SKIT		Teaching Process	Rev No.: 1.0
	Soc Code:	SKIT.Ph5b1.F03	Date: $27-2-2019$
	Title:	Course Lab Manual	Page: $1 / 65$

18ECL48: ANALOG CIRCUITS LAB2
A. LABORATORY INFORMATION 2

1. Lab Overview. 2
2. Lab Content 2
3. Lab Material 2
4. Lab Prerequisites: 3
5. General Instructions 3
6. Lab Specific Instructions 4
B. OBE PARAMETERS 4
7. Lab / Course Outcomes 4
8. Lab Applications. 5
9. Articulation Matrix 5
10. Curricular Gap and Content. 5
C. COURSE ASSESSMENT 6
11. Course Coverage 6
12. Continuous Internal Assessment (CIA) 6
D. EXPERIMENTS 7
Experiment 01 : COMMON SOURCE JFET/MOSFET AMPLIFIER 7
Experiment 02 : BJT COMMON EMITTER AMPLIFIER 12
Experiment 03 : COLPITTS OSCILLATOR AND CRYSTAL OSCILLATOR 16
Experiment 04 :SECOND ORDER BUTTERWORTH LOW PASS AND HIGH PASS FILTER 21
Experiment 05 : ADDER, INTEGRATOR AND DIFFERENTIATOR USING OP-AMP 27
Experiment 06 :SCHMITT TRIGGER 34
Experiment 07 : R-2R DAC USING OP-AMP37 37
Experiment 08 : AStable and monostable multivibrator using ic 555 42
Experiment 09 : RC PHASE SHIFT OSCILLATOR AND HARTLEY OSCILLATOR... 50Experiment 10 : NARROW BAND-PASS FILTER AND NARROW BAND-REJECT FILTER..55
Experiment 11 : PRECISION HALF AND FULL WAVE RECTIFIER 59
Experiment 12 :MONOSTABLE AND ASTABLE MULTIVIBRATOR 62

Copyright ©2017. cAAS. All rights reserved.

A. LABORATORY INFORMATION

1. Lab Overview

Degree:	B.E	Program:	EC
Year / Semester :	2 / 4	Academic Year:	2019-20
Course Title:	Analog Circuits Lab	Course Code:	18ECL48
Credit / L-T-P:	$2 / 2-0-0$	SEE Duration:	180 Minutes
Total Contact Hours:	36 Hrs	SEE Marks:	100 Marks
CIA Marks:	40	Assignment	------
Course Plan Author:	Arun Kumar R	Sign	Dt :
Checked By:		Sign	Dt :

2. Lab Content

Unit	Title of the Experiments	Lab Hours	Concept	Blooms Level
1	Design and setup the Common Source JFET/MOSFET amplifier and plot the frequency response	3	Frequency response of JFET/MOSF ET	L3
2	Design and set up the BJT common emitter voltage amplifier with and without feedback and determine the gain- bandwidth product, input and output impedances.	3	BJT common emmitter amplification	L3
3	Design and set-up BJT/FET i) Colpitts Oscillator, and ii) Crystal Oscillator	3	Oscillator	L3
4	Design active second order Butterworth low pass and high pass filters.	3	Filters	L3
5	Design Adder, Integrator and Differentiator circuits using Op-Amp	3	Opamp applications	L3
6	Test a comparator circuit and design a Schmitt trigger for the given UTP and LTP values and obtain the hysteresis.	3	comparator	L3
7	Design 4 bit R - 2R Op-Amp Digital to Analog Converter (i) using 4 bit binary input from toggle switches and (ii) by generating digital inputs using mod-16 counter.	3	DAC	L3
8	Design Monostable and a stable Multivibrator using 555 Timer.	3	Multivibrator	L3
9	Simulation using EDA software- RC Phase shift oscillator and Hartley oscillator	3	Oscillator	L3
10	Simulation using EDA software- Narrow Band-pass Filter and Narrow band-reject filter	3	Filter	L3
11	Simulation using EDA software- Precision Half and full wave rectifier	3	Rectifier	L3
12	Simulation using EDA software-Monostable and A stable Multivibrator using 555 Timer.	3	Multivibrator	L3

3. Lab Material

Unit	Details	Available	
1	Text books		
	Linear Integrated Circuits\\|I, D. Roy Choudhury and Shail B. Jain,4thedition,		
	Reprint 2006, New Age International ISBN 978-81-224-3098-1.		
	Operational Amplifiers and Linear IC's\\|l, David A. Bell, 2nd edition,		
	PHI/Pearson,2004. ISBN 978-81-203-2359-9		
	David A Bell, "Fundamentals of Electronic Devices and Circuits Lab Manual, 5th		
	Edition, 2009, Oxford University Press.		
	Lab Manual	In Lib and dept	

		SKIT	Teaching Proces	Rev No.: 1.0	
		Doc Code:	SKIT.Ph5b1.F03	Date: 27-2-2019	
		Title:	Course Lab Manual	Page: 3 / 65	
Copyright ©2017. cAAS. All rights reserved.					
2	Reference books				
i	Ramakant A Gayakwad, -Op-Amps and Linear Integrated Circuits,Pearson, 4th Ed, 2015. ISBN 81-7808-501-1.			In Lib and dept	
ii	Robert L. Boylestad and Louis Nashelsky, "Electronics devices and Circuit theory",Pearson, 10th Edition, 2012, ISBN: 978-81-317-6459-6.			In Lib	
iii	K. A. Navas, "Electronics Lab Manual", Volume I, PHI, 5th Edition, 2015, ISBN:9788120351424.			In Lib	
iv	B Somanathan Nair, -Linear Integrated Circuits: Analysis, Design \&Applications, Wiley India, 1st Edition, 2015			In Lib	
V	James Cox, -Linear Electronics Circuits and Devices\\|l, Cengage Learning, Indian Edition, 2008, ISBN-13: 978-07-668-3018-7.			In Lib	
3	Others (Web, Video, Simulation, Notes etc.)			In Lib	
i	Data Sheet: http://www.ti.com/lit/ds/symlink/tl081.pdf.				
	- https://www.youtube.com/watch?v=CoOOm3NEMfg https://www.youtube.com/watch?v=6A8otDArahM https://www.youtube.com/watch?v=1fgw-ONIAcc https://www.youtube.com/watch?v=YzcKQWwkzWs https://www.youtube.com/watch?v=Ic6QT8VjqVc https://www.youtube.com/watch?v=sKnLBWA6UdE https://www.youtube.com/watch?v=BCjnYMNCkGc https://www.youtube.com/watch?v=5-ohKRWeod4 https://www.youtube.com/watch?v=Pc1aFloxSMw https://www.youtube.com/watch?v=XES0QUi8ttY https://www.youtube.com/watch?v=ypV6gdIJJU4 https://www.youtube.com/watch?v=iJYm BGqa1A https://www.youtube.com/watch?v=k3XgLk2H1w8 https://www.youtube.com/watch?v=GH-JFXbOcZg https://www.youtube.com/watch?v=v9sSRF76DDU https://www.youtube.com/watch?v=ZuFKU908FTs https://www.youtube.com/watch?v=lh768hHRsxg https://www.youtube.com/watch?v=7jGobEEyD7w				
	Nptel.ac.in for videoes				

4. Lab Prerequisites:

-	-	Base Course:		-	-
SNo	Course Code	Course Name	Topic / Description	Sem	Remarks
1	18 ELN14/ 24	Basic Electronics	OPAMP / Rectifiers / BJT \& FET working operation	$1 / 2$	

Note: If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

5. General Instructions

SNo	Instructions	Remarks
1	Observation book and Lab record are compulsory.	
2	Students should report to the concerned lab as per the time table.	
3	After completion of the program, certification of the concerned staff in-charge in	

| SKIT | Teaching Process | Rev No.: 1.0 | |
| :---: | :--- | :--- | :--- | :--- |
| | Doc Code: | SKIT.Ph5b1.F03 | Date: 27-2-2019 |
| 4 | Title: | Course Lab Manual | Page: $4 / 65$ |
| | Student should bring a notebook of 100 pages and should enter the readings
 lobservations into the notebook while performing the experiment. | | |
| 5 | The record of observations along with the detailed experimental procedure of
 the experiment in the Immediate last session should be submitted and certified
 staff member in-charge. | | |
| 6 | Should attempt all problems / assignments given in the list session wise. | | |
| 7 | When the experiment is completed, should disconnect the setup made by
 them, and should return all the components/instruments taken for the purpose. | | |
| 8 | Any damage of the equipment or burn-out components will be viewed seriously
 either by putting penalty or by dismissing the total group of students from the
 lab for the semester/year | | |
| 9 | Completed lab assignments should be submitted in the form of a Lab Record in
 which you have to write the Components required, Theory, Procedure, tabular
 column and output for various inputs given | | |
| | | | |

6. Lab Specific Instructions

SNo	Specific Instructions	Remarks
1	Rigup the circuits as shown in the lab manual for each experiment	
2	Turn on the supply and Apply the proper input when it is required	
3	Observe the output, note down the readings and compare it with theoretical value	
4	Plot the graph using graph/ semilog sheets	
5	Turn off the supply \& Disconnect the ciruit	

B. OBE PARAMETERS

1. Lab / Course Outcomes

\#	COs	Teach. Hours	Concept	Instr Method	Assessment Method	Blooms ' Level
1	Design the circuits using BJT and FET	12	BJT / FET performance characteristics	Lecture and Demonstr ate	Test and Viva	L3
2	Design the circuits using Op-Amp		OPAMPs for different applications	Lecture and Demonstr ate	Test and Viva	L3
3	Simulate and analyze analog circuits that uses transistor and ICs for different electronic applications.		555 timer and Simulation	Lecture and Demonstr ate	Test and Viva	L3

Note: Identify a max of 2 Concepts per unit. Write 1 CO per concept.

2. Lab Applications

SNo	Application Area	CO	Level

Dept EC

Note: Write 1 or 2 applications per CO.

3. Articulation Matrix

(CO - PO MAPPING)

-	Course Outcomes	Program Outcomes												Level
\#	COs	$\begin{gathered} \mathrm{PO} \\ 1 \end{gathered}$	$\begin{gathered} \hline \mathrm{PO} \\ 2 \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ 3 \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ 4 \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ 5 \end{gathered}$	$\begin{gathered} \hline \mathrm{PO} \\ 6 \end{gathered}$	$\left\lvert\, \begin{gathered} \hline \mathrm{PO} \\ 7 \end{gathered}\right.$	$\begin{array}{\|c\|} \hline \mathrm{PO} \\ 8 \end{array}$	$\begin{gathered} \hline \mathrm{PO} \\ 9 \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ 10 \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{PO} \\ 11 \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{PO} \\ 12 \end{array}$	
18EC48.1	Design the circuits using BJT and FET	3	3	2						2	2			L3
18EC48.2	Design the circuits using Op-Amp and 555 timer for different applications	3	3	2						2	2			L3
18EC48 . 3	Simulate and analyze analog circuits that uses transistor and ICs for different electronic applications.	3	3	2		2				2	2			L3

Note: Mention the mapping strength as 1,2 , or 3

4. Curricular Gap and Content

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					

	SKIT	Teaching Process		Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F03		Date: 27-2-2019
	Title:	Course Lab Manual		Page: 6 / 65
Copyright ©2017. cAAS. All rights reserved.				

Note: Write Gap topics from A. 4 and add others also.

Note: Anything not covered above is included here.

C. COURSE ASSESSMENT

1. Course Coverage

Unit	Title		No. of question in Exam							CO	Levels
		ng Hours	CIA-1	CIA-2	CIA-3	Asg-1	Asg-2	Asg-3	SEE		
1	Design and setup the Common Source JFET/MOSFET amplifier and plot the frequency response	03	1	-	-	-	-	-	1	CO1	L4
2	Design and set up the BJT common emitter voltage amplifier with and without feedback and determine the gain- bandwidth product, input and output impedances.	03	1	-	-	-	-	-	1	CO1	L4
3	Design and set-up BJT/FET i) Colpitts Oscillator, and ii) Crystal Oscillator	03	2	-	-	-	-	-	2	CO1	L4
4	Design active second order Butterworth low pass and high pass filters.	03	2	-	-	-	-	-	2	CO2	L4
5	Design Adder, Integrator and Differentiator circuits using Op-Amp	03	2	-	-	-	-	-	2	CO2	L4
6	Test a comparator circuit and design a Schmitt trigger for the given UTP and LTP values and obtain the hysteresis.	03	2	-	-	-	-	-	2	CO2	L4
8	Design Monostable and a stable Multivibrator using 555 Timer.	03	-	2	-	-	-	-	2	CO2	L4
9	Simulation using EDA software- RC Phase shift oscillator and Hartley oscillator	03	-	2	-	-	-	-	2	CO2	L4
10	Simulation using EDA softwareNarrow Band-pass Filter and Narrow band-reject filter	03	-	2	-	-	-	-	2	CO3	L4
11	Simulation using EDA softwarePrecision Half and full wave rectifier	03	-	2	-	-	-	-	2	CO3	L4
12	Simulation using EDA softwareMonostable and A stable Multivibrator using 555 Timer.	03	-	2	-	-	-	-	2	CO3	L4
-	Total	36	10	11	-	-	-	-	21	-	-

Note: Write CO based on the theory course.

2. Continuous Internal Assessment (CIA)

Evaluation	Weightage in Marks	CO	Levels
CIA Exam -1	30	CO1, CO2	L2
CIA Exam -2	30	CO3,C04	L4
CIA Exam -3	30	CO4	L4

D. EXPERIMENTS

Experiment 01 : COMMON SOURCE JFET/MOSFET AMPLIFIER

	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F03	Date: 27-2-2019
- . ${ }^{\text {a }}$	Title:	Course Lab Manual	Page: 8 / 65

Unlike the BJT, the junction FET takes virtually no input gate current allowing the gate to be treated as an open circuit. Then no input characteristics curves are required.

Since the n-channel JFET is a depletion mode device, a negative gate voltage with respect to the source is required to modulate or control the drain current. This negative voltage can be provided by biasing from a separate power supply voltage or by self biasing arrangements as long as steady current flows through the JFET even when there is no input signal present and V_{g} maintains a reverse bias of the gate source p-n junction.

The input signal of the common source JFET amplifier is applied between the gate terminals with a constant value of gate voltage applied. The JFET operates within its ohmic region acting like a linear resistive device. The drain circuit contains the load resistor R_{D}. The output voltage is developed across this load resistance.

6 Procedure, Program, \bullet Check all the components and equipments for their good working Activity, Algorithm, condition.
-Connections are made as shown in the circuit diagram.

- By keeping the voltage knobs in minimum position and current knob in maximum position switch on the power supply.
-By disconnecting the AC source measure the quiescent point.

-To find frequency response:

-Connect the AC source. Keeping the frequency of the Ac source in mid band region (say 10 kHz) adjust the amplitude to get the distortion less output. Note down the amplitude of the input signal.

- Keeping the input amplitude constant, Vary the frequency in suitable steps and note down the corresponding output amplitude.
- Calculate A_{V} and gain in decibels. Plot a graph of frequency V_{S} gain in dB. From the graph calculate f_{L}, f_{H} and band width.
-Calculate figure of merit.
-To find the input impedance (Z_{i}):

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F03	Date: 27-2-2019
Title:	Course Lab Manual	Page: 9 / 65

Copyright ©2017. cAAS. All rights reserved.
-Connections are made as shown in the diagram.
-Keeping the DRB in its minimum position, apply input signal at mid band frequency (say 10 kHz) and adjust the amplitude of the input signal to get distortion less output. Note down the output amplitude.

- Vary the DRB until the output amplitude becomes half of its previous value. The corresponding DRB value gives the input impedance.
-To find the output impedance (Z_{o}):
-Connections are made as shown in the diagram.
- Keeping the DRB in its maximum position, apply input signal at mid band frequency (say 10k Hz) and adjust the amplitude of the input signal to get distortion less output. Note down the output amplitude.

Vary the DRB until the output amplitude becomes half of its previous value. The corresponding DRB value gives the output impedance.
7 Block, Circuit, Model Diagram, Reaction Equation, Expected Graph

Circuit to find input impedance (Z_{i}):

Circuit to find output impedance (Z_{o}):

Dept EC

SKIT		Teaching Process	Rev No.: 1.0
	Soc Code:	SKIT.Ph5b1.F03	Date: $27-2-2019$
	Title:	Course Lab Manual	Page: $10 / 65$

SKIT		Tev No.: 1.0	
	Doc Code:	SKIT.Ph5b1.F03	Date: $27-2-2019$
Title:	Course Lab Manual	Page: $11 / 65$	

		$\begin{aligned} & I_{D}=12 \times 10^{-3}\left(\frac{1+I_{D}^{2} \times 330^{2}}{16}-\frac{I_{D} \times 330}{2}\right) \\ & 81.675 I_{D}^{2}-2.98 I_{D}+12 \times 10^{-3}=0 \\ & I_{D}=4.6 \mathrm{~mA} \text { or } \quad I_{D}=31.9 \mathrm{~mA} \end{aligned}$ Since I_{D} cannot be greater than $I_{\text {DSs }}$, Choose $I_{D}=4.6 \mathrm{~mA}$ Assume $V_{\mathrm{DS}}=50 \% V_{\mathrm{DD}}, V_{\mathrm{DS}}=5 \mathrm{~V}$ Applying KVL to output circuit $\begin{gathered} V_{\mathrm{DD}}=I_{D} R_{D}+V_{\mathrm{DS}}+I_{D} R_{S} \\ V_{\mathrm{DD}}-V_{\mathrm{DS}}=I_{D}\left(R_{D}+R_{S}\right) \\ \frac{10 V-5 V}{I_{D}}=\left(R_{D}+R_{S}\right) \\ \frac{5 \mathrm{~V}}{4.6 \mathrm{~mA}}=\left(R_{D}+R_{S}\right) \\ R_{D}=\frac{5 \mathrm{~V}}{4.6 \mathrm{~mA}}-330 \Omega \\ R_{D}=756 \Omega \end{gathered}$ Choose $R_{D}=820 \Omega$
10	Graphs, Outputs	
11	Results \& Analysis	1. Quiescent point: $V_{\mathrm{DS}}=$ \qquad V and $I_{D}=$ \qquad mA . 2. Voltage Gain $\left(A_{V}\right)=$ \qquad (in mid band region). 3. Bandwidth $(\mathrm{BW})=$ \qquad Hz. 4. figure of merit $(\mathrm{FM})=$ \qquad Hz. 5. Input impedance $\left(Z_{i}\right)=$ \qquad Ω, Output Impedance (Z_{o})
Dept EC		

		SKIT	Teaching Process	Rev No.: 1.0
		Doc Code:	SKIT.Ph5b1.F03	Date: 27-2-2019
		Title:	Course Lab Manual	Page: 12 / 65
Copyright ©2017. cAAS. All rights reserved.				
			$=$	
12	Applica	Areas	Used in CRO used in electronic voltmeter	
13	Remark			
14	Faculty Date	Signature wit		

Experiment 02 : BJT COMMON EMITTER AMPLIFIER

SKIT		Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F03	Date: $27-2-2019$
Title:	Course Lab Manual	Page: $13 / 65$	

Check all the components and equipments for their good working condition.
Connections are made as shown in the circuit diagram.
By keeping the voltage knobs in minimum position and current knob in maximum position switch on the power supply.

By disconnecting the AC source measure the quiescent point.

To find frequency response:

1. Connect the AC source. Keeping the frequency of the Ac source in mid band region (say 10 kHz) adjust the amplitude to get the distortion less output. Note down the amplitude of the input signal.
2. Keeping the input amplitude constant, Vary the frequency in suitable steps and note down the corresponding output amplitude.
3. Calculate A_{V} and gain in decibels. Plot a graph of frequency Vs gain in dB. From the graph calculate f_{L}, f_{H} and band width.
4. Calculate figure of merit.

To find the input impedance (Z_{i}):

1. Connections are made as shown in the diagram.
2. Keeping the DRB in its minimum position, apply input signal at mid band frequency (say 10 kHz) and adjust the amplitude of the input signal to get distortion less output. Note down the output amplitude.
3. Vary the DRB until the output amplitude becomes half of its previous value. The corresponding DRB value gives the input impedance.

To find the output impedance (Z_{O}):

1. Connections are made as shown in the diagram.
2. Keeping the DRB in its maximum position, apply input signal at mid band frequency (say 10k Hz) and adjust the amplitude of the input signal to get distortion less output. Note down the output amplitude.
3. Vary the DRB until the output amplitude becomes half of its previous value. The corresponding DRB value gives the output impedance.

SKIT		Teaching Process
Doc Code:	SKIT.Ph5b1.F03	Rev No.: 1.0
Title:	Course Lab Manual	Date: 27-2-2019

Title: Course Lab Manual

$$
\begin{aligned}
& \text { Apply KVL to Collector Loop } \\
& V_{\mathrm{CC}}-I_{C} R_{C}-V_{\mathrm{CE}-i V_{E}=0} \mathrm{i}^{2} \\
& R_{C}=V_{\mathrm{CC}}-\frac{V_{\mathrm{CE}-i V_{E}}}{I_{C}}=\frac{10-5-1}{2 m} i \\
& R_{C}=2 K \Omega \text { Choose } R_{C}=1.8 \mathrm{~K} \Omega \\
& \text { Let } \mathrm{IR}_{1}=10 \mathrm{IB}=10 \times 20 \mu \mathrm{~A}=200 \mu \mathrm{~A} \\
& V_{R 2}=V_{\mathrm{BE}}+V_{E}=0.6+1=1.6 \mathrm{~V} \text { (Since transistor is silicon make } V_{\mathrm{BE}}=0.6 \mathrm{~V} \text {) } \\
& R_{2}=\frac{V_{R 2}}{\mathrm{IR}_{1}-\mathrm{IB}}=\frac{1.6 \mathrm{~V}}{200 \mu+20 \mu}=7.2 \mathrm{~K} \Omega \\
& \text { Choose } R_{2}=8.2 \mathrm{~K} \Omega \\
& R_{1}=\frac{V_{\mathrm{CC}}-V_{R 2}}{\mathrm{IR}_{1}}=\frac{10-1.6}{200 \mu \mathrm{~A}}=42 \mathrm{~K} \Omega \\
& \text { Choose } R_{1}=47 \mathrm{~K} \Omega \\
& \text { The condition is that } \mathrm{X}_{\mathrm{CE}} \ll \mathrm{R}_{\mathrm{E}} \\
& \text { Let } X_{\text {CE }}=\frac{R_{E}}{10} \\
& \frac{1}{2 \pi f C_{E}}=\frac{470}{10} \text { Let } \mathrm{f}=100 \mathrm{~Hz} \\
& C_{E}=33 \mu F \\
& \text { Choose } C_{E}=47 \mu F \\
& \text { Also } C_{C 1}=C_{C 2}=0.47 \mu \mathrm{~F}
\end{aligned}
$$

Experiment 03 : COLPITTS OSCILLATOR AND CRYSTAL OSCILLATOR

-	Experiment No.:	3	Marks	10			Date Conducted	
1	Title	COLPITTS OSCILLATOR AND CRYSTAL OSCILLATOR						
2	Course Outcomes	Design analog circuits using BJT/FETs and evaluate their performance characteristics.						
3	Aim	To Design and set-up the following tuned oscillator circuits using BJT, and determine the frequency of oscillation. (a) Colpitts Oscillator (b) Crystal Oscillator						
4	Material	1 lell						
	Equipment	SI. No.	Particulars			Range		Quantity
	Required	1.	Transistor (SL100/CL100)			-		1
		2.	Crystal			2 MHz		1
		3.	Resistor			$47 \mathrm{~K} \Omega, 1.8 \mathrm{~K} \Omega, 8.2 \mathrm{~K} \Omega, 470 \Omega$		1,1,1,1
		4.	Capacitor			0.47 $\mu \mathrm{F}, 47 \mathrm{\mu F}$		2,1
		5.	Decade Capacitance Box			-		2

SKIT		Rev No.: 1.0	
	Teaching Process	Date: $27-2-2019$	
	Doc Code:	SKIT.Ph5b1.F03	Page: $18 / 65$
	Title:	Course Lab Manual	

Copyright ©2017. cAAS. All rights reserved.

Algorithm, Pseudo Code	2. The quiescent point of the amplifier is verified for the designed value. 3. Observe the output waveform on CRO and measure the frequency. 4. Verify the output frequency with the theoretical frequency. Crystal oscillator 5. Connections are made as shown in the diagram. 6. The quiescent point of the amplifier is verified for the designed value. 7. Observe the output wave form on CRO and measure the frequency. 8. Verify the frequency with the crystal frequency.
7 Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	al oscillator:

SKIT		Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F03	Date: 27-2-2019
Title:	Course Lab Manual	Page: $19 / 65$	

AS. All rights reserved.		
8	Observation Table, Look-up Table, Output	
9	Sample Calculations	Colpitts Oscillator tank circuit design: Choose A=2, $f_{o}=100 \mathrm{KHz}$ $\begin{align*} & f_{o}=\frac{1}{2 \pi \sqrt{L C_{\text {eq }}}} \tag{c}\\ & C_{\text {eq }}=L_{1}+L_{2} \tag{d} \end{align*}$ Condition for oscillation $A \beta \geq 1$ $A=\frac{C_{1}}{C_{2}} \Rightarrow C_{1}=2 C_{2}$ Find $C_{\text {eq }}$ from (d) and L from (c) crystal oscillator: Design: Given, $\quad V_{\mathrm{CE}}=5 \mathrm{~V}$ and $I_{C}=2 \mathrm{~mA}$, Assume $\vee=100$ $V_{\mathrm{CC}}=2 V_{\mathrm{CE}}=2 \times 5=10 \mathrm{~V}$ Let $V_{\mathrm{RE}}=10 \% V_{\mathrm{CC}}=1 \mathrm{~V}$

SKIT		Teaching Process
Doc Code:	SKIT.Ph5b1.F03	Rev No.: 1.0
Title:	Course Lab Manual	Date: 27-2-2019

Copyright ©2017. cAAS. All rights reserved

Copyight ©2017. cAAS. All ights reserved. $|$| $R_{E}=\frac{V_{\mathrm{RE}}}{I_{C}+I_{B}}$ |
| :--- |
| $I_{B}=\frac{I_{C}}{\beta}=\frac{2 \mathrm{~mA}}{100}=20 \mu \mathrm{~A}$ |
| $R_{E}=\frac{1}{2 \mathrm{~mA}+20 \mu}=495 \Omega$ |
| Choose $R_{E}=470 \Omega$ |

Apply KVL to collector loop
$V_{\mathrm{CC}}-I_{C} R_{C}-V_{\mathrm{CE}}-V_{\mathrm{E}}=0$
$R_{C}=\frac{V_{\mathrm{CC}}-V_{\mathrm{CE}}-V_{E}}{I_{C}}=\frac{10-5-1}{2 m}$
$R_{C}=2 \mathrm{~K} \Omega$ Choose $R_{C}=1.8 \mathrm{~K} \Omega$
Let $\mathrm{IR}_{1}=10 I_{B}=10 \times 20 \mu \mathrm{~A}=200 \mu \mathrm{~A}$
$\mathrm{VR}_{2}=V_{\mathrm{BE}}+V_{E}=0.6+1=1.6 \mathrm{~V}$ (Since transistor is silicon make $V_{\mathrm{BE}}=0.6 \mathrm{~V}$),
$R_{2}=\frac{\mathrm{VR}_{1}}{\operatorname{IR} 1-I_{B}}=\frac{1.6}{200 \mu \mathrm{~A}+20 \mu \mathrm{~A}}$
$R_{2}=7.2 \mathrm{~K}$ 㭗 Choose $R_{2}=\mathbf{8 . 2} \mathrm{K} \boldsymbol{K}$
$R_{1}=\frac{\left(V_{\mathrm{CC}}-\mathrm{VR}_{2}\right)}{\mathrm{IR}_{1}}=\frac{(10-1.6)}{200 \mu \mathrm{~A}} R_{1}=42 \mathrm{~K} \Omega$ Choose $R_{1}=47 \mathrm{~K} \Omega$
$X_{C E} \ll R_{E}$
$X_{\mathrm{CE}}=\frac{R_{E}}{10}$
$\frac{1}{2 \pi f C_{E}}=\frac{470}{10}$
Let $\mathrm{f}=100 \mathrm{~Hz}$
$C_{E}=33 \nu \mathrm{~F}$ Choose $R_{1}=47 \mathrm{JF}_{\mathbf{F}}$
Choose $\mathrm{CC}_{1}=\mathrm{CC}_{2}=\mathbf{0 . 4 7} \mathrm{JF}_{\mathbf{F}}$

Experiment 04 :SECOND ORDER BUTTERWORTH LOW PASS AND HIGH PASS FILTER

-	Experiment No.:	4	Marks	10	Date Planned	Date Conducted	
1	Title	SECOND ORDER BUTTERWORTH LOW PASS AND HIGH PASS FILTER					
2	Course Outcomes	Design analog circuits using OPAMPs and 555 timerfor different applications					
3	Aim	To design a second order butter worth second order low pass and high pass filter for a given cut off frequency and draw the frequency response.					
4	Material Equipment Required	Components Required: 1. IC 741 Op-Amp 2. Resistors - As per the design 3. Capacitor - As per the design 4. Power supply 5. Signal generator 6. CRO					
5	Theory, Formula, Principle, Concept	Low pass filter:					

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F03	Date: 27-2-2019
Title:	Course Lab Manual	Page: 22 / 65

Low pass filter allows only low frequency signal to pass through them. A low pass filter can be a combination of capacitance, inductance or resistance to produce high attenuation above a specified frequency \& little or no attenuation below that frequency. The frequency at which the transition occurs is called cut-off frequency.

- A first order low pass Butterworth filter uses RC network for filtering. The op-Amp is used in non-inverting configuration.

- The first order filter can be connected to second order LPF by using additional RC network as shown in fig1.

$2^{\text {nd }}$ order:

- The stop-band response in $2^{\text {nd }}$ order LPF is $40 \mathrm{~dB} /$ decade. At low frequency, both capacitors appear open and the circuit becomes a noninverting amplifier $\left(\therefore . X_{C}=\frac{1}{2 \pi \mathrm{FC}}\right)$
- As frequency increase, the gain eventually starts to decrease untilit is down 3dB at the cutoff frequency. As frequency increase the cut off frequency, the o/p is attenuated.

b) High pass filter:

High pass filter passes high frequency signals to pass through it. Again frequency sensitive components such as capacitors \& inductors are used in conjunction with the resistors.

The first order high pass filter is formed from first order low pass filter by interchanging the R\&C components \&second order HPF filter can be obtained from $2^{\text {nd }}$ order LPF by interchanging $R \& C$ as shown in Fig3.

SKIT		Rev No.: 1.0	
	Teaching Process	Date: $27-2-2019$	
	Title:	Course Lab Manual	Page: $24 / 65$

Copyright ©2017. cAAS. All rights reserved.

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F03	Date: 27-2-2019
Title:	Course Lab Manual	Page: $25 / 65$

Title:

$$
\mathrm{f}_{\mathrm{L}}=\frac{1}{2 \pi \sqrt{R_{2} R_{3} C_{2} C_{3}}}
$$

b) Low pass filter

Design 2 ${ }^{\text {nd }}$ order LPF to obtain $f_{H}=9 \mathrm{KHz}$
Solution:

$$
\begin{aligned}
& f_{H}=\frac{1}{2 \pi \sqrt{R_{2} R_{3} C_{2} C_{3}}} \\
& \text { Let } R_{2}=R_{3}=\mathrm{R} \& \quad C_{2}=\mathrm{C} 3=\mathrm{C} \\
& \therefore f_{H}=\frac{1}{2 \pi \mathrm{RC}} \\
& \text { Choose } \mathrm{C}=0.01 \mu \mathrm{f}
\end{aligned}
$$

$$
\therefore \mathrm{R}=\frac{1}{2 \pi f_{H} C}=\frac{1}{2 \pi * 9 K * 0.01 \mu \mathrm{f}}=1.768 \mathrm{k} \Omega
$$

$$
\therefore \text { Choose } \mathrm{R}=1.8 \mathrm{~K} \Omega
$$

The pass band gain of $2^{\text {nd }}$ order filter $=1.586$

$$
A_{f=1+} \frac{R_{f}}{R_{1}}=1.586
$$

$$
\therefore{\frac{R_{f}}{R_{1}}}_{=0.586}
$$

$$
\text { Let } R_{1}=10 \mathrm{~K} \Omega \text { \& hence } R_{f}=0.586
$$

$$
R_{1}==>R_{f}=5.86 \mathrm{~K} \Omega
$$

Design:

Design HPF to obtain $f_{H}=4 \mathrm{KHz}$
Solution:

$$
\begin{aligned}
& f_{\mathrm{H}=}=\frac{1}{2 \pi \sqrt{R_{2} R_{3} C_{2} C_{3}}} \\
& \text { Let } R_{2}=R_{3}=\mathrm{R} \& \quad C_{2}=\mathrm{C} 3=\mathrm{C} \text { \& hence } \\
& f_{\mathrm{H}=}=\frac{1}{2 \pi \mathrm{RC}} \\
& \text { Let } \mathrm{C}=0.01 \mu \mathrm{f}
\end{aligned}
$$

$$
\therefore \mathrm{R}=\frac{1}{2 \pi f_{H} c}=\frac{1}{2 \pi * 4 K * 0.01 \mu \mathrm{f}}=3.9 \mathrm{~K} \Omega
$$

Hence choose $\mathrm{R}=3.8 \mathrm{~K} \Omega$

SKIT		Rev No.: 1.0	
	Toc Code:	SKIT.Ph5b1.F03	Date: 27-2-2019
Title:	Course Lab Manual	Page: $26 / 65$	

Copyright ©2017. cAAS. All rights reserved.

		SKIT	Teaching Process	Rev No.: 1.0
		Doc Code:	SKIT.Ph5b1.F03	Date: 27-2-2019
		Title:	Course Lab Manual	Page: 27 / 65
Copyright ©2017. cAAS. All rights reserved.				
			HPF: 1) Cut off frequency for HPF:	
			Theoretical	
			$4 \mathrm{KH}_{z}$	
			2) Roll off rate:	
			Theoretical	
			40dB/dec	
12	Applicat	on Areas	Used in generation of high frequencies sinusoidal signal used in computer , instrumentation and in digital systems	
13	Remarks			
	Faculty with Da	Signature		

Experiment 05 : ADDER, INTEGRATOR AND DIFFERENTIATOR USING OP-AMP

-	Experiment No.:	5	Marks	10	Date Planned	Date Conducted	
1	Title	ADDER, INTEGRATOR AND DIFFERENTIATOR USING OP-AMP					
2	Course Outcomes	Design analog circuits using OPAMPs and 555 timerfor different applications					
3	Aim	To design adder, integrator and differentiator circuit for given specification using Op-Amp.					
4	Material Equipment Required	1. IC 741 -Op-Amp 2. Resistors - as per the design 3. Capacitor - as per the design 4. Dc power supply 5. Signal generator 6. CRO 7. Digital multimeter/Voltmeter					
5	Theory, Formula, Principle, Concept	Adder: The most common application of Op-Amp is the summing-amplifier (or adder) circuit. Fig. 1 shows the inverting configuration of summing circuit with 2 inputs V_{1} and V_{2}. Depending on the relationship between R_{f}, the feedback resistor and the input resistor R_{1} and R_{2}, the circuit can be used as summing					

SKIT		Teaching Process
Doc Code:	SKIT.Ph5b1.F03	Rev No.: 1.0
Title:	Course Lab Manual	Date: 27-2-2019

Copyright ©2017. cAAS. All rights reserved.

amplifier, scaling amplifier or averaging Amplifier. The input expression for the circuit can be written as (or obtained as)
$I_{F}=I_{1} I_{2}$
$\frac{-V_{o}}{R_{f}}=\frac{V_{1}}{R_{1}}+\frac{V_{2}}{R_{2}}$
$\therefore V_{o=-[}^{\frac{R_{f}}{R_{1}}} V_{1}+\left[\begin{array}{ll}\frac{R_{f}}{R_{2}} & V_{2}\end{array}\right]$

- If $R_{1}=R_{2}=R_{f}=R$ in (1), then
$V_{o}=-\left(V_{1}+V_{2}\right) \quad---$ summing amplifier. Here, the o/p voltage is equal to negative sum of all the inputs. Hence circuit act as summing amplifier.
- If $R_{1}, R_{2} R_{f}$ different, then the circuit is called scaling amplifier.
- If $R_{1}=R_{2}=R_{\&} \frac{R_{f}}{R}=\frac{1}{2}$, then the circuit can be used as an averaging circuit.

2. Integrator:

A circuit in which the output voltage is the integral of the input voltage is called integrator as shown in Fig2.

Relationship between voltage and current through capacitor is given by
$i_{c=c} \frac{d V_{C}}{d t}$
Applying Kirchhoff's law,
$i_{1} \simeq i_{f}$
$\therefore \quad \frac{V_{\mathrm{in}}}{R_{1}}=C_{F} \frac{d\left(-V_{O}\right)}{\mathrm{dt}}$
$\therefore V_{O}=-\frac{1}{R_{1} C_{F}} \int_{0}^{t} V_{\text {in }} \mathrm{dt}+$ const

- As seen ,the o/p voltage is directly proportional to the negative of the input voltage and inversely proportional to time constant $R_{1} C_{F}$.
- If $V_{\text {in }}=0$, then input offset voltage and the capacitor C_{T} produce error

SKIT		Rev No.: 1.0	
	Teaching Process	Date: $27-2-2019$	
	Doc Code:	SKIT.Ph5b1.F03	Page: $29 / 65$
	Title:	Course Lab Manual	

- The gain $\overline{X_{C 1}}$ increase with increase in frequency. Also, the input impedance $\mathrm{X}_{C 1}$ decreases with increase in frequency which makes circuit susceptible to high frequency noise.
- The stability \& high frequency noise problem can be corrected by two components $C_{F} \& R_{1}$.
- The input signal will be differentiated properly if the time period T of the input signal is larger than or equal to $R_{F} C_{1}$.
- $\quad \therefore \mathrm{T} \geq R_{F} C_{1}$.

6 Procedure,
Program, Activity, Algorithm, Pseudo Code

Adder :

1. Before wiring the circuit, check the components for its working .
2. Connect the circuit as shown in Fig.1.
3. Set the input voltages V_{1} and V_{2} and measure the output voltage V_{o} using multimeter.
4. Compare theoretical and practical output voltages

SKIT		Rev No.: 1.0	
	Doc Code:	SKIT.Ph5b1.F03	Date: $27-2-2019$
Title:	Course Lab Manual	Page: $31 / 65$	

Copyright ©2017. cAAS. All rights reserved.

Dept EC

Prepared by

SKIT		Teaching Process
Doc Code:	SKIT.Ph5b1.F03	Rev No.: 1.0
Title:	Course Lab Manual	Date: 27-2-2019

Title: Course Lab Manual
Copyright ©2017. cAAS. All rights reserved.

> Given $R_{1}=5 \& R_{2}=3$
> $\therefore R_{f}=5 R_{1}, R_{f}=3 R_{2}$
> Choose $R_{f}=10 \mathrm{~K} \Omega$
> $\therefore R_{1}=\frac{R_{f}}{5}=\frac{10 k}{5}=2 \mathrm{~K} \Omega \quad \ldots \ldots \ldots . \quad R_{1}=2 \mathrm{~K} \Omega$
> $R_{2}=\frac{R_{f}}{3}=\frac{10 k}{3}=3.3 \mathrm{~K} \Omega \ldots \ldots \ldots \quad R_{2}=3.3 \mathrm{~K} \Omega$
$\frac{R_{f}}{R_{1}}=5 \& \frac{R_{f}}{R_{2}}=3$

Integrator Design:

Given $T=1 \mathrm{~ms}$
a) Let $R C=10 T$

$$
\text { Choose C=0.1 } \mu \mathrm{f}
$$

$$
\therefore \mathrm{R}=\frac{10 T}{C}=\frac{10 * 1 * 10^{-3}}{0.1 * 10^{-6}}
$$

$$
\mathrm{R}=100 \mathrm{k} \Omega
$$

b) If $R C=T$

$$
\therefore \mathrm{R}=\frac{T}{C}=\frac{1 * 10^{-3}}{0.1 * 10^{-6}}
$$

$$
\therefore \mathrm{R}=10 \mathrm{~K} \Omega
$$

c) If $R C=0.1 \mathrm{~T}$

$$
\mathrm{R}=\frac{0.1 * 1 * 10^{-3}}{0.1 * 10^{-6}}
$$

$R=\mathbf{1} K \Omega$
Differentor Design:
Given $\mathrm{T}=1 \mathrm{~ms}$
a) Let $R C=10 T$

Choose C $=0.1 \mu \mathrm{f}$
$\therefore \mathrm{R}=\frac{10 T}{C}=\frac{10 * 1 * 10-\dot{b}^{3}}{0.1 * 10^{-6}} i$

$$
\mathrm{R}=100 \mathrm{k} \Omega
$$

b) If $R C=0.025 \mathrm{~T}$

$$
\begin{aligned}
& \mathrm{R}=\frac{0.025 T}{C}=\frac{0.025 * 1 * 10^{-3}}{0.1 * 10^{-6}} \\
& \mathrm{R}=250 \Omega
\end{aligned}
$$

SKIT		Rev No.: 1.0	
	Doc Code:	SKIT.Ph5b1.F03	Date: $27-2-2019$
Title:	Course Lab Manual	Page: $33 / 65$	

Copyright ©2017. cAAS. All rights reserved.
c) If $R C=T$

$$
\begin{aligned}
& \mathrm{R}=\frac{T}{C}=\frac{1 * 10^{-3}}{0.1 * 10^{-6}} \\
& \mathrm{R}=10 \mathrm{~K} \Omega
\end{aligned}
$$

10 Graphs, Outputs
Integrator :

Differentiator :

11 Results \& Analysis
1.Adder:

The obtained output voltage for inputs V_{1} and V_{2} are $V_{o}=\ldots \ldots$. when $V_{1}=\ldots \ldots$ \& $V_{2}=$ \qquad

| SKIT | | Rev No.: 1.0 |
| :---: | :---: | :---: | :--- |
| | Teaching Process | Date: $27-2-2019$ |
| Doc Code: | SKIT.Ph5b1.F03 | Page: $34 / 65$ |
| Title: | Course Lab Manual | |

		2. The operation of integrator circuit is verified. 3. Operation of differentiator circuit is verified.
12	Application Areas	The adder circuit is commonly used in 1). Analog computers 2). Audio mixers in which no of inputs are added or mixed to produce desired output. Integrator is commonly used in 1. Analog computers. 2. Analog to digital converter. 3. Signal wave shaping circuits Differentiator is commonly used in 1. Wave shaping circuits to detect high frequency component in input signal. 2. Rate of change detector in FM modulators.
13	Remarks	
14	Faculty Signature with Date	

Experiment 06 : SCHMITT TRIGGER

-	Experiment No.:	6	Marks	10	Date Planned	Date Conducted	
1	Title	SCHMITT TRIGGER					
2	Course Outcomes	Design analog circuits using OPAMPs and 555 timerfor different applications					
3	Aim	Design and Testing of Schmitt trigger circuit for different hysteresis value					
4	Material Equipment Required	IC trainer, signal generator, CRO. Resisters, OP AMP, Patch Chords, Digital multimeter.					
5	Theory, Formula, Principle, Concept	A Schmitt trigger is a comparator circuit with hysteresis implemented by applying positive feedback to the non inverting input of a comparator or differential amplifier. It is an active circuit which converts an analog input signal to a digital output signal. In the non-inverting configuration, when the input is higher than a chosen threshold, the output is high. When the input is below a different (lower) chosen threshold the output is low, and when the input is between the two levels the output retains its value. This dual threshold action is called hysteresis and implies that the Schmitt trigger possesses memory and can act as a bistable multivibrator. Schmitt trigger devices are typically used in signal conditioning applications to remove noise from signals used in digital circuits, particularly mechanical contact bounce. They are also used in closed loop negative feedback configurations to					

Dept EC

SKIT		Teaching Process
Doc Code:	SKIT.Ph5b1.F03	Rev No.: 1.0
Title:	Course Lab Manual	Date: 27-2-2019

Copyright ©2017. cAAS. All rights reserved.
implement relaxation oscillators, used in function generators and switching power supplies.

Test a Comparator circuit
An inverting 741 IC op-amp comparator circuit is shown in the figure below. It is called an inverting comparator circuit as the sinusoidal input signal Vin is applied to the inverting terminal. The fixed reference voltage Vref is give to the noninverting terminal $(+)$ of the op-amp. A potentiometer is used as a voltage divider circuit to obtain the reference voltage in the non-inverting input terminal. Bothe ends of the POT are connected to the dc supply voltage +VCC and -VEE. The wiper is connected to the non-inverting input terminal. When the wiper is rotated to a value near +VCC, Vref becomes more positive, and when the wiper is rotated towards -VEE, the value of Vref becomes more negative. The waveforms are shown below.

Inverting Comparator circuit

Inverting Comparator Circuit

SKIT		Rev No.: 1.0	
	Doc Code:	SKIT.Ph5b1.F03	Teaching Process
Title:	Course Lab Manual	Pate: $27-2-2019$	

	©2017. cAAS. All rights reser	
		Input output waveforms for positive $\mathrm{V}_{\text {ref }}$ waveforms for Negative $V_{\text {ref }}$ Input output
	Procedure, Program, Activity, Algorithm, Pseudo Code	Rig up the circuit as shown in figure 1. 1. Apply an input of $10 \mathrm{~V} p-\mathrm{p}, 1 \mathrm{kHz}$ to the input terminals. 2. Observe the output waveform and measure the practical values of $\mathrm{V}_{\text {UTP }}$, $\mathrm{V}_{\text {LTP }}$ in the $\mathrm{x}-\mathrm{y}$ mode or the y -t mode. Also measure the value of $\mathrm{V}_{\text {SAT }}$.
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	
8		
9	Sample Calculations	Design: Formulae: $\begin{align*} & V_{\text {UTP }}=V_{\text {SAT }} \cdot R_{2} /\left(R_{1}+R_{2}\right)+V_{\text {REF }} \cdot R_{1} /\left(R_{1}+R_{2}\right) \ldots \ldots \tag{1}\\ & V_{\text {LTP }}=V_{\text {SAT }}\left(-R_{2}\right) /\left(R_{1}+R_{2}\right)+V_{\text {REF. }}\left(R_{1}\right) /\left(R_{1}+R_{2}\right) \tag{2} \end{align*}$ Adding (1) and (2) $\begin{align*} & V_{U T P}+V_{\text {LTP }}=V_{\text {REF }} 2 R_{1} /\left(R_{1}+R_{2}\right) . \tag{3}\\ & V_{\text {UTP }}-V_{\text {LTP }}=V_{\text {SAT }}=2 R_{2} /\left(R_{1}+R_{2}\right) . \tag{4} \end{align*}$

Dept EC

SKIT		Rev No.: 1.0	
	Teaching Process	Date: $27-2-2019$	
	Title:	Course Lab Manual	Page: $37 / 65$

Copyright ©2017. cAAS. All rights reserved.

Experiment 07 : R-2R DAC USING OP-AMP

	SKIT	Teaching Process \quad Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F03 Date: 27-2-2019
	Title:	Course Lab Manual Page: 38 / 65
Copyright e2017. cAAS. All right resered.		
		5. CRO 6. Millimeter / Voltmeter 7. IC7493 or equivalent
5	Theory, Formula, Principle, Concept	R-2R DAC is shown in Fig. 1. It consists of only two resistors R and $2 R$ forming ladder network and an Op-Amp acting as voltage follower. Here D_{o}, D_{1}, D_{2} \& D_{3} are digital inputs which are controlled by the Switches $S_{0}, S_{1}, S_{2, \&} S_{3}$. When the digital input is ' 1 ', then the corresponding switch connects the resistor 2 R to $V_{\text {ref }}$ and when digital input is ' 0 ', then the switch connects the resistor 2 R to the ground line. Since the ladder is composed of linear resistors, it is a linear network and hence principle of superposition can be used to obtain the output voltage. - The analog output voltage V_{o} for 4 bit DAC can be written as $\begin{aligned} & V_{o=}=\left[2^{3} D_{3}+2^{2} D_{2}+2^{1} D_{1}+2^{0} D_{0}+i i c V_{1}\right. \text { where } \\ & \left.V_{1=[} \frac{V_{\mathrm{ref}}}{2^{N}}\right]^{*}\left[\frac{2 R}{R+2 R}\right]=\frac{V_{\mathrm{ref}}}{2^{N}} \quad\left[\frac{2 R}{3 R}\right]=\frac{V_{\mathrm{ref}}}{2^{N}} \quad\left[\frac{2}{3}\right] \end{aligned}$ Since $\mathrm{N}=4$ [4 bit DAC], V_{1} becomes $\begin{gathered} V_{1}=\frac{V_{\mathrm{ref}}}{2^{4}} * \frac{2}{3} \\ V_{1}=\frac{V_{\mathrm{ref}}}{24} \\ \left.\therefore V_{o=[} 8 D_{3}+4 D_{2}+2 D_{1}+D_{0}\right]^{*} \frac{V_{\mathrm{ref}}}{24} \end{gathered}$
6	Procedure, Program, Activity,1 Algorithm, Pseudo Code	1. Verify the components for its working. 2. Make the connection as shown in Fig.1. 3. For different digital inputs, measure the output voltage using multimeter. 4 Verify whether the theoretical values is matching with practical values \& plot the graph of input V/s output. Procedure: 1. Check the components for its working. 2. Make connection as shown in Fig. 3. 3. Construct modulo16 counter using suitable IC like 7493 or 74193.

| SKIT | | Rev No.: 1.0 |
| :---: | :---: | :---: | :--- |
| | Teaching Process | Date: $27-2-2019$ |
| Doc Code: | SKIT.Ph5b1.F03 | Page: $39 / 65$ |
| Title: | Course Lab Manual | |

		4. Apply clock (Say 1 KHz or 10 KHz) and observe staircase waveform on CRO. 5. Find resolution and sketch input and output waveform on graph sheet.
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	R-2R ladder Network: a). circuit diagram: 1. To generate staircase waveform using DAC circuit \& mod-16 counter Circuit diagram:

SKIT		Rev No.: 1.0	
	Teaching Process	Date: 27-2-2019	
	Title:	Course Lab Manual	Page: $40 / 65$

Copyright ©2017. cAAS. All rights reserved.

8 Observation Table, Look-up Table, Output

Tabular column:

| Digital inputs | | Decimal
 equivalent | Analog output voltage | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| D_{3} | D_{2} | | | | |

Tabular Column:

| SKIT | | Rev No.: 1.0 |
| :---: | :---: | :--- | :--- |
| | Teaching Process | Date: 27-2-2019 |
| Doc Code: | SKIT.Ph5b1.F03 | Page: $41 / 65$ |
| Title: | Course Lab Manual | |

Copyright ©2017. cAAS. All rights reserved.

Step width		Resolution	
Ideal	Obtained	Ideal	Obtained

$\begin{aligned} \% \text { Resolution }= & \frac{\text { Stepsize }}{\text { Full scale }} * 100 \\ & =\frac{\text { Stepwidth }}{4} * 100\end{aligned}$

Given: No of steps $=15$

Solution:

w.k.t, No of steps $=2^{N}-i i_{1}$

$$
15=2^{N}-i i_{1}
$$

$$
14=2^{N}
$$

Apply $\log _{2}$ on both sides
$\log _{2} 14=\log _{2} 2^{N}$
$\log _{2} 14=N$
$\underline{\log 14}$
$\overline{\log 2}=\mathrm{N}$

$$
N=3.8
$$

\therefore Resolution $=\mathrm{N}$
Use 4 bit DAC with minimum step size as 0.208 V .
This is a 4 bit R-2R ladder N/W shown in Fig3.
a) Given $: \mathrm{N}=4$ and step size $=0.5 \mathrm{~V}$

Solution:

Minimum step size $=\frac{V_{\text {ref }}}{24}=\frac{5}{24}=0.208 \mathrm{~V}$
Given step $=0.5 \mathrm{~V}$
\therefore Maximum o/p voltage $=V_{\text {omax }}=$ step size $*$ No of steps

$$
\begin{aligned}
& =0.5 *\left(2^{4}-1\right) \\
& =0.5 * 15 \\
& =7.5 \mathrm{~V}
\end{aligned}
$$

Given steps $=0.5$

SKIT		Rev No.: 1.0	
	Toc Code:	SKIT.Ph5b1.F03	Date: 27-2-2019
Title:	Course Lab Manual	Page: 42 / 65	

	ght ©2017. cAAS. All rights reserved	$\begin{aligned} & \therefore \text { Gain }=A_{f}=\frac{\text { Given step }}{\text { minimum step }}=\frac{0.5}{0.208}=2.4 \mathrm{~V} \\ & \text { But } A_{f=1+} \frac{R_{f}}{R_{1}} \\ & 2.4=1+\frac{R_{f}}{R_{1}} \\ & \quad \frac{R_{f}}{R_{1}}=1.4 \\ & \therefore \quad R_{f}=1.4 R_{1} \\ & \text { Let } R_{1}=10 \mathrm{~K} \Omega \\ & \therefore \quad R_{f}=1.4 * 10 \mathrm{~K} \Omega \\ & \quad=14 \mathrm{~K} \Omega \\ & R_{f} \approx 15 \mathrm{~K} \Omega \end{aligned}$
10	Graphs, Outputs	
11	Results \& Analysis	1.The obtained resolution of DAC is \qquad 2. Working of R-2R DAC is verified.
12	Application Areas	Typical applications for D/A converter include microcomputer interfacing, CRT graphics generations, programmable power supplies, digitally controlled gain circuits, digital filters, etc,.
13	Remarks	
14	Faculty Signature with Date	

SKIT		Rev No.: 1.0	
	Doc Code:	SKIT.Ph5b1.F03	Date: $27-2-2019$
Title:	Course Lab Manual	Page: $43 / 65$	

Copyright ©2017. cAAS. All rights reserved.

Experiment 08 : ASTABLE AND MONOSTABLE MULTIVIBRATOR USING IC 555

-	Experiment No.:	8	Marks	10	Date Planned	Date Conducted	
1	Title	ASTABLE AND MONOSTABLE MULTIVIBRATOR USING IC 555					
2	Course Outcomes	Design analog circuits using OPAMPs and 555 timerfor different applications					
3	Aim	1.Design Astable multi-vibrator using IC 555 timer to generator a clock frequency of 1 KHz with 0.75 duty cycle (unsymmetrical) and 0.5 duty cycle (symmetrical). 2. Design monostable multi-vibrator using IC 555 timer.					
4	Material Equipment Required	555timer Resistors - As per the design Capacitors - As per the design Power supply Diode - 1N4001 Signal generator					
5	Theory, Formula, Principle, Concept	Astable multivibrator: An astable multi-vibrator, often called a free running multi-vibrator is a rectangular wave generating circuit. The circuit does not require any external trigger to change the output \& hence the name free running. The time during which the output is either high or low is determined by the two resistors \& capacitors which are connected externally. Fig. 1 shows the 555 timer connected as an astable multivibrator. To understand the circuit operations consider the internal block diagram of the 555 timer. Initially when output is high, capacitor C starts towards $V_{\text {CC }}$ through R_{A} and R_{B}. However, as soon as voltage across the capacitor equals $\frac{2}{3}$ $V_{\text {CC }}$, comparator -1 triggers the flip-flop and the o/p switches low. Now capacitor C starts discharging through R_{B} and transistor Q_{1}. When the voltage across C equals $\frac{\frac{1}{3}}{3} V_{\mathrm{CC}}$, comparators output triggers the flip-flop and output goes to high. Then the cycle repeats the output voltage and					

Dept EC

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F03	Date: 27-2-2019
Title:	Course Lab Manual	Page: 44 / 65

Copyright ©2017. cAAS. All rights reserved.
capacitor voltage waveform as shown in Fig. 2.

The time during which the capacitor charges from $\frac{\frac{1}{3}}{3} V_{\mathrm{CC}}$ to $\frac{\frac{2}{3}}{3} V_{\mathrm{CC}}$ is equal to the time the output is high \& is given by

$$
t_{C}=0.69\left(R_{A+} R_{B .}\right) \mathrm{C}
$$

The time during which, the capacitor discharges from $\begin{array}{llll}\frac{2}{3} & V_{\mathrm{CC}} & \text { to } & \frac{1}{3} \\ V_{\mathrm{CC}} & \text { is }\end{array}$ equal to the time the output is low $\&$ is given by

$$
t_{d}=0.69\left(R_{B}\right) \mathrm{C}
$$

\therefore Total period $\mathrm{T}=t_{C}+t_{d}$

$$
=0.69\left(R_{A+} R_{B}\right) \mathrm{C}
$$

Hence frequency of oscillator is $f_{o}=\frac{1}{T}=\frac{1.45}{\left(R_{A}+2 R_{B}\right) C}$
The duty cycle is the ratio of time ${ }^{t_{C}}$ during which the output is high to the total period T.
\% duty cycle $=\frac{t_{C}}{T} * 100$

$$
=\frac{R_{A}+R_{B}}{R_{A}+2 R_{B}} * 100 \%
$$

As seen from above equation, astable multi-vibrator will not produce square wave unless the resistance $R_{A}=0$. With $R_{A}=0$, pin 7 is directly connected to

SKIT		Rev No.: 1.0	
	Doc Code:	SKIT.Ph5b1.F03	Teaching Process
Title:	Course Lab Manual	Pate: 27-2-2019	

2. Monostable multivibrator:

A monostable multi-vibrator is often called as one shot multi-vibrator. It is a pulse generating circuit in which the duration of the pulse is determined by the RC network connected externally. When an external trigger pulse is applied, the output is forced to go high. The time the output remains high is determined by the external RC network connected to the timer. At the end of time interval, the output automatically reverse back to its logic low stable states. The output stays low until the trigger pulse is again applied. Then the cycle repeats. The monostable circuit has only one stable state \& hence the name monostable.

Circuit operation:
The circuit is shown in Fig. 5. Initially, when the output is low, transistor Q_{1} is on \& capacitor C is shorted to ground. However, upon the application of negative trigger pulse to pin 2, transistor Q_{1} is turned off, which releases the short circuit across the external capacitor C \& drives the output high.The capacitor C now starts charging up towards V_{CC} through R_{A} However, when the voltage across the capacitor equals $\quad \frac{2}{3} \quad V_{\mathrm{CC}}$, comparator 1 output switch from low to high which in turn dives the output to its low state via the flip-flop. The output of flip-flop turns $Q_{1} \quad$ ON \& hence capacitor C rapidly discharges through the transistor. The output remains low until a trigger pulse is applied again. The time during which the output remains high is given by

$$
t_{p}=0.69 R_{A C}
$$

6 Procedure, \quad Procedure:
Program, Activity, Astable multi-vibrator:
Algorithm, Pseudo
Code

i. $D>50 \%$

1. Verify the components for its working.

SKIT		Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F03	Date: $27-2-2019$
Title:	Course Lab Manual	Page: 47 / 65	

Copyright ©2017. cAAS. All rights reserved.

II. Symmetrical Astable multivibrator:

Monostable multivibrator:

Circuit diagram:

SKIT		Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F03	Date: $27-2-2019$
	Title:	Course Lab Manual	Page: $48 / 65$

Dept EC
Prepared by
Checked by

SKIT		Teaching Process
Doc Code:	SKIT.Ph5b1.F03	Rev No.: 1.0
Title:	Course Lab Manual	Date: 27-2-2019

Substitute Eq. (2) in Eq. (1) gives
$\therefore \quad T_{L}=\mathrm{T}-T_{H}$
$=1 m-0.75 \mathrm{~m}$
$T_{L}=0.25 \mathrm{~ms}$
But $T_{L}=0.69 R_{B C}$
Let $C=0.1 \mu \mathrm{~F}$
$\therefore \quad T_{L}=0.69^{*} R_{B * 0.1 \mu}$
$\therefore R_{B}=\frac{T_{L}}{0.69 * 0.1 \mu}=\frac{0.25 m}{0.69 * 0.1 \mu}=3.6 \mathrm{~K} \Omega$
$R_{B}=3.6 \mathrm{~K} \Omega$
But $T_{H}=0.69\left(R_{A+} R_{B}\right) \mathrm{C}$
$0.75 \mu \mathrm{f}=0.69\left(R_{A}+R_{B}\right) 0.1 \mu$
$R_{A}+R_{B}=10.82 \mathrm{~K}$
$\therefore \quad R_{A}=10.82 \mathrm{~K}-R_{B}=7.2 \mathrm{~K} \Omega$
\therefore Select $R_{A}=6.8 \mathrm{~K} \Omega$ \& $R_{B} \quad=3.3 \mathrm{~K} \Omega$

Design monostable multi-vibrator having time delay $t_{p=10 \mathrm{~ms}}$
Solution:
Given $t_{p}=10 \mathrm{~ms}$
Choose C $=0.1 \mu \mathrm{f}$
$\therefore \quad R_{A}=\frac{t_{p}}{1.1 C}=\frac{10 * 10^{-3}}{1.1 * 0.1 * 10^{-6}}=90 \mathrm{~K} \Omega$
\therefore Select $R_{A=100 \mathrm{~K} \Omega}$

10 Graphs, Outputs

SKIT		Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F03	Date: 27-2-2019
Title:	Course Lab Manual	Page: $50 / 65$	

		SKIT	Teaching Process	Rev No.: 1.0
		Doc Code:	SKIT.Ph5b1.F03	Date: 27-2-2019
		Title:	Course Lab Manual	Page: 51 / 65
Copyright ©2017. cAAS. All rights reserved.				
			2 Free running ramp generator. Manostable multivibrator: 1. Frequency divider. 2. Pulse stretcher.	
13	Remark			
	Faculty with Dat	Signature		

Experiment 09 : RC PHASE SHIFT OSCILLATOR AND HARTLEY OSCILLATOR

	SKIT		Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F03		Date: 27-2-2019
	Title:	Course Lab Manual		Page: 52 / 65

Copyright ©2017. cAAS. All rights reserved.

Hartley Oscillator using BJT.

SI.No.	Particulars	Specification	Quantity
1	BJT		2
2	capacitors Resistor	$0.1 \mu \mathrm{f}$	2
		$4.7 \mu \mathrm{f}$	1
		8.84 nF	1
		330Ω	1
		820Ω	1
3		$2 \mathrm{M} \Omega$	1
4	InductorsCRO	$240 \mu \mathrm{H}$	1
		$100 \mu \mathrm{H}$	1
		Dual Channel	1

5 Theory, Formula, Principle, Concept

RC PHASE SHIFT:

An oscillator is an electronic circuit for generating an AC signal voltage with a DC supply as the
Only input requirement. The frequency of the generated signal is decided by the circuit elements used. An oscillator requires an amplifier, a frequency selective network and a positive feedback from the output to the input. The Barkhausen criterion for sustained oscillation is $A \beta=1$ where A is the gain ofthe amplifier and β is the feedback factor (gain). The unity gain means signal is in phase. (If the signal is 1800 out of phase and gain will be -1). RC-Phase shift Oscillator has a CE amplifier followed by three sections of RC phase shift feed-back Networks. The output of the last stage is return to the input of the amplifier. The values of R and C are chosen such that the phase shift of each RC section is 60°.Thus The RC ladder network produces a total phase shift of 180° between its input and output voltage for the given frequency. Since CE Amplifier produces 180° phases shift. The total phase shift from the base of the transistor around the circuit and back to the base will be exactly 360° or 0°. This satisfies the Barkhausen condition for sustaining oscillations and total loop gain of this circuit is greater than or equal to 1, this condition used to generate the sinusoidal oscillations

HARTLEY:

An oscillator is an electronic circuit for generating an AC signal voltage with a DC supply as the
Only input requirement. The frequency of the generated signal is decided by the circuit elements used. An oscillator requires an amplifier, a frequency selective network and a positive feedback from the output to the input. The Barkhausen criterion for sustained oscillation is $A \beta=1$ where A is the gain ofthe amplifier and β is the feedback factor (gain). The unity gain means signal is in phase The Hartley oscillator is an electronic oscillator circuit in which the oscillation frequency is determined by a tuned circuit consisting of capacitors and inductors, that is, an LC oscillator. The Hartley oscillator is distinguished by a tank circuit consisting of two series-connected coils (or, often, a tapped coil) in parallel with a capacitor, with an amplifier between the relatively high impedance across the entire LC tank and the

SKIT		Rev No.: 1.0	
Doc Code:	SKIT.Ph5b1.F03	Teaching Process	Date: $27-2-2019$
Title:	Course Lab Manual	Page: $53 / 65$	

relatively low voltage/high current point between the coils. The Hartley oscillator is the dual of the Colpitts oscillator which uses a voltage divider made of two capacitors rather than two inductors. Although there is no requirement for there to be mutual coupling between the two coil segments, the circuit is usually implemented using a tapped coil, with the feedback taken from the tap, as shown here. The optimal tapping point (or ratio of coil inductances) depends on the amplifying device used, which may be a bipolar junction transistor.

1. Rig up the circuit as shown in figure
2. place all the required components from multi-sim library
3. click on run button and observe the out put

To plot frequency response

1. Place the components in Multisim.
2. Rig up the circuit as shown in circuit diagram.
3. Click on the run button and Double click on Oscilloscope.
4. Observe the output waveforms on Oscilloscope.
5. Measure frequency of the output signal, compare it with theoretical frequency.

HARTLEY:
6. To plot frequency response
7. Place the components in Multisim.
8. Rig up the circuit as shown in circuit diagram.
9. Click on the run button and Double click on Oscilloscope.
10. Observe the output waveforms on Oscilloscope.
11. Measure frequency of the output signal, compare it with theoretical frequency.

SKIT		Teaching Process
Doc Code:	SKIT.Ph5b1.F03	Rev No.: 1.0
Title:	Course Lab Manual	Date: $27-2-2019$

Dept EC

Experiment 10 : NARROW BAND-PASS FILTER AND NARROW BAND-REJECT FILTER

| - | Experiment No.: | 10 | Marks | Date
 Planned | Date
 Conducted |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | Title | Narrow Band-pass Filter and Narrow band-reject filter | | | |
| 2 | Course Outcomes | Simulate and analyze analog circuits that uses transistor and ICs for different
 electronic applications. | | | |
| 3 | Aim | To simulate and analyze the Narrow Band-pass Filter and Narrow band-reject
 filter | | | |
| 4 | Material
 Equipment
 Required | Theory, Formula,
 Principle, Concept | A narrow bandpass filter employing multiple feedback is depicted in figure. This
 filters discussed so far, this filter has some unique features that are given below.
 1. It has two feedback paths, and this is the reason that it is called a multiple-
 feedback filter. | | |
| 2. The op-amp is used in the inverting mode. | | | | | |

SKIT		Teaching Process
Doc Code:	SKIT.Ph5b1.F03	Rev No.: 1.0
Title:	Course Lab Manual	Date: 27-2-2019

Copyright O2017. cAAS. All rights reserved.

Generally, the narrow bandpass filter is designed for specific values of centre frequency f_{c} and Q or f_{c} and BW. The circuit components are determined from the following relationships. For simplification of design calculations each of $\mathbf{C}_{\mathbf{1}}$ and C_{2} may be taken equal to C.
$R_{1}=\mathbf{Q} / \mathbf{2} \boldsymbol{f}_{\mathrm{c}} \mathrm{CA}_{\mathrm{f}}$
$R_{2}=\mathbf{Q} / \mathbf{2} \boldsymbol{\|} f_{c} \mathbf{C}\left(\mathbf{2} \mathbf{Q}^{\mathbf{2}}-\mathrm{A}_{\mathrm{f}}\right)$
and $R_{3}=\mathbf{Q} / \Pi f_{c} \mathbf{C}$
where A_{f}, is the gain at centre frequency and is given as
$A_{f}=\mathbf{R}_{3} / \mathbf{2 R} \mathbf{R}_{\mathbf{1}}$

The gain A_{f} however must satisfy the condition $A_{f}<2 Q^{2}$.

The centre frequency f_{c} of the multiple feedback filter can be changed to a new frequency $f_{c}{ }^{`}$ without changing, the gain or bandwidth. This is achieved simply by changing R_{2} to R_{2} so that
$\mathbf{R}_{\mathbf{2}}{ }_{\mathbf{~}}=\mathbf{R}_{\mathbf{2}}\left[\mathbf{f}_{\mathrm{c}} / \mathbf{f}_{\mathrm{c}}{ }^{\mathbf{c}}\right]^{\mathbf{2}}$

BAND REJECT FILTER:

This is also called a notch filter. It is commonly used for attenuation of a single frequency such as 60 Hz power line frequency hum. The most widely used notch filter is the twin-T network illustrated in fig. (a). This is a passive filter composed of two T-shaped networks. One T-network is made up of two resistors and a capacitor, while the other is made of two capacitors and a resistor.One drawback of above notch filter (passive twin-T network) is that it has relatively low figure of merit Q. However, Q of the network can be increased significantly if it is used with the voltage follower, as illustrated in fig. (a). Here the output of the voltage follower is supplied back to the junction of $R / 2$ and 2 C . The frequency response of the active notch filter is shown in fig (b).

SKIT		Teaching Process
Doc Code:	SKIT.Ph5b1.F03	Rev No.: 1.0
Title:	Course Lab Manual	Pate: 27-2-2019

Copyright ©2017. cAAS. All rights reserved.

Notch filters are most commonly used in communications and biomedical instruments for eliminating the undesired frequencies.

A mathematical analysis of this circuit shows that it acts as a lead-lag circuit with a phase angle, shown in fig. (b). Again, there is a frequency f_{c} at which the phase shift is equal to 0°. In fig. (c), the voltage gain is equal to 1 at low and high frequencies. In between, there is a frequency f_{c} at which voltage gain drops to zero. Thus such a filter notches out, or blocks frequencies near f_{c}. The frequency at which maximum attenuation occurs is called the notch-out frequency given by
$\mathrm{f}_{\mathrm{n}}=\mathrm{F}_{\mathrm{c}}=2 \prod \mathrm{RC}$
Notice that two upper capacitors are C while the capacitor in the centre of the network is 2 C . Similarly, the two lower resistors are R but the resistor in the centre of the network is $1 / 2 R$. This relationship must always be maintained.

Let us consider the narrow band notch filter circuit. We know that the notch filter is used to eliminate single frequency. Thus let us consider the frequency to eliminate be 120 Hz . The capacitor value $\mathrm{C}=0.33 \mu \mathrm{~F}$.

By using the centre frequency $f_{C}=1 /(2 \pi R C)$

$$
R=1 /\left(2 \pi f_{c} C\right)=1 /\left(2 \pi \times 120 \times 0.33 \times 10^{-6}\right)=4 \mathrm{k} \Omega
$$

Thus, in order design the notch filter to eliminate 120 Hz frequency we have to take two parallel resistors with $4 \mathrm{k} \Omega$ each and the two capacitors in parallel with $0.33 \mu \mathrm{~F}$ each.

| SKIT | | Rev No.: 1.0 |
| :---: | :---: | :--- | :--- |
| | Teaching Process | Date: 27-2-2019 |
| Doc Code: | SKIT.Ph5b1.F03 | Page: $58 / 65$ |
| Title: | Course Lab Manual | |

	t ©2017. cAAS. All rights reserved	
6	Procedure, Program, Activity, Algorithm, Pseudo Code	1. Rig up the circuit as shown in figure 2. place all the required components from multi-sim library 3. click on run button and observe the out put
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	Narrow Band-Stop Filter.
8	Observation Table, Look-up Table, Output	
9	Sample Calculations	

Dept EC

Prepared by

Experiment 11 :PRECISION HALF AND FULL WAVE RECTIFIER

| - | Experiment No.: | 11 | Marks | 10 | Date
 Planned | Date
 Conducted |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Title | Precision Half and full wave rectifier | | | | |
| 2 | Course Outcomes | Simulate and analyze analog circuits that uses transistor and ICs for different
 electronic applications. | | | | |
| 3 | Aim | To simulate and analyze Precision Half and full wave rectifier | | | | |
| 4 | Material
 Equipment
 Required | | | | | |
| 5 | Theory, Formula, | When forward biased voltage is less than 0.7 V , then diode is not conducting. In | | | | |

Dept EC

	SKIT		Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F03	Date: $27-2-2019$
	Title:	Course Lab Manual	Page: $60 / 65$

Principle, Concept case of normal power rectifier input applied is much larger than 0.7 V . So diode is not operated. Therefore Op-amp is used to help diode to conduct. The precision rectifiers are classified in two categories. 1.Precision Half wave rectifier
2. Precision Full wave Rectifier

1. Precision Half wave rectifier (HWR) :

In HWR, the diode conducts in one of the half cycles of applied ac input signal. Because of this we can classify HWR as positive PHWR (output is positive) and negative PHWR (output is negative).
In positive half cycle of applied ac input signal output of op-amp is negative, so diode D1 is forward biased and D2 is reversed biased. The output of op-amp is virtually shorted to ground and output voltage is zero.

In negative half cycle of applied ac input signal output of op-amp is positive, so diode D2 is forward biased and D1 is reversed biased.
Non-saturated types of precision half wave rectifiers are suitable for high frequency applications. In HWR, the diode conducts in one of the half cycles of applied ac input signal.
Design: In positive half cycle of applied ac input signal output of op-amp is negative, so diode D1 is forward biased and D2 is reversed biased. The output of op-amp is virtually shorted to ground and prevented going into saturation. Thus output voltage is zero.
$\therefore \mathrm{Vo}=0 \mathrm{~V}$
In negative half cycle of applied ac input signal output of op-amp is positive, so diode D2 is forward biased and D1 is reversed biased. The circuit now works as an inverting amplifier with gain of(-Rf/R1)
Vo $=$ Vin $\times A$
But in negative half cycle input magnitude is negative therefore we get,
Vo=(-V_in)[-Rf/R1]
\therefore Vo=Rf/R1(Vin)
Thus in negative half cycle output is positive with a gain of(Rf/R1).
2. Precision Full wave Rectifier:

In PFWR, for both the half cycles output is produced \& in one direction only. In positive half cycle of applied ac input signal, output of first op-amp (A1) is Negative. Therefore diode D2 is forward biased \& diode D1 is reverse biased.

6 Procedure,
Program, Activity,
Algorithm, Pseudo
Code
7 Block, Circuit, Half-wave:
Model Diagram,
Reaction Equation,
Expected Graph

Dept EC

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F03	Date: 27-2-2019
Title:	Course Lab Manual	Page: 61 / 65

Dept EC
Prepared by

SKIT		Rev No.: 1.0	
	Doc Code:	SKIT.Ph5b1.F03	Teaching Process
Title:	Course Lab Manual	Pate: $27-2$-2019	

Copyright ©2017. cAAS. All rights reserved.

Experiment 12 :Monostable and Astable multivibrator

| - | Experiment No.: | 12 | Marks | Date
 Planned | Monostable and Astable multivibrator
 Conducted |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Title | | Simulate and analyze analog circuits that uses transistor and ICs for different
 electronic applications. | | |
| 2 | Course Outcomes | | | | |
| 3 | Aim | To simulate and analyze Monostable and Astable multivibrator | | | |

Dept EC

SKIT		Rev No.: 1.0	
Doc Code:	SKIT.Ph5b1.F03	Teaching Process	Date: $27-2-2019$
Title:	Course Lab Manual	Page: $63 / 65$	

Copyright ©2017. cAAS. All rights reserved.

Dept EC

| SKIT | | Rev No.: 1.0 |
| :---: | :---: | :---: | :--- |
| | Teaching Process | Date: 27-2-2019 |
| Title: | Course Lab Manual | Page: $64 / 65$ |

	Lopyright O2017. cAAS. All rights reser Output	
9	Sample Calculations	
10	Graphs, Outputs	

SKIT		Rev No.: 1.0	
	Teaching Process	Date: 27-2-2019	
	Doc Code:	SKIT.Ph5b1.F03	Page: $65 / 65$
	Title:	Course Lab Manual	

| \begin{tabular}{\|l|l|l|}
\hline
\end{tabular}		Manostable multivibrator: 2. Frequency divider. 2. Pulse stretcher.
13	Remarks	
14	Faculty Sights reserved with Date	

