STISTITUTE OF THE	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F03	Date: 27-2-2019
A ANGALORE *	Title:	Course Lab Manual	Page: 1 / 65

Copyright ©2017. cAAS. All rights reserved.

18ECL48: ANALOG CIRCUITS LAB	2
A. LABORATORY INFORMATION2	
1. Lab Overview2	
2. Lab Content2	
<u>3. Lab Material</u> 2	
4. Lab Prerequisites:3	
5. General Instructions3	
6. Lab Specific Instructions4	
B. OBE PARAMETERS4	:
<u>1. Lab / Course Outcomes4</u>	
2. Lab Applications5	
3. Articulation Matrix5	
<u>4. Curricular Gap and Content</u> 5	
C. COURSE ASSESSMENT6	
<u>1. Course Coverage</u> 6	
2. Continuous Internal Assessment (CIA)6	
D. EXPERIMENTS7	
Experiment 01 : COMMON SOURCE JFET/MOSFET AMPLIFIER7	
Experiment 02 : BJT COMMON EMITTER AMPLIFIER	
Experiment 03 : COLPITTS OSCILLATOR AND CRYSTAL OSCILLATOR16	
Experiment 04 :SECOND ORDER BUTTERWORTH LOW PASS AND HIGH PASS FILTER21	
Experiment 05 : ADDER, INTEGRATOR AND DIFFERENTIATOR USING OP-AMP	
Experiment 06 : SCHMITT TRIGGER	
Experiment 07 : R-2R DAC USING OP-AMP3737	
Experiment 08 : ASTABLE AND MONOSTABLE MULTIVIBRATOR USING IC 55542	
Experiment 09 : RC PHASE SHIFT OSCILLATOR AND HARTLEY OSCILLATOR50)
Experiment 10 : NARROW BAND-PASS FILTER AND NARROW BAND-REJECT FILTER	•
Experiment 11 : PRECISION HALF AND FULL WAVE RECTIFIER	
Experiment 12 : MONOSTABLE AND ASTABLE MULTIVIBRATOR	

Note : Remove "Table of Content" before including in CP Book

18ECL 48 : ANALOG CIRCUITS LAB

A. LABORATORY INFORMATION

1. Lab Overview

Degree:	B.E	Program:	EC
Year / Semester :	2 / 4	Academic Year:	2019-20
Course Title:	Analog Circuits Lab	Course Code:	18ECL48
Credit / L-T-P:	2/ 2-0-0	SEE Duration:	180 Minutes
Total Contact Hours:	36 Hrs	SEE Marks:	100 Marks
CIA Marks:	40	Assignment	
Course Plan Author:	Arun Kumar R	Sign	Dt :
Checked By:		Sign	Dt :

2. Lab Content

Unit	Title of the Experiments	Lab Hours	Concept	Blooms Level
1	Design and setup the Common Source JFET/MOSFET amplifier and plot	3	Frequency	L3
	the frequency response		response of JFET/MOSF ET	
2	Design and set up the BJT common emitter voltage amplifier with and without feedback and determine the gain- bandwidth product, input and output impedances.	3	BJT common emmitter amplification	L3
3	Design and set-up BJT/FET i) Colpitts Oscillator, and ii) Crystal Oscillator	3	Oscillator	L3
4	Design active second order Butterworth low pass and high pass filters.	3	Filters	L3
5	Design Adder, Integrator and Differentiator circuits using Op-Amp	3	Opamp applications	L3
6	Test a comparator circuit and design a Schmitt trigger for the given UTP and LTP values and obtain the hysteresis.	3	comparator	L3
7	Design 4 bit R – 2R Op-Amp Digital to Analog Converter (i) using 4 bit binary input from toggle switches and (ii) by generating digital inputs using mod-16 counter.	3	DAC	L3
8	Design Monostable and a stable Multivibrator using 555 Timer.	3	Multivibrator	L3
9	Simulation using EDA software- RC Phase shift oscillator and Hartley oscillator	3	Oscillator	L3
10	Simulation using EDA software- Narrow Band-pass Filter and Narrow band-reject filter	3	Filter	L3
11	Simulation using EDA software- Precision Half and full wave rectifier	3	Rectifier	L3
12	Simulation using EDA software-Monostable and A stable Multivibrator using 555 Timer.	3	Multivibrator	L3

3. Lab Material

Unit	Details	Available
1	Text books	
	Linear Integrated Circuits∥, D. Roy Choudhury and Shail B. Jain,4thedition,	
	Reprint 2006, New Age International ISBN 978-81-224-3098-1.	
	Operational Amplifiers and Linear IC'sll, David A. Bell, 2nd edition,	
	PHI/Pearson,2004. ISBN 978-81-203-2359-9	
	David A Bell, "Fundamentals of Electronic Devices and Circuits Lab Manual, 5th	
	Edition, 2009, Oxford University Press.	
	Lab Manual	In Lib and dept

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F03	Date: 27-2-2019
Title:	Course Lab Manual	Page: 3 / 65

pyright ©2017. cAAS. All rights reserved

2 Reference books	
i Ramakant A Gayakwad, –Op-Amps and Linear Integrated Circuits,Pearson, 4th Ed, 2015. ISBN 81-7808-501-1.	In Lib and dept
ii Robert L. Boylestad and Louis Nashelsky, "Electronics devices and Circuit theory", Pearson, 10th Edition, 2012, ISBN: 978-81-317-6459-6.	In Lib
iii K. A. Navas, "Electronics Lab Manual", Volume I, PHI, 5th Edition, 2015, ISBN:9788120351424.	In Lib
iv B Somanathan Nair, –Linear Integrated Circuits: Analysis, Design &Applications, Wiley India, 1st Edition, 2015	In Lib
v James Cox, –Linear Electronics Circuits and Devices∥, Cengage Learning,Indian Edition, 2008, ISBN-13: 978-07-668-3018-7.	In Lib
3 Others (Web, Video, Simulation, Notes etc.)	In Lib
i Data Sheet: http://www.ti.com/lit/ds/symlink/tl081.pdf.	
 https://www.youtube.com/watch?v=CoOOm3NEMfg 	
 <u>https://www.youtube.com/watch?v=6A8otDArahM</u> 	
 <u>https://www.youtube.com/watch?v=1fgw-ONIAcc</u> 	
 <u>https://www.youtube.com/watch?v=YzcKQWwkzWs</u> 	
 <u>https://www.youtube.com/watch?v=lc6QT8VjqVc</u> 	
 <u>https://www.youtube.com/watch?v=sKnLBWA6UdE</u> 	
 <u>https://www.youtube.com/watch?v=BCjnYMNCkGc</u> 	
 <u>https://www.youtube.com/watch?v=5-ohKRWeod4</u> 	
 <u>https://www.youtube.com/watch?v=Pc1aFloxSMw</u> 	
 <u>https://www.youtube.com/watch?v=XES0QUi8ttY</u> 	
 <u>https://www.youtube.com/watch?v=ypV6gdIJJU4</u> 	
 <u>https://www.youtube.com/watch?v=iJYm_BGqa1A</u> 	
 <u>https://www.youtube.com/watch?v=k3XgLk2H1w8</u> 	
 <u>https://www.youtube.com/watch?v=GH-JFXbOcZg</u> 	
 <u>https://www.youtube.com/watch?v=v9sSRF76DDU</u> 	
 <u>https://www.youtube.com/watch?v=ZuFKU9O8FTs</u> 	
 <u>https://www.youtube.com/watch?v=lh768hHRsxg</u> 	
 <u>https://www.youtube.com/watch?v=7jGobEEyD7w</u> 	
Nptel.ac.in for videoes	

4. Lab Prerequisites:

-	-	Base Course:		-	-
SNo	Course	Course Name	Topic / Description	Sem	Remarks
	Code				
1	18ELN14/	Basic Electronics	OPAMP / Rectifiers / BJT & FET working	1/2	
	24		operation		

Note: If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

5. General Instructions

SNo	Instructions	Remarks
1	Observation book and Lab record are compulsory.	
2	Students should report to the concerned lab as per the time table.	
3	After completion of the program, certification of the concerned staff in-charge in	

2	MSTITUTE OF TR	
A KRIS		1
5*	SANGALORE *	
~		<u> </u>

SKIT	Teaching	g Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F03		Date: 27-2-2019
Title:	Course Lab Manual		Page: 4 / 65
AO All states as a second			

٦

Copyright ©2017. cAAS. All rights reserved.

	the observation book is necessary.	
4	Student should bring a notebook of 100 pages and should enter the readings /observations into the notebook while performing the experiment.	
5	The record of observations along with the detailed experimental procedure of the experiment in the Immediate last session should be submitted and certified staff member in-charge.	
6	Should attempt all problems / assignments given in the list session wise.	
7	When the experiment is completed, should disconnect the setup made by them, and should return all the components/instruments taken for the purpose.	
8	Any damage of the equipment or burn-out components will be viewed seriously either by putting penalty or by dismissing the total group of students from the lab for the semester/year	
9	Completed lab assignments should be submitted in the form of a Lab Record in which you have to write the Components required, Theory, Procedure, tabular column and output for various inputs given	

6. Lab Specific Instructions

SNo	Specific Instructions	Remarks
1	Rigup the circuits as shown in the lab manual for each experiment	
2	Turn on the supply and Apply the proper input when it is required	
3	Observe the output , note down the readings and compare it with theoretical	
	value	
4	Plot the graph using graph/ semilog sheets	
5	Turn off the supply & Disconnect the ciruit	

B. OBE PARAMETERS

1. Lab / Course Outcomes

#	COs	Teach	n. Concept	Instr	Assessment	Blooms
		Hours	5	Method	Method	' Level
1	Design the circuits using BJT and FET	12	BJT / FET	Lecture	Test and	L3
			performance	and	Viva	
			characteristics	Demonstr		
				ate		
2	Design the circuits using Op-Amp	12	OPAMPs for	Lecture	Test and	L3
			different	and	Viva	
			applications	Demonstr		
				ate		
3	Simulate and analyze analog circuits that	12	555 timer and	Lecture	Test and	L3
	uses transistor and ICs for different		Simulation	and	Viva	
	electronic applications.			Demonstr		
				ate		

Note: Identify a max of 2 Concepts per unit. Write 1 CO per concept.

2. Lab Applications

	SNo	Application Area	CO	Level
--	-----	------------------	----	-------

WAINSTITUT	SKIT	Teaching Process	Rev No.: 1.0)				
	Doc Code:	SKIT.Ph5b1.F03	Date: 27-2-2	2019				
BANGAN	Title: Course Lab Manual Pag							
17 0	2017. cAAS. All rights reserved							
1	frequency-determinelectrodes connect	ning component, a wafer of quartz crystal or ceramic we de to it.	vith CO1	L3				
2	Used in speech compression.	processing for communications (radio) applications & au	dio CO1	L3				
3	Used in RF,radio, s	mall power supply units, medical field etc	CO1	L3				
4	In some Ca	pacitor to power the high-side NMOS driv	ver. CO1	L3				
5	Apply voltage divid	ler bias to find gain bandwidth & frequency response	CO1	L3				
6	Used in buffer amp	lifier,electronic switch, phase shift oscillator etc	CO1	L3				
7	widely used for swi	tching and amplifying electronic signals in the electronic devices	s. CO1	L3				
8	Oscillators is used	in microprocessor for clock circuits	CO1	L3				
9	used in low-cost de	sign devices and mobile devices	CO2	L3				
10	Differentiator is use	ed in signal amplifier	CO2	L3				
11	Integrator used in v	vave shaping circuit	CO2	L3				
12	Active filters used i	n demodulator circuit	CO2	L3				
13	R-2R ladder netwo	rk used in DAC	CO2	L3				
14	Multivibrators are u	sed for time delay calculation	CO3	L3				
15	Used as external tr	iggers	CO3	L3				

Note: Write 1 or 2 applications per CO.

3. Articulation Matrix

(CO – PO MAPPING)

-	Course Outcomes	Program Outcomes												
#	COs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	Level
		1	2	3	4	5	6	7	8	9	10	11	12	
18EC48.1	Design the circuits using BJT and FET	3	3	2						2	2			L3
	Design the circuits using Op-Amp and 555 timer for different applications		3	2						2	2			L3
	Simulate and analyze analog circuits that uses transistor and ICs for different electronic applications.	3	3	2		2				2	2			L3

Note: Mention the mapping strength as 1, 2, or 3

4. Curricular Gap and Content

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					

ST MSTITUTE O	SKIT		Те	aching Process	Rev No.: 1.0
	🚺 🛛 Doc Code	e: SKIT	.Ph5b1.F03		Date: 27-2-2019
SA RANGALOR	Jitle:	Cour	rse Lab Manual		Page: 6 / 65
Copyright ©20)17. cAAS. All rights reser	ved.			

Note: Write Gap topics from A.4 and add others also.

Note: Anything not covered above is included here.

C. COURSE ASSESSMENT

1. Course Coverage

Unit	nit Title Teachi No. of question in Exam								CO	Levels	
		ng		CIA-2					SEE		
		Hours	01/1-1	01/1-2	01/1-0	A3g-1	A39-2	A3g-0	OLL		
1	Design and setup the Common Source		1						1	CO1	L4
	JFET/MOSFET amplifier and plot the	03	1	-	-	-	-	-	1	COI	L4
	frequency response										
2		03	1						1	CO1	L4
2	Design and set up the BJT common emitter voltage amplifier with and	03	1	-	-	-	-	-	1	COI	L4
	without feedback and determine the										
	gain- bandwidth product, input and										
	output impedances.										
3	Design and set-up BJT/FET i)	03	2	_	_	_	_	_	2	CO1	L4
	Colpitts Oscillator, and ii) Crystal								-	001	2.
	Oscillator										
4	Design active second order	03	2	-	-	-	-	-	2	CO2	L4
	Butterworth low pass and high pass										
	filters.										
5	Design Adder, Integrator and	03	2	-	-	-	-	-	2	CO2	L4
	Differentiator circuits using Op-Amp										
6	Test a comparator circuit and design a	03	2	-	-	-	-	-	2	CO2	L4
	Schmitt trigger for the given UTP and										
	LTP values and obtain the										
	hysteresis.										
8	Design Monostable and a stable	03	-	2	-	-	-	-	2	CO2	L4
	Multivibrator using 555 Timer.										
9	Simulation using EDA software- RC	03	-	2	-	-	-	-	2	CO2	L4
	Phase shift oscillator and Hartley										
	oscillator										
10	Simulation using EDA software-	03	-	2	-	-	-	-	2	CO3	L4
	Narrow Band-pass Filter and Narrow										
	band-reject filter			_							
11	Simulation using EDA software-	03	-	2	-	-	-	-	2	CO3	L4
	Precision Half and full wave rectifier										
12	Simulation using EDA software-	03	-	2	-	-	-	-	2	CO3	L4
	Monostable and A stable										
	Multivibrator using 555 Timer.		4.0						0.1		
-	Total	36	10	11	-	-	-	-	21	-	-

Note: Write CO based on the theory course.

2. Continuous Internal Assessment (CIA)

Evaluation	Weightage in Marks	CO	Levels
CIA Exam – 1	30	CO1, CO2	L2
CIA Exam – 2	30	CO3,C04	L4
CIA Exam – 3	30	CO4	L4

STATUTE OF THE	SKIT	Теа	ching Process	Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F03		Date: 27-2-2019
A RANGALORE T	Title:	Course Lab Manual		Page: 7 / 65
Copyright ©2017. cA	AS. All rights reserved.	1		
Assignment -	1	05	CO1, CO2	L2
Assignment - 2		05	CO3,C04	L4
Assignment -	3	05 CO4		L4
Othor Astisit	ing define			
Other Activities – define – Slip test		-	CO1 to CO4	L2, L3, L4
-		40		
Final C.	IA Marks	40	-	-

-		
SNo	Description	Marks
1	Observation and Weekly Laboratory Activities	05 Marks
2	Record Writing	10 Marks for each Expt
3	Internal Exam Assessment	20 Marks
4	Internal Assessment	40 Marks
5	SEE	60Marks
-	Total	100 Marks

D. EXPERIMENTS

Experiment 01 : COMMON SOURCE JFET/MOSFET AMPLIFIER

-	Experiment No.:	1 Marks		ate nned		Date Conducted	i i			
1	Title		COMMON SOURCE	JFET/N	IOSFET AMPL	IFIER				
2	Course Outcomes	Design analog characteristics.	circuits using E	3JT/FE1	s and eval	luate their	performance			
3	Aim	To design, setu	p and plot the freq	uency i	esponse of C	Common So	ource JFET			
		amplifie	amplifier and obtain the bandwidth.							
4	Material / Equipment	· ·								
	Required	Sl. No.	Particulars		Range	Q	uantity			
		1.	JFET (BFW10)		-	1				
		2.	Capacitor		47µF,0.1µF	1,	2			
		3.	Resistor		2ΜΩ, 820Ω,	,330Ω [1,	,1			
		4.	Power Supply		0-30V	1				
		5.	Signal Generato	r 2	2MHz	1				
		6.	CRO		-	1				
		7.	Multimeter		-	1				
		8.	Spring Board		-	1				
		9.	Connecting Wire	es ·	-	-				
5	Theory, Formula, Principle, Concept	·	voltage V_g is bi	ased th	rough the po	otential div	vider network			
		set up by the	resistors R_1 and	R_2	nd is biase	d to oper:	ate within its			
		1 5				1				
L		saturation regi	on which is equ	ivalent	to the acti	ve region	of the BJT.			

Unlike the BJT, the junction FET takes virtually no input gate current allowing the gate to be treated as an open circuit. Then no input characteristics curves are required.

Since the n-channel JFET is a depletion mode device, a negative gate voltage with respect to the source is required to modulate or control the drain current. This negative voltage can be provided by biasing from a separate power supply voltage or by self biasing arrangements as long as steady current flows through the JFET even when there is no input signal present and V_g maintains a reverse bias of the gate source p-n junction.

The input signal of the common source JFET amplifier is applied between the gate terminals with a constant value of gate voltage applied. The JFET operates within its ohmic region acting like a linear resistive device. The drain circuit contains the load resistor R_D . The output voltage is developed across this load resistance.

6	Procedure, Program, Activity, Algorithm,	•Check all the components and equipments for their good working
	Pseudo Code	condition.
		•Connections are made as shown in the circuit diagram.
		•By keeping the voltage knobs in minimum position and current knob
		in maximum position switch on the power supply.
		•By disconnecting the AC source measure the quiescent point.
		•To find frequency response:
		•Connect the AC source. Keeping the frequency of the Ac source in
		mid band region (say 10 kHz) adjust the amplitude to get the
		distortion less output. Note down the amplitude of the input signal.
		•Keeping the input amplitude constant, Vary the frequency in suitable
		steps and note down the corresponding output amplitude.
		•Calculate A_V and gain in decibels. Plot a graph of frequency V_S
		gain in dB. From the graph calculate f_L , f_H and band width.
		•Calculate figure of merit.
		•To find the input impedance (Z_i):
	t FC	

and the second second	STITUTE OF THE	SKIT		Teaching Proces	S	Rev No.: 1.0	
		Doc Code				Date: 27-2-2019	
Convrie	MGALORE	Title:	Course Lab Manua	al		Page: 10 / 65	
			vi 🛇	Amplifier Circuit	DRB		
8	Observat Look-up Output	Tab		V _o in Volt	$A_V = \frac{V_O}{V_I}$	Gain in dB=20	log
		_			-		
		_					
		_					
		_					
		_					
		_					
9	Sample (Calculation	$Given V_{DD} = 10V$	$V_{\rm GS(off)} = -4V$	$I_{\text{DSS(max)}} = 12 \text{m/}$	$A_{,R_G} = 2 M \Omega$	
			$I_D = 1$ Formulae,	$I_{\rm DSS} \left(\frac{1 - V_{\rm GS}}{V_{\rm GS(off)}} \right)^2$	-(1)		
			When $V_G = 0$,	Then $V_s = -V_{GS}$			
			But $V_s = I_D \times R_s$	-			
			When $V_G = 0$, I	$I_{\rm D} = I_{\rm DSS}$			
			$V_s = I_{\text{DSS}} \times R_s$	2 200			
			$I_{\rm DSS} \times R_{\rm S} = -V_{\rm GS}$	(
			$R_s = \frac{-(-4)}{12 \mathrm{mA}} = 33$	< <i>/</i>			
			Choose R	$R_s = 330 \Omega$			
			From Eq. (1)				
			$I_{D} = I_{\text{DSS}} \left(\frac{1 - I_{D}}{V_{\text{GS(o)}}} \right)$	$\left(\frac{R_s}{ff}\right)^2$			
			$I_D = I_{\text{DSS}} \left(\frac{1 + I_D^2}{1} \right)$	$\frac{\times R_s^2}{6} - \frac{I_D R_s}{2} \right)$			

Copyright ©2017. cAAS. All rights reserved.	·
	$I_{D} = 12 \times 10^{-3} \left(\frac{1 + I_{D}^{2} \times 330^{2}}{16} - \frac{I_{D} \times 330}{2} \right)$
	$81.675 I_D^2 - 2.98 I_D + 12 \times 10^{-3} = 0$
	$I_D = 4.6 \mathrm{mA}$ or $I_D = 31.9 \mathrm{mA}$
	Since I_D cannot be greater than I_{DSS} , Choose $I_D = 4.6 \text{ mA}$
	Assume $V_{\rm DS} = 50 \% V_{\rm DD}$, $V_{\rm DS} = 5 V$
	Applying KVL to output circuit
	$V_{\rm DD} = I_D R_D + V_{\rm DS} + I_D R_S$
	$V_{\rm DD} - V_{\rm DS} = I_D(R_D + R_S)$
	$\frac{10V-5V}{I_D} = (R_D + R_S)$
	$\frac{5V}{4.6\mathrm{mA}} = (R_D + R_S)$
	$R_D = \frac{5V}{4.6 \mathrm{mA}} - 330\Omega$
	$R_D = 756 \Omega$
	Choose $R_D = 820 \Omega$
10 Graphs, Outputs	
	Gain dB
	J 3dB
	Band width
	f
	f _L f _H
	f_L = Lower cutoff frequency f_H = Higher cutoff frequence
11 Results & Analysis	1. Quiescent point: $V_{DS} = \V \text{ and } I_D = \mA.$
	2. Voltage Gain (A_V) = (in mid band region).
	3. Bandwidth (BW) = Hz.
	4. figure of merit (FM) = Hz.
	5. Input impedance $(Z_i) = \\Omega$, Output Impedance (Z_o)
Dept EC	

NA MISTITU	TE OF TRO	SKIT	Teaching Process	Rev No.: 1.0
		Doc Code:	SKIT.Ph5b1.F03	Date: 27-2-2019
BANGA	LORE	Title:	Course Lab Manual	Page: 12 / 65
Copyright @	©2017. cAA	AS. All rights reserved.		· · · · · · · · · · · · · · · · · · ·
			_	

		=
12	Application Areas	Used in CRO
		used in electronic voltmeter
13	Remarks	
14	Faculty Signature with	
	Date	

Experiment 02 : BJT COMMON EMITTER AMPLIFIER

-	Experiment No.:	2	Marks	10	Date	Date				
					Planned	Conduct	ed			
1	Title		BJT COMMON EMITTER AMPLIFIER							
2	Course Outcomes	Design a	esign analog circuits using BJT/FETs and evaluate their performance characteristics.							
	Aim	To design and set up the BJT common emitter amplifier using voltage divider and without feedback and determine the gain- bandwidth product from its fr response.								
4	Material									
	Equipment Required	Sl. No.	Particulars		Range		Quantity			
	-	1.	Transistor (SI	_100/CL100)	-		1			
	-	1	Resistor	,	47KΩ, 1	.8ΚΩ,8.2ΚΩ,470Ω	1,1,1,1			
	-	3.	Capacitor		0.47µF,	47µF	2,1			
	-	4.	Signal Generation	ator	20MHz		1			
	-	5.	CRO		-		1			
	-	6.	Power Supply	/	0-30V		1			
		7.	Multimeter		-		1			
		8.	Spring Board		-		1			
		9.	Connecting V	/ires	-		-			
5	Theory, Formula, Principle, Concept	This type the supp Voltage capacito biasing o amplifier The outp	e of biasing a oly with their of divider biasing In common el rs to separate condition set of stages as th out AC signal	arrangement entre point s g is commoni mitter amplifi e the AC sig up for the cir e capacitors is then supe	uses two res supplying the y used in the er circuits, ca nals from the cuit to operat will only pass erimposed on	nplifier circuit uses volistors as a potential d required base bias volidesign of bipolar trans apacitors C_1 and C_2 and DC biasing voltage. The correctly is not affect as AC signals and block the biasing of the foll	ivider network across tage to the transistor. istor amplifier circuits. are used as coupling This ensures that the cted by any additional c any DC component.			
		bypass o	capacitor C_E	is included in	n the emitter I	eg circuit.				

Procedure, Program, Activity, Algorithm, Pseudo Code	Check all the components and equipments for their good working condition.Connections are made as shown in the circuit diagram.By keeping the voltage knobs in minimum position and current knob in maximum position switch on the power supply.By disconnecting the AC source measure the quiescent point.
	To find frequency response:
	 Connect the AC source. Keeping the frequency of the Ac source in mid band region (say 10 kHz) adjust the amplitude to get the distortion less output. Note down the amplitude of the input signal.
	2. Keeping the input amplitude constant, Vary the frequency in suitable steps and note down the corresponding output amplitude.
	3. Calculate A_V and gain in decibels. Plot a graph of frequency Vs gain in dB. From the graph calculate f_L , f_H and band width.
	4. Calculate figure of merit.
	To find the input impedance (Z_i) :
	1. Connections are made as shown in the diagram.
	 Keeping the DRB in its minimum position, apply input signal at mid band frequency (say 10kHz) and adjust the amplitude of the input signal to get distortion less output. Note down the output amplitude.
	3. Vary the DRB until the output amplitude becomes half of its previous value.
	The corresponding DRB value gives the input impedance.
	To find the output impedance (Z_O):
	1. Connections are made as shown in the diagram.
	2. Keeping the DRB in its maximum position, apply input signal at mid band
	frequency (say 10k Hz) and adjust the amplitude of the input signal to get
	distortion less output. Note down the output amplitude.
	3. Vary the DRB until the output amplitude becomes half of its previous value
	The corresponding DRB value gives the output impedance.

Let $V_{\text{RE}} = 10\% V_{\text{CC}} = 1V$

 $R_E = \frac{V_{\rm RE}}{I_C + I_R}$ $I_{B} = \frac{I_{C}}{\beta} = \frac{2 \text{ mA}}{100} = 20 \,\mu A$ $R_{E} = \frac{1}{2 \,\mathrm{mA} + 20 \,\mathrm{uA}} = 495 \,\Omega$ Choose $R_E = 470 \Omega$ Apply KVL to Collector Loop $V_{\rm CC} - I_C R_C - V_{\rm CE-iV_c=0}$ i $R_{C} = V_{CC} - \frac{V_{CE-iV_{E}}}{I_{C}} = \frac{10-5-1}{2m}i$ $R_c = 2K\Omega$ Choose $R_c = 1.8 K\Omega$ Let $IR_1 = 10 IB = 10 \times 20 \mu A = 200 \mu A$ $V_{R2} = V_{BE} + V_E = 0.6 + 1 = 1.6 V$ (Since transistor is silicon make $V_{BE} = 0.6 V$) $R_2 = \frac{V_{R2}}{IR_1 - IB} = \frac{1.6V}{200\mu + 20\mu} = 7.2K\Omega$ Choose $R_2 = 8.2 \text{ K}\Omega$ $R_{1} = \frac{V_{\rm CC} - V_{R2}}{\rm IR_{1}} = \frac{10 - 1.6}{200 \,\mu A} = 42 \, K \, \Omega$ Choose $R_1 = 47 \text{ K}\Omega$ The condition is that $X_{CE} \ll R_{E}$ $X_{\rm CE} = \frac{R_E}{10}$ $\frac{1}{2\pi f C_E} = \frac{470}{10}$ Let f=100Hz $C_F = 33 \,\mu F$ Choose $C_E = 47 \, \mu F$ Also $C_{C1} = C_{C2} = 0.47 \, \mu \text{F}$

S MI	STITUTE OF TO	SKI	Г	Teaching Process	Rev No.: 1.0
		Doc Co		SKIT.Ph5b1.F03	Date: 27-2-2019
ES + Q		Title		Course Lab Manual	Page: 16 / 65
Copyri	ght ©2017. cA/				
	Graphs,			in dB f_L f_L $f_L = Lower cutoff frequency f_H = H$	f in Hz $f_{\rm H}$
11	Results Analysis	&	1 2 3	escent point: $V_{CE} =_{i} \dot{i} \dot{i}$, $I_{C} =_{i} \dot{i} \dot{i}$.	and region).
	Applicati Areas			l in low noise amplifiers in radio frequencies transceiver circuits	
-	Remarks	6			
14	Faculty Signatur Date	e with			

Experiment 03 : COLPITTS OSCILLATOR AND CRYSTAL OSCILLATOR

-	Experiment No.:	3	Marks	10	Date	Date			
				F	Planned	Conducted			
1	Title		COLP	PITTS OSCILLA	TOR AND C	RYSTAL OSCILLATOR			
2	Course	Design a	analog circuits	using BJT/FETs	and evaluat	e their performance cha	racteristics.		
	Outcomes								
3	Aim	To Desię	gn and set-up	the following tur	ned oscillato	r circuits using BJT, and	l determine		
			the frequency of oscillation.						
			(a) Colpitts Os	cillator (b) Cryst	al Oscillator				
4	Material /								
	Equipment	Sl. No.	Particulars		Range		Quantity		
	Required	1.	Transistor	(SL100/CL100)	-		1		
		2.	Crystal		2MHz		1		
		3.	Resistor		47KΩ, 1	.8ΚΩ,8.2ΚΩ,470Ω	1,1,1,1		
	-	4.	Capacitor		0.47µF,4	47 μF	2,1		

A INSTITUTE OF IS
8 ANON OBE

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F03	Date: 27-2-2019
Title:	Course Lab Manual	Page: 17 / 65

Copyright ©2017 cAAS All rights reserved

opyright ©2017. cAAS. A	Il rights reserved.			
	6.	CRO	-	1
	7.	Power Supply	0-30V	1
	8.	Multimeter	-	1
	9.	Spring Board	-	1
	10.	Connecting Wires	-	-
	CRYS	TAL OSCILLATOR		·
	Sl. No.	Particulars	Range	Quantity
	1.	Transistor (SL100/CL100)	-	1
	2.	Crystal	2MHz	1
	3.	Resistor	47ΚΩ, 1.8ΚΩ,8.2ΚΩ,470Ω	1,1,1,1
	4.	Capacitor	0.47µF,47 µF	2,1
	5.	Decade Capacitance Box	-	2
	6.	CRO		1
	7.	Power Supply	0-30V	1
	8.	Multimeter	0-301	1
	9.		-	1
	<u> </u>	Spring Board	-	
5 Theory,		Connecting Wires	is an electronic oscillator that use	-
	with more CRYS Crystal o	e simple design. TAL OSCILLATOR: scillators are used in order to	uency stability of the oscillator is get stable sinusoidal signals desp nd circuit parameters. A piezo el	ite of variations
			circuit. Crystal works under the pr al applied across the crystal, it	
		-	nversely if the crystal is forced t	
	generate	an AC signal. Commonly used	l crystals are Quartz, Rochelle sal	t etc.
6 Procedure, Program, Activity,	1	. Connections are made as s	hown in the diagram.	

SKIT	Teaching Process	Rev No.: 1.0
Doc Cod		Date: 27-2-2019
Title:	Course Lab Manual	Page: 18 / 65
Algorithm, Pseudo Code		r the designed value. sure the frequency. requency. the diagram. for the designed value. neasure the frequency.
7 Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	ystal oscillator:	

SKIT Teaching Process Rev No: 1.0 Doc Code: SKIT.Ph5b1.F03 Date: 27-2-20 Title: Course Lab Manual Page: 19 / 65 Coryrph 2017. CASS A replice reserved. Coryrph 2017. Coryrph 2017. Cory	STITUTE		The Rive Decision	
Title: Course Lab Manual Page: 19 / 65 Copyright 2017. cAAS All rights reserved Image: 19 / 65 Copyright 2017. cAAS All rights reserved Image: 18 / 65 Copyright 2017. cAAS All rights reserved Image: 18 / 65 Copyright 2017. cAAS All rights reserved Image: 18 / 65 Copyright 2017. cAAS All rights reserved Image: 18 / 65 Copyright 2017. cAAS All rights reserved Image: 18 / 65 Copyright 2017. cAAS All rights reserved Image: 18 / 65 Copyright 2017. cAAS All rights reserved Image: 18 / 65 Copyright 2017. cAAS All rights reserved Image: 18 / 65 Copyright 2017. cAAS All rights reserved Image: 18 / 65 Copyright 2017. cAAS All rights reserved Image: 18 / 65 Image: 19 / 65 Image: 18 / 65 Image: 10 / 10 / 10 / 10 / 10 / 10 / 10 / 10				
Copyright 22017. cAAS. All rights reserved. $ \begin{array}{c} $				
8 Observation Table, Look-up Table, Output 9 Sample Calculations $C_{c_{1}}$ $C_{c_{1}}$ $C_{c_{1}}$ $C_{c_{1}}$ $R_{c_{1}}$ $R_{c_{1}}$ $R_{c_{1}}$ $R_{c_{2}}$ R_{c_{2}	MGALO			1 age. 197 00
Condition for oscillation $A \beta \ge 1$ $A = \frac{C_1}{C_2} C_1 = 2C_2$ Find C_{eq} from (d) and L from (c) crystal oscillator: Design: Given, $V_{CE} = 5V$ and $I_C = 2 \text{ mA}$, Assume $\checkmark = 100$ $V_{CC} = 2V_{CE} = 2 \times 5 = 10V$ Let $V_{RE} = 10\% V_{CC} = 1V$	B Observation Table, Lool Table, Outpu 9 Sample	All rights reserved n pok-up put $f_o =$ C_{eq} Con $f_o =$ C_{eq} Con $A \beta$ A = Find crys Desi Give V_{co}	pitts Oscillator tank circuit design: C_{1} C_{1} C_{1} C_{1} C_{2} C_{1} C_{2} C_{1} C_{2} C_{2} C_{1} C_{2} C_{2} C_{2} C_{2} C_{3} C_{4} T_{2} R_{2}	

Copyright ©2017. cAAS. All rights reserved.

$$R_{E} = \frac{V_{RE}}{I_{C} + I_{B}}$$

$$I_{B} = \frac{I_{C}}{\beta} = \frac{2 \text{ mA}}{100} = 20 \,\mu \text{ A}$$

$$R_{E} = \frac{1}{2 \text{ mA} + 20 \mu} = 495 \,\Omega$$
Choose $R_{E} = 470 \,\Omega$
Apply KVL to collector loop
$$V_{CC} - I_{C} R_{C} - V_{CE} - V_{E} = 0$$

$$R_{C} = \frac{V_{CC} - V_{CE} - V_{E}}{I_{C}} = \frac{10 - 5 - 1}{2m}$$

$$R_{C} = 2 \text{ K}\Omega \text{ Choose } R_{C} = 1.8 \text{ K}\Omega$$
Let $\text{IR}_{1} = 10I_{B} = 10 \times 20 \,\mu\text{A} = 200 \,\mu\text{A}$

$$\text{VR}_{2} = V_{BE} + V_{E} = 0.6 + 1 = 1.6 \text{ V} \text{ (Since transistor is silicon make } V_{BE} = 0.6 \text{ V} \text{)}$$

$$R_{2} = \frac{\text{VR}_{1}}{\text{IR} 1 - I_{B}} = \frac{1.6}{200 \,\mu\text{A} + 20 \,\mu\text{A}}$$

$$R_{2} = 7.2 \text{ K} \text{ choose } R_{2} = 8.2 \text{ K} \text{ s}$$

$$R_{1} = \frac{(V_{CC} - \text{VR}_{2})}{\text{IR}_{1}} = \frac{(10 - 1.6)}{200 \,\mu\text{A}} R_{1} = 42 \text{ K}\Omega$$

$$C_{\text{choose }} R_{1} = 47 \text{ K}\Omega$$

$$X_{CE} \ll R_{E}$$

$$X_{CE} = \frac{R_{E}}{10}$$
Let f = 100 Hz
$$C_{E} = 33 \text{ JF} \text{ Choose } R_{1} = 47 \text{ JF}$$
Choose $\text{CC}_{1} = \text{CC}_{2} = 0.47 \text{ JF}$

No. INC.	TITUTE OF TR	SKIT	Teaching Process	Rev No.: 1.0
		Doc Co	de: SKIT.Ph5b1.F03	Date: 27-2-2019
St BA	MGALORE	Title:	Course Lab Manual	Page: 21 / 65
	ght ©2017. cAA	-	served.	
10	Graphs, (Outputs	v_o π 2π T	t
	Results Analysis	&	Colpitts Oscillator: Theoretical frequency (f) = Hz Practical frequency (f) =	Hz.
			For Crystal = Hz.	
			For Practical = Hz.	
12	Applicatio	on		
	Areas			
13	Remarks			
	Faculty			
	Signature	e with		
	Date			

•••••

Experiment 04 :SECOND ORDER BUTTERWORTH LOW PASS AND HIGH PASS FILTER

-	Experiment No.:	4	Marks	10	Date	Date	
					Planned	Conducted	
1	Title	S	ECOND ORI	DER BUTTEI	RWORTH LOW	PASS AND HIGH PASS FILTE	R
2	Course Outcomes	Desig	gn analog cir	cuits using O	PAMPs and 558	5 timerfor different applications	i
3	Aim		To design a second order butter worth second order low pass and high pass filter or a given cut off frequency and draw the frequency response.				
4	Material	/			·		
	Equipment	Con	nponents Red	quired:			
	Required		1. IC 741	Op-Amp			
			2. Resisto	ors – As per th	ne design		
			3. Capacit	tor – As per tl	he design		
			4. Powers	supply			
		5. Signal generator					
			6. CRO				
5	Theory, Formula	,					
	Principle, Concept	Lo	w pass filter:	:			

Low pass filter allows only low frequency signal to pass through them. A low pass filter can be a combination of capacitance, inductance or resistance to produce high attenuation above a specified frequency & little or no attenuation below that frequency . The frequency at which the transition occurs is called cut-off frequency.

• A first order low pass Butterworth filter uses RC network for filtering. The op-Amp is used in non-inverting configuration.

The first order filter can be connected to second order LPF by using additional RC network as shown in fig1.

2nd order:

The stop-band response in 2nd order LPF is 40dB/decade. At low frequency, both capacitors appear open and the circuit becomes a non-

inverting amplifier
$$\left(\cdot \cdot X_{C} = \frac{1}{2 \pi FC} \right)$$

As frequency increase, the gain eventually starts to decrease untilit is down 3dB at the cutoff frequency. As frequency increase the cut off frequency, the o/p is attenuated.

b) High pass filter:

High pass filter passes high frequency signals to pass through it. Again frequency sensitive components such as capacitors & inductors are used in conjunction with the resistors.

The first order high pass filter is formed from first order low pass filter by interchanging the R&C components &second order HPF filter can be obtained from 2nd order LPF by interchanging R&C as shown in Fig3.

Copyright @2017 of	
Copyright ©2017. c/	4A3

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F03	Date: 27-2-2019
Title:	Course Lab Manual	Page: 23 / 65
AS. All rights reserved.	·	
	Here as frequency increase the capacitors	act as short & the

		Here as frequency increase, the capacitors act as short & the
		circuit behaves as amplifier with gain $ A_{ m f}^{}$ but when the frequency is
		low, the capacitor act as open circuit & hence very little signal passes
		through the circuit.
6	Procedure,	1. Rig up the circuits as show in the diagrams
	Program, Activity,	2 apply the input as specified
	Algorithm, Pseudo	3. vary the input signal frequency and note down the output voltages
	Code	and calculate the gain convert the gain in db
		4. plot the graph frequency/ gain in db and observe the cut-off points
		and calculate the roll off
	Block, Circuit,	
	Model Diagram,	
	Reaction Equation, Expected Graph	
		1+12V
		$R_2 = 1.8 K. R_3 = 1.8 K. R_3 = 741$
		+ 14
		$1\kappa \rho$ c_2 c_3 v_0 v_0
		2VP-P 0.01mt 0.01mt
		- +
		a) High pass filter
		Circuit Diagram:

AMST	TUTE OF TO	SKIT		Teaching Proces	S	Rev No.: 1.0
		Doc Code:	SKIT.Ph5b1.F0			Date: 27-2-2019
S* BANG	GALORE	Title:	Course Lab Ma	nual		Page: 24 / 65
Copyrigh	t ©2017. cAAS	3. All rights reserved	Ļ	R1 = 10K L MM		= 5.6 K.D. ev H 6 ev
L	Dbservati ₋ook-up Dutput	on Table, Table,		$V_i = 2V_{p-p}$		
			Frequency	I.		A
			(H_z)	V_o (V)	$A_{V} = \overline{V_{I}}$	20 LOG A_V
			. /			
	Sample Calculatio		LPF:	The higher cutoff frec s (3dB) below is given b		uency at which signal
			for	LPH: $f_{\rm H} = \frac{1}{2\pi\sqrt{R_2R}}$	$_{3}C_{2}C_{3}$	
			HP	F:		
				The lower cutoff free	uency that is the freq	uency at which signal
			stre	ength falls 3dB below th	is is aiven by	

	Doc Code.	SKIT.PH501.FU3	Dale. 27-2-201
	Title:		Page: 25 / 65
)17. c/	AS. All rights reserved	1	
		$f_{L} = \overline{2\pi \sqrt{R_2 R_3 C_2 C_3}}$	
		b) Low pass filter	
		Design 2 nd order LPF to obtain f_H = 9KHz	
		Solution:	
		$f_H = \frac{1}{2\pi\sqrt{R_2R_3C_2C_3}}$	
		Let $R_2 = R_3 = R \& C_2 = C3 = C$	
		$\therefore f_H = \frac{1}{2\pi RC}$	
		Choose $C = 0.01 \mu f$	
		1 1	
		:. $R = \frac{1}{2\pi f_H C} = \frac{1}{2\pi * 9K * 0.01 \mu f} = 1.768 k\Omega$	
		\therefore Choose R = 1.8K Ω	
		The pass band gain of 2^{nd} order filter = 1.586	
		$A_{f} = \frac{R_{f}}{R_{1}} = 1586$	
		$A_{f_{=1+}} R_{1_{=1.586}}$	
		$\frac{R_f}{R_1} = 0.586$	
		$R_{1} = 0.586$	
		Let $R_1 = 10 \mathrm{K}\Omega$ & hence $R_f = 0.586$	
		$R_1 => R_f = 5.86 \text{K}\Omega$	
	D	Design:	
	C	Design HPF to obtain f_H = 4 KHz	
	S	Solution:	
		$f_{\rm H} = \frac{1}{2\pi\sqrt{R_2R_3C_2C_3}}$	
		$f_{\rm H} = 2\pi \sqrt{R_2 R_3 C_2 C_3}$	
	L	$R_{1} = 2R \sqrt{R_{2}R_{3}} = R \& C_{2} = C3 = C \& \text{ hence}$	
		$f_{\rm H} = \frac{1}{2\pi RC}$	
	L	.et C =0.01µf	
		$R = \frac{1}{2\pi f_H c} = \frac{1}{2\pi * 4K * 0.01 \mu f} = 3.9 \text{K}\Omega$	
	ŀ	Hence choose R = 3.8 K Ω	

Rev No.: 1.0

Date: 27-2-2019

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F03	Date: 27-2-2019
Title:	Course Lab Manual	Page: 27 / 65

Copyright ©2017. cAAS. All rights reserved.

		HPF: 1) Cut off frequen	cy for HPF:
		Theoretical	Practical
		4 KH _z	
		2) Roll off rate	e: Practical
		40dB/dec	
12	Application Areas		gh frequencies sinusoidal signal umentation and in digital systems
13	Remarks	· /	
14	Faculty Signature with Date		

•••••

Experiment 05 : ADDER, INTEGRATOR AND DIFFERENTIATOR USING OP-AMP

-	Experiment No.:	5	Marks	10	Date Planned	Date Conducted		
1	Title	ADDEI	ADDER, INTEGRATOR AND DIFFERENTIATOR USING OP-AMP					
2	Course Outcomes	Desig	n analog cir	cuits using O	PAMPs and	555 timerfor different app	olications	
3	Aim	To c Op-Am	To design adder, integrator and differentiator circuit for given specification using Dp-Amp.					
4	Material / Equipment Required	1. 2. 3. 4. 5. 6. 7.	Capacitor Dc power Signal ger CRO	– as per the c – as per the c supply	design			
5	Theory, Formula, Principle, Concept	adder	The most) circuit. Fig s ${{V}_{1}}$ and	g. 1 shows th $V_{ m 2}$. Depend	ne inverting c	Op-Amp is the summing configuration of summing elationship between R_f ,	circuit with 2 the feedback	

STUSTITUTE OF THE	SKIT	Teaching Process	Rev No.: 1.0			
	Doc Code:	SKIT.Ph5b1.F03	Date: 27-2-2019			
RANGALORE +	Title:	Course Lab Manual	Page: 28 / 65			
Copyright ©2017. cAAS. All rights reserved.						

Copyright ©2017. cAAS. All rights reserved. amplifier, scaling amplifier or averaging Amplifier. The input expression for the
circuit can be written as (or obtained as)
$I_F = I_{1_+} I_2$
$\frac{-V_o}{R_f} = \frac{V_1}{R_1} + \frac{V_2}{R_2}$
$\therefore V_o = -\left[\begin{array}{cc} \frac{R_f}{R_1} & V_1 \\ + \left[\begin{array}{cc} \frac{R_f}{R_2} & V_2 \right] & \dots \end{array}\right] $ (1)
• If $R_1 = R_2 = R_f = R_{\text{ in (1), then}}$
V_{o} = $(V_{1}$ + $V_{2})$ summing amplifier. Here , the o/p voltage is
equal to negative sum of all the inputs. Hence circuit act as summing
amplifier.
• If R_1, R_2, R_f different, then the circuit is called scaling amplifier.
$\frac{R_f}{1}$
• If $R_1 = R_2 = R$ & if $\frac{R_f}{R} = \frac{1}{2}$, then the circuit can be used as an
averaging circuit.
2. Integrator:
A circuit in which the output voltage is the integral of the input
voltage is called integrator as shown in Fig2.
Relationship between voltage and current through capacitor is given by
$i_{c} = c \frac{dV_{C}}{dt}$
Applying Kirchhoff's law,
$i_1 \simeq i_f$
$\therefore \frac{V_{\text{in}}}{R_1} = C_F \frac{d(-V_O)}{dt}$
$\therefore V_{O} = -\frac{1}{R_1 C_F} \int_0^t V_{in} dt + \text{const}$
As seen ,the o/p voltage is directly proportional to the negative of the input
voltage and inversely proportional to time constant $R_1 \ C_F$.
• If $V_{\rm in}$ =0, then input offset voltage and the capacitor C _T produce error

oppright ©2017. cAAS. All rights reserved.
voltage at output of integrator. To reduce the error voltages, resistor R_F is
connected across the feedback capacitor $ C_{F} $.
- Addition of $R_{\scriptscriptstyle F}$ improves stability and low frequency roll off problems and
hence minimizes the variations in the output voltage.
• The input signal will be integrated properly if the time period T of the signal
is larger than or equal to $egin{array}{ccc} R_F & C_F \end{array}$.
• $\ldots T \geq R_F C_F$.
3. Differentiator:
Differentiator performs the mathematical operation of
differentiation. The output voltage can be expressed in Fig. 3 as
$i_c = i_F$
$\therefore C_1 \cdot \frac{d(V_{\rm in})}{dt} = \frac{V_O}{R_F}$
$\cdots V_O = R_F C_F \frac{d(V_{\rm in})}{dt}$
R_F
• The gain $\overline{X_{C1}}$ increase with increase in frequency. Also, the input
impedance \mathbf{X}_{C1} decreases with increase in frequency which makes
circuit susceptible to high frequency noise.
The stability & high frequency noise problem can be corrected by two
components $C_F \& R_1$.
The input signal will be differentiated properly if the time period T of
the input signal is larger than or equal to $egin{array}{ccc} R_F & C_1 \end{array}$.
• \ldots $\top \geq R_F C_1$.
6 Procedure, Adder:
Program, Activity, 1. Before wiring the circuit, check the components for its working.
Algorithm, Pseudo Code 2. Connect the circuit as shown in Fig.1.
3. Set the input voltages V_{1} and V_{2} and measure the output voltage V_{o}
using multimeter.
4. Compare theoretical and practical output voltages

The control of the second	NS	TITUTE OF	OVIT		Taashing Drasses	
 Title: Course Lab Manual Page: 30 / 65 Copyright 2007. AAS. All rights reserved Integrator Procedure: Check all the components for its working. Make the connections as shown in Fig.2. Set the input voltage using signal generator to 4V (or 2V) peak to peak square wave at 1KHz frequency. Observe the input & output signals of circuit on CRO. Sketch the output for RC = 10T & RC = T & RC = 0.1T. Differentiatorⁿ Check all the components for its working. Make the circuit diagram as show in Fig.3. Set the input voltage using signal generator to 4V (or 2V) peak to peak triangular wave at 1KHz frequency. Sketch the output for RC= 10T, 0.025T & varying R. Observe the output signal on CRO Plock, Circuit, Model Diagram, Reaction Equation, Expected Graph Adder circuit Quart and a structure as a structure			SKIT	SKIT	Teaching Process	Rev No.: 1.0
 Compart 2017 cMAS. At right reserved. 5. Integrator Procedure: 6. Check all the components for its working. 7. Make the connections as shown in Fig.2. 8. Set the input voltage using signal generator to 4V (or 2V) peak to peak square wave at 1KHz frequency. 9. Observe the input & output signals of circuit on CRO. 10. Sketch the output for RC = 10T & RC = T & RC = 0.1T. Differentiator" 11. Check all the components for its working. 12. Make the circuit diagram as show in Fig.3. 13. Set the input voltage using signal generator to 4V (or 2V) peak to peak triangular wave at 1KHz frequency. 14. Sketch the output for RC = 10T, 0.025T & varying R. 15. Observe the output signal on CRO 7 Block, Circuit, Model Diagram, Reaction Equation, Expected Graph Va						
 6. Check all the components for its working. 7. Make the connections as shown in Fig.2. 8. Set the input voltage using signal generator to 4V (or 2V) peak to peak square wave at 1KHz frequency. 9. Observe the input & output signals of circuit on CRO. 10. Sketch the output for RC = 10T & RC = T & RC = 0.1T. Differentiator" 11. Check all the components for its working. 12. Make the circuit diagram as show in Fig.3. 13. Set the input voltage using signal generator to 4V (or 2V) peak to peak triangular wave at 1KHz frequency. 14. Sketch the output for RC= 10T, 0.025T & varying R. 15. Observe the output signal on CRO 	Copyrig	ht ©2017. cA				· ugo: 00 / 00
 7. Make the connections as shown in Fig.2. 8. Set the input voltage using signal generator to 4V (or 2V) peak to peak square wave at 1KHz frequency. 9. Observe the input & output signals of circuit on CRO. 10. Sketch the output for RC = 10T & RC = T & RC = 0.1T. Differentiator" 11. Check all the components for its working. 12. Make the circuit diagram as show in Fig.3. 13. Set the input voltage using signal generator to 4V (or 2V) peak to peak triangular wave at 1KHz frequency. 14. Sketch the output for RC= 10T, 0.025T & varying R. 15. Observe the output signal on CRO 				5.	Integrator Procedure:	
 8. Set the input voltage using signal generator to 4V (or 2V) peak to peak square wave at 1KHz frequency. 9. Observe the input & output signals of circuit on CRO. 10. Sketch the output for RC = 10T & RC = T & RC = 0.1T. Differentiator" 11. Check all the components for its working. 12. Make the circuit diagram as show in Fig.3. 13. Set the input voltage using signal generator to 4V (or 2V) peak to peak triangular wave at 1KHz frequency. 14. Sketch the output for RC= 10T, 0.025T & varying R. 15. Observe the output signal on CRO 				6.	Check all the components for its working.	
square wave at 1KHz frequency. 9. Observe the input & output signals of circuit on CRO. 10. Sketch the output for RC = 10T & RC = 0.1T. Differentiator" 11. Check all the components for its working. 12. Make the circuit diagram as show in Fig.3. 13. Set the input voltage using signal generator to 4V (or 2V) peak to peak triangular wave at 1KHz frequency. 14. Sketch the output for RC= 10T, 0.025T & varying R. 15. Observe the output signal on CRO 7 Block, Circuit, Model Diagram, Reaction Equation, Expected Graph V_{2} $R_{4} = 2 \Gamma \Omega$ T_{1} V_{2} T_{2} T_{2} T_{3} T_{4} $T_{$				7.	Make the connections as shown in Fig.2.	
 9. Observe the input & output signals of circuit on CRO. 10. Sketch the output for RC = 10T & RC = T & RC = 0.1T. Differentiator" 11. Check all the components for its working. 12. Make the circuit diagram as show in Fig.3. 13. Set the input voltage using signal generator to 4V (or 2V) peak to peak triangular wave at 1KHz frequency. 14. Sketch the output for RC= 10T, 0.025T & varying R. 15. Observe the output signal on CRO 				8.	Set the input voltage using signal generator to $4V$	(or 2V) peak to peak
 10. Sketch the output for RC = 10T & RC = T & RC = 0.1T. Differentiator" 11. Check all the components for its working. 12. Make the circuit diagram as show in Fig.3. 13. Set the input voltage using signal generator to 4V (or 2V) peak to peak triangular wave at 1KHz frequency. 14. Sketch the output for RC = 10T, 0.025T & varying R. 15. Observe the output signal on CRO 					square wave at 1KHz frequency.	
7 Block, Circuit, Reaction Equation, Expected Graph 7 Block, Circuit, $Nder = Q E \Omega$ Q_{q} V_{2} Q_{q} V_{2} Q_{q} V_{2} Q_{q} V_{2} Q_{q} Q_{q				9.	Observe the input & output signals of circuit on CRO.	
 11. Check all the components for its working. 12. Make the circuit diagram as show in Fig.3. 13. Set the input voltage using signal generator to 4V (or 2V) peak to peak triangular wave at 1KHz frequency. 14. Sketch the output for RC= 10T, 0.025T & varying R. 15. Observe the output signal on CRO 7 Block, Circuit, Model Diagram, Reaction Equation, Expected Graph Adder circuit Reaction Equation, Expected Graph Adder circuit				10.	Sketch the output for RC = 10T & RC =T & RC = 0.1T	
 12. Make the circuit diagram as show in Fig.3. 13. Set the input voltage using signal generator to 4V (or 2V) peak to peak triangular wave at 1KHz frequency. 14. Sketch the output for RC= 10T, 0.025T & varying R. 15. Observe the output signal on CRO 7 Block, Circuit, Model Diagram, Reaction Equation, Expected Graph Adder circuit Ret = 2 K Ω Ret = 2 K Ω<td></td><td></td><td></td><td></td><td>Differentiator"</td><td></td>					Differentiator"	
 13. Set the input voltage using signal generator to 4V (or 2V) peak to peak to peak triangular wave at 1KHz frequency. 14. Sketch the output for RC= 10T, 0.025T & varying R. 15. Observe the output signal on CRO 7 Block, Circuit, Model Diagram, Reaction Equation, Expected Graph Adder circuit Reaction Equation, Expected Graph Adder circuit				11.	Check all the components for its working.	
triangular wave at 1KHz frequency. 14. Sketch the output for RC= 10T, 0.025T & varying R. 15. Observe the output signal on CRO 7 Block, Circuit, Model Diagram, Reaction Equation, Expected Graph $V_{\underline{1}}$ $Q_{\underline{2}} = Q \times \Omega$ $V_{\underline{2}}$ $Q_{\underline{3}} = Q \times \Omega$ $R_{\underline{2}} = 3,3 \times \Omega$ $R_{\underline{2}} = 3,3 \times \Omega$ $R_{\underline{2}} = 3,3 \times \Omega$				12.	Make the circuit diagram as show in Fig.3.	
14. Sketch the output for RC= 10T, 0.025T & varying R. 15. Observe the output signal on CRO 7 Block, Circuit, Model Diagram, Reaction Equation, Expected Graph Adder circuit V_{1} V_{2} V_{3} V_{4} V_{2} V_{2} V_{3} V_{4} V_{2} V_{2} V_{3} V_{4} V_{5} V_{5}	13. Set the input voltage using signal generator to 4V (or 2V) pea				(or 2V) peak to peak	
15. Observe the output signal on CRO 7 Block, Circuit, Model Diagram, Reaction Equation, Expected Graph Adder circuit $R_{4} = Q \times \Omega$ V_{1} V_{2} $R_{2} = 3,3 \times \Omega$ $=$ $=$ U_{1} $R_{2} = 3,3 \times \Omega$					triangular wave at 1KHz frequency.	
7 Block, Circuit, Model Diagram, Reaction Equation, Expected Graph V_{\perp} V_{\perp} $R_{d} = 2 \Sigma \Omega$ $R_{d} = 2 \Sigma \Omega$ $R_{d} = 3,3 \Sigma \Omega$				14.	Sketch the output for RC= 10T, 0.025T & varying R.	
Model Diagram, Reaction Equation, Expected Graph $R_{4} = 2 E \Omega$ $R_{4} = 2 E \Omega$ V_{1} $R_{2} = 3,3 E \Omega$ $R_{2} = 3,3 E \Omega$				15.	Observe the output signal on CRO	
Model Diagram, Reaction Equation, Expected Graph $\begin{array}{c} \text{Model Diagram,}\\ \text{Expected Graph}\\ \text{V}_{1} \\ \text{V}_{2} \\ \text{W}_{2} \\ \text{R}_{2} = 3,3 \text{ KD} \\ \text{T}_{2} \\ \text{T}_{2} \\ \text{T}_{2} \\ \text{T}_{3} \\ \text{T}_{4} \\ \text{T}_{4} \\ \text{T}_{4} \\ \text{T}_{5} \\ T$						
Model Diagram, Reaction Equation, Expected Graph $R_{4} = 2 E \Omega$ $R_{4} = 2 E \Omega$ V_{1} $R_{2} = 3,3 E \Omega$ $R_{2} = 3,3 E \Omega$						
Model Diagram, Reaction Equation, Expected Graph $\begin{array}{c} \text{Model Diagram,}\\ \text{Expected Graph}\\ \text{V}_{1} \\ \text{V}_{2} \\ \text{W}_{2} \\ \text{R}_{2} = 3,3 \text{ KD} \\ \text{T}_{2} \\ \text{T}_{2} \\ \text{T}_{2} \\ \text{T}_{3} \\ \text{T}_{4} \\ \text{T}_{4} \\ \text{T}_{4} \\ \text{T}_{5} \\ T$	7	Diagle	Circuit			
Reaction Equation, Expected Graph V_1 $R_2 = 2 \times \Omega$ V_2 $R_2 = 3,3 \times \Omega$ $R_2 = 3,3 \times \Omega$ $R_3 = 3,3 \times \Omega$	1		-	А	dder circuit	
Expected Graph $V_{\underline{1}}$ $V_{\underline{2}}$ $V_{\underline{2}}$ $R_{\underline{1}} = \underline{2} \Sigma \Omega$ $\overline{7}$			-		Rf = 10 K P	
$V_{1} \qquad \qquad$		Expecte	d Graph			
$V_{1} \qquad \qquad$					Q1-250 1+12V	
$V_{Q} \qquad \qquad$				V1	an	
$R_2 = 3,3 \text{ KD}$				Ma		
				v 2		
: = ¥						
Integrator:				:		-
Integrator:						
				Integ	jrator:	

Copyright ©2017. cAAS. All rights reserved

 $\frac{R_f}{\text{Given}} = \frac{R_f}{R_1} = 5 \& \frac{R_f}{R_2} = 3$ $\therefore R_f = 5R_1, R_f = 3R_2$ Choose $R_f = 10 \text{ K}\Omega$ $\therefore R_1 = \frac{R_f}{5} = \frac{10k}{5} = 2K\Omega \qquad R_1 = 2K\Omega$ $R_2 = \frac{R_f}{3} = \frac{10k}{3} = 3.3 \text{K}\Omega \dots R_2 = 3.3 \text{K}\Omega$ **Integrator Design:** Given T = 1ms a) Let RC =10T Choose C=0.1µf $\therefore R = \frac{10T}{C} = \frac{10*1*10^{-3}}{0.1*10^{-6}}$ R =100kΩ b) If RC = T $\therefore R = \frac{T}{C} = \frac{1 \times 10^{-3}}{0.1 \times 10^{-6}}$.∴ R =10KΩ c) If RC =0.1 T $0.1*1*10^{-3}$ R = 0.1×10^{-6} $R = 1K\Omega$ **Differentor Design:** Given T = 1ms a) Let RC =10T Choose C =0.1µf $\therefore R = \frac{10T}{C} = \frac{10*1*10-\dot{c}^{3}}{0.1*10^{-6}}\dot{c}$ $R = 100k\Omega$ b) If RC =0.025T R = $\frac{0.025T}{C}$ = $\frac{0.025*1*10^{-3}}{0.1*10^{-6}}$ R = 250Ω

100						
OF TRO	SKIT	Teaching Process	Rev No.: 1.0			
B	Doc Code:	SKIT.Ph5b1.F03	Date: 27-2-2019			
READ	Title:	Course Lab Manual	Page: 34 / 65			
2017. cAAS. All rights reserved.						

Copyrig	pht ©2017. cAAS. All rights reserve	d
		2. The operation of integrator circuit is verified.
		3. Operation of differentiator circuit is verified.
12	Application Areas	The odder eizewit is commonly used in
		The adder circuit is commonly used in
		1). Analog computers
		2). Audio mixers in which no of inputs are added or mixed to produce
		desired output.
		Integrator is commonly used in
		1. Analog computers.
		2. Analog to digital converter.
		3. Signal wave shaping circuits
		Differentiator is commonly used in
		1. Wave shaping circuits to detect high frequency component in input
		signal.
		2. Rate of change detector in FM modulators.
13	Remarks	
	Faculty Signature	
	with Date	

Experiment 06 : SCHMITT TRIGGER

-	Experiment No.:	6	Marks	10	Date Planned	Date Conducted	
1	Title	SCHMITT TRIGGER					
2	Course Outcomes	Des	sign analog ci	rcuits using	OPAMPs and 5	555 timerfor different app	lications
3	Aim	De	esign and Te	sting of Schr	nitt trigger circuit	for different hysteresis v	/alue
	Material / Equipment Required	IC trainer, signal generator, CRO. Resisters, OP AMP, Patch Chords, Digital multimeter.					
5		A, A Schmitt trigger is a comparator circuit with hysteresis implemented by applying positive feedback to the non inverting input of a comparator or differential amplifier. It is an active circuit which converts an analog input signal to a digital output signal. In the non-inverting configuration, when the input is higher than a chosen threshold, the output is high. When the input is below a different (lower) chosen threshold the output is low, and when the input is between the two levels the output retains its value. This dual threshold action is called hysteresis and implies that the Schmitt trigger possesses memory and can act as a bistable multivibrator. Schmitt trigger devices are typically used in signal conditioning applications to remove noise from signals used in digital circuits, particularly mechanical contact bounce. They are also used in closed loop negative feedback configurations to					

Copyright ©2017. cAAS. All rights reserved

implement relaxation oscillators, used in function generators and switching power supplies.

Test a Comparator circuit

An inverting 741 IC op-amp comparator circuit is shown in the figure below. It is called an inverting comparator circuit as the sinusoidal input signal Vin is applied to the inverting terminal. The fixed reference voltage Vref is give to the noninverting terminal (+) of the op-amp. A potentiometer is used as a voltage divider circuit to obtain the reference voltage in the non-inverting input terminal. Bothe ends of the POT are connected to the dc supply voltage +VCC and -VEE. The wiper is connected to the non-inverting input terminal. When the wiper is rotated to a value near +VCC, Vref becomes more positive, and when the wiper is rotated towards -VEE, the value of Vref becomes more negative. The waveforms are shown below.

Inverting Comparator circuit

a state	TITUTE OF TRO	SKIT	Teaching Process	Rev No.: 1.0
		Doc Code:	SKIT.Ph5b1.F03	Date: 27-2-2019
* 84	WGALORE *	Title:	Course Lab Manual	Page: 36 / 65
	Procedu		$\frac{1}{V_{in}} + \frac{V_{in}}{V_{ref}} + \frac{V_{ref}}{V_{ref}} + V_{r$	Vin 0 V - Vref - Vp +Vsat Vout 0 V - Vsat Vout 0 V - Vsat Input output
	Program Algorithr Code	n, Activity,	 Apply an input of 10V p-p, 1 kHz to the input tern Observe the output waveform and measure th V_{LTP} in the x-y mode or the y-t mode. Also measure 	ne practical values of V_{UTP} ,
	Block, Model Reactior Expecte	Circuit, Diagram, n Equation, d Graph	Vin $10^{10^{10} \text{ p-p}}$ \downarrow	Vout L_
	Observa Look-up Output	· · · · ·		
9	Sample Calculat		Design: Formulae: $V_{UTP} = V_{SAT} . R_2 / (R_1 + R_2) + V_{REF} . R_1 / (R_1 + R_2).$ $V_{LTP} = V_{SAT} (-R_2) / (R_1 + R_2) + V_{REF} . (R_1) / (R_1 + R_2)$ Adding (1) and (2)	
			$V_{UTP} + V_{LTP} = V_{REF} 2R_1 / (R_1 + R_2)$ $V_{UTP} - V_{LTP} = V_{SAT} = 2R_2 / (R_1 + R_2)$	

ST.	STITUTE OF IR	SKIT	Teaching Process	Rev No.: 1.0
		Doc Code:	SKIT.Ph5b1.F03	Date: 27-2-2019
or of	MGALORE	Title:	Course Lab Manual	Page: 37 / 65
Copyri	ght ©2017. cA	AS. All rights reserve		
			$V_{UTP} = 4V, V_{LTP} = 2V,$ $V_{SAT} = 12V$ From (4) $R_2/(R_1+R_2) = 0.08333$ Therefore $R_1/R_2 = 12$	1
			Choose $R_2 = 1$ k ohm, $R_1 = 11$ k ohm From (3) $V_{REF} = (V_{UTP} + V_{LTP})$. $(R_1 + R_2) / (2 R_1)$, $V_{REF} = (6. 12 \times 10^3) / (2. 7)$ $V_{REF} = 3.272V$	
10	Graphs,	Outputs	Vin ↓vsat 1	
			+V _{sat} -V _{sat}	UTP Vin
11	Results	& Analysis	V _{UTP} (Practical) =Volts. V _{LTP} (Practical) =Volts. V _{+sat} =Volts. V _{-sat} =Volts.	
12	Applicat	ion Areas	Used in signal conditioning to remove noise	
	Remark			
14	Faculty with Dat	Signature e		

Experiment 07 : R-2R DAC USING OP-AMP

-	Experiment No.:	8	Marks	10	Date	Date		
					Planned	Conducted		
1	Title	R-2R	DAC USING C	P-AMP				
2	Course Outcomes	Desig	gn analog cir	cuits using O	PAMPs and 555	timerfor different applications		
3	Aim	.1. To design 4 bit R-2R digital to analog convertor using Op-Amp and verify its operation using input toggle switch. 2. To generate staircase waveform using mod-16 counter.						
	Material Equipment Required	/ Cor		Op-Amp ors –As per th wer supply	e design			

0		- 4	
Copyri	ght ©2017. cAAS. All rights reserve	5. CRO	
		6. Millimeter / Voltmeter	
		7. IC7493 or equivalent	
	Theory, Formula, Principle, Concept	R-2R DAC is shown in Fig. 1. It consists of only two resisted	-
		ladder network and an Op-Amp acting as voltage follower. H are digital inputs which are controlled by the Switches S_0 , S_0 . When the digital input is '1', then the corresponding switch	$_{1}, S_{2, \&} S_{3}$
		2R to $V_{ m ref}$ and when digital input is '0', then the switch con	nnects the resistor 2R
		to the ground line. Since the ladder is composed of linear	resistors, it is a linear
		network and hence principle of superposition can be used	to obtain the output
		voltage.	
		• The analog output voltage $ V_{\scriptscriptstyle {\it o}}$ for 4 bit DAC can be	written as
		$V_{o} = [2^{3}D_{3}+2^{2}D_{2}+2^{1}D_{1}+2^{0}D_{0}+\dot{c}\dot{c}]V_{1}$ where	e
		$V_{1} = \begin{bmatrix} \frac{V_{\text{ref}}}{2^{N}} & \frac{2R}{R+2R} \end{bmatrix} = \frac{V_{\text{ref}}}{2^{N}} \begin{bmatrix} \frac{2R}{3R} \end{bmatrix} = \frac{V_{\text{ref}}}{2^{N}}$	$\frac{r_{\text{ref}}}{N} = \frac{2}{3}$
		Since N=4 [4 bit DAC], V_1 becomes	
		$V_1 = \frac{V_{ref}}{2^4} \star \frac{2}{3}$	
		$V_1 = \frac{V_{\text{ref}}}{24}$	
		$\therefore V_o = [8D_3 + 4D_2 + 2D_1 + D_0]^* \frac{V_{\text{ref}}}{24}$	
6	Procedure, Program, Activity,	1. Verify the components for its working.	
	Algorithm, Pseudo		
	Code	3. For different digital inputs, measure the output voltage using	a multimeter.
		4 Verify whether the theoretical values is matching with prac	-
		graph of input V/s output.	
		Procedure: 1. Check the components for its working.	
		2. Make connection as shown in Fig. 3.	
		3. Construct modulo16 counter using suitable IC like 7493 or	74193.
		3. Construct modulo16 counter using suitable IC like 7493 or	/4193.

INSTITUTE OF	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F03	Date: 27-2-2019
	Title:	Course Lab Manual	Page: 39 / 65
Copyright ©2017. cA	AS. All rights reserved		
7 Block,	circuit,	4. Apply clock (Say 1KHz or 10KHz) and observe staircase was 5. Find resolution and sketch input and output waveform on gra R-2R ladder Network:	
Model Reaction	Diagram,	a). circuit diagram: a). circuit diagram: $ \begin{array}{c} $	od-16 counter

WAINST	TUTE OF TRA	S	SKIT			Теа	aching P	rocess		Rev No.: 1.0
		Doc	c Code:	SKIT.Ph	5b1.F03					Date: 27-2-2019
at BAN		٦	Title:	Course L	∟ab Man	ual				Page: 40 / 65
pyrigh	ht ©2017. cA/	AS. All ri	ights reserved							
							1	R=1KL &KL &KL 74193	$R = 1 K \Omega$ $Q K \Omega$ Q K Q K Q Q K Q K Q K Q Q K Q K Q K Q Q K Q K Q K Q K Q K Q K Q K Q K Q K Q K	
L	Observa Look-up Output		Table, Table,	Tabular	column: Digital ir					Analog output voltage
L				Г			D ₁		_ Decimal equivalent	Analog output voltage Theoretical V_0 (V)
L	Look-up				Digital ir D_3	nputs			equivalent	Theoretical V_0 (V)
L	Look-up			-	Digital in D_3	D ₂	0	0	equivalent 0	Theoretical V_0 (V)
L	Look-up			-	Digital ir D_3	nputs			equivalent	Theoretical V_0 (V)
L	Look-up				Digital in D_3	nputs <i>D</i> ₂ 0 0	0 0	0	equivalent 0 1	Theoretical V ₀ (V) 0 0 0.20833 0
L	Look-up				Digital in <i>D</i> ₃ 0 0 0	nputs D ₂ 0 0 0 0	0 0 1	0 1 0	equivalent 0 1 2	Theoretical V ₀ (V) 0 0.20833 0.4166 0.625 0.833 0.833
L	Look-up				Digital in <i>D</i> ₃ 0 0 0 0 0	D ₂ 0 0 0 0 0	0 0 1 1	0 1 0 1	equivalent 0 1 2 3	Theoretical V ₀ (V) 0 0.20833 0.4166 0.625 0.625 0.625
L	Look-up				Digital in <i>D</i> ₃ 0 0 0 0 0 0 0	nputs D ₂ 0 0 0 0 1	0 0 1 1 0	0 1 0 1 0	equivalent 0 1 2 3 4 5 6	Theoretical V ₀ (V) 0 0.20833 0.4166 0.625 0.833 0.833
L	Look-up				Digital in D ₃ 0 0 0 0 0 0 0 0 0	nputs D ₂ 0 0 0 0 1 1 1 1 1	0 0 1 1 0 0 0 1 1	0 1 0 1 0 1 0 1 0 1	equivalent 0 1 2 3 4 5 6 7	Theoretical V ₀ (V) 0 0.20833 0.4166 0.625 0.833 1.00416 1.25 1.45 1.45
L	Look-up				Digital in D ₃ 0 0 0 0 0 0 0 0 0 1	nputs D ₂ 0 0 0 1 1 1 1 0	0 0 1 1 0 0 1 1 1 0	0 1 0 1 0 1 0 1 0 1 0 1 0	equivalent 0 1 2 3 4 5 6 7 8	$\begin{array}{c c} & & & \\ \hline \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \\ \hline \\$
L	Look-up				Digital in D ₃ 0 0 0 0 0 0 0 0 1 1 1	nputs D ₂ 0 0 0 1 1 1 1 0 0 0	0 0 1 1 0 0 0 1 1 1 0 0 0	0 1 0 1 0 1 0 1 0 1 0 1	equivalent 0 1 2 3 4 5 6 7 8 9	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
L	Look-up				Digital in D ₃ 0 0 0 0 0 0 0 0 0 1 1 1 1	nputs D ₂ 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0	0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	equivalent 0 1 2 3 4 5 6 7 8 9 10	Theoretical V_0 (V) 0 0.20833 0.4166 0.625 0.833 1.00416 1.25 1.45 1.66 1.875 2.05 0.5
L	Look-up				Digital in D ₃ 0 0 0 0 0 0 0 0 1 1 1 1 1	nputs D ₂ 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	equivalent 0 1 2 3 4 5 6 7 6 7 8 9 10 10 11	$\begin{array}{c c} & & & \\ \hline \text{Theoretical} & V_0 & (\vee) \\ \hline 0 & & \\ 0.20833 & & \\ 0.4166 & & \\ 0.625 & & \\ 0.833 & & \\ 1.00416 & & \\ 1.25 & & \\ 1.45 & & \\ 1.45 & & \\ 1.66 & & \\ 1.875 & & \\ 2.05 & & \\ 2.29 & & \\ \end{array}$
L	Look-up				Digital in D ₃ 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1	nputs D ₂ 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 0	0 0 1 1 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1 0	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	equivalent 0 1 2 3 4 5 6 7 8 9 10 11 11 12	Theoretical V_0 (V) 0 0.20833 0.4166 0.625 0.833 1.00416 1.25 1.45 1.45 1.66 1.875 2.05 2.29 2.50
L	Look-up				Digital in D ₃ 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1	nputs D ₂ 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1	0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	equivalent 0 1 2 3 4 5 6 7 6 7 8 9 10 10 11 12 12 13	Theoretical V_0 (V) 0 0.20833 0.4166 0.625 0.833 1.00416 1.25 1.45 1.45 1.66 1.875 2.05 2.29 2.50 2.708 2.708
L	Look-up				Digital in D ₃ 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1	nputs D ₂ 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 0	0 0 1 1 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1 0	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	equivalent 0 1 2 3 4 5 6 7 8 9 10 11 11 12	Theoretical V_0 (V) 0 0.20833 0.4166 0.625 0.833 1.00416 1.25 1.45 1.45 1.66 1.875 2.05 2.29 2.50

S METITUTE OF THE	SKIT		Teaching Process	6	Rev No.: 1.0
	Doc Code:		Date: 27-2-2019		
Copyright ©2017, cA	Title:	Course Lab Man	ual		Page: 41 / 65
		Step width		Resolution	
		Ideal	Obtained	Ideal	Obtained
			Stepsize		
		% Resolution =	Full scale *100		
			Stepwidth		
		=	4 *100		
9 Sample		Given: No of step	ne =15		
Calculat		Solution:			
		w.k.t, No	of steps = $2^N - \dot{c} \dot{c}_1$		
			$15 = 2^{N} - \frac{1}{6} \frac{1}{6}$		
			$14 = 2^{N}$		
		Apply	\log_2 on both sides		
		log ₂ 14	$= \log_2 2^N$		
		log ₂ 14	=N		
		log 14			
		log 2 =	• N		
		N	1 = 3.8		
		F	Resolution = N		
		Use 4 bit DAC with	minimum step size as	0.208V.	
		This is a 4 bit R-2F	R ladder N/W shown in I	Fig3.	
		a) Given :N=	-4 and step size =0.5V		
		Solution:			
			$=\frac{V_{\rm ref}}{24}=\frac{5}{24}=0.20$		
		Minimum step size	= 24 = 24 = 0.20	8V	
		Given step = 0.5V			
		Maximum o/p vo	oltage = V_{omax} = step s	size * No of step	os
			= 0.5	* (^{2⁴} -1)	
			= 0.5	5 * 15	
			= 7.5	5V	
		Given steps =0.5			

INSTITUTE OF	

STUSTITUTE OF THE	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F03	Date: 27-2-2019
ANGALORE *	Title:	Course Lab Manual	Page: 42 / 65
Copyright ©2017. cA	AS. All rights reserved.		

Copyri	ght ©2017. cAAS. All rights reserve	ed.													
		\therefore Gain = A_f =	G min	iven imu	ster m st	<u>р</u> .ер	=	$\frac{0.5}{0.20}$: 2 4\	/				
						I				2.70	v				
		But $A_f = 1 + \frac{R_f}{R_f}$	- L												
		$2.4 = 1 + \frac{\frac{R_f}{R_1}}{R_1}$													
		$\frac{R_f}{R_1} = 1.4$													
		$\therefore R_{f = 1.4} R_1$													
		Let $R_1 = 10 \mathrm{K}\Omega$													
		$R_f = 1.4*10 \text{ K}$	Ω												
		= 14KΩ													
		$R_f \approx 15 \mathrm{K}\Omega$													
10	Graphs, Outputs	Specimen graph:										ş	tepwidth		
					-		·					11	}-		
		Vout Analog			+-+					+-					
		output									Ц				
		-			+		ļ			 -	╃╌╞	+	1		
					11				Ц		j	+	1		
		-			+				┩╌┼		┝╌┣		1		
					1				1			+			
		-			+		I				┿╍┡		-		
									1				1		
		-			┦						+		1		
					<u>+</u>		;		††		† 	+	1		
		I										,	j Digital	input	
		000	1000	0100	0100	0110	0111	1001 1001	1010	1101	IOLI	911	, Signa	mpar	
11	Results & Analysis	1.The obtain 2. Working o													
12	Application Areas	Typical application graphics general circuits, digital filt	ons f tions,	or D pro	/A (conve	ertei								
13	Remarks														
14	Faculty Signature with Date	•													
		J													

Experiment 08 : ASTABLE AND MONOSTABLE MULTIVIBRATOR USING IC 555

-	Experiment No.:	8 Marks	10	Date Planned		Date Conducted	
1	Title	ASTABLE AND M	IONOSTABLE M		RUSING IC 55		
2	Course Outcomes	Design analog					ications
3	Aim		ble multi-vibrate 75 duty cycle (u	or using IC 5 nsymmetrica	55 timer to ge) and 0.5 dut	enerator a clo	ck frequency
4	Material Equipment Required	 Capacit Power s 	s – As per the c ors – As per the	-			
		6. Signal c	enerator				
5	Theory, Formula Principle, Concept	is a rectal external tri during white & capacito Fig.1 show understand 555 timer. Ini R_A and $V_{\rm CC}$, cor capacitor of	vibrator: An astable mungular wave g gger to change ch the output is rs which are co ws the 555 t d the circuit op tially when outp R_B . However, nparator -1 trig C starts dischar ross C equals	enerating cire the output & either high o nnected exter imer connect erations cons out is high, ca as soon as v ggers the flip arging throug	cuit. The circ hence the na r low is deter mally. ted as an sider the inter apacitor C sta poltage across o-flop and th h R_B and	cuit does not ame free runn mined by the astable mult ernal block dia arts towards s the capacito e o/p switch transistor <i>Q</i>	require any ing. The time two resistors ivibrator. To agram of the $V_{\rm CC}$ through or equals $\frac{2}{3}$ es low. Now

Copyri	ght ©2017. cAAS. All rights reserve	
		$V_{ m CC}$ & when capacitor discharge through $R_{\scriptscriptstyle B}^{}$, an extra current is supplied to $Q_{1}^{}$
		by $V_{ m CC}$ through short between 7 & $V_{ m CC}$ which damages Q_1 & hence timer.
		Without reducing $R_{_A}$ to 0 Ω , the astable multi-vibrator can produce square
		wave output simply by connecting diode across $R_{\scriptscriptstyle B}$ as shown in Fig.3.
		2. Monostable multivibrator:
		A monostable multi-vibrator is often called as one shot
		multi-vibrator. It is a pulse generating circuit in which the duration of the pulse is
		determined by the RC network connected externally. When an external trigger
		pulse is applied, the output is forced to go high. The time the output remains high is
		determined by the external RC network connected to the timer. At the end of time
		interval, the output automatically reverse back to its logic low stable states. The
		output stays low until the trigger pulse is again applied. Then the cycle repeats. The
		monostable circuit has only one stable state & hence the name monostable.
		Circuit operation:
		The circuit is shown in Fig. 5. Initially, when the output is low,
		transistor $Q_1^{}$ is on & capacitor C is shorted to ground. However, upon the
		application of negative trigger pulse to pin 2, transistor Q_1 is turned off, which
		releases the short circuit across the external capacitor C & drives the output
		high.The capacitor C now starts charging up towards $V_{ m CC}$ through $R_{_A}$.
		2
		However,when the voltage across the capacitor equals $\overline{\ 3}$ $V_{ m CC}$, comparator 1
		output switch from low to high which in turn dives the output to its low state via the
		flip-flop. The output of flip-flop turns $Q_1^{}$ ON & hence capacitor C rapidly
		discharges through the transistor. The output remains low until a trigger pulse is
		applied again. The time during which the output remains high is given by
		$t_{p} = 0.69 R_{A} C$
6	Procedure, Program, Activity,	Procedure: Astable multi-vibrator:
	Algorithm, Pseudo	
	Code	 D=50% Verify the components for its working.

PHISTITU	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F03	Date: 27-2-2019
BANGA	Title:	Course Lab Manual	Page: 46 / 65
Copyright	©2017. cAAS. All rights reserve	 Connect the Astable multi-vibrator circuit as shown in 	Fig.1.
		3. Switch the DC power supply ($V_{ m CC}$ = 12V) and	-
			a observe the output
		waveform. On CRO at pin 3.	
		4. Measure the output pulse amplitude.	
		5. Observe capacitor voltage waveform at pin 6 & me	asure the maximum &
		minimum levels ($V_{ m UT}$ & $V_{ m LT}$).	
		6. Calculate duty cycle'd' & output frequency f & verify v	vith theoretical values.
		ii) For D $\leq i i$ 50%	
		1. Connect the circuit as shown in Fig. 3.	
		2. Set $R_A = R_B = R$ [For 50% duty cycle].	
		3. Select suitable value for C.	
		4. Measure output voltage & note capacitor voltage	on CRO & measure
		$V_{\rm UT}$, $V_{\rm LT}$.	
		5. Calculate d & output frequency f.	
		Monostable multi-vibrator:	
		1. Check the components for its working.	
		2. Connect the circuit as shown in Fig. 5.	
		3. Switch power supply ON & apply periodic input trigge	r pulse [negative going
		trigger] at pin 2 using pulse generator (or signal gen	erator).
	4. /	djust input frequency of pulse generator to 80Hz & adjust the	e input pulse amplitude
		o 12V.	
		5. Observe timer output at pin 3 on CRO & calculate f.	
		NOTE: If T = 1 ms, then f = 1KHz, Set input freq \dot{c} 1KHz say	800/500Hz
		If T =10 MS , then f = 100Hz , Set input freq i	100Hz say 80Hz
1	lock, Circuit,		
	lodel Diagram,	1. Astable multivibrator	
	eaction Equation, xpected Graph	Circuit diagram:	
	Letter erebit	I. Un- symmetrical Astable multivibrator:	

S. M.	STITUTE OF THE	S	KIT				Теа	aching Pr	ocess	3			Rev	/ No.: 1.0)
		Doc	Code:	SKI	T.Ph5b1.F	03							Dat	e: 27-2-2	019
*0	ANGALORE *		itle:		irse Lab M	anual							Pag	ge: 48 / 6	5
	ght ©2017. cĀ	Αδ. ΑΠΤΙΟ	nis reserve	۰ <u>٦</u>			4 92 5	55 =	3 6 7	,	RA + -	• out	put		
8	Observa	tion	Table,												
	Look-up		Table,	V	/UT (V)	V _{LT}	г (V)			(mS))		(mS)		T(mS)
	Output		The	eoreti			retica				/		(110)		
			al		/3Practical			Practical	Theo	retica	Practical	Theo	retical	Practical	Theoretica
				CC		V _{CC}									
				mon	ostable m	ultivibr	rator								
				٦	(ms)					2/3	V _{CC (V)}				
				ſ	heoretical		Pra	ctical			oretical		Pract	ical	
							<u>I</u>			<u> </u>					
9	Sample	ione		Desi											
	Calculat	10115		-	n Astable	multi-	vibrat	or to proc	luce '	IKHz :	square w	ave v	vith du	ty cycle o	ot 75%.
				Solut) 75 f	- 4 1211							
					duty cycle										
				Timo	period T=	$\frac{1}{f}$ -	$\frac{1}{1 \text{ K}}$	Hz _1~	16						
								= i m	15						
				But T	$= T_{H} + 7$	L									

 \therefore 1ms = $T_H + T_L$ (1) T_H Duty cycle, D = T $0.75 = \frac{T_H}{T} \dots T_H = 0.75$ $T_{H} = 0.75(1 \text{ ms})$ $T_{H} = 0.75 \text{ms}$ (2) Substitute Eq. (2) in Eq. (1) gives $T_L = T_T T_H$ =1m – 0.75m $T_{L} = 0.25 \text{ms}$ But $T_{L} = 0.69 R_{B} C$ Let C =0.1µF $\therefore T_L = 0.69^* R_B * 0.1 \mu$ $R_{B} = \frac{T_{L}}{0.69 * 0.1 \mu} = \frac{0.25 m}{0.69 * 0.1 \mu} = 3.6 \text{K}\Omega$ $R_{B} = 3.6 \text{K}\Omega$ But $T_{H} = 0.69(R_{A} + R_{B})C$ $0.75 \text{uf} = 0.69(R_A + R_B) 0.1 \text{u}$ $R_{A+}R_{B=10.82K}$ $R_{A} = 10.82 \text{K} - R_{B} = 7.2 \text{KO}$ \therefore Select R_A =6.8K Ω & R_B =3.3K Ω Design monostable multi-vibrator having time delay t_p =10ms Solution: Given t_p =10ms Choose C =0.1µf \therefore Select $R_A = 100 \text{ K}\Omega$ 10 Graphs, Outputs

	TO ALOTE A	SKIT Doc Code: Title:	Teaching Process SKIT.Ph5b1.F03 Course Lab Manual	Rev No.: 1.0 Date: 27-2-2019 Page: 51 / 65
Copyrig	gnt ©2017. cAA	S. All rights reserve	 2 Free running ramp generator. Manostable multivibrator: 1. Frequency divider. 2. Pulse stretcher. 	
13	Remarks	3		
	Faculty with Date	Signature e		

Experiment 09 : RC PHASE SHIFT OSCILLATOR AND HARTLEY OSCILLATOR

-	Experiment No.:	9	Marks	10	Date Planned	Date Conduct	ed
1	Title	RC	Phase sh	ift oscillator	and Hartl	ey oscillator	I
2	Course Outcomes		ulate and a onic applica	• •	circuits tha	t uses transistor and	ICs for diffe
3	Aim		-		-	lator circuits for the given the givent the givent the givent the given the givent the givent the givent the given the given the givent the given the given the given the givent the given the givent the givent the given the given the given	
4	Material	/					
	Equipment Required		Sl.No.	Partic	ulars	Specification	Quantity
			1	Transistor		SL100	
						1.2KΩ	1
						1.8K Ω	2
			2	Resistor		4.7Κ Ω	3
						12K Ω	1
						62K Ω	1
			3	DRB		10K Ω	1
						0.47µf	2
			4	Capacitor		0.01µf	3
						4.7µf	1
			5	DCB			1
			6	VRPS		0-32 V	2
			7	CRO		20 MHz, Dual Channe	1 1
			8	CRO Probes			3
			9	Digital Multin	neter		1

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F03	Date: 27-2-2019
Title:	Course Lab Manual	Page: 52 / 65

	Hartley Oscill	ator using BJT.		
	Sl.No.	Particulars	Specification	Quantity
	1	BJT		2
		capacitors Resistor	0.1µf	2
			4.7µf	1
	2		8.84nF	1
			330Ω	1
			820 Ω	1
	3		2M Ω	1
			240µH	1
	4	Inductors CRO	100µH	1
		CKO	Dual Channel	1
is t is 1 am out are net for ph: wil osc cor H/	 Ie, Concept An oscillator is an electronic circuit for generating a supply as the Only input requirement. The frequency of the gener circuit elements used. An oscillator requires an an network and a positive feedback from the output t criterion for sustained oscillation is Aβ = 1 where A is is the feedback factor (gain). The unity gain means signistation out of phase and gain will be -1). RC-Pha amplifier followed by three sections of RC phase so output of the last stage is return to the input of the an are chosen such that the phase shift of each RC sect network produces a total phase shift of 180° betwee for the given frequency. Since CE Amplifier produce phase shift from the base of the transistor around the will be exactly 360° or 0°. This satisfies the Barkha oscillations and total loop gain of this circuit is gre condition used to generate the sinusoidal oscillations HARTLEY: An oscillator is an electronic circuit for generating a supply as the Only input requirement. The frequency of the gener circuit elements used. An oscillator requires an an network and a positive feedback form the output t 	n means signal is in phas). RC-Phase shift Oscil C phase shift feed-back at of the amplifier. The var ch RC section is 60°.Thus 80° between its input and er produces 180° phases around the circuit and b the Barkhausen conditio rouit is greater than or	e. (If the sign lator has a C Networks. The lues of R and s The RC ladd d output voltages s shift. The tot pack to the base	

	TITUTE OF THE	SKIT		Teaching Process	Rev No.: 1.0
		Doc Code:		Ph5b1.F03	Date: 27-2-2019
* 04	WGALORE *	Title:		e Lab Manual	Page: 53 / 65
	Procedu		relative the dua capacita be mu implem here. T	y low voltage/high current point between the al of the Colpitts oscillator which uses a pors rather than two inductors. Although there tual coupling between the two coil segmented using a tapped coil, with the feedback the optimal tapping point (or ratio of coil in ng device used, which may be a bipolar junction	voltage divider made of two is no requirement for there to nents, the circuit is usually taken from the tap, as shown nductances) depends on the
	Program Algorithi Code	-	2. plac 3. click <i>To pl</i>	up the circuit as shown in figure e all the required components from multi-sim li on run button and observe the out put fot frequency response Place the components in Multisim.	brary
			2.	Rig up the circuit as shown in circuit diagram.	
			3.	Click on the run button and Double click on O	scilloscope.
			4.	Observe the output waveforms on Oscilloscop	pe.
			5.	Measure frequency of the output signal, comp frequency.	pare it with theoretical
				HARTLEY:	
			6. 7.	<i>To plot frequency response</i> Place the components in Multisim.	
			8.	Rig up the circuit as shown in circuit diagram.	
			9.	Click on the run button and Double click on O	scilloscope.
			10.	Observe the output waveforms on Oscilloscop	pe.
			11.	Measure frequency of the output signal, comp frequency.	pare it with theoretical

AN A	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code	e: SKIT.Ph5b1.F03	Date: 27-2-2019
* 8	Title:	Course Lab Manual	Page: 55 / 65
Copyri	ght ©2017. cAAS. All rights rese	rved.	
		V _o V _m -V _m	γt
11	Results & Analysis	The RC Phase Shift Oscillator and Hartley simulated and o	utput is verified
12	Application Areas	RC phase shift oscillator is used in musical instrument, Gl synthesis Hartley oscillator are used in radio receivers	PS unit and in voice
13	Remarks		
14	Faculty Signatur with Date	e	

Experiment 10 : NARROW BAND-PASS FILTER AND NARROW BAND-REJECT FILTER

-	Experiment No.:	10	Marks	10	Date Planned	Date Conducted						
1	Title	Narr	arrow Band-pass Filter and Narrow band-reject filter									
2	Course Outcomes		mulate and analyze analog circuits that uses transistor and ICs for different ectronic applications.									
3	Aim	To simulate and analyze the Narrow Band-pass Filter and Narrow band-reject filter										
4	Material Equipment Required	(
5	Theory, Formula Principle, Concept	filter filters 1. It	employs only discussed so	one op-amp o far, this filte	o, as shown i has some un	le feedback is depicted ir n the figure. In comparis nique features that are give he reason that it is called	on to all the en below.					
		2. Th	e op-amp is u	sed in the inv	erting mode.							

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F03	Date: 27-2-2019
Title:	Course Lab Manual	Page: 56 / 65

The frequency response of a narrow bandpass filter is shown in fig(b).

Generally, the narrow bandpass filter is designed for specific values of centre frequency f_c and Q or f_c and BW. The circuit components are determined from the following relationships. For simplification of design calculations each of C_1 and C_2 may be taken equal to C.

 $R_1 = Q/2 \prod f_c CA_f$

 $\mathbf{R}_2 = \mathbf{Q}/\mathbf{2} \prod \mathbf{f}_c \mathbf{C}(\mathbf{2}\mathbf{Q}^2 - \mathbf{A}_f)$

and R₃ = Q / ∏ f_c C

where A_f , is the gain at centre frequency and is given as

 $\mathbf{A}_{\mathrm{f}} = \mathbf{R}_{\mathrm{3}} / \mathbf{2} \mathbf{R}_{\mathrm{1}}$

The gain A_f however must satisfy the condition $A_f < 2 Q^2$.

The centre frequency f_c of the multiple feedback filter can be changed to a new frequency f_c without changing, the gain or bandwidth. This is achieved simply by changing R_2 to R'_2 so that

 $R'_{2} = R_{2} [f_{c}/f'_{c}]^{2}$

BAND REJECT FILTER:

This is also called a notch filter. It is commonly used for attenuation of a single frequency such as 60 Hz power line frequency hum. The most widely used notch filter is the twin-T network illustrated in fig. (a). This is a passive filter composed of two T-shaped networks. One T-network is made up of two resistors and a capacitor, while the other is made of two capacitors and a resistor.One drawback *of* above notch filter (passive twin-T network) is that it has relatively low figure of merit Q. However, Q of the network can be increased significantly if it is used with the voltage follower, as illustrated in fig. (a). Here the output of the voltage follower is supplied back to the junction of R/2 and 2 C. The frequency response of the active notch filter is shown in fig *(b)*.

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F03	Date: 27-2-2019
Title:	Course Lab Manual	Page: 58 / 65

0	Dreader	1. Discuss the eigenvit as about in figures
6	Procedure, Program, Activity,	 Rig up the circuit as shown in figure place all the required components from multi-sim library
		3. click on run button and observe the out put
	Code	
7	Block, Circuit,	
	Model Diagram,	
	Reaction Equation, Expected Graph	
		R2
		$C1$ 59.48k Ω Out
		.10/µF 01 PR1
		$\begin{array}{c} 29.74k\Omega \\ V1 \\ \uparrow \\ 1V \\ \end{array} \xrightarrow{R1} .107\mu F \\ = \end{array}$
		$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $
		Narrow Band-Stop Filter.
		Narrow Band-Stop Filter.
		Narrow Band-Stop Filter.
		v_{in}
		v_{in} $R/2$ V_{out} V_{out}
		U_{in} R_{in} R
		v_{in} $R/2$ V_{out} V_{out}
		U_{in} R
		U_{in} R_{in} R
		U_{in} R
		$U_{in} \qquad \qquad$
3	Observation Table,	$\begin{array}{c} C \\ U_{in} \\ R \\ R \\ R \\ Q \\ C \\ C$
3	Look-up Table,	$\begin{array}{c} C \\ U_{in} \\ R \\ $
8		$u_{in} \qquad \qquad$

Experiment 11 : PRECISION HALF AND FULL WAVE RECTIFIER

-	Experiment No.:	11	Marks	10	Date		Date	
					Planned		Conducted	
1 Title Precision Half and full wave rectifier								
2	Course Outcomes Simulate and analyze analog circuits that uses transistor and ICs for different							
		electr	onic applicat	tions.				
3	Aim	To si	nulate and a	nalyze Precis	ion Half and f	ull wave rect	ifier	
4	Material	/						
	Equipment							
	Required							
5	Theory, Formula	, Wh	en forward l	piased voltag	e is less than	0.7V, then d	iode is not c	onducting. In

S.S.M	STITUTE OF THE	SKIT	Teaching Process	Rev No.: 1.0
		Doc Code:	SKIT.Ph5b1.F03	Date: 27-2-2019
* 04	WGALORE	Title:	Course Lab Manual	Page: 60 / 65
Copyriç		·	d. case of normal power rectifier input applied is much larger t not operated. Therefore Op-amp is used to help The precision rectifiers are classified in 1. Precision Half wave 2. Precision Full wave Rectifier	han 0.7V. So diode is diode to conduct. two categories. rectifier
		1.	Precision Half wave rectifier (HWR) :	
			In HWR, the diode conducts in one of the half cycles of a Because of this we can classify HWR as positive PHWR (o negative PHWR (output is negative).	
			In positive half cycle of applied ac input signal output of op diode D1 is forward biased and D2 is reversed biased. The virtually shorted to ground and output voltage is zero.	
			In negative half cycle of applied ac input signal output of o diode D2 is forward biased and D1 is reversed biased.	op-amp is positive, so
			Non-saturated types of precision half wave rectifiers are suita applications. In HWR, the diode conducts in one of the hal input signal.	• • •
			Design: In positive half cycle of applied ac input signal negative, so diode D1 is forward biased and D2 is reversed op-amp is virtually shorted to ground and prevented going output voltage is zero.	biased. The output of
			∴Vo=0 V	
			In negative half cycle of applied ac input signal output of o diode D2 is forward biased and D1 is reversed biased. The c inverting amplifier with gain Vo=Vin×A	rcuit now works as an
			But in negative half cycle input magnitude is negative therefor	e we get,
				Vo=(-V_in)[-Rf/R1]
			∴Vo=Rf/R1(Vin) Thus in negative half cycle output is positive with a gain of(Rf/	′R1).
		2.	Precision Full wave Rectifier: In PFWR, for both the half cycles output is produced & in one positive half cycle of applied ac input signal, output of first op Negative. Therefore diode D2 is forward biased & diode D1 i	-amp (A1) is
6	Procedu Program Algorithr Code	n, Activity,		
7	Block, Model Reactior Expecte	•	Half-wave:	

	TUTE			
and the second s	OF THE OF	SKIT	Teaching Process	Rev No.: 1.0
		Doc Code:	SKIT.Ph5b1.F03	Date: 27-2-2019
5 * 8	ANGALORE	Title:	Course Lab Manual	Page: 62 / 65
Copyri	ght ©2017. cA	AS. All rights reserve	d.	
			full wave:	
11	Results	& Analysis	The Precision Half and full wave rectifier simulated and output	t is verified
12	Applicat	ion Areas	Used in instrumentation application	
13	Remark	S		
14	Faculty with Dat	Signature e		

Experiment 12 : Monostable and Astable multivibrator

-	Experiment No.:	12	Marks	10	Date	Date	
	•				Planned	Conducted	
1	Title	Monostable and Astable multivibrator					
2	Course Outcomes	Simulate and analyze analog circuits that uses transistor and ICs for different electronic applications.					
3	Aim	To simulate and analyze Monostable and Astable multivibrator					
4	Material Equipment Required	/					
5	Theory, Formula	,					
	Principle, Concept	Astable multivibrator:					
		state. resiste enters	ly, capacitor An open dis ors R1 and s the LOW st citor C starts	C is fully dis charge trans R2. When t ate and the to discharg	scharged, which fo sistor allows capac he voltage across discharge transiste e through R2 and	tivibrator circuit is deplores the output to go citor C to charge from - s C exceeds +2Vcc /3 or is switched ON at th I the discharge transist	to the HIGH +Vcc through 3, the output e same time. tor inside the
		runnir conne	The charge ng multivibra acted to +Vc	and discha tor. Termina c. If the volta	rge cycles repeat al-4 of the IC is age at this termina	and the circuit behave the RESET terminal. al is driven below 0.4, ulses at terminal-2 of t	res as a free Usually, it is the output is

with Date