vii) peak busy hour	5	CO 2	L2
15	Design a two stage switching network for connecting 200 incoming trunks to 200 outgoing trunks.	5	CO 2	L2
16	Explain the principle of operation of TST and STS network	5	CO_{3}	L2
17	Explain with block diagram the frame alignment of PCM signal in digital exchange	5	CO_{3}	L2
18	Explain in brief digital switching system software classification	5	CO_{3}	L2
19	With the help of feature flow diagram, explain feature activation, feature operation and feature de-activation	5	CO_{3}	L2
20	A TST network has 20 incoming and 20 outgoing PCM highway each conveys 30 channels the required GOS is $0.01,0.02$. find the traffic capacity of network in mode 1 and mode 2.	5	CO 3	L3
21	Explain frame synchronization	5	CO_{3}	L1
22	With a suitable diagram, explain software linkages during a call	5	CO_{3}	L1
23	With a neat sketch explain a space switch for K incoming PCM highways and m outgoing PCM highways	5	CO_{3}	L1
24	Discuss the need for frame alignment in time division switching networks. Explain double ended unilateral and bilateral synchronization systems	5	CO_{3}	L2

25	Briefly explain the basic call model.	5	CO 3	L 1
26	An STS switch has 16 incoming and 16 outgoing highways, each of which conveys 24 PCM channels. Between the incoming and outgoing space switches, there are 20 links containing time switches. During busy hour the network is offered 300 Erlangs of traffic. Estimate GOS if l) connection is required to aparticular free channel on a selected outgoing highway, ii) connection is required to a particular outgoing highway, but any free channel on it may be used.	5	CO	$\mathrm{L3}$
27	Explain in brief digital switching system software classification	5	CO 3	L 2

D3. TEACHING PLAN - 3

Module - 5

Title:	MAINTENANCE OF DIGITAL SWITCHING SYSTEM	Appr Time:	8 Hrs
a	Course Outcomes	CO	Blooms
-	At the end of the topic the student should be able to ...	-	Level
1	Describe the software aspects of switching systems and its maintenance.	CO 4	L2
b	Course Schedule	-	-
Class No	Portion covered per hour	-	-
1	Introduction, Software maintenance,	CO 4	L2
2	Interface of a typical digital switching system central office,	CO 4	L2
3	System outage and its impact on digital switching system reliability,	CO 4	L2
4	Impact of software patches on digital switching system maintainability,	CO 4	L2
5	A methodology for proper maintenance of digital switching system	CO 4	L2
6	A GENERIC DIGITAL SWITCHING SYSTEM MODEL: Introduction, Hardware architecture	CO 4	L2
7	Software architecture, Recovery strategy, Simple call through a digital system,	CO 4	L2
8	Common characteristics of digital switching systems. Reliability analysis.	CO 4	L2
c	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to . . .	-	-
1	Used in network control processor, OA\&M funtions	CO 4	L2
2	Data base management for recovery purpose, in servers, maintenance of computer systems.	CO 4	L2
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	Explain in brief with neat diagram of organizational interfaces of a typical digital switching system central office	CO 4	L2
2	With a block diagram explain the strategy used for improvement of software quality	CO 4	L2
3	Explain with block diagram a generic switch software architecture	CO 4	L2
4	Mention some common characteristics of DSS	CO 4	L2
5	Writs a short note on analysis report of a DSS	CO 4	L2
6	Explain recovery stage of initialization process with examples	CO 4	L2
7	Explain in brief a methodology for proper maintaenance of a DSS such as diagnostic capabilities and firmware development	CO 4	L2
8	Explain with block diagram a generic switch hardware architecture	CO 4	L2
9	List the basic steps necessary to complete a simple call	CO 4	L2
10	Write a brief note on defect analaysis	CO 4	L2
11	What is system outage impact on DSS \& its impact on DSS reliability	CO 4	L2

12	What is the scheme that a digital switching environment follows for the internal and external reporting of faults. Discuss.	CO4	L2
\mathbf{e}	Experiences	-	-
1			
2			

E3. CIA EXAM - 3

a. Model Question Paper - 3

Crs Code:17EC654	Sem:	VI	Marks:	30	Time:

Course: Digital Switching Systems

-	-	Note: Answer all questions, each carry equal marks. Module : 5	Marks	CO	Level
1	a	Write a brief note on defect analaysis	5	CO 4	L2
	b	What is system outage impact on DSS \& its impact on DSS reliability	5	CO 4	L2
	C	What is the scheme that a digital switching environment follows for the internal and external reporting of faults. Discuss.	5	CO 4	L2
2	a	Mention some common characteristics of DSS	5	CO 4	L2
	b	Write a short note on analysis report of a DSS	5	CO 4	L2
	C	Explain recovery stage of initialization process with examples	5	CO 4	L2
3	a	Explain in brief with neat diagram of organizational interfaces of a typical digital switching system central office	5	CO 4	L2
	b	With a block diagram explain the strategy used for improvement of software quality	5	CO 4	L2
	C	Explain with block diagram a generic switch software architecture	5	CO 4	L2
4	a	Explain in brief a methodology for proper maintaenance of a DSS such as diagnostic capabilities and firmware development	5	CO 4	L2
	b	Explain with block diagram a generic switch hardware architecture	5	CO 4	L2
	c	List the basic steps necessary to complete a simple call	5	CO 4	L2

b. Assignment - 3

Note: A distinct assignment to be assigned to each student

Model Assignment Questions							
Crs Code:	17EC654	Sem:	VI	Marks:	5	Time:	$90-120$ minutes
Course:	Digital Switching Systems	Module :5					

Note: Each student to answer 2-3 assignments. Each assignment carries equal mark.

SNo	Assignment Description	Marks	CO	Level
1	Explain in brief with neat diagram of organizational interfaces of a typical digital switching system central office	5	CO 4	L2
2	With a block diagram explain the strategy used for improvement of software quality	5	CO 4	L2
3	Explain with block diagram a generic switch software architecture	5	CO 4	L2
4	Mention some common characteristics of DSS	5	CO	L2
5	Writs a short note on analysis report of a DSS	5	CO	L2
6	Explain recovery stage of initialization process with examples	5	CO4	L2
7	Explain in brief a methodology for proper maintaenance of a DSS such as diagnostic capabilities and firmware development	5	CO4	L2
8	Explain with block diagram a generic switch hardware architecture	5	CO 4	L2
9	List the basic steps necessary to complete a simple call	5	CO 4	L2
10	Write a brief note on defect analaysis	5	CO 4	-2
11	What is system outage impact on DSS \& its impact on DSS reliability	5	CO 4	-2
12	What is the scheme that a digital switching environment follows for the internal and external reporting of faults. Discuss.	5	CO 4	L2

F. EXAM PREPARATION

1. University Model Question Paper

Course: Crs Code:		Digital Switching Systems						May /2018	
		17EC654	Sem:	VI Marks:	80	Time:		180 m	nutes
Mod ule	Note	Answer all FIVE full questions. All questions carry equal marks.					Marks	CO	Level
1	a	Explain briefly with neat diagram,the national telecommunication network					5	CO 1	L2
	b	Explain the principle operation of a Four wire circuit with neat diagram					5	CO1	L2
	c	Explain the following power levels in dBW I) 1 mW ii) 1 W iii) 2 mW iv) 100mW					5	CO1	L3
	d	Explain various types of network structures					5	CO 1	L2
		OR							
1	a	Define traffic: list different functions of switching systems					5	CO 1	L2
	b	Explain the working of basic central office linkages					5	CO 1	L2
	c	Highlight the advantages \& disadvantages of crossbar switch					5	CO 1	L2
	d	Explain the working of distributionn frame in strowger exchange					5	CO 1	L2
2	a	Explain the working of basic central office linkages					5	CO1	L2
	b	Highlight the advantages \& disadvantages of crossbar switch					5	CO 1	L2
	c	Explain the working of distributionn frame in strowger exchange					5	CO 1	L2
	d	What are the functions of distribution frame in switching system					5	CO1	L2
		OR							
2	a	Explain the functions of IDF,TDF in strowger exchange					5	CO1	L2
	b	List the advantages of i)electronic switching system ii) cross point switch over step by step switch					5	CO1	L2
	c	Describe the fundamentals of DSS with a neat diagram					5	CO1	L2
	d	Explain the process of basic Call processing.					5	CO1	L2
3	a	During the busy hour a group of trunks is offered 100 calls having an average duration of 3 min one of the call fails to find a designated trunk. Find the traffic offered to the group, traffic carried by the group and the traffic lost.					5	CO 2	L3
	b	Derive an expression for iterative form of Erlangs lost call formula with explanation of assumptions made					5	CO 2	L2
	C	A progressive grading for connecting 20 trunks to switches having 10 outlets					5	CO 2	L2
	d	Explain traffic capacity of gradings with a curve, traffic in Erlangs (A)v/s number of trunks required(N)					5	CO 2	L2
		OR							
3	a	Derive an expression for iterative form of Erlangs lost call formula with explanation of assumptions made					5	CO 2	L2
	b	A progressive grading for connecting 20 trunks to switches having 10 outlets					5	CO 2	L2
	c	On an average, during the busy hour, a company makes 180 outgoing calls of average duration of 3 min. it receives 400 incoming calls of average duration 6 min. find outgoing traffic, incoming traffic, total traffic					10	CO 2	L3
4	a						5	CO_{3}	L2
	b						5	CO_{3}	L2
	c	Explain in brief digital switching system software classification					5	CO_{3}	L2
	d	With the help of feature flow diagram, explain feature activation, feature operation and feature de-activation					5	CO_{3}	L2
		OR							
4	a	Derive an expression for grade of service of a three stage network					5	CO_{3}	L2
	b	Derive a three stage network for connecting 100 incoming trunks to 100					5	CO_{3}	L2

		outgoing trunks			
	c	Design a progressive grading system connecting 30 outgoing trunks and having an availability of only 10 switches. Draw the grading diagram.	5	CO 3	L 2
	d	Define I) graded groups ii) availability iii) skipped grading iv) homogeneous grading v) Congestion vi) CCR vii) peak busy hour	5	CO 3	L 2
5	a	With a block diagram explain the strategy used for improvement of software quality	5	CO 4	L 2
	b	Explain with block diagram a generic switch software architecture	5	CO 4	L 2
	c	Mention some common characteristics of DSS	5	CO 4	L 2
	d	Write a short note on analysis report of a DSS	5	CO 4	L 2
		OR	5	CO 4	L 2
5	a	Explain in brief a methodology for proper maintaenance of a DSS such as diagnostic capabilities and firmware development	5	CO	L 2
	b	Explain with block diagram a generic switch hardware architecture	5	5	CO 4
L 2					
	c	List the basic steps necessary to complete a simple call	5	CO 4	L 2

2. SEE Important Questions

Course Crs Code:		Digital switchingsystems				Month / Year May /2018			
		17EC654	Sem:	6 Marks:	80	Time:		180 minutes	
	Note Answer all FIVE full questions. All questions carry equal marks.						-		
Mod ule	Qno.	Important Question					Marks	CO	Year
1	a	Explain briefly with neat diagram,the national telecommunication network					20	CO1	2004
	b	Explain the principle operation of a Four wire circuit with neat diagram						CO1	2013
	c	Explain the following power levels in dBW I) 1 mW ii) 1 W iii) 2 mW iv) 100mW						CO 1	2013
	d	Explain various types of network structures						CO1	2013
	e	Explain FDM with respect to a suitable block diagram						CO1	2012
		OR							
2	a	Define traffic: list different functions of switching systems					20	CO1	2012
	b	Explain the working of basic central office linkages						CO1	2010
	c	Highlight the advantages \& disadvantages of crossbar switch						CO1	2010
	d	Explain the working of distributionn frame in strowger exchange						CO1	2012
	e	What are the functions of distribution frame in switching system						CO1	2012
3	a	Define i) busy hour ii) holding time iii) unit of traffic iv) Grade of service					16	CO 2	2012
	b	During the busy hour a group of trunks is offered 100 calls having an average duration of 3 min one of the call fails to find a designated trunk. Find the traffic offered to the group, traffic carried by the group and the traffic lost.						CO 2	2012
	c	Derive an expression for iterative form of Erlangs lost call formula with explanation of assumptions made						CO 2	2013
	d	A progressive grading for connecting 20 trunks to switches having 10 outlets						CO 2	2010
	e	Explain traffic capacity of gradings with a curve, traffic in Erlangs (A)v/s number of trunks required(N)						CO 2	2014
		Explain the principle of operation of TST and STS network							
4	a						16	CO_{3}	2009
	b	Explain with block diagram the frame alignment of PCM signal in digital exchange						CO_{3}	2009
	c	Explain in brief digital switching system software classification						CO_{3}	2011
	d	With the help of feature flow diagram, explain feature activation, feature operation and feature de-activation						CO_{3}	2009

COURSE PLAN - CAY 2019-20

	e	A TST network has 20 incoming and 20 outgoing PCM highway each conveys 30 channels the required GOS is $0.01,0.02$. find the traffic capacity of network in mode 1 and mode 2.		CO 3	2009
5	a	Explain in brief with neat diagram of organizational interfaces of a typical digital switching system central office	16	CO 4	2011
	b	With a block diagram explain the strategy used for improvement of software quality		CO 4	2011
	c	Explain with block diagram a generic switch software architecture		CO 4	2010
	d	Mention some common characteristics of DSS		CO 4	2012
	e	Write a short note on analysis report of a DSS		CO 4	2009

