Ref No:

Sri Krishna Institute of Technology, Bangalore

COURSE PLAN

Academic Year 2019-2020

Program:	B.E				
Semester :	VI				
Course Code:	17EC62				
Course Title:	ARM Microcontroller & Embedded System				
Credit / L-T-P:	4/4-0-0				
Total Contact Hours:	50				
Course Plan Author:	M.Nagaraja				

Academic Evaluation and Monitoring Cell

Sri Krishna Institute of Technology #29,Chimney hills,Hesaraghata Main road, Chikkabanavara Post Bangalore – 560090, Karnataka, INDIA

Phone / Fax :08023721477/28392221/23721315 Web: www.skit.org.in , e-mail: <u>skitprinci@gmail.com</u>

Table of Contents

A. COURSE INFORMATION	2
1. Course Overview	2
2. Course Content	3
<u>3. Course Material</u>	
<u>4. Course Prerequisites</u>	3
5. Content for Placement, Profession, HE and GATE	4
B. OBE PARAMETERS	4
<u>1. Course Outcomes</u>	4
2. Course Applications	4
<u>3. Articulation Matrix</u>	4
<u>4. Curricular Gap and Content</u>	5
C. COURSE ASSESSMENT.	5
<u>1. Course Coverage</u>	
2. Continuous Internal Assessment (CIA)	5
D1. TEACHING PLAN - 1	5
Module - 1	5
Module – 2	6
E1. CIA EXAM – 1	7
a. Model Question Paper - 1	7
b. Assignment -1	7
D2. TEACHING PLAN - 2	7
Module – 3	7
Module – 4	8
E2. CIA EXAM – 2	9
a. Model Question Paper - 2	
b. Assignment – 2	
D3. TEACHING PLAN - 3	
Module – 5.	
E3. CIA EXAM – 3.	11
a. Model Question Paper - 3	
b. Assignment – 3	
F. EXAM PREPARATION	
1. University Model Question Paper	
2. SEE Important Questions	

A. COURSE INFORMATION

1. Course Overview

Degree:	B.E	Program:	UG
Semester:	VI	Academic Year:	2019-20
Course Title:	ARM Microcontroller & Embedded System	Course Code:	17EC62
Credit / L-T-P:	4/4-0-0	SEE Duration:	180 minutes
Total Contact Hours:	50	SEE Marks:	60
CIA Marks:	30	Assignment	10
Course Plan Author:	M.Nagaraja	Sign	
Checked By:		Sign	
CO Targets	CIA Target :20	SEE Target:	65

Note: Define CIA and SEE % targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute.

Mod ule	Content	Teaching Hours	Blooms Learning Levels
1	ARM-32 bit Microcontroller: Thumb-2 technology and applications of ARM, Architecture of ARM Cortex M3, Various Units in the architecture, Debugging support, General Purpose Registers, Special Registers, exceptions, interrupts, stack operation, reset sequence.	10	L2,L3
2	ARM Cortex M3 Instruction Sets and Programming: Assembly basics, Instruction list and description, Useful instructions, Memory mapping, Bit-band operations and CMSIS, Assembly and C language Programming	10	L2,L3
3	Embedded System Components: Embedded Vs General computing system, Classification of Embedded systems, Major applications and purpose of ES. Core of an Embedded System including all types of processor/controller, Memory, Sensors, Actuators, LED, 7 segment LED display, Optocoupler, Relay, Piezo buzzer, Push button switch, Communication Interface (onboard and external types), Embedded firmware, Other system components.	10	L2,L3,L4
4	Embedded System Design Concepts: Characteristics and Quality Attributes of Embedded Systems, Operational and non-operational quality attributes, Embedded 86 Systems- Application and Domain specific, Hardware Software Co- Design and Program Modelling (excluding UML), Embedded firmware design and development (excluding C language).	10	L2,L3,L4
5	RTOS and IDE for Embedded System Design: Operating System basics, Types of operating systems, Task, process and threads (Only POSIX Threads with an example program), Thread preemption, Preemptive Task scheduling techniques, Task Communication, Task synchronization issues – Racing and Deadlock, Concept of Binary and counting semaphores (Mutex example without any program), How to choose an RTOS, Integration and testing of Embedded hardware and firmware, Embedded system Development Environment – Block diagram (excluding Keil), Disassembler/decompiler,	10	L2,L3,L4

	simulator, emulator and debugging techniques	
-	Total	

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 – 30 minutes

2. Design: Simulation and design tools used – software tools used ; Free / open source

3. Research: Recent developments on the concepts – publications in journals; conferences etc.

Modul	Details	Chapters	Availability
es		in book	
Α	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
	Joseph Yiu, "The Definitive Guide to the ARM Cortex-M3", 2nd Edition, Newnes, (Elsevier), 2010.	In Lib	
	Shibu K V, "Introduction to Embedded Systems", Tata McGraw Hill Education Private Limited, 2nd Edition.	In Lib	
В	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
С	Concept Videos or Simulation for Understanding	-	-
1	https://www.youtube.com/watch?v=-o0ybJmyT2U	Availabl	
	https://www.youtube.com/watch?v=x0gH5JGNIKg	е	
2	https://www.youtube.com/watch?v=15z_vn4H41U&list=PL77-	Availabl	
	op_SRaiF2xlczKtEWqkB-5iuNBN5-	е	
3	https://www.youtube.com/watch?v=bsNvMc6JD10	Availabl	
		е	
4	https://www.youtube.com/watch?v=8grRV-iBYts	Availabl	
		e	
5	nttps://www.youtube.com/watcn?v=3v9eqvkMZHA	Availabl	
		е	
	Software lools for Design	-	-
	KEIL		
E	Recent Developments for Research	-	-
F	Others (Web, Video, Simulation, Notes etc.)	-	-
1			

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Stadents mast have team the following obdises / Topies with described content									
Mod	Course	Course Name	Topic /	/ Description		Sem	Remarks	Blooms	
ules	Code							Level	
1	15EC563	8051	Architecture,	instruction	set,	5		L3	
		Microcontroller	programming						
1	15EC42	Microprocessor	Architecture,	instruction	set,	4		L3	
		S	programming						
3	15EC553	Operating	Scheduling management			5		L3	
		system							

Students must have learnt the following Courses / Topics with described Content

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Mod	Topic / Description	Area	Remarks	Blooms
ules				Level

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs.

Mod	Course	Course Outcome	Teach. Hours	Instr Method	Assessme	Blooms'
ules	Code.#	At the end of the course, student			nt	Level
		should be able to			Method	
1	17EC62.1	Describe the architectural features	10	Lecture	Slip Test	L2
		and instructions of 32 bit				Understand
		microcontroller ARM Cortex M3.				
2	17EC62.2	Apply the knowledge gained for	10	Lecture	Assignme	L4
		Programming ARM Cortex M3 for			nt	
		different applications.				
3	17EC62.3	Understand the basic hardware	10	Lecture	Assignme	L2
		components and their selection			nt and	Understand
		method based on the			Slip Test	
		characteristics and attributes of				
		an embedded system.				
		,				
4	17EC62.4	Develop the hardware	10	Lecture and	Assignme	L3
		/software co-design and		lutorial	nt	Арріу
		firmware design approaches.				
5	17EC62.5	Explain the need of real time	10	Lecture	Slip test	L3
	,	operating system for	_			Apply
		embedded system applications				
-	-	Total	50	-	-	-

2. Course Applications

Write 1 or 2 applications per CO.

Students should be able to employ / apply the course learnings to ...

Mod	Application Area	CO	Level
ules	Compiled from Module Applications.		
1	ARM processors are used in networking fields like home gateway, DSL modems for	CO1	L2
	high speed internet communication and wireless communication.		
1	ARM processors are used in automotive industries.	CO1	L4
2	ARM processors are used in mobile and consumer devices.	CO2	L2
2	ARM processors are used in mass storage and imaging.	CO2	L3
3	Design Of Embedded Systems	CO3	L2
4	Design of ASIC.	CO4	L3
5	Design of any embedded system.	CO5	L3

3. Articulation Matrix

CO - PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	-	Course Outcomes					Ρ	roq	ram	ı Oi	utco	ome	es					_
Mod	CO.#	At the end of the course	PO						Lev									
ules		student should be able to	1	2	3	4	5	6	7	8	9	10	11	12	O1	02	О3	el
1	17EC62.1	Describe the architectural features and instructions of 32 bit	3	3							2			1				
2	17EC62.2	Apply the knowledge gained for Programming ARM Cortex M3 for different applications.	3	3							2			1				
3	17EC62.3	Understand the basic hardware components and their selection method based on the characteristics and attributes of an embedded system.	3	3							2			1				
4	17EC62.4	Develop the hardware /software co-design and firmware design approaches.	3	3							2			1				
5	17EC62.5	Explain the need of real time operating system for embedded system applications.	3	3							2			1				
-	17EC62.	Average	3	3							2			1				-
-	PO, PSO	1.Engineering Knowledge; 2.Problem Analysis; 3.Design / Development of Solutions; 4.Conduct Investigations of Complex Problems; 5.Modern Tool Usage; 6.The Engineer and Society; 7.Environment and Sustainability; 8.Ethics; 9.Individual and Teamwork; 10.Communication; 11.Project Management and Finance; 12.Life-long Learning; S1.Software Engineering; S2.Data Base Management; S3.Web Design																

4. Curricular Gap and Content

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Mod	Gap Topic	Gap Topic Actions Planned		Resources Person	PO Mapping					
ules										
1	Keil	Seminar	^{3rd} week of March		List from B4					
			2020		above					
2	Keil programs for cortex	Seminar	3 rd Week April 2020		List from B4					
	m3				above					

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation.

Mod	Title	Teach.	each. No. of question in Exam						CO	Levels
ules		Hours	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE		
							Asg			
1	ARM-32 bit Microcontroller.	10	2	-	-	1	1	2	CO1, CO2	L1, L2
2	ARM Cortex M3 Instruction Sets	10	2	-	-	1	1	2	CO3, CO4	L2, L3
	and Programming.									
3	Embedded System Components.	10	-	2	-	1	1	2	CO5, CO6	L2, L3

COURSE PLAN - CAY 2019-20

4	Embedded Syster	n Design	10	-	2	-	1	1	2	CO7, C08	L2, L3
	Concepts.										
5	RTOS and IDE for	Embedded	10	-	-	4	1	1	2	CO9, CO10	L2, L3
	System Design.										
-	Total		50	4	4	4	5	5	10	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Mod	Evaluation	Weightage in	СО	Levels
ules		Marks		
1, 2	CIA Exam – 1	30	CO1,CO2	L1,L2, L3
3, 4	CIA Exam – 2	30	CO3,CO4	L2, L3
5	CIA Exam – 3	30	CO5	L2, L3
1, 2	Assignment - 1	10	CO1,CO2	L1,L2, L3
3, 4	Assignment - 2	10	CO3,CO4	L2, L3
5	Assignment - 3	10	CO5	L2, L3
1, 2	Seminar - 1		-	-
3, 4	Seminar - 2		-	-
5	Seminar - 3		-	-
1, 2	Quiz - 1		-	-
3, 4	Quiz - 2		-	-
5	Quiz - 3		-	-
1 - 5	Other Activities – Mini Project	-		
	Final CIA Marks		-	-

D1. TEACHING PLAN - 1

Module - 1

Title:		Appr	10 Hrs
		Time:	
a	Course Outcomes	CO	Blooms
	Describe the architectural features and instructions of 32 bit microcontroller ARM Cortex M3.	CO1	L2
b	Course Schedule	-	-
Class No	Portion covered per hour	-	-
1	Thumb-2 technology and applications of ARM	CO1	L2
2	Architecture of ARM Cortex M3	CO1	L2
3	Various Units in the architecture	CO1	L2
4	Debugging support	CO1	L2
5	General Purpose Registers	CO1	L2
6	Special Registers	CO2	L2
7	exceptions	CO2	L2
8	interrupts	CO2	L2
9	stack operation	CO2	L2
10	reset sequence.	CO2	L2
С	Application Areas		
-	Students should be able employ / apply the Module learnings to		
1	ARM processors are used in networking fields like home gateway, DSL modems for high speed internet communication and wireless communication.	CO1	L3

2	ARM processors are used in automotive industries.	CO1	L4
3	ARM processors are used in mobile and consumer devices.	CO1	L3
4	ARM processors are used in mass storage and imaging.	CO1	L4
d	Review Questions		
-			
1	Briefly describe the functions of the various units with the architectural block	CO1	L3
	diagram of ARM Cortex M3.		
2	Explain the applications of Cortex M3.	CO1	L3
3	Discuss the functions of R0 to R15 and other special registers in Cortex M3.	CO1	L3
4	Describe the functions of exceptions with a vector table and priorities.	CO1	L3
5	Explain the operation modes of Cortex M3 with diagrams.	CO1	L3
6	Explain two stack model and reset sequence in ARM cortex M3.	CO1	L3
7	Explain the architecture of ARM Cortex-M3 processor with the help of a neat	CO1	L3
	block diagram.		
8	List the applications of ARM Cortex-M3 processor	CO1	L3
9	Explain ARM Cortex-M3 Program Status Register in detail.	CO1	L3
10	Explain Stack PUSH and POP operation in Cortex-M3 with the help of a neat	CO1	L3
	diagram.		
11	Explain reset sequence with the help of memory map.	CO1	L3
12	With a neat diagram explain the architecture of ARM cortex M3 micro	CO1	L3
	controller.		
13	Explain the register organization of ARM cortex M3.	CO1	L3
14		CO1	L3
15	Explain the operation modes and privilege levels available in ARM cortex m3	CO1	L3
	with a neat transition diagram.		
16	Mention the instruction used for accessing the special registers. Explain the	CO1	L3
	same using suitable examples.		
17	Explain the stack operation using push and pop instructions in the ARM cortex	CO1	L3
	M3.		

Module – 2

Title:		Appr	10 Hrs
		Time:	
a	Course Outcomes	СО	Blooms
-	Apply the knowledge gained for Programming ARM Cortex M3 for different	CO2	L3
	applications.		
b	Course Schedule	-	-
Class	Portion covered per hour	-	-
No			
11	Assembly basics	CO3	L3
12	Instruction list and description	CO3	L3
13	Instruction list and description	CO3	L3
14	Useful instructions	CO3	L3
15	Memory mapping	CO3	L3
16	Bit-band operations and CMSIS	CO3	L3
17	Bit-band operations and CMSIS	CO4	L3
18	Assembly Programming	CO4	L3
19	Assembly and C language Programming	CO4	L3
20	C language Programming	CO4	L3
С	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-

1	ARM processors are used in networking fields like home gateway, DSL modems for high speed internet communication and wireless communication.	CO3	L3
2	ARM processors are used in automotive industries.	CO4	L3
3	ARM processors are used in mobile and consumer devices.	CO3	L3
4	ARM processors are used in mass storage and imaging.	CO4	L3
			L3
d	Review Questions	-	L3
-			L3
1	Explain the following 16 bit instructions in Cortex M3: ADC, RSB, TST, BL, LDR, MOV, SVC, PUSH	CO2	L3
2	Write an ALP to find the sum of first 10 integer numbers.	CO2	L3
3	Write the memory map of Cortex M3 and explain briefly bit-band operations.	CO2	L3
4		CO2	L3
5	Explain the following 32 bit instructions in Cortex M3: AND, CMN, MLA, SDIV, STR, MRS, MRS, POP.	CO2	L3
6	Write a C language program to toggle an LED with a small delay in Cortex M3.	CO2	L3
7	Explain the following instructions with example i)ASR ii)LSL iii)ROR iv)REV	CO2	L3
8	List and explain the function of any four data processing and branch instructions in Cortex- M3 with example.	CO2	L3
9	List and explain the function of any four commonly used memory access instructions in Cortex- M3.	CO2	L3
10	Write a note on the interface between assembly and C.	CO2	L3
11	Explain any two methods of accessing memory mapped registers in C.	CO2	L3
12	List and explain the function of any four commonly used memory access instructions in Cortex- M3.	CO2	L3
13	Explain shift and rotate instructions available in ARM cortex M3 instruction set. Why is there rotate right instruction but no rotate left instruction in ARM cortex M3.	CO2	L3
14	Explain the following with suitable examples. i) BFC ii) SXTH iii) UBFX iv) RBIT	CO2	L3
15	List and explain the function of any four commonly used memory access instructions in Cortex- M3.	CO2	L3
16	Write the memory map and explain memory access attributes in Cortex M3.	CO2	L3
17	Analyze the following instructions and write the contents of the register the execution of each instruction. Assume R8=0X00000088, R9=0X0000006,R10=0X00001111 i) RSB.W R8, R9, #0X10 ii) ADD R8, R9,R3 iii) BIC.W R6,R8 #0X06 iv) ORR R8.R9	CO2	L3

E1. CIA EXAM – 1

a. Model Question Paper - 1

Crs	<u>0</u> .	17EC62	Sem:	VI	Marks:	30	Time:	90 min	ninutes			
Cou	rse:	ARM Micro	controller	· & Embedo	ded System							
-	-	Note: Answ	ote: Answer all questions, each carry equal marks. Module : 1, 2							СО	Level	
1	a	With a ne controller.	With a neat block diagram explain the simplified architecture of ARM controller.					ARM 8	(CO2	L2	
	b	What are t	he basic d	lata proces	sing instructio	ns.		7	(CO2	L2	
2	а	Explain the	Explain the evolution of ARM controller					8	(CO1	L3	
	b	What are t	he advant	ages of ha	ving NVIC			7	(CO2	L2	

COURSE PLAN - CAY 2019-20

3	а	List out the branching instructions of 16 bit and 32 bit in Cortex M3	8	CO3	L2
	b	What are the operation modes of Cortex M3. explain in detail	7	CO4	L3
4	a	Explain in detail Special registers in ARM Corter M3	8	CO3	L3
	b	What are all the debugging support present in ARM Cortex M3	7	CO4	L3

b. Assignment -1

			Мо	del Assignmer	nt Questio	ons			
Crs Code:	17EC62	Sem:	VI	Marks:	30	Time: 9	0 minut	es	
Course:	ARM Mic	rocontrolle	er & Embec	lded System					
					I	L. L			
SN	lo	Assignment Description						со	Level
1		Briefly de architectu	scribe the ral block di	functions of agram of ARM	the vario Cortex N	ous units with the 13.	7	CO1	L3
2	2	Explain th	e applicatio	ons of Cortex N	13.		8	CO1	L3
3	}	Discuss th	ne function M3.	s of R0 to R15	and othe	er special registers	7	CO1	L3
4	ļ	Describe priorities.	the functio	ns of exceptic	ons with a	a vector table and	8	CO1	L3
5		Explain th	e operatior	n modes of Cor	tex M3 w	vith diagrams.	7	CO1	L3
6	5	Explain tw M3.	vo stack m	odel and rese	et sequer	nce in ARM cortex	8	CO1	L3
7	,	Explain th help of a r	e architect neat block (ure of ARM Co diagram.	ortex-M3	processor with the	7	CO1	L3
8	3	List the ap	plications	of ARM Cortex	-M3 proc	essor	8	CO1	L3
ç)	Explain AF	RM Cortex-	M3 Program St	atus Reg	jister in detail.	7	CO1	L3
10		Explain Stack PUSH and POP operation in Cortex-M3 with the help of a neat diagram.					8	CO1	L3
1:	1	Explain reset sequence with the help of memory map.					7	CO1	L3
12	2	With a neat diagram explain the architecture of ARM cortex M3 micro controller.					8	CO1	L3
13	3	Explain th	e register c	rganization of	ARM cor	tex M3.	7	CO1	L3
14	4	Explain th CMN, MLA	ne following A, SDIV, STF	g 32 bit instru R, MRS, MRS, F	ictions ir POP.	n Cortex M3: AND,	8	CO2	L3
14	5	Explain the operation modes and privilege levels available in ARM cortex m3 with a neat transition diagram.					7	CO2	L3
16	6	Mention the instruction used for accessing the special registers. Explain the same using suitable examples.					. 8	CO2	L3
17	17 Explain the stack operation using push and pop instructions i the ARM cortex M3.			pop instructions in	7	CO2	L3		
18 Explain the followin RSB, TST, BL, LDR, M		g 16 bit instru OV, SVC, PUSI	8	CO2	L3				
19	9	Write an A	LP to find t	he sum of first	10 integ	er numbers.	7	CO2	L4
20	20 Write the memory map of Cortex M3 and explain briefly bit- band operations.				explain briefly bit-	8	CO2	L4	
21		Explain th CMN, MLA	ne following A. SDIV. STR	g 32 bit instru R. MRS. MRS. F	ictions ir POP.	n Cortex M3: AND,	7	CO2	L3

22	Explain the following 32 bit instructions in Cortex M3: AND, CMN, MLA, SDIV, STR, MRS, MRS, POP.	8	CO2	L3
23	Write a C language program to toggle an LED with a small delay in Cortex M3.	7	CO2	L3
24	Explain the following instructions with example i)ASR ii)LSL iii)ROR iv)REV	8	CO2	L3
25	List and explain the function of any four data processing and branch instructions in Cortex- M3 with example.	7	CO2	L3
26		8	CO2	L3
27	Write a note on the interface between assembly and C.	7	CO2	L3
28	Explain any two methods of accessing memory mapped registers in C.	8	CO2	L3
29	List and explain the function of any four commonly used memory access instructions in Cortex- M3.	7	CO2	L3
30	Explain shift and rotate instructions available in ARM cortex M3 instruction set. Why is there rotate right instruction but no rotate left instruction in ARM cortex M3.	8	CO2	L3
31	Explain the following with suitable examples.i) BFCii) SXTHiii) UBFXiv) RBIT	7	CO2	L3
32		8	CO2	L3
33	Write the memory map and explain memory access attributes in Cortex M3.	7	CO2	L3
34	Analyze the following instructions and write the contents of the register the execution of each instruction. Assume R8=0X0000088, R9=0X0000006,R10=0X00001111 i) RSB.W R8, R9, #0X10 ii) ADD R8, R9,R3 iii) BIC.W R6,R8 #0X06 iv) ORR R8,R9	8	CO2	L3
35	Explain Stack PUSH and POP operation in Cortex-M3 with the help of a neat diagram.	7	CO2	L3
36	Explain reset sequence with the help of memory map.	8	CO2	L3
37	With a neat diagram explain the architecture of ARM cortex M3 micro controller.	7	CO2	L3
38	Explain the register organization of ARM cortex M3.	8	CO2	L3
39	Explain the following 32 bit instructions in Cortex M3: AND, CMN, MLA, SDIV, STR, MRS, MRS, POP.	7	CO2	L3
40	Explain the operation modes and privilege levels available in ARM cortex m3 with a neat transition diagram.	8	CO2	L3
41	Mention the instruction used for accessing the special registers. Explain the same using suitable examples.	7	CO2	L3
42	Explain the stack operation using push and pop instructions in the ARM cortex M3.	8	CO2	L3
43	Explain the following 16 bit instructions in Cortex M3: ADC, RSB, TST, BL, LDR, MOV, SVC, PUSH	7	CO2	L3
44	Write an ALP to find the sum of first 10 integer numbers.	8	CO2	L4
45	Write the memory map of Cortex M3 and explain briefly bit- band operations.	7	CO2	L4
46	Explain the following instructions with example i)ASR ii)LSL iii)ROR iv)REV	8	CO2	L3
47	Explain the following 32 bit instructions in Cortex M3: AND, CMN, MLA, SDIV, STR, MRS, MRS, POP.	7	CO2	L3
48	Write a C language program to toggle an LED with a small delay in Cortex M3.	8	CO2	L3
49	Explain the following instructions with example i)ASR ii)LSL iii)ROR iv)REV	7	CO2	CO3
50	List and explain the function of any four data processing and branch instructions in Cortex- M3 with example	8	CO2	CO4

D2. TEACHING PLAN - 2

Module - 3

Title:		Appr	10 Hrs
	Course Outcomes	nime.	Pleame
d	At the and of the table the student chould be able to	00	BLOOMS
-	At the end of the topic the student should be able to	- CO2	
		003	LZ
	method based on the characteristics and attributes of an embedded		
	system.		
b	Course Schedule		
Class No	Portion covered per hour	-	-
21	Embedded System Components: Embedded Vs General computing system,	CO3	L2
22	Classification of Embedded systems,	CO3	L2
23	Major applications and purpose of ES.	CO3	L2
24	Core of an Embedded System including all types of processor/controller,	CO3	L2
25	Memory, Sensors,	CO3	L2
26	Actuators, LED, 7 segment LED display,	CO3	L2
27	Optocoupler, Relay,	CO3	L2
28	Push button switch, Piezo buzzer,	CO3	L2
29	Communication Interface (onboard and external types),	CO3	L2
30	Embedded firmware, Other system components.	CO3	L2
С	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	Design Of Embedded Systems	CO3	L2
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	Explain the components of a typical embedded system in detail.	CO3	L2
2	Which are the components used as the core of an embedded system? Explain	CO3	L2
	the merits, drawbacks, if any.		
3	What is the difference between Application Specific Integrated Circuit (ASIC)	CO3	L2
	Application Specific Standard Product (ASSP).	000	
4	Explain the 6 purposes of Embedded systems with an example for each.	<u> </u>	L2
5	Ullerentiale between	003	L2
	(ii) DISC and CISC architectures		
6	Explain the 2 classifications of Embedded systems based on complexity and	()	12
0	performance	003	
7	Mention the applications of Embedded systems with an example for each	CO3	12
8	Explain the functions of Optocoupler and SPI bus with diagrams.	CO3	12
q	Write a note on Embedded firmware.	CO3	12
10	Explain SRAM design and features with a diagram.	CO3	12
11	Write the architectural block diagram of embedded system and mention the	CO3	12
	components used.	000	
12	Explain the components of typical Embedded Systems in detail.	CO3	L2
13	Give the memory classification. Explain the SRAM cell implementation with	CO3	L2
5	relevant figures.		
14	Explain the different on-board communication interfaces in brief.	CO3	L2
15	Differentiate between computer system and an Embedded System.	CO3	L2
16	Differentiate the following	CO3	L2
	i) RISC and SISC architecture.	-	
	ii) Little endian and Rig endian architecture		

17	What are the features of the following	CO3	L2
	I) I ² C Bus		
	ii) IrDA		
	iii) Optocoupler		
	iv) 1-wire interface		
18	What are the different memories types memories used in embedded system	CO3	L2
	design. Explain the role of each.		
19	Explain the following circuits in an embedded system:	CO3	L2
	I) brown out protection circuits		
	ii) reset circuit		

Module – 4

Title:	Data Transmission and Telemetry	Appr	10 Hrs
	Measurement of Non – Electrical Quantities	Time:	
а	Course Outcomes	СО	Blooms
_	At the end of the topic the student should be able to	-	Level
	Develop the hardware /software co-design and firmware design	CO4	L3
	approaches		
b	Course Schedule		
Class No	Portion covered per hour	-	-
31	Embedded System Design Concepts: Characteristics of Embedded Systems,	CO4	L3
32	Characteristics and Quality Attributes of Embedded Systems,	CO4	L3
33	Operational and non-operational quality attributes,	CO4	L3
34	Operational and non-operational quality attributes,	CO4	L3
35	Embedded 86 Systems-Application and Domain specific,	CO4	L3
36	Embedded 86 Systems-Application and Domain specific,	CO4	L3
37	Hardware Software Co-Design and Program Modelling (excluding UML),	CO4	L3
38	Hardware Software Co-Design and Program Modelling (excluding UML),	CO4	L3
39	Embedded firmware design and development (excluding C language).	CO4	L3
40	Embedded firmware design and development (excluding C language).	CO4	L3
С	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	Design of ASIC.	CO4	L3
2	Design of any embedded system.	CO4	L4
A	Deview Questions		
a	Review Questions	-	-
-	Define the 6 characteristics of an embedded system	-	-
2	Evolain the 6 operational quality attributes of an embedded systems	CO4	<u>3</u>
2	With a block diagram mention the components used in the design of a	CO_4	
5	washing machine and also explain its working.	004	L3
4	Compare DFG and CDFG with an example and diagrams.	CO4	L3
5	With FSM model, explain the design and operation of automatic tea/ coffee	CO4	L3
	vending machine.	-	_
6	Explain the assembly language based embedded firmware development with	CO4	L3
	a diagram and mention its advantages and disadvantages.		
7	Explain the different characteristics of Embedded System in detail.	CO4	L3
8	What is operational quality attribute? Explain the important non- operational	CO4	L3
	quality attributes to be considered in any Embedded System design.	00	
9	Explain the different Embedded firmware design approaches in detail.	<u>CO4</u>	L3
10	what is Hardware and Software co-design? Explain the fundamental design	CO4	∟3
11	appivaches in uelall. Evolain the term quality attributes in embedded system development context	CO4	
	What are the different quality attributes to be considered in an embedded	004	L3
17EC62	Copyright ©2017. cAAS. All right	s reserv	ed.

	system design.		
12	Explain the data flow graph and control flow graph models in the embedded system.	CO4	L3
13		CO4	L3
14	Explain the different embedded firmware design approach in detail.	CO4	L3
15	Explain the characteristics pf embedded system.	CO4	L3
е	Experiences	-	-
1		CO7	L2
2			

E2. CIA EXAM – 2

a. Model Question Paper - 2

Crs Code:		17EC62	Sem:	VI	Marks:	30	Time g	90 minutes			
Cour	'se:	ARM Microo	ARM Microcontroller and Embedded Systems								
-	-	Note: Answ	te: Answer all questions, each carry equal marks. Module : 3, 4 Marks CO								
1	а	Explain brie	efly signed	saturation o	peration			8	CO3	L1	
	b	With a neat	: diagram ex	plain the pr	edefined m	iemory n	nap in cortex M3	7	CO3	L2	
2	а	Write short	notes on ar	ny two				8	CO3	L2	
		i) Flag bits	ii) TBB and	TBH iii)Rev	erse opera	tions					
	b	In detail exp	olain the bit	band opera	tions			7	CO3	L4	
3	а	Classify em	bedded sys	stems in det	ail and expl	ain then.	٦.	8	CO4	L2	
	b	Define Emb general cor	bedded Sy nputing sys	stems and tems	differentiat	e embe	dded systems wi	th 7	CO4	L2	
4	а	Write short	notes on ar	ny two				8	CO4	L3	
		i) Endian ı access) Endian mode ii) Applications of embedded systems iii)Exclusive ccess								
	b	Explain the	arm develo	pment tools	s in detail.			7	CO4	L3	

b. Assignment – 2

		Model Assignment	Questions			
Crs Code:	Sem:	Marks:	Time:			
Course:						
SNo		Assignment Desc	ription	Marks	CO	Level
					•••	
1	Explain the c detail.	Explain the components of a typical embedded system in detail.				
2	Which are the System? Explai	Which are the components used as the core of an embedded System? Explain the merits, drawbacks, if any.				
3	What is th Integrated C Product (ASSI	e difference betwee Circuit (ASIC) Applica P).	en Application Specific ation Specific Standard	7 d	CO3	L2
4	4 Explain the 6 purposes of Embedded systems w example for each.		edded systems with ar	1 8	CO3	L2
5	Differentiate k (i) General Co (ii) RISC and C	between mputing Systems and E ISC architectures.	mbedded Systems	7	CO3	L2
6	Explain the 3	classifications of Emb	edded systems based or	1 8	CO3	L2

	complexity and			
7	Mention the applications of Embedded systems with an example for each	5	CO3	L2
8	Explain the functions of Optocoupler and SPI bus with diagrams.	6	CO3	L2
9	Write a note on Embedded firmware.	7	CO3	L2
10	Explain SRAM design and features with a diagram.	8	CO3	L2
11	Write the architectural block diagram of embedded system	7	CO3	L2
	and mention the components used.			
12	Explain the components of typical Embedded Systems in detail.	8	CO3	L2
13	Give the memory classification. Explain the SRAM cell implementation with relevant figures.	7	CO3	L2
14	Explain the different on-board communication interfaces in brief.	8	CO3	L2
15	Differentiate between computer system and an Embedded System.	7	CO3	L2
16	Differentiate the following	8	CO3	L2
	i) RISC and SISC architecture.			
	ii) Little endian and Big endian architecture.			
17	What are the features of the following	7	CO3	L2
	I) I ² C Bus			
	II) IIDA iii) Optocouplor			
	iv) 1-wire interface			
18	What are the different memories types memories used in	8	CO3	12
	embedded system design. Explain the role of each.	0	003	
19	Explain the following circuits in an embedded system: I) brown out protection circuits ii) reset circuit	7	CO3	L2
20	Define the 6 characteristics of an embedded system.	8	CO3	L2
21	Explain the 6 operational guality attributes of an embedded	7	CO4	 L3
	systems.	,		U
22	With a block diagram, mention the components used in the design of a washing machine and also explain its working.	8	CO4	L3
23	Compare DFG and CDFG with an example and diagrams.	7	CO4	L3
24	With FSM model, explain the design and operation of automatic tea/ coffee vending machine.	8	CO4	L3
25	Explain the assembly language based embedded firmware development with a diagram and mention its advantages and disadvantages.	7	CO4	L3
26	Explain the different characteristics of Embedded System in detail.	8	CO4	L3
27	What is operational quality attribute? Explain the important non- operational quality attributes to be considered in any Embedded System design.	7	CO4	L3
28	Explain the different Embedded firmware design approaches in detail.	8	CO4	L3
29	What is Hardware and Software co-design? Explain the fundamental design approaches in detail.	7	CO4	L3
30	Explain the term quality attributes in embedded system development context. What are the different quality attributes to be considered in an embedded system design.	8	CO4	L3
31	Explain the data flow graph and control flow graph models in the embedded system.	7	CO4	L3
32		8	CO4	L3
33	Explain the different embedded firmware design approach in	7	CO4	L3

	detail.					
34	Explain the components of a typical embedded system in detail.	8	CO4	L3		
35	Which are the components used as the core of an embedded system? Explain the merits, drawbacks, if any.	7	CO4	L3		
36	What is the difference between Application Specific Integrated Circuit (ASIC) Application Specific Standard Product (ASSP).	8	CO4	L3		
37	37 Explain the 6 purposes of Embedded systems with an example for each.					
38	Differentiate between (i) General Computing Systems and Embedded Systems (ii) RISC and CISC architectures.	8	CO4	L3		
39	Explain the 3 classifications of Embedded systems based on complexity and performance.	7	CO4	L3		
40	Mention the applications of Embedded systems with an example for each.	8	CO4	L3		
41	Explain the functions of Optocoupler and SPI bus with diagrams.	7	CO4	L3		
42	Write a note on Embedded firmware.	8	CO4	L3		
43	Explain SRAM design and features with a diagram.	7	CO4	L3		
44	Write the architectural block diagram of embedded system and mention the components used.	8	CO4	L3		
45	45 Explain the components of typical Embedded Systems in detail					
46	Give the memory classification. Explain the SRAM cell implementation with relevant figures.	8	CO4	L3		
47	Explain the different on-board communication interfaces in brief.	7	CO4	L3		
48	Differentiate between computer system and an Embedded System.	8	CO4	L3		
49	Differentiate the following i) RISC and SISC architecture. ii) Little endian and Big endian architecture.	7	CO4	L3		
50	What are the features of the following I) I ² C Bus ii) IrDA iii) Optocoupler iv) 1-wire interface	8	CO4	L3		
51	What are the different memories types memories used in embedded system design. Explain the role of each.	7	CO4	L3		
52	Explain the following circuits in an embedded system: I) brown out protection circuits ii) reset circuit	8	CO4	L3		
53	Define the 6 characteristics of an embedded system.	7	CO4	L3		
54	Explain the 6 operational quality attributes of an embedded systems.	8	CO4	L3		
55	With a block diagram, mention the components used in the design of a washing machine and also explain its working.	7	CO4	L3		
56	Compare DFG and CDFG with an example and diagrams.	8	CO4	L3		
57	With FSM model, explain the design and operation of automatic tea/ coffee vending machine.	7	CO4	L3		
58	Explain the assembly language based embedded firmware development with a diagram and mention its advantages and disadvantages.	8	CO4	L3		
59	Explain the components of a typical embedded system in detail.	7	CO4	L3		

60	Which are the components used as the core of an embedded	8	CO4	L3
	system? Explain the merits, drawbacks, if any.			
61	What is the difference between Application Specific Integrated Circuit (ASIC) Application Specific Standard Product (ASSP).	7	CO4	L3
62	Explain the 6 purposes of Embedded systems with an example for each.	8	CO4	L3

D3. TEACHING PLAN - 3

Module – 5

Title:	E Loop and Horn Antenna and Antenna Types					
a	Course Outcomes	CO	Blooms			
-	At the end of the topic the student should be able to	-	Level			
	Explain the need of real time operating system for embedded system		L3			
	applications.					
b	Course Schedule	-	-			
Class N	o Portion covered per hour	-	-			
41	RTOS and IDE for Embedded System Design: Operating System basics,	CO5	L3			
42	Types of operating systems,	CO5	L3			
43	Task, process and threads (Only POSIX Threads with an example program),	CO5	L3			
44	Thread preemption, Preemptive Task scheduling techniques,	CO5	L3			
45	Task Communication,	CO5	L3			
46	Task synchronization issues – Racing and Deadlock,	CO5	L3			
47	Concept of Binary and counting semaphores (Mutex example without any program),	CO5	L3			
48	How to choose an RTOS, Integration and testing of Embedded hardware and firmware	CO5	L3			
49	Integration and testing of Embedded hardware and firmware,	CO5	L35			
50	Embedded system Development Environment – Block diagram (excluding Keil), Disassembler/decompiler, simulator, emulator and debugging techniques	CO5	L3			
			-			
C	Application Areas	-	-			
-	Students should be able employ / apply the Module learnings to	-	-			
1	Design of ASIC.	CO5	<u>L3</u>			
2	Design of any embedded system with RTOS.	005	L4			
d	Paviaw Questions					
-	The attainment of the module learning assessed through following questions	_	-			
1	Explain the concept of deadlock with a block diagram. Mention the different conditions which favours a deadlock condition	CO5	L1			
2	Write a block diagram of IDE environment for an embedded system design	CO5	L3			
3	Three processes with process IDs P1,P2,P3 with estimated completion time 10,5,7 ms respectively enters the ready queue together. A new process P4 with completion time 2 ms enters the ready queue after 2ms. Calculate the waiting time for all the processes. Also calculate the average waiting time and average turn around time . The algorithm used is SJF based preemptive scheduling. Assume all the processes contain only CPU operation and no I/O operation involved.	CO5	L2			
4	Mention the sequence of operations for embedding the firmware with a programmer and draw the interfacing diagram.	CO5	L3			

5	Briefly explain the functions of the operating system, with a diagram.	CO5	L3
6	Describe preemptive SJF scheduling. Determine average turn around time and average waiting time, if processes P1 P2 and P3 with estimated completion time of 10, 5, 7 milliseconds enter ready queue together and later P4 with a completion time of 2 msec enters ready queue after 2 msec.	CO5	L4
7	With a state transition diagram, structure and memory organization of a process, describe the process state transitions.	CO5	L3
8	Explain out of circuit and in-system programming methods for integration of hardware and firmware.	CO5	L3
9	With a diagram, mention the function of the components in an embedded system development environment.	CO5	L3
10	Explain simulator based debugging and ICE based target debugging techniques.	CO5	L3
11	Explain the concept of deadlock with a block diagram. Mention the different conditions which favours a deadlock condition.	CO5	L3
12	Write a block diagram of IDE environment for an embedded system design explain their function in brief.	CO5	L3
13	Three processes with process IDs P1,P2,P3 with estimated completion time 10,5,7 ms respectively enters the ready queue together. A new process P4 with completion time 2 ms enters the ready queue after 2ms. Calculate the waiting time for all the processes. Also calculate the average waiting time and average turn around time. The algorithm used is SJF based preemptive scheduling. Assume all the processes contain only CPU operation and no I/O operation involved.	CO5	L3
14	Mention the sequence of operations for embedding the firmware with a programmer and draw the interfacing diagram.	CO5	L3
е	Experiences	-	-
1		CO10	L2
2		CO9	

E3. CIA EXAM – 3

a. Model Question Paper - 3

Crs Code	э,	17EC62	Sem:	VI	Marks:	30	Time: 7	75 minutes		
Cour	rse:	ARM Microo								
-	-	Note: Answ	er any 2 qu	estions, eac	h carry equ	al marks.		Marks	СО	Level
1	а	What are th	e other sys	tem compor	nents. Explai	n them		8	CO5	L1
	b	What are th	e types of a	communi8ca	ation interfac	e? brief ther	n	7	CO5	L2
2	а	Write short	notes on ar	ny two				8	CO5	L2
		i) Relay ii) 7	Segment L	ED display						
	b	Briefly expla	ain the type	s of Memory	/			7	CO5	L4
3	а	What are th	ne quality at	tributes of E	S.			8	CO5	L1
	b	What are th seat belt us	ne computa sing FSM	tional mode	ls. explain a	simple warr	ning system fo	or 7	CO5	L2
4	а	Briefly expla	ain the issue	es in hardwa	re and softw	/are co-desi	gn	8	CO5	L2
	b	Explain the example.	e applicatio	on specific	ES taking	washing m	achine as a	n 7	CO5	L2

b. Assignment – 3

Crs Code:	Sem:	Marks:	Time:						
Course:									
SNo		Marks	со	Level					
1	Explain the concept c different conditions wh	e 7	CO5	L3					
2	Write a block diagram design explain their fur	n 8	CO5	L3					
3	Three processes with time 10,5,7 ms respec process P4 with comp 2ms. Calculate the wai average waiting time used is SJF based pre contain only CPU opera	Three processes with process IDs P1,P2,P3 with estimated completio time 10,5,7 ms respectively enters the ready queue together. A new process P4 with completion time 2 ms enters the ready queue after 2ms. Calculate the waiting time for all the processes. Also calculate the average waiting time and average turn around time. The algorithm used is SJF based preemptive scheduling. Assume all the processe contain only CPU operation and no I/O operation involved.							
4	Mention the sequence programmer and draw	of operations for ember the interfacing diagram	dding the firmware with	a 8	CO5	L3			
5	Briefly explain the func	tions of the operating sy	stem, with a diagram.	5	CO5	L3			
6	Describe preemptive S time and average waiti completion time of 10, later P4 with a comple msec.	SJF scheduling. Determ ng time, if processes P1 5, 7 milliseconds enter r etion time of 2 msec er	ine average turn aroun P2 and P3 with estimate eady queue together an iters ready queue after	d 6 d 2	CO5	L3			
7	With a state transition process, describe the p	diagram, structure and i process state transitions	memory organization of	a 7	CO5	L3			
8	Explain out of circu integration hardware and firmware	it and in-system pro	gramming methods fo	or 8 of	CO5	L3			
9	With a diagram, me embedded system dev	ntion the function of velopment environment	the components in a	n 7	CO5	L3			
10	Explain simulator base techniques.	ed debugging and ICE	based target debuggin	g 8	CO5	L3			
11	Explain the concept of different conditions wh	of deadlock with a bloo ich favours a deadlock o	ck diagram. Mention th condition.	e 7	CO5	L3			
12	Write a block diagram design explain their fur	n of IDE environment fo nction in brief.	or an embedded syster	n 8	CO5	L3			
13	Three processes with time 10,5,7 ms respec process P4 with comp 2ms. Calculate the wai average waiting time used is SJF based pre contain only CPU opera	process IDs P1,P2,P3 w tively enters the ready oletion time 2 ms enter ting time for all the proc and average turn arou cemptive scheduling. A ation and no I/O operati	ith estimated completion r queue together. A new rs the ready queue after cesses. Also calculate th nd time . The algorithr ssume all the processe on involved.	n 5 w r e n s	CO5	L3			
14	Mention the sequence programmer and draw	of operations for ember the interfacing diagram	dding the firmware with	a 6	CO5	L3			
15	Explain the concept of different conditions wh	of deadlock with a blo ich favours a deadlock o	ck diagram. Mention th	e 7	CO5	L3			
16	Write a block diagram design explain their fur	n of IDE environment fo	or an embedded syster	n 8	CO5	L3			
17	Three processes with time 10,5,7 ms respect process P4 with comp 2ms. Calculate the wai average waiting time used is SJF based pre- contain only CPU opera	process IDs P1,P2,P3 w tively enters the ready pletion time 2 ms enter ting time for all the proc and average turn arou eemptive scheduling. A ation and no I/O operati	ith estimated completio queue together. A new rs the ready queue after cesses. Also calculate th nd time. The algorithr ssume all the processe on involved.	n 7 w er e s	CO5	L3			
18	Mention the sequence programmer and draw	of operations for ember the interfacing diagram	dding the firmware with	a 8	CO5	L3			

19	Briefly explain the functions of the operating system, with a diagram.	7	CO5	L3
20	Describe preemptive SJF scheduling. Determine average turn around time and average waiting time, if processes P1 P2 and P3 with estimated completion time of 10, 5, 7 milliseconds enter ready queue together and later P4 with a completion time of 2 msec enters ready queue after 2 msec.	8	CO5	L3
21	With a state transition diagram, structure and memory organization of a process, describe the process state transitions.	5	CO5	L3
22	Explain out of circuit and in-system programming methods for integration of hardware and firmware.	6	CO5	L3
23	With a diagram, mention the function of the components in an embedded system development environment.	7	CO5	L3
24	Explain simulator based debugging and ICE based target debugging techniques.	8	CO5	L3
25	Explain the concept of deadlock with a block diagram. Mention the different conditions which favours a deadlock condition.	7	CO5	L3
26	Write a block diagram of IDE environment for an embedded system design explain their function in brief.	8	CO5	L3
27	Three processes with process IDs P1,P2,P3 with estimated completion time 10,5,7 ms respectively enters the ready queue together. A new process P4 with completion time 2 ms enters the ready queue after 2ms. Calculate the waiting time for all the processes. Also calculate the average waiting time and average turn around time. The algorithm used is SJF based preemptive scheduling. Assume all the processes contain only CPU operation and no I/O operation involved.	7	CO5	L3
28	Mention the sequence of operations for embedding the firmware with a programmer and draw the interfacing diagram.	8	CO5	L3
29	Explain the concept of deadlock with a block diagram. Mention the different conditions which favours a deadlock condition.	5	CO5	L3
30	Write a block diagram of IDE environment for an embedded system design explain their function in brief.	6	CO5	L3
31	Three processes with process IDs P1,P2,P3 with estimated completion time 10,5,7 ms respectively enters the ready queue together. A new process P4 with completion time 2 ms enters the ready queue after 2ms. Calculate the waiting time for all the processes. Also calculate the average waiting time and average turn around time. The algorithm used is SJF based preemptive scheduling. Assume all the processes contain only CPU operation and no I/O operation involved.	7	CO5	L3
32	Mention the sequence of operations for embedding the firmware with a programmer and draw the interfacing diagram.	8	CO5	L3
33	Briefly explain the functions of the operating system, with a diagram.	7	CO5	L3
34	Describe preemptive SJF scheduling. Determine average turn around time and average waiting time, if processes P1 P2 and P3 with estimated completion time of 10, 5, 7 milliseconds enter ready queue together and later P4 with a completion time of 2 msec enters ready queue after 2 msec.	8	CO5	L3
35	With a state transition diagram, structure and memory organization of a process, describe the process state transitions.	7	CO5	L3
36	Explain out of circuit and in-system programming methods for integration of hardware and firmware.	8	CO5	L3
37	With a diagram, mention the function of the components in an embedded system development environment.	5	CO5	L3
38	Explain simulator based debugging and ICE based target debugging techniques.	6	CO5	L3
39	Explain the concept of deadlock with a block diagram. Mention the different conditions which favours a deadlock condition.	7	CO5	L3
40	Write a block diagram of IDE environment for an embedded system design explain their function in brief.	8	CO5	L3

41	Three processes with process IDs P1,P2,P3 with estimated completion time 10.5,7 ms respectively enters the ready queue together. A new process P4 with completion time 2 ms enters the ready queue after 2ms. Calculate the waiting time for all the processes. Also calculate the average waiting time and average turn around time . The algorithm used is SJF based preemptive scheduling. Assume all the processes contain only CPU operation and no I/O operation involved.	7	CO5	L3
42	Mention the sequence of operations for embedding the firmware with a programmer and draw the interfacing diagram.	8	CO5	L3
43	Explain the concept of deadlock with a block diagram. Mention the different conditions which favours a deadlock condition.	7	CO5	L3
44	Write a block diagram of IDE environment for an embedded system design explain their function in brief.	8	CO5	L3
45	Three processes with process IDs P1,P2,P3 with estimated completion time 10,5,7 ms respectively enters the ready queue together. A new process P4 with completion time 2 ms enters the ready queue after 2ms. Calculate the waiting time for all the processes. Also calculate the average waiting time and average turn around time. The algorithm used is SJF based preemptive scheduling. Assume all the processes contain only CPU operation and no I/O operation involved.	5	CO5	L3
46	Mention the sequence of operations for embedding the firmware with a programmer and draw the interfacing diagram.	6	CO5	L3
47	Briefly explain the functions of the operating system, with a diagram.	7	CO5	L3
48	Describe preemptive SJF scheduling. Determine average turn around time and average waiting time, if processes P1 P2 and P3 with estimated completion time of 10, 5, 7 milliseconds enter ready queue together and later P4 with a completion time of 2 msec enters ready queue after 2 msec.	8	CO5	L3
49	With a state transition diagram, structure and memory organization of a process, describe the process state transitions.	7	CO5	L3
50	Explain out of circuit and in-system programming methods for integration of hardware and firmware.	8	CO5	L3
51	With a diagram, mention the function of the components in an embedded system development environment.	7	CO5	L3
52	Explain simulator based debugging and ICE based target debugging techniques.	8	CO5	L3
53	Explain the concept of deadlock with a block diagram. Mention the different conditions which favours a deadlock condition.	5	CO5	L3
54	Write a block diagram of IDE environment for an embedded system design explain their function in brief.	6	CO5	L3
55	Three processes with process IDs P1,P2,P3 with estimated completion time 10,5,7 ms respectively enters the ready queue together. A new process P4 with completion time 2 ms enters the ready queue after 2ms. Calculate the waiting time for all the processes. Also calculate the average waiting time and average turn around time. The algorithm used is SJF based preemptive scheduling. Assume all the processes contain only CPU operation and no I/O operation involved.	7	CO5	L3
56	Mention the sequence of operations for embedding the firmware with a programmer and draw the interfacing diagram.	8	CO5	L3
57	Explain the concept of deadlock with a block diagram. Mention the different conditions which favours a deadlock condition.	7	CO5	L3
58	Write a block diagram of IDE environment for an embedded system design explain their function in brief.	8	CO5	L3
59	Three processes with process IDs P1,P2,P3 with estimated completion time 10,5,7 ms respectively enters the ready queue together. A new process P4 with completion time 2 ms enters the ready queue after 2ms. Calculate the waiting time for all the processes. Also calculate the average waiting time and average turn around time. The algorithm used is SJF based preemptive scheduling. Assume all the processes	7	CO5	L3

	contain only CPU operation and no I/O operation involved.			
60	Mention the sequence of operations for embedding the firmware with a	8	CO5	L3
	programmer and draw the interfacing diagram.			
61	Briefly explain the functions of the operating system, with a diagram.	5	CO5	L3
62	Describe preemptive SJF scheduling. Determine average turn around time and average waiting time, if processes P1 P2 and P3 with estimated completion time of 10, 5, 7 milliseconds enter ready queue together and later P4 with a completion time of 2 msec enters ready queue after 2	6	CO5	L3

F. EXAM PREPARATION

1. University Model Question Paper

Cour	se:	ARM Microcontroller and Embedded Systems			
Crs C	Code:	17EC62 Sem: 6 Marks: 60			
-	Note	Answer all FIVE full questions. All questions carry equal marks.			Mark
					S
1	а	Briefly describe the functions of the various units with the architectural block diagram of ARM Cortex M3.	CO1	L2	6
	b	Explain the applications of Cortex M3.	CO1	L3	3
	С	Discuss the functions of R0 to R15 and other special registers in Cortex M3.	CO1	L3	7
2	а	Describe the functions of exceptions with a vector table and priorities.	CO1	L3	6
	b	Explain the operation modes of Cortex M3 with diagrams.	CO1	L3	3
	C	Explain two stack model and reset sequence in ARM cortex M3.	CO1	3	7
					+ '
3	а	Explain the following 16 bit instructions in Cortex M3: ADC, RSB, TST, BL, LDR, MOV, SVC, PUSH	C02	L3	7
	b	Write an ALP to find the sum of first 10 integer numbers.	C02	L4	4
	С	Write the memory map of Cortex M3 and explain briefly bit-band operations.	C02	L4	5
4	а	Explain the following 32 bit instructions in Cortex M3: AND, CMN, MLA, SDIV, STR, MRS, MRS, POP.	C02	L3	8
	b	Write a C language program to toggle an LED with a small delay in Cortex M3.	C02	L3	4
	С	With a diagram, explain the organization of CMSIS.	C02	L3	4
5	а	Explain the 6 purposes of Embedded systems with an example for each.	CO3	L3	6
	b	Differentiate between (i) General Computing Systems and Embedded Systems (ii) RISC and CISC architectures.	CO3	L3	4
	С	Explain the 3 classifications of Embedded systems based on complexity and performance.	CO3	L3	3
	d	Mention the applications of Embedded systems with an example for each.	CO3	L3	3
6	а	Explain the functions of Optocoupler and SPI bus with diagrams.	CO3	L3	6
	b	Write a note on Embedded firmware.	CO3	L3	4
	С	Explain SRAM design and features with a diagram.	CO3	L3	3
	d	Write the architectural block diagram of embedded system and mention the components used.	CO3	L3	3

7	а	Define the 6 characteristics of an embedded system.	CO4	L3	5
	b	Explain the 6 operational quality attributes of an embedded systems.	CO4	L3	5
	С	With a block diagram, mention the components used in the design of a washing machine and also explain its working.	CO4	L3	6
8	а	Compare DFG and CDFG with an example and diagrams.	CO4	L3	4
	b	With FSM model, explain the design and operation of automatic tea/coffee vending machine.	CO4	L3	5
	С	Explain the assembly language based embedded firmware development with a diagram and mention its advantages and disadvantages.	CO4	L3	7
9	а	Briefly explain the functions of the operating system, with a diagram.	CO5	L3	4
	b	Describe preemptive SJF scheduling. Determine average turn around time and average waiting time, if processes P1 P2 and P3 with estimated completion time of 10, 5, 7 milliseconds enter ready queue together and later P4 with a completion time of 2 msec enters ready queue after 2 msec.	CO5	L3	5
	С	With a state transition diagram, structure and memory organization of a process, describe the process state transitions.	CO5	L3	7
10	a	Explain out of circuit and in-system programming methods for integration of hardware and firmware.	CO5	L3	5
	b	With a diagram, mention the function of the components in an embedded system development environment.	CO5	L3	5
	С	Explain simulator based debugging and ICE based target debugging techniques.	CO5	L3	6

2. SEE Important Questions

Cours	se:	ARM Microo	controller and	Embedo	led Systems		Month	/ Year	May /	2018		
Crs C	ode:	17EC62	Sem:	6	Marks:	80	Time:		180 mi	inutes		
	Note	Answer all F	FIVE full quest	ions. All	questions carry	equal marks.	·	-	-			
Mod	Qno.	Important G	uestion					Marks	со	Year		
1	а	With a nea controller.	With a neat diagram explain the architecture of ARM cortex M3 micro controller.									
	b	Explain the	register organ	ization o	f ARM cortex M	13.		6	CO1	2018		
2	а	Explain the m3 with a n	6	CO1	2018							
	b	Mention the the same us	e instruction u sing suitable e	sed for xamples	accessing the	special registe	ers. Explain	4	CO1	2018		
	С	Explain the cortex M3.	stack operati	on using	g push and pop	instructions i	n the ARM	6	CO1	2018		
3	a	Explain shif set. Why is ARM cortex	t and rotate in: there rotate i M3.	structior ight ins	ns available in A truction but no	RM cortex M3 rotate left ins	instruction struction in	8	CO2	2018		
	b	Explain the i) BFC	following with ii) SXTH	suitable	e examples. iii) UBFX	iv) RBIT		8	CO2	2018		
4	а	Write the m M3.	nemory map a	and expl	ain memory ac	cess attribute	s in Cortex	8	CO2	2018		
	b	Analyze the the execution Assume R8	e following ins on of each inst =0X00000088	truction ruction. , R9=0X0	s and write the	oX00001111	he register	8	CO2	2018		

		i) RSB.W R8, R9, #0X10			
		II) ADD R8, R9,R3			
5	а	Differentiate the following	8	CO3	2018
		i) RISC and SISC architecture.			
		ii) Little endian and Big endian architecture.			
	b	What are the features of the following	8	CO3	2018
		I) I ² C Bus			
		ii) IrDA			
		iii) Optocoupler			
		iv) 1-wire interface			
6	а	What are the different memories types memories used in embedded system design. Explain the role of each.		CO3	2018
	b	Explain the following circuits in an embedded system:		CO3	2018
		I) brown out protection circuits			
		ii) reset circuit			
7	а	Explain the term quality attributes in embedded system development	8	CO4	2018
		context. What are the different quality attributes to be considered in an			
		embedded system design.			-
	b	Explain the data flow graph and control flow graph models in the	8	CO4	2018
		embedded system.			
8	a	Explain the different embedded firmware design approach in detail.	8	CO4	2018
	b	Explain the characteristics pf embedded system.	8	CO4	2018
9	а	Explain the concept of deadlock with a block diagram. Mention the	8	CO5	2018
		different conditions which favours a deadlock condition.			
	b	Write a block diagram of IDE environment for an embedded system	8	CO5	2018
		design explain their function in brief.			
10	2	Three processes with process IDs Da Da with estimated completion	10	COF	2019
10	d	time 10.5.7 ms respectively enters the ready queue targether A new	10	005	2010
		brocoss Dawith completion time 2 ms enters the ready queue offer 2ms			
		Calculate the waiting time for all the processes. Also calculate the			
		average waiting time and average turn around time. The algorithm used			
		is STE based preemptive scheduling. Assume all the processes contain			
		only CPU operation and no I/O operation involved			
	b	Mention the sequence of operations for embedding the firmware with a	6	CO5	2018
		programmer and draw the interfacing diagram.	-		

Course Outcome Computation

Academic Year:

Odd / Even semester														
INTERNAL TEST	Г				T1			T2						
Course Outcom	ne	CO1		CO2		CO3		CO4		CO5		CO6		
QUESTION NO		Q1	LV	Q2	LV	Q3	LV	Q1	LV	Q2	LV	Q3	LV	
MAX MARKS		10	-	10	-	10	-	10	-	10	-	10	-	
USN-1		5	2	10				10	3	9	3	4	1	
USN-2		5	2	8	3									
USN-3		7	3	7	3	10	3	8	3	8	3	5	2	
USN-4						4	1	10	3	8	3	6	2	
USN-5		8	3	6	2	9	3	10	3	8	3			
USN-6								10	3	9	3	4	1	
Average Attainment	СО		2.5		2.75		2.33		3		3		1.5	

LV Threshold : 3:>60%, 2:>=50% and <=60%, 1: <=49%

CO1 Computation :(2+2+2+3)/4 = 10/4=2.5

PO Computation

Program	PO1			$\bigcirc 2$	P	POs		PO1		PO12		PO12	
Outcome Weight of	3			1		3		2		2		3	
Course Outcome	CO1		C	02	С	03	C	D4	C	05	CC	D6	
Test/Quiz/Lab			T1	L					Т	2			
QUESTION NO	Q1	LV	Q2	LV	Q3	LV	Q1	LV	Q2	LV	Q3	LV	(
MAX MARKS	10	-	10	-	10	-	10	-	10	-	10	-	-
USN-1	5	2	10	3			10	3	9	3	4	1	
USN-2	5	2	8	3									
USN-3	7	3	7	3	10	3	8	3	8	3	5	2	
USN-4					4	1	10	3	8	3	6	2	
USN-5	8	3	6	2	9	3	10	3	8	3			
USN-6							10	3	9	3	4	1	
Average CO Attainment		2.5		2.75		2.33		3		3		1.5	
17EC62						Сору	right ©20	17. cAAS. /	All rights	reserved			