

	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT.EC.Ph5b1.F02	Date: 10-01-2019
/	Title:	Course Plan	Page: 1 / 26
z/	AAS. All rights reserved		

Ref No:

< SRI KRISHNA INSTITUTE OF TECHNOLOGY BANGALORE>

COURSE PLAN

Academic Year 2019-2020

Program:	B E – Electronics & Communication Engineering
Semester :	6
Course Code:	17EC61
Course Title:	DIGITAL COMMUNICATION
Credit / L-T-P:	4 / 4-0-0
Total Contact Hours:	50
Course Plan Author:	N S MYTHREYE

Academic Evaluation and Monitoring Cell

< Sri Krishna Institute of Technology,#29,Hesarghatta Main Road, Chimney Hills, Chikkabanavara Post> <BANGALORE – 560090, KARNATAKA, INDIA> <Phone / Fax :+91-080-2372147> <Web:WWW.skit.org.in >

Table of Contents

Checked by

ANSTITUTE OF TH	SKIT		Teaching Process	Rev No.: 1.0
		SKIT.EC.Ph5b1.F02		Date: 10-01-2019
S * BANGALORE*		Course Plan		Page: 3 / 26
	AAS. All rights reserved			2
6. Contei	nt Beyond Syl	labus		6
D1. TEAC	HING PLAN -	- 1		7
Do TEAC		_ າ		
	-			-

Note : Remove "Table of Content" before including in CP Book

Each Course Plan shall be printed and made into a book with cover page Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

17EC61 : DIGITAL COMMUNICATION

A. COURSE INFORMATION

1. Course Overview

Degree:	B.E	Program:	ECE
Year / Semester :	6 th	Academic Year:	2018-19
Course Title:	Digital Communication	Course Code:	17EC61
Credit / L-T-P:	50-10-0	SEE Duration:	180 Minutes
Total Contact Hours:	50	SEE Marks:	80 Marks
CIA Marks:	20	Assignment	1 / Module
Course Plan Author:	Asha B R	Sign	Dt:

JUNSTITUTE OF IN	SKIT		Teaching Process		Rev No.: 1.0
(INOC)	Doc Code:	SKIT.EC.Ph5b1.F02			Date: 10-01-2019
RS + BANGUORE +	Title:	Course Plan			Page: 4 / 26
C A	AS. All rights reserved	l.			
Checked By:				Sign	Dt:

2. Course Content

Mod	Module Content	Teaching	Module	Blooms
ule		Hours	Concepts	Level
1	HilbertTransform,Pre-envelopes,Complex envelopes, Canonical representation of bandpass signals, Complex low pass representation of bandpass systems, Complex representation of band pass signals and systems. Line codes: Unipolar, Polar, Bipolar (AMI) and Manchester code and their power spectral densities		Band pass signals & Line coding methods	
2	Introduction, Geometric representation of signals,Gram- Schmidt Orthogonalization procedure, Conversion of the continuous AWGN channel into a vector channel, Optimum receivers using coherent detection: ML Decoding, Correlation receiver, matched filter receiver		Additive white Gaussian noise(AWGN) channels	
3	Phase shift Keying techniques using coherent detection: generation, detection and error probabilities of BPSK and QPSK, M–ary, PSK, M–ary QAM Frequency shift keying techniques using Coherent detection: BFSK generation, detection and error probability. Non coherent orthogonal modulation techniques: BFSK, DPSK Symbol representation, Block diagrams treatment of Transmitter and Receiver, Probability of error		Coherent & Non coherent orthogonal modulation techniques	· ·
4	Digital Transmission through Band limited channels: Digital PAM Transmission through Band limited Channels, Signal design for Band limited Channels: Design of band limited signals for zero ISI – The Nyquist Criterion (statement only), Design of band limited signals with controlled ISI-Partial Response signals, Probability of error for detection of Digital PAM:Probability of error for detection of Digital PAM with Zero ISI, Symbol–by–Symbol detection of data with controlled ISI, Channel Equalization: Linear Equalizers (ZFE, MMSE), Adaptive Equalizers	12	Band limited channels	L3
5	Spread Spectrum Communication Systems: Model of a Spread Spectrum Digital Communication System, Direct Sequence Spread Spectrum Systems, Effect of De-spreading on a narrowband Interference, Probability of error (statement only), Some applications of DS Spread Spectrum Signals,Generation of PN Sequences, Frequency Hopped Spread Spectrum, CDMA based on IS-95		Spread spectrum	L4

3. Course Material

Mod	Details	Available
ule		
1	Simon Haykin, —Digital Communication Systems , John Wiley & sons, First	In Lib
	Edition, 2014, ISBN 978-0-471-64735-5.	
2	John G Proakis and Masoud Salehi, —Fundamentals of Communication	In Lib
	Systems∥, 2014 Edition, Pearson Education, ISBN 978-8-131-70573-5.	
	Reference books:	
3	B.P.Lathi and Zhi Ding, —Modern Digital and Analog communication Systems ,	In Lib
	Oxford University Press, 4th Edition, 2010, ISBN: 978-0-198-07380-2.	
4	lan A Glover and Peter M Grant, —Digital Communications , Pearson	In Lib
	Education,	

AINS	TITUTE OF A	SKIT	Teaching Process	Rev No.: 1.0
KRISHI	Doc Code: SKIT.EC.		SKIT.EC.Ph5b1.F02	Date: 10-01-2019
145 * 84	A A A A A A A A A A A A A A A A A A A	Title:	Course Plan	Page: 5 / 26
C	GALO			
	Third	ISBN 978-0-273-71830-7.		
5	John (2nd	G Proakis and	Masoud Salehi, —Communication Systems Engineering∥,	In Lib
	Editio			

4. Course Prerequisites

6

Others (Web, Videos, Notes etc.)

SNo	Course	Course Name	Module / Topic / Description	Sem	Remarks	Blooms
5110	Code	Course Marrie	Module / Topic / Description	Sem	Remarks	Level
1	ELN		1. Knowledge on Passive and Active elements	2		L1
			2. Knowledge of fundamental of maths	-	Bridge course of maths for students	L1
2	EC34	Digital electronics	1. Basics of digital concepts	3		L2

Note: If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

B. OBE PARAMETERS

1. Course Outcomes

#	COs	Teach.	Concept	Instr	Assessmen	Blooms'
		Hours		Method	t Method	Level
	Understand & acquire the knowledge on representation of band pass signals.		Band pass signals	Lecture	CIA Assignment	L3
17EC61.2	Solve problems to new situations by applying line coding methodologies.	04	Line coding methods	Lecture/ PPT	CIA Oral quiz Assignment	L3
17EC61.3	Learn about signal transmission over AWGN channels	08	Additive white Gaussian noise(AWG N) channels	Lecture/ Video tutorial	CIA Slip Test Assignment	L3
17EC61.4	Perform coherent & Non coherent modulation techniques to analyze the channel performance.		Coherent modulation technique	Lecture / PPT	Assignment CIA	L4
17EC61.5	Identify the difference between coherent & non coherent orthogonal modulation techniques.		Non coherent orthogonal modulation technique	Lecture	CIA Slip Test Assignment	L4
	Demonstrate understanding of signal transmission through band limited channels.		Band limited channels	Lecture and Tutorial	Assignment Slip Test	L3
17EC61.7	Analyze performance of spread spectrum communication systems.	08	Spread spectrum	PPT/ Video tutorial	CIA Oral quiz Assignment	L4

Not Available

ANSTITUTE OF THE	SKIT		Teaching	Process		Rev N	lo.: 1.0
	Doc Code:	SKIT.EC.Ph5b1.F02				Date:	10-01-2019
Rest Barrow Offer	Title:	Course Plan				Page:	6 / 26
C	AAS. All rights reserved	l.					
-		Total	50	-	-	-	-

Note: Identify a max of 2 Concepts per Module. Write 1 CO per concept.

2. Course Applications

SNo	Application Area	СО	Level
1	Designing of filters	CO1	L3
2	Transmission & storage,Pulse shaping	CO2	L3
3	Analysing the performance of the communication systems	CO3	L3
4	Matched filtering to identify behavioral modulation of brain oscillations	CO3	L3
5	BPSK & QPSK is used in various cellular wireless standards such as GSM, CDMA,	CO4	L4
	LTE, 802.11 WLAN, 802.16 fixed and mobile WiMAX, Satellite and CABLE TV		
6	DPSK is used in bluetooth,Biometric passports etc	CO5	L4
7	Band limited channels are used in inter symbol interference,	CO6	L3
8	Equalizers are used in recording studios, radio studios and production control	CO6	L3
	rooms, and live sound reinforcement and in instrument amplifiers, such as guitar		
	amplifiers, to correct or adjust the response of microphones, instrument pick-ups,		
	loudspeakers, and hall acoustics.		
9	Spread spectrum applications in interference, millitary,wireless LAN security, CDMA	CO7	L4

Note: Write 1 or 2 applications per CO.

3. Articulation Matrix

(CO – PO MAPPING)

-	Course Outcomes	Program Outcomes PO1PO2PO3PO4PO5POPO7POPO9PO1PO1PO												
#	COs	PO1	PO2	PO3	PO4	PO5	PO	PO7	PO	PO9	PO1	PO1	PO1	Leve
							6		8		0	1	2	
17EC61.1	Understand & acquire the knowledge on representation of band pass signals.	- U	3	2	3	2	-	-	-	-	-	-	-	L3
17EC61.2	Solve problems to new situations by applying line coding methodologies.		2	2	1	2	-	-	-	-	-	-	-	L3
17EC61.3	Learn about signal transmission over AWGN channels	3	3	-	-	2	-	-	-	-	-	-	-	L3
17EC61.4	Perform coherent & Non coherent modulation techniques to analyze the channel performance.		2	3	2	2	-	-	-	-	-	-	-	L4
17EC61.5	Identify the difference between coherent & non coherent orthogonal modulation techniques.		3	2	-	2	-	-	-	-	-	-	-	L4
17EC61.6	Demonstrate understanding of signal transmission through band limited channels.		-	1	1	2	-	-	-	-	-	-	-	L3
17EC61.7	Analyze performance of spread spectrum communication systems.		2	-	-		-	-	-	-	-	-	-	L4
	ion the mapping strength as 1, 2,													

4. Mapping Justification

11 0		
Mapping	Justification	Mapping
		Level

ANSTITUTE OF	SKIT	Teaching Process Rev No	0.: 1.0
KKIISHI	Doc Code:	· · · · · · · · · · · · · · · · · · ·	0-01-2019
Rest Balance OBE	Title:	Course Plan Page: 7	/ 26
	AS. All rights reserved		
CO	PO	-	-
CO1	PO1	Knowledge of band pass signals is required for represenation of complex signaling system.	L3
CO1	PO2	Analyzing the signal representation requires knowledge on Band pass signals	L3
CO1	PO3	Knowledge on Band pass signal is used to design filters	L3
CO1	PO4	Prediction of signal representation based on band pass signals	L3
CO2	PO1	Understanding of line codes methodologies to solve the complex engineering problems.	
CO2	PO2	Identify the problems & solve that using line coding methods	L3
CO2	PO3	Line coding is used to develop solutions for complex systems	L3
CO2	PO4	Determination of errors in system using line codes.	L3
CO3	PO1	Skilling on the AWGN channels is required for performance analysi of communication systems	
CO3	PO2	Used to formulate the geometric represenation of signals	L3
CO4	PO1	Command on the digital modulation techniques will help to determine the behavior of various communication systems	L4
CO4	PO2	Using modulation techniques to analyze the peoblems in channel performance	
CO4	PO3	Understanding of digital modulation techniques helps in developin various cellular wireless standards	g L4
CO4	PO4	Interpretation of probability of error for detection of digital systems	5 L4
CO5	PO1	Knowledge on non coherent technique will be used to differentiate system working	
CO5	PO2	Identify the difference between coherent & non coherent techniques	L4
CO5	PO3	Non coherent orthogonal modulation is required to design bluetooth , bio metric etc systems	L4
CO6	PO1	Mastery on band limited channels are used in inter symbol interference	L3
CO6	PO2	Skill on band limited channels are used to design controlled ISI- partial response signals	L3
CO6	PO3	Investigating the transmission of signals over band limited channel	s L3
CO7	PO1	Understanding the principles of spread spectrum to design wireles LAN security systems.	
CO7	PO2	Knowledge on spread spectrum to analyze performance of the system	L4

Note: Write justification for each CO-PO mapping.

5. Curricular Gap and Content

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					

Note: Write Gap topics from A.4 and add others also.

6. Content Beyond Syllabus

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
0110			Sollogado F tariñoa		i o i appilig

					eaching Process						
AINSTITU	TE OF TR	SKIT		Te	R	ev No.: 1.0					
KRISHH		Doc Code:	SKIT	(IT.EC.Ph5b1.F02 Date: 10-01-20:							
148	J. *	Title:		se Plan		P	age: 8 / 26				
C	LORD	AS. All rights reserved					5				
1											
2											
3											
4											
5											
6											
7											
8											
9											
10											

Note: Anything not covered above is included here.

C. COURSE ASSESSMENT

1. Course Coverage

Mod	Title	Teaching		No. of	f quest	tion in	Exam		CO	Levels
ule		Hours	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE		
#						_	Asg			
1	Basic concepts of Band pass	10	2	-	-	1	1	2	CO1	L3
	signals & Line coding methods								CO2	
2	Transmission in AWGN channels	08	2	-	-	1	1	2	CO3	L3
3	Coherent & Non coherent	12	-	2	-	1	1	2	CO4	L4
	orthogonal modulation techniques								CO5	
4	Transmission in band limited	12	-	2	-	1	1	2	CO6	L3
	channels									
5	Spread Spectrum communication	08	-	-	4	1	1	2	CO7	L4
	channels									
-	Total	50	4	4	4	5	5	10	-	-

Note: Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

2. Continuous Internal Assessment (CIA)

Evaluation	Weightage in Marks	СО	Levels
CIA Exam – 1	15	CO1, CO2, CO3	L3, L3
CIA Exam – 2	15	CO4, CO5, CO6	L4, L3
CIA Exam – 3	15	CO7	L4
Assignment - 1	05	CO1, CO2, CO3	L3, L3
Assignment - 2	05	CO4, CO5, CO6	L4, L3
Assignment - 3	05	CO7	L4
Other Activities – define –		CO1 to Co7	L2, L3, L4
Slip test			
Final CIA Marks	20	-	-

Note : Blooms Level in last column shall match with A.2 above.

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.EC.Ph5b1.F02	Date: 10-01-2019
Title:	Course Plan	Page: 9 / 26
C All states as a survey of		

AAS. All rights reserved. D1. TEACHING PLAN - 1

Module - 1

Title:	Basic concepts of Band pass signals & Line coding methods	Appr Time:	12 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Understand & acquire the knowledge on representation of band pass signals.	CO1	L3
2	Solve problems to new situations by applying line coding methodologies.	CO2	L3
b	Course Schedule	-	-
	Module Content Covered	<u>CO</u>	Level
1	Introduction, Hilbert Transform	CO1	L2
2	Pre-envelopes	CO1	L2
3	Complex envelopes	CO1	L2
4	Canonical representation of bandpass signals	CO1	L3
5	Complex low pass representation of bandpass systems	CO1	L3
6	Complex representation of band pass signals and systems.	CO2	L2
7	Line codes: Unipolar, Polar	CO2	L3
8	Bipolar (AMI) and Manchester code and	CO2	L3
9	Bipolar (AMI) and Manchester code power spectral densities	CO2	L3
10	Class test		
с	Application Areas	со	Level
1	Designing of filters	CO1	L3
2	Transmission & storage, Pulse shaping	CO2	L3
-1	Review Questions		
d		-	-
1	Define Hilbert transform. State the properties of it. Define the complex envelope of bandpass signals. Obtain the canonical	CO1 CO1	L2
2	representation of bandpass signals.		L3
3	Derive the power spectral density of polar NRZ signals and plot the Spectrum.	CO2	L3
4	Define the pre-envelope. Show the spectral representation of pre- envelopes for low pass signals.	CO1	L3
5	Derive the expression for the complex low pass representation of bandpass systems.	CO1	L3
6	Given the data stream 1110010100. Sketch the transmitted sequence of pulses for each of the following line code. (I) Unipolar NRZ (ii) Polar NRZ (iii) Unipolar RZ (iv) Bipolar RZ (v) Manchester code.		L3
7	Draw the digital data format for a given sequence 0 1 1 0 1 1 0 0 0 1 corresponding to i) Bipolar RZ ii) Manchester iii) Polar quarternary (natural code).		L3
8	Give the canonical and polar representations of the band pass signals?	CO1	L3
9	For a given sequence draw the digital format waveforms corresponding to Unipolar RZ and NRZ, Bipolar RZ and NRZ, Polar RZ and NRZ, and Dipolar RZ and NRZ. (00111010100000111111)	CO2	L3
10	How can we modify the frequency content of a real valued signal g(t) such that all negative frequency components are completely eliminated?	CO1	L2
	Write short notes on the following: i) HDB3 ii) B3ZS iii) B6ZS iv) split	CO2	L3
11	phase manchester coding.		

PHSTITUTE OF	SKIT Teaching Process				
KRIISH KA	Doc Code:	SKIT.EC.Ph5b1.F02	Date: 1	0-01-2019	
ILS * OF OF	Title:	Course Plan	Page: 1	.0 / 26	
C	AAS. All rights reserved	1.			
е	Experiences		-	-	
1			CO1	L2	
2					
3					
4			CO3	L3	
5					

Title:	Transmission in AWGN channels	Appr	08 Hrs
		Time:	
a	Course Outcomes		Blooms
	The student should be able to:		Level
1	Learn about signal transmission over AWGN channels	CO3	L3
-		005	
b	Course Schedule	-	-
Class No	Module Content Covered	CO	Level
11	Introduction to AWGN	CO3	L3
12	Geometric representation of signals	CO3	L3
13	Gram-Schmidt Orthogonalization procedure	CO3	L3
14	Conversion of the continuous AWGN channel into a vector channel	CO3	L3
15	Optimum receivers using coherent detection: ML Decoding	CO3	L3
16	Correlation receiver	CO3	L3
17	Matched filter receiver	CO3	L3
18	Class test	CO3	L3
с	Application Areas	со	Level
1	Analysing the performance of the communication systems	CO3	L3
2	Matched filtering to identify behavioral modulation of brain oscillations	CO3	L3
	Review Questions		
d	Explain the geometric representation of signals and express the energy of the	- CO3	 L1
13	signal in terms of the signal vector.	-	
14	Explain the Gram-Schmidt orthogonalization procedure.	CO3	L3
15	Explain the matched filter receiver with the relevant mathematical theory.	CO3	L2
16	Obtain the decision rule for maximum likelihood decoding and explain the correlation receiver.	CO3	L2
17	The waveforms of four signals S1(t),S2(t),S3(t) & S4(t) describe below. S1(t) = 1, $0 < t < T/3$. S2(t) = 1, $0 < t < 2T/3$, S3(t) = 1, $T/3 < t < T$, S4(t) = 1, $0 < t < T$, and Zero otherwise. Using the Gram-Schmidt orthogonalization procedure. Find an orthogonal basis for this set of signals and construct the corresponding signal-space diagram.	CO3	L3
18	Derive an expression for Kronecker Delta Function using orthonormal basis function?	CO3	L3
19	Explain Hilbert Transforms and its properties? Explain the complex representation of band pass signals and systems?	CO3	L2
20	Explain the geometric representation of the signal using 2-D signal space with 3 symbols. Suppose $S1=(3,2)$, $S2=(-2,3)$, $S3=(3,-3)$. Draw the constellation diagram and express $S1(t)$, $S2(t)$ and $S3(t)$ as a linear combination of basic functions.	CO3	L3
21	Explain the detection and estimation of the signals in the receiver? What is the average probability of error of the signal. Explain?	CO3	L1,L2

PHISTITUTE OF	SKIT Teaching Process	Rev No.:	1.0
KING CONTROL OF CONTRO	Doc Code: SKIT.EC.Ph5b1.F02	Date: 10-	01-2019
BANGALORE *	/ Title: Course Plan	Page: 11 /	/ 26
	JAAS. All rights reserved. Using the Gram-Schmidt orthogonalization procedure, find a set of orthonormal basis functions to represent the three signals si(t), s2(t) and s3(t) shown in Figure. Express each of these signals in terms of the set of basis function.	CO3	L3
	$\begin{array}{c} \zeta(t) \\ 4 \\ 3 \\ 2 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$		
23	Derive the impulse response of a matched filter receiver and explain any two properties of matched filter.	CO3	L2
24	Explain geometric interpretation of signals.	CO3	L2
	Three signals SI(t), S2(t) and S3(t) are shown in Fig.Q6(b). Apply Gram- Schmidt procedure to obtain an orthonormal basis for the signals. Express signals $S1(t)$, $S2(t)$ and $S3(t)$ in terms of orthonormal basis functions. Also give the signal constellation diagram.	CO3	L3
	3 = 4 + 4 + 5 = 1 +		
26	Using the Gram-Schmidt orthogonalization procedure, find a set of orthonormal basis functions to represent the 4 signals $si(t)$, $s2(0, s3(t) and s4(t) shown in the Figure below. Express each of these signals in terms of the set of basis functions.$	CO3	L3
	Explain the importance of geometric interpretation of signals. Illustrate the geometric representation of signals for the case of a 2-dimensional signal space with 3 signals.	CO3	L3

E1. CIA EXAM – 1

a. Model Question Paper - 1

Crs Code	17EC61	Sem:	VI	Marks:	30	Time:	75 minutes
Course:	Digital Communication						

SINSTITUTE OF A	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT.EC.Ph5b1.F02	Date: 10-01-2019
ES * BANGALORE	Title:	Course Plan	Page: 12 / 26

C	WGALON	zAAS. All rights reserved.			
-	-	Note: Answer any 3 questions, each carry equal marks.	Marks	CO	Level
		MODULE-1			
1	a	Give the canonical and polar representations of the band pass signals?	5	CO1	L3
	b	For a given sequence draw the digital format waveforms corresponding to Unipolar RZ and NRZ, Bipolar RZ and NRZ, Polar RZ and NRZ, and Dipolar RZ and NRZ. (00111010100000111111)	10	CO1	L2
		OR			
2	a	How can we modify the frequency content of a real valued signal g(t) such that all negative frequency components are completely eliminated?	7	CO1	L3
	b	Write short notes on the following: i) HDB3 ii) B3ZS iii) B6ZS iv) split phase manchester coding.	8	CO1	L2
					L3
		MODULE-2			L2
3	a	Derive an expression for Kronecker Delta Function using orthonormal basis function?	5	CO2	L3
	b	Explain Hilbert Transforms and its properties? Explain the complex representation of band pass signals and systems?	10	CO1	L2
		OR			
4	a	Explain the geometric representation of the signal using 2-D signal space with 3 symbols. Suppose $S1=(3,2)$, $S2=(-2,3)$, $S3=(3,-3)$. Draw the constellation diagram and express $S1(t)$, $S2(t)$ and $S3(t)$ as a linear combination of basic functions.		CO2	L3
	b	Explain the detection and estimation of the signals in the receiver? What is the average probability of error of the signal. Explain?	8	CO2	L1,L2

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

			9		del Assignment		6			
Crs C	ode:	17EC61	Sem:	VI	Marks:	5 / 10	Time:	90 - 120	minute	S
Cours	se:	Digital C	communicat	ion						
Note:	Each	student	to answer 2	-3 assign	ments. Each ass	signment c	arries equal m	ark.		
SNo		USN			ssignment Des			Marks	СО	Level
1			Define Hilbe	ert transf	orm. State the p	roperties c	of it.	5	CO1	L2
2					envelope of ba ation of bandpas		Inals. Obtain th	ne 5	CO1	L3
3			Derive the plot the Spe		pectral density	of polar N	IRZ signals ar	id 5	CO2	L3
4					lope. Show the ow pass signals.		epresentation	of 5	CO1	L3
5			Derive the representat		ession for th Indpass systems		ex low pas	ss 5	CO1	L3
6			sequence c	of pulses NRZ (ii) I	eam 1110010100 for each of the f Polar NRZ (iii) U a.	ollowing li	ne code.		CO2	L3
7				sponding	a format for a gi g to i) Bipolar F code).	•			CO2	L3
8			Give the ca signals?	nonical	and polar repres	entations of	of the band pa	ss 5	CO1	L3
9			correspond	ing to U ar RZ a	nce draw the o Inipolar RZ an Ind NRZ, and 11111)	d NRZ, E	Bipolar RZ ar	ıd	CO2	L3

INSTITU	SKIT Teaching Process	Rev	No.: 1.0	
KAIISHIN	Doc Code: SKIT.EC.Ph5b1.F02		e: 10-01-	
ILIS * BANGA	Title: Course Plan		e: 13 / 2	
10 C	- AAS. All rights reserved. How can we modify the frequency content of a real valued	5	CO1	L2
	signal g(t) such that all negative frequency components are completely eliminated?			
11	Write short notes on the following: i) HDB3 ii) B3ZS iii) B6ZS iv) split phase manchester coding.	5	CO2	L3
12	Write the difference between NRZ & RZ	5	CO2	L3
13	Explain the geometric representation of signals and express the energy of the signal in terms of the signal vector.	5	CO1	L2
14	Explain the Gram-Schmidt orthogonalization procedure.	5	CO3	L1
15	Explain the matched filter receiver with the relevant mathematical theory.	5	CO3	L3
16	Obtain the decision rule for maximum likelihood decoding and explain the correlation receiver.	5	CO3	L2
17	The waveforms of four signals S1(t),S2(t),S3(t) & S4(t) describe below. S1(t) = 1, $0 < t < T/3$. S2(t) = 1, $0 < t < 2T/3$, S3(t) = 1, $T/3 < t < T$, S4(t) = 1, $0 < t < T$, and Zero otherwise. Using the Gram-Schmidt orthogonalization procedure. Find an orthogonal basis for this set of signals and construct the corresponding signal-space diagram.	5	CO3	L2
18	Derive an expression for Kronecker Delta Function using orthonormal basis function?	5	CO3	L3
19	Explain Hilbert Transforms and its properties? Explain the complex representation of band pass signals and systems?	5	CO3	L3
20	Explain the geometric representation of the signal using 2-D signal space with 3 symbols. Suppose S1=(3,2), S2=(-2,3), S3=(3,-3). Draw the constellation diagram and express S1(t), S2(t) and S3(t) as a linear combination of basic functions.		CO3	L2
21	Explain the detection and estimation of the signals in the receiver? What is the average probability of error of the signal. Explain?	5	CO3	L3
22	Using the Gram-Schmidt orthogonalization procedure, find a set of orthonormal basis functions to represent the three signals si(t), s2(t) and s3(t) shown in Figure. Express each of these signals in terms of the set of basis function.		CO3	L1,L2
23	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} $	5	CO3	L3
	any two properties of matched filter.			
24	Explain geometric interpretation of signals.	5	CO3	L2
25	Three signals SI(t), S2(t) and S3(t) are shown in Fig.Q6(b). Apply Gram-Schmidt procedure to obtain an orthonormal basis for the signals. Express signals S1(t), S2(t) and S3(t) in terms of		CO3	L2

WSTIT	TUTE OF	SKIT	-	Teaching Process	Rev	No.: 1.0	
HISHING	A CAL	Doc Co		SKIT.EC.Ph5b1.F02		2: 10-01-	2019
XIN XIN	\$ (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Title		Course Plan		e: 14 / 2	
C	SALORE	AAS. All rights r	eserved.				-
26			diagra	normal basis functions. Also give the signal constellation m. $\frac{5}{2}$, $\frac{6}{4}$, $\frac{5}{2}$, $\frac{5}{2}$, $\frac{5}{2}$, $\frac{5}{2}$, $\frac{5}{2}$, $\frac{5}{2}$, $\frac{1}{2}$, $\frac{5}{2}$, $\frac{1}{2}$, $\frac{5}{2}$, $\frac{1}{2}$,	5	CO3	L3
27				in the importance of geometric interpretation of signals. rate the geometric representation of signals for the case		CO3	L3
				-dimensional signal space with 3 signals.			
28							
29							
30							
31							
32							
33							
34							
35					<u> </u>		
36							
37							
38							
39							
40							
41							
42							
43							
44							
45							
46							
47							

D2. TEACHING PLAN - 2

Title:	Digital Modulation Techniques	Appr	12 Hrs
		Time:	
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Perform coherent & Non coherent modulation techniques to analyze the channel performance.	CO4	L2
2	Identify the difference between coherent & non coherent orthogonal modulation techniques.	CO5	L3

STINSTITUTE OF A	SKIT	Teaching Process	Rev No.: 1.0
KAIISIN CONTROL	Doc Code:	SKIT.EC.Ph5b1.F02	Date: 10-01-2019
HIS X BALLOU OBE	Title:	Course Plan	Page: 15 / 26
C	AAS. All rights reserved		

b	Course Schedule		
-	Module Content Covered	со	Level
	Phase shift Keying techniques using coherent detection: generation	CO4	Level L2
1 2	Detection and error probabilities of BPSK and QPSK	CO4	L2 L4
3	Detection and error probabilities of QPSK	CO4	L4
4	M–ary, PSK	CO4	L3
5	M-ary QAM	CO4	L3
	Frequency shift keying techniques using Coherent detection introduction		
6	BFSK generation	CO4	L3
7	Detection and error probability.	CO4	L4
8	Non coherent orthogonal modulation techniques: BFSK	CO5	L4
9	DPSK Symbol representation	CO5	L4
10	Block diagrams treatment of Transmitter and Receiver	CO5	L4
11	Probability of error	CO5	L4
12	Class test		
13			
14			
15			
16			
С	Application Areas	СО	Level
1	BPSK & QPSK is used in various cellular wireless standards such as GSM,	CO4	L4
	CDMA, LTE, 802.11 WLAN, 802.16 fixed and mobile WiMAX, Satellite and		
	CABLE TV		
2	DPSK is used in bluetooth,Biometric passports etc	CO5	L4
d	Review Questions	-	-
1	Explain the BPSK system with the help of the transmitter and receiver. Derive an	CO4	L4
	expression for the spectrum of BPSK system and hence calculate the bandwidth.		
2	Sketch the signal using QPSK for the given sequence 01101000 and hence draw the	CO4	L4
	diagram for the same.		
3	With the help of a block diagram and relevant expressions and waveforms explain	CO4	L3
	the QPSK transmitter and receiver. Define the M-ary PSK relative to the QPSK		
4	Explain coherent BFSK transmitter and receiver.	CO4	L2
5	Obtain the expression for probability of symbol error of coherent binary	CO4	L4
•	FSK.		
6	Explain coherent BPSK Generation, detection & error probabilities.	CO4	L3
7	Explain generation & coherent detection of QPSK.	CO4	L3
8	Derive an expression for Error probability of QPSK.	CO4	L4
9	Explain generation & coherent detection of BFSK.	CO4	L3
10	Explain the power spectra of BFSK.	CO4	L3
11	Write a Note on Non-Coherent orthogonal modulation techniques.	CO5	 L4
12	Obtain the expression for probability of symbol error of Non-coherent	CO5	L4
	orthogonal modulation techniques.	000	
13	With a neat block diagram, explain the differential phase shift keying.	CO5	L4
-0	Illustrate the generation of differentially encoded sequence for the binary	000	
	data 11 00100010.		
14	What is M-ary PSK. Explain with suitable derivation.	CO5	L4
15	Explain M-ary QAM with suitable expression & example.	CO5	L3
<u> </u>	Derive an expression for average probability of error for M-ary QAM using	CO5	L4
10	4-ary PAM.		
е	Experiences	_	_
1			
2			

SHISTITUTE OF	SKIT	Teaching Process	Rev No.:	1.0
	Doc Code:	SKIT.EC.Ph5b1.F02	Date: 10-	-01-2019
Rest Balance OBE	Title:	Course Plan	Page: 16	/ 26
C	AAS. All rights reserved	•		
3				
4			CO3	L3
5				

Title:	Communication through Band Limited Channels	Appr	12 Hrs
		Time:	
а	Course Outcomes		Blooms
a	The student should be able to:	-	Level
- 1	Demonstrate understanding of signal transmission through Band limited	- CO6	Laver L3
I	channels.	000	L3
b	Course Schedule		
lass No	o Module Content Covered	СО	Level
1	Introduction to Digital Transmission through Band limited channels	CO6	L2
2	Digital PAM Transmission through Band limited Channels	CO6	L3
3	Signal design for Band limited Channels	CO6	L3
4	Design of band limited signals for zero ISI -The Nyquist Criterion	CO6	L3
-	(statement only)	000	
5	Design of band limited signals with controlled ISI-Partial Response signals	CO6	L3
6	Probability of error for detection of Digital PAM	CO6	 L3
7	Probability of error for detection of Digital PAM with Zero ISI	C06	L3
8	Symbol-by-Symbol detection of data with controlled ISI	CO6	L3
9	Channel Equalization: Linear Equalizers ZFE, MMSE)	CO6	L3
10	Linear Equalizers MMSE	CO6	L3
11	Adaptive Equalizers	C06	L3
12	Class test	000	
13			
 14			
15			
16			
с	Application Areas	СО	Level
1	Band limited channels are used in inter symbol interference,	CO6	L3
2	Equalizers are used in recording studios, radio studios and production control rooms, and live sound reinforcement and in instrument amplifiers, such as guitar amplifiers, to correct or adjust the response of microphones, instrument pick-ups, loudspeakers, and hall acoustics.	CO6	L3
d	Review Questions	-	-
1	With a neat block diagram explain the digital PAM transmission through band limited base band channels and Obtain the expression for ISI.	CO6	L2
2	What are adaptive equalizers? Explain the linear adaptive equalizer based on the MSE criterion.	CO6	L3
3	The binary sequence 10010110010 is the input to the precoder whose output is used to modulate a duobinary transmitting filter. Obtain the precoded sequence, transmitted amplitude levels, the received signal levels and the decoded sequence.	CO6	L3
4	What is eye pattern? What is the Nyquist criterion for Zero ISI? Given an example of the pulse with Zero ISI.	CO6	L2
5	Explain the design of band Limited signals with controlled ISI. Describe the time domain & frequency domain characteristics of a duobinary signal.	CO6	L3
	Ine time domain & requency domain characteristics of a duobinary signal.		

STHSTITUTE OF A	SKIT	Teaching Process	Rev No.: 1.0					
Kaller Aller	Doc Code:	SKIT.EC.Ph5b1.F02	Date: 10-01-2019					
HE TO COL	/ Title:	Course Plan	Page: 17	/ 26				
C	AAS. All rights reserved							
		ng a linear transversal filter.						
7	Design a Band l	imited signals with controlled ISI-partial response signals.	CO6	L2				
8	Derive the Ny	yquist criterion for distortion less base band binary	CO6	L3				
	transmission							
9	What is eye pat	What is eye pattern? Explain in detail. Co						
10	With a neat filte	er structure, explain the concept of adaptive equalization	CO6	L3				
	process.							
11	Write a note on	Duobinary signaling.	CO6	L2				
е	Experiences		-	-				
1								
2								
3								
4								
5								

E2. CIA EXAM – 2

a. Model Question Paper - 2

Crs	Code:	17EC61	Sem:	VI	Marks:	30	Time:	75 minute	75 minutes		
Col	irse:	Design and	Analysis of	 Alaorithms							
-			/er any 2 qu		ch carry equ	al marks.		Marks	со	Level	
			o: a.i.y <u>-</u> qu		odule-3				•••		
1	а					mitter and rec ce calculate th	eiver. Derive bandwidth.	an 10	CO4	L4	
		Sketch the sig	etch the signal using QPSK for the given sequence 01101000 and hence draw the gram for the same.							L4	
					OR						
2	a	Write a Note on Non-Coherent orthogonal modulation techniques.						10	CO5	L4	
	b	Explain cohe	rent BFSK tra	insmitter and	receiver			05	CO4	L3	
				Mo	dule - 4						
3	a					PAM transm ne expressio	nission throu n for ISI.	gh 08	CO6	L2	
	b	What are		qualizers? E			otive equaliz	zer 07	CO6	L3	
	С										
	d										
					OR						
4	a	Design a Ba	and limited s	ignals with	controlled IS	SI-partial res	ponse signa	.s. 10	CO6	L3	
	b	Derive the transmissio		criterion for	r distortion	less base	band bina	ary 05	CO6	L3	
	С										
	d										

b. Assignment – 2

Note: A distinct assignment to be assigned to each student.

	Model Assignment Questions										
Crs Co	ode:	17EC61	Sem:	VI	Marks:	5 / 10	Time: g)0 – 120 minutes			
Cours	Course: Digital Communication										
Note:	Each	student to	answer 2-3	assignment	s. Each assi	gnment ca	arries equal ma	rk.			
SNo	l	JSN				Marks	CO	Level			
1		E	Explain the BPSK system with the help of the transmitter and receiver				. 5	CO4	L4		

MISTITUTE OF A		SKIT		Teaching Process	Rev No.: 1.0			
GERNIN	A CAD COM	Doc Coc	de:	SKIT.EC.Ph5b1.F02		e: 10-01-	2019	
a last	A CONTRACTOR	Title:		Course Plan		e: 18 / 2		
C	ALO	AS. All rights res						
		ca	alcula	e an expression for the spectrum of BPSK system and hence ate the bandwidth.				
2				the signal using QPSK for the given sequence 01101000 and draw the diagram for the same.	5	CO4	L4	
3		W	/ith avefo	the help of a block diagram and relevant expressions and forms explain the QPSK transmitter and receiver. Define the M- K relative to the QPSK	5	CO4	L3	
4				in coherent BFSK transmitter and receiver.	5	CO4	L2	
5				n the expression for probability of symbol error of rent binary FSK.	5	CO4	L4	
6				in coherent BPSK Generation, detection & error probabilities.	5	CO4	L3	
7		Ex	xplai	in generation & coherent detection of QPSK.	5	CO4	L3	
8		D	erive	e an expression for Error probability of QPSK.	5	CO4	L4	
9				n generation & coherent detection of BFSK.	5	CO4	L3	
10				in the power spectra of BFSK.	5	CO4	L3	
11		W	/rite	a Note on Non-Coherent orthogonal modulation iques.	5	CO5	L4	
12		0	btai	n the expression for probability of symbol error of Non- rent orthogonal modulation techniques.	5	CO5	L4	
13		W. ke	/ith eying	a neat block diagram, explain the differential phase shift g. Illustrate the generation of differentially encoded ence for the binary data 11 00100010.	5	CO5	L4	
14				is M-ary PSK. Explain with suitable derivation.	5	CO5	L4	
15				in M-ary QAM with suitable expression & example.	5	CO5	L3	
16		D	erive	e an expression for average probability of error for M-ary using 4-ary PAM.	5	CO5	L4	
17		W tra	/ith ansr	a neat block diagram explain the digital PAM mission through band limited base band channels and n the expression for ISI.	5	CO6	L2	
18		W	7hat	are adaptive equalizers? Explain the linear adaptive lizer based on the MSE criterion.	5	CO6	L3	
19		TI W fil	he b hoso ter.	inary sequence 10010110010 is the input to the precoder e output is used to modulate a duobinary transmitting Obtain the precoded sequence, transmitted amplitude s, the received signal levels and the decoded sequence.	5	CO6	L3	
20		W	/hat	is eye pattern? What is the Nyquist criterion for Zero ISI? an example of the pulse with Zero ISI.	5	CO6	L2	
21		E: D	xpla escr	in the design of band Limited signals with controlled ISI. ribe the time domain & frequency domain characteristics luobinary signal.	5	CO6	L3	
22		W	/hat	is channel eualization? With a neat diagram explain the ept of equalization using a linear transversal filter.	5	CO6	L3	
23		D	esig	n a Band limited signals with controlled ISI-partial	5	CO6	L2	
24		D	erive	e the Nyquist criterion for distortion less base band	5	CO6	L3	
25				is eye pattern? Explain in detail.	5	CO6	L2	
26		W	/ith	a neat filter structure, explain the concept of adaptive lization process.	5	CO6	L3	
27				a note on Duobinary signaling.	5	CO6	L2	
28				, , , , , , , , , , , , , , , , , , , ,	-			
29								
30								
31								
32								
33								
_ 33								

AMSTIT	UTE OF TR	SKIT	Teaching Process	Rev No.: 1.0
KRIISHI		Doc Code:	SKIT.EC.Ph5b1.F02	Date: 10-01-2019
IBS * BANG	Title:		Course Plan	Page: 19 / 26
C		AAS. All rights reserve	ed.	
34				
35				
36				
37				
38				
39				
40				
41				
42				
43				
44				
45				
46				
47				

D3. TEACHING PLAN - 3

Title:	Principles of Spread Spectrum	Appr Time:	08Hrs
а	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Analyze performance of spread spectrum communication systems.	CO7	L4
b	Course Schedule		
Class No	Module Content Covered	СО	Level
1	Spread Spectrum Communication Systems: Model of a Spread Spectrum Digital Communication System	CO7	L4
2	Direct Sequence Spread Spectrum Systems	CO7	L4
3	Effect of De-spreading on a narrowband Interference	CO7	L4
4	Probability of error (statement only)	CO7	L4
5	Some applications of DS Spread Spectrum Signals	CO7	L4
6	Generation of PN Sequences	CO7	L4
7	Frequency Hopped Spread Spectrum, CDMA based on IS-95	CO7	L4
8	Class test		
9			
10			
11			
12			
13			
14			
15			
16			
с	Application Areas	со	Level
1	Spread spectrum applications in interference, millitary,wireless LAN security, CDMA	CO7	L4
2			
d	Review Questions	-	-
1	Draw the 4 stage linear feedback shift register with 1st and 4th stage is connected to Modulo-2 adder. Output of Modulo-2 is connected to 1st stage input. Find the output PN sequence and obtain the autocorrelation sequence.	CO7	L2

WSTITUTE OF	SKIT Teaching Process	Rev No.: 1	0
HISING CONTRACTOR	Doc Code: SKIT.EC.Ph5b1.F02	Date: 10-0	
NING X	Title: Course Plan	Page: 20 /	
C	:AAS. All rights reserved.	· · ·	
2	With a neat block diagram explain the frequency hopped spread spectrum.	CO7	L3
3	Explain the effect of dispreading on narrowband interference.	CO7	L3
4	Explain the generation of direct sequence spread spectrum signal with the relevant waveforms and spectrums.	CO7	L4
5	With a neat block diagram explain the CDMA system based on IS-95.	CO7	L4
6	Write a short note on application of spread spectrum in wireless LANs.	CO7	_ L4
7	Explain frequency hoop spread m-ary frequency shift keying with a neat	CO7	 L2
	block diagram and illustrate the slow frequency hopping.	-	
8	Write the applications of Frequency Hooped spread spectrum.	CO7	L3
9	Find the output sequence of the shift register shown in Figure below. The initial state of the register is 1000. Demonstrate the balance property and run property of a PN sequence. Calculate and plot the autocorrelation function of the PN sequence.	CO7	L4
10	What is spread spectrum tecnnique? Explain the working of direct sequence transmitter and receiver.	CO7	L3
11	Explain the properties of PN sequence.	CO7	L4
12	Compare slow and fast frequency Hopping.	CO7	L3
13	Write the applications of Detectability signal spread spectrum.	CO7	 L2
14	The direct sequence spread spectrum communication system has following parameters: Data sequence bit Tb = 4.095 ms Pin chip duration;Tc = 1 pis El' =10 for average probability of error less than 10-x. N Calculate processing gain and jamming margin.	CO7	L4
15	Explain the principle of slow frequency hopping, and list advantages and disadvantages of FH-SS system	C07	L3
16	A DS spread-spectrum signal is designed so that the power ratio P_R/P_N at the intended receiver is 10 ⁻² . If the desired Eb/N0=10 for acceptable performance, determine the minimum value of the processing gain.	CO7	L4
е	Experiences	-	
1			
^			
2			
2			

E3. CIA EXAM – 3

a. Model Question Paper - 3

Crs (Code:	: 17EC61 Sem: VI Marks: 30 Time: 75 minutes										
Cou	rse:	Digital Co	igital Communication ote: Answer any 2 guestions, each carry equal marks, Marks CO Level									
-	-	Note: Ans	e: Answer any 2 questions, each carry equal marks.							Level		
			Module -5									
1			plain the generation of direct sequence spread spectrum signal with e relevant waveforms and spectrums.						C07	L3		

AMS	TITUTE OF	SKIT Teaching Process	Rev I	No.: 1.0	
KRISHIN		Doc Code: SKIT.EC.Ph5b1.F02	Date	10-01-2	2019
14.5 × 81	NGALORE *	AAS. All rights reserved.	Page	: 21 / 26	5
	b	A DS spread-spectrum signal is designed so that the power ratio P_R/P_N at the intended receiver is 10 ⁻² . If the desired Eb/NO=10 for acceptable performance, determine the minimum value of the processing gain.	05	CO7	L4
	С				
	d				
2	а	With a neat block diagram explain the frequency hopped spread spectrum.	09	C07	L3
		Draw the 4 stage linear feedback shift register with 1st and 4th stage is connected to Modulo-2 adder. Output of Modulo-2 is connected to 1st stage input. Find the output PN sequence and obtain the autocorrelation sequence.	06	CO7	L4
	С				
	d				
3	а	With a neat block diagram explain the CDMA system based on IS-95.	09	CO7	L3
	b	Find the output sequence of the shift register shown in Figure below. The initial state of the register is 1000. Demonstrate the balance property and run property of a PN sequence. Calculate and plot the autocorrelation function of the PN sequence.	06	C07	<u>L</u> 3
		mod-2 addry			
	С				
	d				
Λ	2	Explain the properties of PN sequence.	06	CO7	10
4	a b	Write a short note on Low-detectability signal transmission.	00	C07 C07	<u>L3</u> 3
	С	The direct sequence spread spectrum communication system has following parameters: Data sequence bit Tb = 4.095 ms Pin chip duration;Tc = 1 pis El' =10 for average probability of error less than 10-x. N Calculate processing gain and jamming margin.	05	C07	 L4
	d				L3

b. Assignment – 3

Note: A distinct assignment to be assigned to each student.

	Model Assignment Questions										
Crs C	ode:	17EC61	Sem:		Marks:	5/10	Time:	90 - 120	0 – 120 minutes		
Cours	se:	Digital Co	ommunication	<u>ן</u>							
Note:	Note: Each student to answer 2-3 assignments. Each assignment carries equal mark.										
SNo	l	USN	N Assignment Description					Marks	СО	Level	
1						is	CO7	L2			
2						d 5	C07	L3			
3	3 Explain the effect of dispreading on narrowband interference.						. 5	CO7	L3		
4								L4			

NISTITUTE O	SKIT	Teaching Process	Rev	No.: 1.0	
	Doc Code:	SKIT.EC.Ph5b1.F02	Date	2: 10-01-	2019
INS * BANGALOP	Title:	Course Plan	Page	e: 22 / 2	6
C.	AAS. All rights reserved.		_	CO7	
5	on IS-		5		L4
6		e a short note on application of spread spectrum in ess LANs.	5	CO7	L4
7	Expla	in frequency hoop spread m-ary frequency shift keying a neat block diagram and illustrate the slow frequency	5	CO7	L2
8		the applications of Frequency Hooped spread	5	CO7	L3
9	Find t belov balan	the output sequence of the shift register shown in Figure v. The initial state of the register is 1000. Demonstrate the ice property and run property of a PN sequence. Ilate and plot the autocorrelation function of the PN	5	CO7	L4
10	NY/b u	+ mod-2 addev		CO7	
10	direct	is spread spectrum technique? Explain the working of t sequence transmitter and receiver.	5		L3
11		ain the properties of PN sequence.	5	CO7	L4
12		pare slow and fast frequency Hopping.	5	CO7	L3
13		the applications of Detectability signal spread spectrum.	5	CO7	L2
14	has fo Pin ch El' =1	lirect sequence spread spectrum communication system ollowing parameters: Data sequence bit Tb = 4.095 ms nip duration;Tc = 1 pis 0 for average probability of error less than 10-x. N Ilate processing gain and jamming margin.	5	CO7	L4
15	Expla	in the principle of slow frequency hopping, and list ntages and disadvantages of FH-SS system	5	CO7	L3
16	ratio Eb∕N	spread-spectrum signal is designed so that the power P_R/P_N at the intended receiver is 10^{-2} . If the desired $I0=10$ for acceptable performance, determine the num value of the processing gain.	5	CO7	L4
17					
18					
19					
20					
21					
22					
23					
24					
25					
26					
27					
28					
29					
30					
30					
32					
33					
34					

WST	TUTE OF P	SKIT		Teaching Process	Rev	No.: 1.0	
KRIISHINA	Doc Code: Title:		de:	SKIT.EC.Ph5b1.F02	Date	e: 10-01-	-2019
ILS * BAN				Course Plan	Page: 23 / 26		
C	/	AAS. All rights re	eserved.				
35							
36							
37							
38							
39							
40							
41							
42							
43							
44							
45							
46							
47							

F. EXAM PREPARATION

1. University Model Question Paper

Cour	rse:	Digital Communication Month /	' Year	May /	2018
Crs C	Code:	17EC61 Sem: VI Marks: 100 Time:		180 minutes	
-	Note	Answer all FIVE full questions. All questions carry equal marks.	Marks	СО	Level
1	а	Define Hilbert Transform. State the properties of it.	4	CO1	L2
		Define the complex envelope of bandpass signals. Obtain the canonical representation of bandpass signals	6	CO1	L3
	c Derive the power spectral density of polar NRZ signals and plot the spectrum			CO2	L3
	d				
		OR			
-		Define the Pre-envelope. Show the spectral representations of pre- envelopes for low pass signals.	4	CO1	L2
		Derive the expression for the complex low pass representation of bandpass systems.	7	CO1	L3
	С	Given the data stream 1110010100. Sketch the transmitted sequence of pulses for each of the following line code. (i) Unipolar NRZ (ii) Polar NRZ (iii) Unipolar RZ (iv) bipolar RZ (v) Manchester code	5	CO2	L3
	d				
2	а	Explain the Geometric representation of signals and express the energy of the signal in terms of the signal vector.	5	CO3	L3
	b	Explain the Gram-Schmidt orthogonalization procedure.	5	CO3	L3
	С			CO3	L3
	d				
		OR			
-		Obtain the decision rule for Maximum likelihood decoding and explain the correlation receiver.	7	CO3	L3
	b	The waveforms of four signals s1(t), s2(t), s3(t), and s4(t) described below. s1(t) = 1, 0 < t < T/3, s2(t) = 1, 0 < t < 2T/3, s3(t) = 1, T/3 < t < T, s4(t) = 1, 0 < t < T, and zero otherwise. Using the Gram-Schmidt orthogonalization procedure, find an orthonormal basis for this set of signals and construct the corresponding signal-space diagram.	9	CO3	L3
	С				
	d				
3	а	Define binary phase shift keying. Derive the probability of error of BPSK.	7	CO4	L3
	b	Define M-ary QAM. Obtain the constellation of QAM for M=4 and draw the signal space diagram.	4	CO4	<u>5</u>
		Given the input binary sequence 1100100001. Sketch the waveforms of	5	CO4	L4

-INS	TITUTE OF	SKIT	Teaching Process	Rev N	lo.: 1.0		
KUIISI		Doc Code:	SKIT.EC.Ph5b1.F02	Date:	10-01-2	2019	
INS * Q		Title: Course Plan		Page: 24 / 26			
<u> </u>		AAS. All rights reserved			1		
		the inphase and quadrature components of a modulated wave and next sketch the QPSK signal.					
	d						
			OR				
-	a	Describe the	QPSK signal with its signal space characterization. With a	6	CO4	L3	
		neat block diagram explain the generation and detection of QPSK signals.					
			pression probability of symbol error of coherent binary FSK.	7	CO4	L4	
	С	Illustrate the o	peration of DPSK for the binary sequence 10010011.	3	CO5	L4	
	d		· · ·				
4			lock diagram Explain the digital PAM transmission through aseband channels and obtain the expression for ISI.	5	CO6	L2	
			aptive equalizers? Explain the linear adaptive equalizer	6	CO6	L3	
		based on the l		Ŭ		-5	
			equence 10010110010 is the input to the precoder whose	5	CO6	L3	
			d to modulate a duobinary transmitting filter. Obtain the	5	000	-5	
			quence, transmitted amplitude levels, the received signal				
			decoded sequence.				
	d	levels and the decoded sequence.					
<u> </u>	~		OR				
_	а	W/hat is eve n	attern? What is the Nyquist criterion for zero ISI? Given an	5	CO6	L2	
		example of the pulse with zero ISI.				6	
		Explain the design of bandlimited signals with controlled ISI. Describe the			CO6	L3	
		time domain and frequency domain characteristics of a duobinary signal.				L3	
			el equalization? With a neat diagram explain the concept of	6	CO6	L3	
				0		LS	
	d	equalization using a linear transversal filter.					
	u						
5	а	Draw the 1 st	age linear feedback shift register with 1st and 4th stage is	6	C07	L4	
5			Modulo-2 adder. Output of Modulo-2 is connected to 1st		007	Ц4	
			nd the output PN sequence and obtain the autocorrelation				
		sequence.	The the output FN sequence and obtain the autocorrelation				
			block diagram explain the frequency hopped spread	7	CO7	L3	
		spectrum.	block diagram explain the nequency hopped spread	/		Ľ٦	
			ect of dispreading on narrowband interference.	3	CO7	L3	
	d		eer of dispreading of flattowballd interference.	3		∟ ്	
	u						
	-	OR			C07		
		the relevant w	eneration of direct sequence spread spectrum signal with aveforms and spectrums.		CO7	L3	
	b		ock diagram explain the CDMA system based on IS-95.	7	CO7	L3	
c Write a short note on application of spread spectrum in w		note on application of spread spectrum in wireless LANs.	3	CO7	L3		
	d						

2. SEE Important Questions

Course:		Digital Communication	Month /	/ Year	May //	2018
Crs Code:		17EC61 Sem: 6 Marks: 100	Time:		180 mi	nutes
	Note	Answer all FIVE full questions. All questions carry equal ma	arks.	-	-	
Мо	Qno.	Important Question		Marks	СО	Year
dul						
е						
1	1	Define Hilbert Transform. State the properties of it.			CO1	2017
	2	A binary data seq is 0110011 Sketch the waveform for the following			CO2	2014,
		formats: i) NRZ unipolar ii) RZ polar iii) NRZ bipolar (2013	
		format				
	3	Obtain expression for power spectral density of NRZ polar	wave form.	07	CO2	2014,
						2013

INST	TITUTE OF	SKIT Teaching Process	Rev N	0.: 1.0		
KAISHIN		Doc Code: SKIT.EC.Ph5b1.F02		Date: 10-01-2019		
188 * 84	NGALORE*	Title: Course Plan	1	25 / 26		
C		AAS. All rights reserved. Define the complex envelope of bandpass signals. Obtain the canonical	06	CO1	2017	
		representation of bandpass signals	00		2017	
		Define the Pre-envelope. Show the spectral representations of pre-	04	CO1	2017	
		envelopes for low pass signals.	04		2017	
		Derive the expression for the complex low pass representation of	07	CO1	2017	
		bandpass systems.	07	001		
2		Write a short note on Gram-Schmidt orthogonalization	06	CO3	2009	
_		Explain geometric interpretation of signals.	06	CO3	2010	
		Derive the expression for SNR for a matched filter.	10	CO3	2009	
		Three signals SI(t), S2(t) and S3(t) are shown in Fig.Q6(b). Apply Gram-	10	CO3	2011	
		Schmidt procedure to obtain an orthonormal basis for the signals. Express signals $S1(t)$, $S2(t)$ and $S3(t)$ in terms of orthonormal basis functions. Also give the signal constellation diagram.	10			
		$3 \xrightarrow{5,(H)} 3 \xrightarrow{5_2(H)} 3 \xrightarrow{5_3(H)} 3 \xrightarrow{5_3(H)} 3 \xrightarrow{5_3(H)} 1 5$				
		The waveforms of four signals S1(t),S2(t),S3(t) & S4(t) describe below. S1(t) = 1, $0 < t < T/3$. S2(t) = 1, $0 < t < 2T/3$, S3(t) = 1, $T/3 < t < T$, S4(t) = 1, $0 < t < T$, and Zero otherwise. Using the Gram-Schmidt orthogonalization procedure. Find an orthogonal basis for this set of signals and construct the corresponding signal-space diagram.	10	CO3	2012	
3		With block diagrams, explain the QPSK transmitter and receiver.	08	CO4	2011	
		Explain the coherent binary FSK system, with the help of a signal space diagram. Indicate the decision boundary.	06	CO4	2011	
	3	Calculate the bandwidth efficiency of an M-ary signaling scheme.	06		2009	
	4	Explain the non-coherent DPSK system.	06	CO5	2010	
		For a given input binary sequence 0 1 1 0 1 0 0 0 , sketch the inphase and quadrature phase components of QPSK. Then by adding these two waveforms, draw the final QPSK waveform.		CO4	2010	
4	1	What is meant by 'eye pattern' in the data transmission system? Explain.	06	CO6	2010	
4		Write a note on adaptive equalization.	05	CO6	2010	
	3	What is the Nyquist criterion for zero ISI? Given an example of the pulse	06	CO6	2010	
	5	with zero ISI				
	4	Explain the design of bandlimited signals with controlled ISI. Describe the	07	C06	2011	
		time domain and frequency domain characteristics of a duobinary signal	-,			
		What is channel equalization? With a neat diagram explain the concept of	05	CO6	2009	
	5	equalization using a linear transversal filter.	-0			
5		With a neat block diagram explain the frequency hopped spread spectrum	05	CO7	2009	
		Explain the generation of direct sequence spread spectrum signal with the relevant waveforms and spectrums.	06	CO7	2012	
	3	With a neat block diagram explain the CDMA system based on IS-95	08	CO7	2011	
	4	Draw the 4 stage linear feedback shift register with 1st and 4th stage is connected to Modulo-2 adder. Output of Modulo-2 is connected to 1st stage input. Find the output PN sequence and obtain the autocorrelation sequence.	06	CO7	2014	

AMS		SKIT	Teaching Process	Rev No.: 1.0		
KRIISHI		Doc Code:	SKIT.EC.Ph5b1.F02	Date: 10-01-2019		2019
188 + 894		Title:	Course Plan	Page: 26 / 26		6
C	GALO	AAS. All rights reserved				
	5	Write a short r	note on application of spread spectrum in wireless LANs.	05	C07	2017
				I		