Sri Krishna Institute of Technology, Bangalore

COURSE PLAN

Academic Year 2019-2020

Program:	UG
Semester:	IV
Course Code:	$18 E C 45$
Course Title:	Signals \& Systems
Credit / L-T-P:	$4 / 4-0-0$
Total Contact Hours:	40
Course Plan Author:	M.Nagaraja

Academic Evaluation and Monitoring Cell

Sri Krishna Institute of Technology
\#29,Chimney hills,Hesaraghata Main road, Chikkabanavara Post
Bangalore - 560090, Karnataka, INDIA

Phone / Fax :08023721477/28392221/23721315

Web: www.skit.org.in , e-mail: skitprinci@gmail.com

Table of Contents

A. COURSE INFORMATION 2

1. Course Overview 2
2. Course Content 3
3. Course Material 3
4. Course Prerequisites 3
5. Content for Placement, Profession, HE and GATE4
B. OBE PARAMETERS 4
6. Course Outcomes 4
7. Course Applications. 4
8. Articulation Matrix 4
9. Curricular Gap and Content5
C. COURSE ASSESSMENT 5
10. Course Coverage 5
11. Continuous Internal Assessment (CIA) 5
D1. TEACHING PLAN - 1 5
Module - 1 5
Module - 2. 6
E1. CIA EXAM - 1. 7
a. Model Question Paper - 1. 7
b. Assignment -1 7
D2. TEACHING PLAN - 2 7
Module - 3 7
Module - 4. 8
E2. CIA EXAM - 2. 9
a. Model Question Paper - 2 9
b. Assignment - 2 10
D3. TEACHING PLAN - 3 10
Module - 5 10
E3. CIA EXAM - 3 11
a. Model Question Paper - 3 11
b. Assignment - 3 11
F. EXAM PREPARATION 11
12. University Model Question Paper. 11
13. SEE Important Questions 12

A. COURSE INFORMATION

1. Course Overview

Degree:	B.E	Program:	UG
Semester:	IV	Academic Year:	$2019-20$
Course Title:	Signals \& Systems	Course Code:	$18 E C 45$
Credit / L-T-P:	$4 / 4-0-0$	SEE Duration:	180 minutes
Total Contact Hours:	40	SEE Marks:	60
CIA Marks:	30	Assignment	10
Course Plan Author:	M.Nagaraja	Sign ..	
Checked By:		Sign ..	
CO Targets	CIA Target :20	SEE Target:	45

Note: Define CIA and SEE \% targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute.

Mod ule	Content	Teaching Hours	Blooms Learning Levels
1	Introduction and Classification of signals: Definition of signal and systems, communication and control system as examples Classification of signals. Basic Operations on signals: Amplitude scaling, addition, multiplication, differentiation, integration, time scaling, time shift and time reversal. Elementary signals/Functions: Exponential, sinusoidal, step,impulse and ramp functions. Expression of triangular, rectangular and other waveforms in terms of elementary signals.	8	L1,L2,L3
2	System Classification and properties: Linear-nonlinear, Time variant-invariant, causal-noncausal, static-dynamic, stableunstable, invertible. Time domain representation of LTI System: Impulse response, convolution sum, convolution integral. Computation of convolution sum and convolution integral using graphical method for unit step and unit step, unit step and exponential, exponential and exponential, unit step and rectangular, and rectangular and rectangular.	8	L1,L2,L3
3	LTI system Properties in terms of impulse response: System interconnection, Memory less, Causal, Stable, Invertible and Deconvolution, and step response. Fourier Representation of Periodic Signals: CTF Sproperties and basic problems.	8	L1,L2,L3
4	Fourier Representation of aperiodic Signals: Introduction to Fourier Transform \& DTFT, Definition and basic problems. Properties of Fourier Transform: Linearity, Time shift, Frequency shift, Scaling, Differentiation and Integration, Convolution and Modulation, Parseval's theorem and problems on properties of Fourier Transform.	8	L1,L2,L3
5	The Z-Transforms: Z transform, properties of the region of convergence, properties of the Z-transform, Inverse Ztransform, Causality and stability, Transform analysis of LTI systems.	8	L1,L2,L3

- Total

3. Course Material

Books \& other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15-30 minutes
2. Design: Simulation and design tools used - software tools used ; Free / open source
3. Research: Recent developments on the concepts - publications in journals; conferences etc.

Modul es	Details	Chapters in book	Availability
A	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
	Simon Haykins and Barry Van Veen, "Signals and Systems", 2nd Edition 2008, Wiley India. ISBN 9971-51-239-4.		In Lib
			In Lib
B	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
1	Michael Roberts, "Fundamentals of Signals \& Systems", 2nd edition, Tata McGraw-Hill, 2010, ISBN 978-0-07-070221-9.		In Lib
2	Alan V Oppenheim, Alan S, Willsky and A Hamid Nawab, "Signals and Systems" Pearson Education Asia / PHI, 2nd edition, 1997. Indian Reprint 2002.		In Lib
3	H.P Hsu, R. Ranjan, "Signals and Systems", Scham's outlines, TMH, 2006.		In Lib
4	B. P. Lathi, "Linear Systems and Signals", Oxford University Press, 2005.		In Lib
5	Ganesh Rao and SatishTunga, "Signals and Systems", Pearson/Sanguine.		In Lib
C	Concept Videos or Simulation for Understanding	-	-
1	https://www.youtube.com/watch?v=PHtoMPqs_Gc		
2	https://www.youtube.com/watch?v=G2axsmS12Ms		
3	https://www.youtube.com/watch?v=iDMwtJxXb28\&vl=en		
4	https://www.youtube.com/watch?v=QLCXSxgxRPY		
5	https://www.youtube.com/watch?v=wG6VUnkrO90		
D	Software Tools for Design	-	-
	MATLAB		
E	Recent Developments for Research	-	-
F	Others (Web, Video, Simulation, Notes etc.)	-	-
1	NPTEL VIDEOS		In Lib

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B. 5 .
Students must have learnt the following Courses / Topics with described Content

$\left.$| Mod
 ules | Course
 Code | Course Name | Topic / Description | Sem | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | | Blooms |
| :---: |
| Level | \right\rvert\,

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry \& profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.
Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Mod ules	Topic / Description	Area	Remarks	Blooms Level

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs.

Mod ules	Course Code.\#	Course Outcome At the end of the course, student should be able to ...	Teach. Hours	Instr Method	$\begin{array}{\|c\|} \hline \text { Assessme } \\ \text { nt } \\ \text { Method } \\ \hline \end{array}$	Blooms' Level
1	18EC45.1	Understand the basic elementary signals and their classification by mathematical description.	8	Lecture	Slip Test	L2
2	18EC45.2	Develop input output relationship for LTI system and understand the convolution operation for continuous time and Discrete signals.	8	Lecture	$\begin{gathered} \text { Assignme } \\ \mathrm{n} \end{gathered}$	L3
3	18EC45.3	Resolve the signals in frequency domain using Fourier transform of continuous time signal	8	Lecture	Assignme nt and Slip Test	L2
4	18EC45.4	Apply Fourier transform representation to study and resolve the signal and system	8	Lecture and Tutorial	Assignme nt	L3 Apply
5	18EC45.5	Apply z-transform and its properties for the analysis of discrete time system using partial fraction expansion method.	8	Lecture	Slip test	L3 Apply
-	-	Total	40	-	-	-

2. Course Applications

Write 1 or 2 applications per CO.
Students should be able to employ / apply the course learnings to ...

Mod ules	Application Area Compiled from Module Applications.	CO	Level
1	Speech and audio processing, biological signal analysis	CO 1	L 2
1	Remote sensing system.	CO 1	L 2
2	Radars, Digital filter design.	CO 2	L 3
2	Distance phone calls, Digital recording, image processing.	CO 2	L 3
3	Radars, Digital filter design	CO 3	L 2
3	3Distance phone calls, Digital recording, image processing	CO 3	L 2
4	Amplitude modulation, frequency multiplexing	CO 4	L 3
4	Circuit analysis, sampling	CO 4	L 3

5	Analysis of digital system,system design,automatic controls in telecommunication.	CO 5	L 3
5	Simulate the continuous system, Analysis of digital filters	CO 5	L 3

3. Articulation Matrix

CO - PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	-	Course Outcomes	Program Outcomes														-
Mod ules	CO.\#	At the end of the course student should be able to . .		2		$\begin{gathered} \mathrm{PO} \\ 4 \end{gathered}$		$\begin{gathered} \mathrm{PO} \\ 6 \end{gathered}$	PO	PO	PO	$\left\lvert\, \begin{gathered} \mathrm{PO} \\ 10 \end{gathered}\right.$	$\begin{array}{\|c\|c\|} \hline \mathrm{PO} & \mathrm{PO} \\ 11 & 12 \\ \hline \end{array}$	$\mathrm{PS} \mid$	PS	$\begin{aligned} & \mathrm{PS} \\ & \mathrm{O}_{3} \end{aligned}$	$\begin{gathered} \text { Lev } \\ \text { el } \end{gathered}$
1	18EC45.1	Understand the basic elementary signals and their classification by mathematical description.	3	3							2		1				
2	18EC45.2	Develop input output relationship for LTI system and understand the convolution operation for continuous time and Discrete signals.	3	3							2		1				
3	18EC45.3	Resolve the signals in frequency domain using Fourier transform of continuous time signal	3	3							2		1				
4	18EC45.4	Apply discrete time Fourier transform representation to study and resolve the signal and system	3	3							2		1				
5	18EC45.5	Apply z-transform and its properties for the analysis of discrete time system using partial fraction expansion method.	3	3							2		1				
-	$17 \mathrm{EC62}$.	Average	3	3							2		1				-
-	PO, PSO	1.Engineering Knowledge; 2.Probl 4. Conduct Investigations of Complex Society; 7.Environment and Su 10.Communication; 11.Project S1.Software Engineering; S2.Data B	em ex usta Man Base	An	ana	ysis; ms;' ity; ent agen	me	$\begin{aligned} & \text { esic } \\ & \text { del } \\ & \text { ic } \end{aligned}$	$\begin{aligned} & \text { sign } \\ & \text { ern } \\ & \text { cs; } \\ & \text { Fir } \\ & 53 . W \end{aligned}$	Veb D	Dev Us ndiv ce: Des	ign	ment 6.Th an Life-lo	g	Sol		ns; and rk; in;

4. Curricular Gap and Content

Topics \& contents not covered (from A.4), but essential for the course to address POs and PSOs.

Mod ules	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1	MATLAB	Seminar	3rd Week of March 2020	List from B4 above	
2	MATLAB to Obtain the spectrum of signals	Seminar	$3^{\text {rd }}$ Week April 2020		List from B4 above

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation.

Mod Title	Teach.	No. of question in Exam	CO	Levels

ules		Hours	CIA-1	CIA-2	CIA-3	Asg	$\begin{gathered} \text { Extra } \\ \text { Asg } \\ \hline \end{gathered}$	SEE		
1	Introduction and Classification of signals ,Basic Operations on signals , Elementary signals / Functions	8	2	-	-	1	1	2	CO1, CO2	L1, L2
2	System Classification and properties: Time domain representation of LTI System	8	2	-	-	1	1	2	CO3, CO4	L2, L3
3	LTI system Properties in terms of impulse response Fourier Representation of Periodic Signals	8	-	2	-	1	1	2	CO5, CO6	L2, L3
4	Fourier Representation of aperiodic Signals Properties of Fourier Transform:	8	-	2	-	1	1	2	CO7, C08	L2, L3
5	The Z-Transforms	8	-	-	4	1	1	2	CO9, CO10	L2, L3
-	Total	40	4	4	4	5	5	10	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A. 2.

$\begin{aligned} & \text { Mod } \\ & \text { ules } \end{aligned}$	Evaluation	Weightage in Marks	CO	Levels
1,2	CIA Exam - 1	30	CO1,CO2	L1,L2, L3
3, 4	CIA Exam - 2	30	$\mathrm{CO}_{3, \mathrm{CO}}^{4}$	L2, L3
5	CIA Exam - 3	30	CO 5	L2, L3
1,2	Assignment - 1	10	CO1,CO2	L1,L2, L3
3, 4	Assignment-2	10	$\mathrm{CO}_{3, \mathrm{CO}}^{4}$	L2, L3
5	Assignment - 3	10	CO 5	L2, L3
1,2	Seminar - 1		-	-
3, 4	Seminar - 2		-	-
5	Seminar-3		-	-
1, 2	Quiz - 1		-	-
3, 4	Quiz - 2		-	-
5	Quiz - 3		-	-
1-5	Other Activities - Mini Project	-		
	Final CIA Marks		-	-

D1. TEACHING PLAN - 1

Module - 1

Title:		Appr Time:	8 Hrs
\mathbf{a}	Course Outcomes	CO	Blooms
	Understand the basic elementary signals and their classification by mathematical description.	$\mathrm{CO1}$	L2
		-	-
\mathbf{b}	Course Schedule	-	-
Class No Portion covered per hour	CO 1	L 2	
$\mathbf{1}$	Introduction: Definitions of signals and a system		

2	Classification of signals.	CO1	L2
3	Basic operations on signals: Amplitude and time operations	CO1	L2
4	Folding, Time shifting, time scaling operations	CO1	L2
5	Problems	CO1	L2
6	Problems	CO 2	L2
7	Elementary signals and their representation	CO 2	L2
8	Elementary signals viewed as interconnections of operations,	CO 2	L2
9	properties of systems.	CO2	L2
10	problems	CO2	L2
c	Application Areas		
-	Students should be able employ / apply the Module learnings to .		
1	Speech and audio processing, biological signal analysis	CO 1	L2
d	Review Questions		
-			
1	Define Signals and systems?	CO 1	L2
2	What are the major classifications of the signal?	CO1	L2
3	Explain the basic elementary signals with their mathematical equation?	CO 1	L2
4	Define periodic signal and non-periodic signal?	CO 1	L2
5	Define Energy and power signal?	CO 1	L2
6	Define even and odd signal?	CO_{1}	L2
7	Determine whether the following systems are linear,time invariant,causal ,stable. $y(n)=\log (x(n))$.	CO1	L2
8	Determine whether the following systems are linear or not $\mathrm{dy}(\mathrm{t}) / \mathrm{dt}+3 \mathrm{ty}(\mathrm{t})=$ t2 $x(t) \& y(n)=2 x(n)+1 / x(n-1)$	$\mathrm{CO1}$	L2
9	Determine whether the following systems are Time-Invarient or not $Y(t)=t x(t)$ \& $y(n)=x(2 n)$	$\mathrm{CO1}$	L2
10	Find whether the signal $x(t)=2 \cos (10 t+1)-\sin (4 t-1)$ is periodic or not. (6) Evaluate $\sum n=(-\infty$ to ∞) e $2 n \delta(n-2)$	CO1	L2
11	b) Determine whether the following signals are energy or power and calculate their energy and power. i) $x(n)=(1 / 2) n u(n)$ ii) $x(t)=r e c t(t / T o)$ iii) $x(t)=\cos 2(\Omega t)$	$\mathrm{CO1}$	L2
12	Define unit step, ramp, pulse, impulse and exponential signals. Obtain the relationship between the unit step and unit ramp function.	CO1	L2
13	Find the fundamental period T of the signal, $x(n)=\cos (n \pi / 2)-\sin (n \pi / 8)+3 \cos (n \pi / 4+\pi / 3)$	$\mathrm{CO1}$	L2
14	Determine the power of the following signals. i) $x_{1}(t)=5 \cos (50 t+\pi / 3)$ ii) $x_{2}(t)=20 \cos 50 t \cos 15 t$	CO1	L2
15	Determine whether the following systems are time variant or time -invariant. i) $y(t)=t x(t) i i) y(n)=x(2 n)$	CO 1	L2
16	Determine whether the following signal is periodic. If periodic , determine the fundamental period: $X(t)=3 \cos t+4 \cos (t / 2) X(t)=\cos 60 \pi t+\sin 50 \pi t$	CO1	L2
17	Determine whether the following system is linear, time invariant, causal, stable and static $1 . y(n)=x 2(n) 2 . y(n)=x(-n)$	CO1	L2
18	A discrete time signal is given by $x(n)=[1,1,1,1,2]$ Sketch the following signals a) $x(n-2)$ b) $\times(n+1) \quad c) \times(3-n) d) \times(n) u(n-1) \quad e) x(n-1) \delta(n-1) \quad$ f)Even samples of $x(n)$ g)odd samples of $x(n)$	CO 1	L2

Module - 2

Title:		Appr Time:	8 Hrs
\mathbf{a}	Course Outcomes	CO	Blooms
-	Develop input output relationship for LTI system and understand the convolution operation for continuous time and Discrete signals.	CO2	L3

b	Course Schedule	-	-
$\begin{aligned} & \text { Class } \\ & \text { No } \end{aligned}$	Portion covered per hour	-	-
11	ISystem Classification and properties	CO_{3}	L3
12	Linear-nonlinear,	CO_{3}	L3
13	Time variant-invariant	CO_{3}	L3
14	causal-noncausal,	CO 3	L3
15	static-dynamic,	CO 4	L3
16	stable-unstable, invertible.	CO 4	L3
17	ime domain representation of LTI System:	CO 4	L3
18	Impulse response, convolution sum, convolution integral	CO 4	L3
19	Computation of convolution sum and convolution integral using graphical method for unit step and unit step, unit step and exponential		
20	exponential and exponential, unit step and rectangular, and rectangular and rectangular..		
c	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to . . .	-	-
1	Radars, Digital filter design.	CO_{3}	L3
2	Distance phone calls, Digital recording, image processing.	CO 4	L3
d	Review Questions	-	
-			
1	The impulse response of a continuous time LTI system is given by $h(t)=e^{2 t} u(t-1)$ check whether the system is stable causal and memoryless.	CO 2	L3
2	A continuous time LTI system with unit impulse response $h(t)=u(t)$ and input $x(t)=e^{-a t} u(t) a>0$ find the output $y(t)$ of the system.	CO 2	L3
3	Find the step response for the LTI system represented by the impulse response $h(n)=(1 / 2)^{n} u(n)$.	CO 2	L3
4	consider a continuous time LTI system is represented by the impulse response $h(t)=e^{-3 t} u(t-1)$ determine whether it is i)stable ii) causal	CO 2	L3
5	Solve the differential equation, $d^{2} y(t) / d t^{2}+3 d y(t) / d t+2 y(t)=2 x(t)$ with $y(0)=-1 d y(t) / d t$ with $t=0$ and $x(t)=\operatorname{cost} u(t)$	CO 2	L3
6	The impulse response of a continuous time LTI system is given by $h(t)=e^{2 t} u(t-1)$ check whether the system is stable, causal and memoryless.	CO 2	L3
7	Find the response of the system described by difference equations $y(n)-1 / 9 y(n-2)=x(n-1)$ with $y(-1)=1, y(-2)=0$ and $x(n)=u(n)$	CO 2	L3
8	find the difference equation representation for the block diagram representation of continuous time LTI system shown in figure 3c,	CO 2	L3
9	response $h(t)=e^{a t} u(-t)$ is stable. Also find out whether the system is i)causal ii) memoryless	CO 2	L3
10	Represent the differential equation given below in direct form I and II $d^{2} y(t) / d t^{2}+3 d y(t) / d t+2 y(t)=d^{2} y(t) / d t^{2}+d x(t) / d t^{2}$	CO 2	L3
11	Find the zero input response and forced response for the system described by the difference equation $y(n)-1 / 4 y(n-2)=2 x(n)+x(n-1)$ given $x(n)=u(n)$; $y(-2)=8, y(-1)=0 .$	CO 2	L3
12	For the given impulse response determine whether system is memory less,	CO 2	L3

	stable and causal justify your answer $h(n)=2^{n} u(-n)$		
13	Given impulse response of the system $h(n)=(1 / 2)^{n} u(n-2)$ find out step response of the system.	CO 2	L3
14	Draw direct form-I and direct form- II implementation for the following difference equation $y(n)-1 / 4 y(n-1)-1 / 8 y(n-2)=2 x(n)+3 x(n-1)$	CO 2	L3
15	Find the step response of a LTI system if impulse response $h(t)=t^{2} u(t)$	CO 2	L3
16	Obtain the response of the system given by $d^{2} y(t) / d t^{2} y(t)+y(t)=3 d x(t) / d t$ with $y(0)=-1, d y(t) / d t=d^{2} y(t) / d t^{2}=1$ and $2 e^{-t} u(t)$	CO 2	L3
17	Find the difference equation for the system shown in fig.	CO 2	L3

E1. CIA EXAM - 1

a. Model Question Paper - 1

b. Assignment -1

rs Code:	17EC62	Sem:	VI	Marks:	30	Time: 90	90 minutes		
Course:	ARM Microcontroller \& Embedded System								
SN		Assignment Description					Marks	CO	Level
1		Define signals and systems, with appropriate examples?					5	CO1	L3
2		Write a note on classification of signals with suitable examples?					5	CO1	L3
3		Find the even and odd components of the signal$x(t)=\left(1+t^{3}\right) \cos ^{3}(10 t) .$						CO1	L3
4		Find the overall operator of the system $y(n)=1 / 3[x(n+1)+x(n)+x(n-1)]$.					5	CO1	L3
5		Determine whether the system $y(t)=x(t / 2)$ is i) linear ii)Time invarient iii)memory iv)causal v)stable					5	CO1	L3
6		Sketch the following signal, hence find the even and odd component of signal, draw even and odd part of $x(t)=u(t)-r(t-1)+2 r(t-2)-r(t-3)$					5	CO1	L3
7		State whether the following signals is periodic or not, if periodic find the fundamental period: $i) \times(n)=\cos (\pi n / 2)+\sin (\pi n / 2)$ ii) $)(t)=\cos (2 \pi t) \cdot \sin (2 \pi t))$					5	CO 1	L3
8		Consider the system whose output is $y(t)=\cos \omega_{c}+x(t)$ determine where it is . i)memoryless ii)causal iii) linear iv)time invarient v)stable					5	CO1	L3
9		Sketch the signal for the following function, $x(t)=2 t$ for t varies from 0 to 1 and $x(t)=4-2 t$ for t varies from 1 to 2 . determine the odd component of $x(t)$.					5	CO1	L3
10		2) $+y(n+z)$					5	CO1	L3
11		Determine whether the following systems are time variant or time -invariant. i) $y(t)=t x(t)$ ii) $y(n)=x(2 n)$					5	CO1	L3
12		Determine whether the following signal is periodic. If periodic determine the fundamental period: $X(t)=3 \cos t+4 \cos (t / 2)$ $x(t)=\cos 60 \pi t+\sin 50 \pi t$					5	CO1	L3
13		Determine the power and RMS value of the following signals. i) $x_{1}(t)=5 \cos (50 t+\pi / 3)$ ii) $x_{2}(t)=20 \cos 50 t \cos 15 t$					5	CO1	L3
14		Determine whether the following systems are linear,time invariant, causal ,stable. $y(n)=\log (x(n))$.					5	CO 2	L3
15		Determine whether the following systems are linear or not $d y(t) / d t+3 t y(t)=t 2 x(t) \& y(n)=2 x(n)+1 / x(n-1)$					5	CO 2	L3
16		Determine whether the following system is linear, time invariant, causal, stable and static $1 . y(n)=x 2(n) 2 . y(n)=x(-n)$					5	CO 2	L3
17		A discrete time signal is given by $x(n)=\{1,1,1,1,2]$ Sketch the following signals a) $\times(n-2)$ b) $\times(n+1) \quad c) \times(3-n) d) \times(n) u(n-1) \quad e) \times(n-$ 1) $(n-1) \quad$ f)Even samples of $x(n) \quad$ g)odd samples of $x(n)$					5	CO 2	L3
18		Determine whether the system is i) Linear ii) Time Invariant iii) memoryless iv) causal v) stable i) $y(t)=d / d t l^{-t} x(t)$) ii) $y(n)=x(k+2)$					5	CO2	L3
19		$\begin{aligned} & \text { Draw the signal } \\ & \text { i) } x(t)=3 r(t-1)-4 r(t-2)-6 r(t-3)+r(t) \end{aligned}$			(t)=[lx	lu(1-t)lu(t)	5	CO2	L4
20		Define signals and systems, with appropriate examples?					5	CO 2	L4
21		Write a note on classification of signals with suitable examples?					5	CO 2	L3
22		Distinguish between: i) Energy signal and Power signal ii) Continuous and Discrete time signals iii) Even and Odd signal iv)Periodic and non periodic signals					5	CO2	L3
23		Determine the even and Odd components of the signal i) $x(t)=1+t^{2}+t \operatorname{tant}+\tan ^{2} t \cot t+\cot ^{3} t$ ii) $x(t)=[\text { sint }+\operatorname{cost}]^{3}$					5	CO2	L3
24		Define signals?					5	CO 2	L3

25	The impulse response of a continuous time LTI system is given by $h(t)=e^{2 t} u(t-1)$ check whether the system is stable causal and memoryless.	5	CO 2	L3
26	A continuous time LTI system with unit impulse response $h(t)=u(t)$ and input $x(t)=e^{-a t} u(t) a>0$ find the output $y(t)$ of the system.	5	CO 2	L3
27	Find the step response for the LTI system represented by the impulse response $h(n)=(1 / 2)^{n} u(n)$.	5	CO 2	L3
28	consider a continuous time LTI system is represented by the impulse response $h(t)=e^{-3 t} u(t-1)$ determine whether it is i)stable ii) causal	5	CO 2	L3
29	Solve the differential equation, $d^{2} y(t) / d t^{2}+3 d y(t) / d t+2 y(t)=2 x(t)$ with $y(0)=-1 d y(t) / d t$ with $t=0$ and $x(t)=\operatorname{cost} u(t)$	5	CO 2	L3
30	The impulse response of a continuous time LTI system is given by $h(t)=e^{2 t} u(t-1)$ check whether the system is stable, causal and memoryless.	5	CO 2	L3
31	Find the response of the system described by difference equations $y(n)-1 / 9 y(n-2)=x(n-1)$ with $y(-1)=1, y(-2)=0$ and $x(n)=u(n)$	5	CO 2	L3
32	find the difference equation representation for the block diagram representation of continuous time LTI system shown in figure 3c,	5	CO 2	L3
33	Determine the conditions so that the continuous time system with impulse response $h(t)=e^{a t} u(-t)$ is stable. Also find out whether the system is i)causal ii) memoryless	5	CO 2	L3
34	Represent the differential equation given below in direct form I and $I I d^{2} y(t) / d^{2}+3 d y(t) / d t+2 y(t)=d^{2} y(t) / d t^{2}+d x(t) / d^{2}$	5	CO 2	L3
35	Find the zero input response and forced response for the system described by the difference equation $y(n)-1 / 4 \quad y(n-$ $2)=2 x(n)+x(n-1)$ given $x(n)=u(n)$; $y(-2)=8, y(-1)=0$.	5	CO 2	L3
36	For the given impulse response determine whether system is memory less, stable and causal justify your answer $h(n)=2^{n} u(-$ n)	5	CO 2	L3
37	Given impulse response of the system $h(n)=(1 / 2)^{n} u(n-2)$ find out step response of the system.	5	CO 2	L3
38	Draw direct form-I and direct form- II implementation for the following difference equation $y(n)-1 / 4 \quad y(n-1)-1 / 8 y(n-2)=2 x(n)$ $+3 x(n-1)$	5	CO 2	L3
39	Find the step response of a LTI system if impulse response $h(t)=t^{2} u(t)$	5	CO 2	L3
40	Obtain the response of the system given by $d^{2} y(t) / d t^{2} y(t)+y(t)$ $=3 d x(t) / d t$ with $y(0)=-1, d y(t) / d t=d^{2} y(t) / d t^{2}=1$ and $2 e^{-t} u(t)$	5	CO 2	L3
41	Find the difference equation for the system shown in fig.	5	CO 2	L3

D2. TEACHING PLAN - 2

Module - 3

| Title: | Appr
 Time: | 10 Hrs |
| :---: | :---: | :---: | :---: |

a	Course Outcomes	CO	Blooms
-	At the end of the topic the student should be able to .	-	Level
	Resolve the signals in frequency domain using Fourier transform of continuous time signal	CO3	L2
b	Course Schedule		
Class No	Portion covered per hour	-	-
21	LTI system Properties in terms of impulse response:	CO_{3}	L2
22	System interconnection,	CO_{3}	L2
23	Memory less, Causal, Stable, Invertible	CO_{3}	L2
24	Deconvolution,	CO_{3}	L2
25	step response	CO_{3}	L2
26	Fourier Representation of Periodic Signals:	CO_{3}	L2
27	CTFS definition	CO_{3}	L2
28	CTFS Properties	CO_{3}	L2
29	Problems	CO_{3}	L2
30	Problems	CO_{3}	L2
c	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to ...	-	-
1	Radars, Digital filter design	1	L2
2	Distance phone calls, Digital recording, image processing	2	
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	State \& prove the following properties of FT. i) Time shifting property ii) parseval's theorem.	CO 3	L2
2	Obtain the fourier transform of $x(t)=t e^{-a t} u(t)$	CO_{3}	L2
3	Find the fourier transform of rectangular pulse shown below $x(\omega)=1 /(a+j \omega)^{2}$	CO_{3}	L2
4	Find the frequency response \& impulse response of the system described by differential equation $\mathrm{dy}(\mathrm{t}) / \mathrm{dt}+8 \mathrm{y}(\mathrm{t})=\mathrm{x}(\mathrm{t})$	CO_{3}	L2
5	Find the Fourier transform of i) $x(t)=t 2 \mathrm{u}(\mathrm{t}) \mathrm{u}(1-\mathrm{t})$ and ii$) \mathrm{x}(\mathrm{t})=\mathrm{t} \exp (-\mathrm{t}) \mathrm{u}(\mathrm{t}),>0$	CO_{3}	L2
6	Find the fourier transform of triangular pulse (10) $x(t)=__{-}(t / m)=[102\|t\| / m\|t\| 0$ otherwise	CO_{3}	L2
7	Obtain the exponential Fourier series of the waveform	CO 3	L2
8	Find the Fourier transform of rectangular pulse. Sketch the signal and its Fourier transform	CO 3	L2
9	Find the Fourier transform of a triangular pulse.	CO_{3}	L2
10	State and prove following properties of Fourier Transformation. i) Frequency shift ii) Convolution theorem.	CO_{3}	L2
11	Determine Fourier transformation of following signals. i) $x(t)=e-a t u(t) i i) x(t)=\operatorname{cost} W$ ot.	CO_{3}	L2
12	Find the frequency response and the impulse response of the system described by the differential equation. $d^{2} y / d t^{2}+5 d y / d t+6 y=-d / d t x(t)$.	CO_{3}	L2
13	State and explain parsavel's theorem	CO_{3}	L2
14	Obtain the fourier transform of the following signal $i) x(t)=e^{-a t} \quad u(t) ; a>0$ ii) $x(t)=$ delta(t)	CO_{3}	L2
15	The impulse response of continuous time signal is given by $h(t)=1 / R e ~ e-t / R C$ $u(t)$ find the frequency response and plot the magnitude	CO_{3}	L2

Module - 4

Title:	Data Transmission and Telemetry Measurement of Non - Electrical Quantities	Appr Time:	10 Hrs
a	Course Outcomes	CO	Blooms
-	At the end of the topic the student should be able to	-	Level
	Apply Discrete time Fourier transform representation to study and resolve the signal and system	CO 4	L3
b	Course Schedule		
Class No	Portion covered per hour	-	-
31	Fourier Representation of aperiodic Signals:	CO 4	L3
32	Introduction to Fourier Transformsignals: The	CO 4	L3
33	Introduction to DTFT	CO 4	L3
34	Problems on FT	CO 4	L3
35	Problems on DTFT	CO 4	L3
36	Properties of Fourier Transform: Linearity, Time shift,	CO 4	L3
37	Frequency shift, Scaling, Differentiation and Integration,	CO 4	L3
38	Convolution and Modulation,	CO 4	L3
39	Parseval?s theorem	CO 4	L3
40	Problems	CO 4	L3
c	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to .	-	-
1	Amplitude modulation, frequency multiplexing	CO 4	L3
2	Circuit analysis, sampling	CO 4	L4
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	State and explain following DTFT properties I) Time shift ii) Linearity	CO 4	L3
2	Determine the DTFT of the following signal, i) $x(n)=u(n)$ ii) $x(n)=2^{n} u(-n)$	CO 4	L3
3	Obtain the frequency response of the impulse response of the system described by the difference equation $y(n)-1 / 4 y(n-1)=3 x(n)-3 / 4 x(n-1)$	CO 4	L3
4	Define Transfer function of the DT system and Define impulse response of a DT system	CO 4	L3
5	State the significance of difference equations and Write the differece equation for Discrete time system	CO 4	L3
6	Define frequency response of the DT system and explainWhat is the condition for stable system	CO 4	L3
7	Obtain the DTFT of the signal $\times[n]=2 n ~ u(-n)$	CO 4	L3
8	State \& prove the following properties of DTFT. i) Convolution property ii) Frequency differentiation	CO 4	L3
9	Using DTFT find the total solution to the difference equation for discrete time signal. $5 y(n+2)-6 y(n+1)+y(n)=0.8 u(n)$	CO 4	L3
10	Find the fourier transform of the following. $x(n)=1 ;-2 \leq n \leq 2$ $=0$; Otherwise	CO 4	L3
11	Find the fourier transform of $\mathrm{x}[\mathrm{n}]=$ an $u[n]$ for -13 . Determine the fourier transform of the discrete time rectangular pulse of amplitude A and length L i.e $\times[n]=A$ for $0=n=L-10$ otherwise	CO 4	L3
12	Determine the discrete time sequence where DTFT is given as $X(w)=1$ for $-W C=W=W c$ of $W C<\|w\|$?	CO 4	L3
13	Find the DTFT of the signal $x(n)=\mathrm{a}^{\text {ln] }} ;\|\mathrm{a}\|<1$	CO 4	L3
14	Find the inverse DTFT of the signal $X\left(e^{\text {j } 2}\right)=3-\left(1 / 4 \mathrm{e}^{-j \Omega}\right) /-1 / 16 \mathrm{e}^{-2 j \Omega}+1$	CO_{4}	L3
15	Find the impulse response of the system having output $y(n)-1 / 4(1 / 2)^{n} u(n)$	CO 4	L3

	$+(1 / 4)^{\mathrm{n}} \mathrm{u}(\mathrm{n})$		
16	Obtain the difference equation for the system with frequency response $\mathrm{h}\left(\mathrm{e}^{\mathrm{j})}\right)=1^{+} \mathrm{e}^{-\mathrm{j} 2} /\left(1-\left(1 / 2 \mathrm{e}^{-\mathrm{j} 2}\right)\right)\left(1=\left(1 / 24 \mathrm{e}^{-\mathrm{j})}\right)\right)$	CO 4	L 3
\mathbf{e}	Experiences	-	-
1		CO 7	L 2
2			

E2. CIA EXAM - 2

a. Model Question Paper - 2

Crs Code:	18 EC 45	Sem:	IV	Marks:	30	Time	90 minutes
Course:	Signals \& Systems						

-	-	Note: Answer all questions, each carry equal marks. Module : 3,4	Marks	CO	Level
1	a	Determine Fourier transformation of following signals. i) $x(t)=e^{-a t} u(t)$ ii) $x(t)=\operatorname{cost}$ Wot.	5	CO_{3}	L1
	b	Find the frequency response and the impulse response of the system described by the differential equation. $d^{2} y / d t^{2}+5 d y / d t+6 y=-d / d t x(t)$.	4	CO_{3}	L2
	c	Find the DTFT of the signal $x(n)=a^{\|n\|} ;\|a\|<1$	3	CO_{3}	L2
	d	Find the fourier transform of the following. $x(n)=3 ;-4 \leq n \leq 24$ $=0$; Otherwise	3	CO_{3}	L2
2	a	State and explain parsavel's theorem	3	CO_{3}	L3
	b	Obtain the fourier transform of the following signal i)x(t)=e-at $u(t) ; a>0$ ii) $x(t)=d e l t a(t)$	4	CO_{3}	L3
	C	The impulse response of continuous time signal is given by $h(t)=1 / \operatorname{Re~}^{-t / R C}$ $u(t)$ find the frequency response and plot the magnitude	3	CO_{3}	L2
	d	Find the inverse DTFT of the signal $X\left(e^{j \Omega}\right)=3-\left(1 / 4 e^{-j \Omega}\right) /-1 / 16 e^{-2 j \Omega}+1$	5	CO_{3}	L2
3	a	State and explain following DTFT properties I) Time shift ii) Linearity	3	CO 4	L3
	b	Determine the DTFT of the following signal, i) $x(n)=u(n)$ ii) $x(n)=2^{n} u(-n)$	4	CO 4	L3
	C	Obtain the frequency response of the impulse response of the system described by the difference equation $y(n)-1 / 4 y(n-1)=3 x(n)-3 / 4 x(n-1)$	5	CO 4	L3
	d	Find the fourier transform of the following. $x(n)=1 ;-2 \leq n \leq 2$ $=0$; Otherwise	3	CO 4	L3
4	a	Obtain the DTFT of the signal $x[n]=2 n u(-n)$	3	CO 4	L3
	b	State \& prove the following properties of DTFT. i) Convolution property ii) Frequency differentiation	4	CO 4	L3
	c	Using DTFT find the total solution to the difference equation for discrete time signal. $5 y(n+2)-6 y(n+1)+y(n)=0.8 u(n)$	4	CO 4	L3
	d	Obtain the difference equation for the system with frequency response $h\left(e^{j \Omega}\right)=1+e^{-j \Omega} /\left(1-\left(1 / 2 e^{-j \Omega}\right)\right)\left(1=\left(1 / 24 e^{-j \Omega}\right)\right)$	5	CO 4	L3

b. Assignment - 2

Model Assignment Questions						
Crs Code:	Sem:	Marks:	Time:			
Course:						
SNo	Assignment Description			Marks	CO	Level
1	State proper	following prop val's theorem.	Time shifting	7	CO_{3}	L2

2	Obtain the fourier transform of $\mathrm{x}(\mathrm{t})=$ te-atu(t)	8	CO_{3}	L2
3	Find the fourier transform of rectangular pulse shown below $x(\omega)=1 /(a+j \omega)^{2}$	7	CO_{3}	L2
4	Find the frequency response \& impulse response of the system described by differential equation dy(t)/ $d t+8 y(t)=x(t)$	8	CO3	L2
5	Find the Fourier transform of i) $x(t)=t 2 u(t) u(1-t)$ and $i i) x(t)=t$ $\exp (-t) u(t),>0$	7	CO_{3}	L2
6	Find the fourier transform of triangular pulse (10) $x(t)=__{\text {(}} / \mathrm{m}$) $=[102\|t\| / \mathrm{m}\|\mathrm{t}\|$ o otherwise	8	CO 3	L2
7	Obtain the exponential fourier series of the waveform	5	CO 3	L2
8	Find the Fourier transform of rectangular pulse. Sketch the signal and its Fourier transform	6	CO_{3}	L2
9	Find the Fourier transform of a triangular pulse.	7	CO_{3}	L2
10	Obtain the DTFT of the signal x[n] $=2 n \mathrm{u}(-n$)	8	CO_{3}	L2
11	State \& prove the following properties of DTFT. i) Convolution property ii) Frequency differentiation	7	CO_{3}	L2
12	Using DTFT find the total solution to the difference equation for discrete time signal. $5 y(n+2)-6 y(n+1)+y(n)=0.8 u(n)$	8	CO 3	L2
13	Obtain the difference equation for the system with frequency response $\left.h\left(e^{\mathrm{i})}\right)=\mathrm{e}^{-\mathrm{e}^{\mathrm{j} \Omega} /\left(1-\left(1 / 2 \mathrm{e}^{\mathrm{j} \mathrm{R}}\right)\right.}\right)\left(1=\left(1 / 24 \mathrm{e}^{\mathrm{j} \mathrm{R}} \mathrm{R}\right)\right)$	7	CO_{3}	L2
14	State and explain following DTFT properties I) Time shift ii) Linearity	8	CO_{3}	L2
15	Determine the DTFT of the following signal, i) $x(n)=u(n)$ ii) $x(n)=2^{n} u(-n)$	7	CO 3	L2
16	Obtain the frequency response of the impulse response of the system described by the difference equation $y(n)-1 / 4 y(n-$ 1) $=3 \times(n)-3 / 4 \times(n-1)$	8	CO_{3}	L2
17	Find the fourier transform of the following. $x(n)=1 ;-2 \leq n \leq 2$ = 0 ; Otherwise	7	CO_{3}	L2
18	State and explain parsavel's theorem	8	CO_{3}	L2
19	Obtain the fourier transform of the following signal $i) x(t)=e^{-a t}$ u(t);a>0 ii) $x(t)=d e l t a(t)$	7	CO_{3}	L2
20	The impulse response of continuous time signal is given by $h(t)=1 / R e e^{-t / R C} u(t)$ find the frequency response and plot the magnitude	8	CO 3	L2
21		7	CO 4	L3
22	Determine Fourier transformation of following signals. i) $x(t)=e-a t u(t)$ ii) $x(t)=\operatorname{cost}$ Wot.	8	CO_{4}	L3
23	Find the frequency response and the impulse response of the system described by the differential equation. $d^{2} y / d t^{2}+5 d y / d t+6 y=-d / d t x(t)$.	7	CO 4	L3
24	Find the DTFT of the signal $x(n)=\mathrm{a}^{(n)} ;\|a\|<1$	8	CO 4	L3
25	Find the fourier transform of the following. $x(n)=1 ;-2 \leq n \leq 2$ $=0$; Otherwise	7	CO_{4}	L3
26	Determine the DTFT of the following signal, i) $x(n)=u(n)$ ii) $x(n)=2^{n} u(-n)$	8	CO_{4}	L3
27	Obtain the frequency response of the impulse response of the system described by the difference equation $y(n)-1 / 4 y(n-$ 1) $=3 \times(n)-3 / 4 \times(n-1)$	7	CO_{4}	L3

28	Find the fourier transform of the following. $x(n)=4 ;-3 \leq n \leq 3$ $=0$; Otherwise	8	CO 4	L3
29	State and explain parsavel's theorem	7	CO 4	L3
30	Obtain the fourier transform of the following signal $i) x(t)=e^{-a}$ $u(t) ; a>0$ ii) $x(t)=d e l t a(t)$	8	CO 4	L3
31	Using DTFT find the total solution to the difference equation for discrete time signal. $5 y(n+2)-6 y(n+1)+y(n)=0.8 u(n)$	7	CO 4	L3
32	Obtain the difference equation for the system with frequency response $h\left(\mathrm{e}^{\mathrm{j} \Omega}\right)=1^{+} \mathrm{e}^{-\mathrm{j} \Omega} /\left(1-\left(1 / 2 \mathrm{e}^{-\mathrm{j} \Omega}\right)\right)\left(1=\left(1 / 24 \mathrm{e}^{-\mathrm{j}^{\mathrm{j}}}\right)\right)$	8	CO 4	L3
33	State and explain following DTFT properties I) Time shift ii) Linearity	7	CO 4	L3
34	Obtain the fourier transform of $x(t)=$ te-atu(t)	8	CO 4	L3
35	Find the fourier transform of rectangular pulse shown below $x(\omega)=1 /(a+j \omega)^{2}$	7	CO 4	L3
36	Find the frequency response \& impulse response of the system described by differential equation $\mathrm{dy}(\mathrm{t}) /$ $d t+8 y(t)=x(t)$	8	CO 4	L3
37	Find the Fourier transform of i) $x(t)=t 2 u(t) u(1-t)$ and ii) $x(t)=t$ $\exp (-t) u(t),>0$	7	CO 4	L3
38	Find the fourier transform of triangular pulse $x(t)=(t / m)=\{102 \mid$ $\mathrm{t}\|/ \mathrm{m}\| \mathrm{t} \mid$ o otherwise	8	CO 4	L3

D3. TEACHING PLAN - 3

Module - 5

Title:	Loop and Horn Antenna and Antenna Types	Appr Time:	10 Hrs
a	Course Outcomes	CO	Blooms
-	At the end of the topic the student should be able to ...	-	Level
	Explain the need of real time operating system for embedded system applications. Apply z-transform and its properties for the analysis of discrete time system using partial fraction expansion method.		L3
b	Course Schedule	-	-
Class No	Portion covered per hour	-	-
41	IThe Z-Transforms-Definition	CO 5	L3
42	ROC, properties of the region of convergence,	CO 5	L3
43	properties of the Z-transform,	CO 5	L3
44	properties of the Z-transform	CO 5	L3
45	ilnverse Z-transform,	CO 5	L3
46	Causality and stability,	CO 5	L3
47	Transform analysis of LTI systems	CO 5	L3
48	Transform analysis of LTI systems.,	CO_{5}	L3
49	Problems	CO 5	L3
50	Problems.	CO 5	L3
c	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to . . .	-	-
1	Analysis of digital system,system design,automatic controls in telecommunication.	CO 5	L3
2	Simulate the continuous system, Analysis of digital filters	CO 5	L4

d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	
1	Define Z-Transform for a general discrete time signal x[n].	CO 5	1
2	What is ROC w.r.t. Z-Transform?	CO 5	L3
3	What are the properties of ROC?	CO 5	L2
4	What are the properties of Z-Transforms?	CO 5	L3
5	State and prove the properties of Unilateral Z-Transform and ROC.	CO 5	L3
6	Find the Z-Transform of $x[n]=-u(n-1)+(1 / 2)^{n} u(n)$	CO5	L4
7	Determine the Z-Transform, ROC, pole and zero locations for the following signals: a) $\left.x(n)=(1 / 2)^{n} u(n)+(-1 / 3)^{n} u(n) \quad b\right) x(n)=e^{i n} 0^{n} u(n)$	CO 5	L3
8	Find the inverse Z-Transform of , $H(Z)=\left(1+Z^{-1}\right) /\left(1-0.9 e^{j \pi / 4} Z^{-1}\right)\left(1-0.9 e^{-j / 4 / 4} Z^{-1}\right)$	CO 5	L3
9	Find the inverse Z-Transform assuming a) Signal is causal; b) Signal has DTFT 1/ $\left(1-1 / 2 Z^{-1}\right)+2 /\left(1-2 Z^{-1}\right)$	CO 5	L3
10	A system is described by the difference equation $y[n]-y[n-1]+1 / 4 y[n-2]=x[n]+$ $1 / 4 \times[n-1]-1 / 8 \times[n-2]$ a) Find the Transfer Function of the Inverse System. b) Does a stable and causal inverse system exist?	CO 5	L3
11	Define Z transform? What are the two types of Z transform? Define unilateral Z transform.	CO 5	L3
12	What is region of Convergence and What are the Properties of ROC.	CO 5	L3
13	What is the time shifting property of Z transform, differentiation property in Z domain, convolution property of Z transform..	CO 5	L3
14	State the methods to find inverse Z transform.	CO 5	L3
15	State and prove parseval's relation for Z transform	CO 5	L3
e	Experiences	-	-
1		CO10	L2
2		CO 9	

E3. CIA EXAM - 3

a. Model Question Paper - 3

Crs Code:	$18 E C 45$	Sem:	IV	Marks:	30	Time:	75 minutes

Course: Signals \& Systems

-	-	Note: Answer any 2 questions, each carry equal marks.	Marks	CO	Level
1	a	Find the Z-transform of the sequence, and sketch the ROC and pole zero location i) $x(n)=(1 / 3)^{n} \sin (\Pi / 4 n) u(n) \quad$ ii) $x(n)=a^{n} u(n)+b^{n} u(-n-1)$	8	CO 5	-1
	b	What is ROC with respect to Z -transform? What are its properties	7	CO 5	L2
2	a	Find the inverse z transform of the following by partial fraction method $X(z)=\left(z^{4}+z^{2}\right) /\left(z^{2}-3 / 4 z+1 / 8\right) \quad\|z\|>1 / 2$	8	CO 5	L2
	b	Find the inverse Z transform of $X(Z)$ by power series expansion method $X(Z)=1 / 1-1.5 Z^{-1}+0.5 Z^{-2}$ ROC: $\|Z\|<1$	7	CO 5	L4
3	a	A difference equation of the system is given as below determine the transfer function of the inverse system. Check whether the inverse system is causal and stable. $y(n)-y(n-1)+1 / 4 y(n-2)=x(n)+1 / 4 \times(n-1)-1 / 8 \times(n-2)$	8	CO 5	L1
	b	Determine the forced response for the following system $y(n)-5 / 6 y(n-1)+1 / 6 y(n-2)=x(n) \quad$ if input $x(n)=2^{n} u(n)$	7	CO 5	L2
4	a	Solve the following difference equation $y(n)-1 / 9 y(n-2)=x(n-1)$ with $y(-1)=0, y(-2)=1 \quad \& x(n)=3 u(n)$	8	CO 5	L2
	b	Explain the following properties i) Convolution property ii) Initial value theorem	7	CO 5	L2

b. Assignment - 3

Model Assignment Questions								
Crs Code:	18EC45 Sem:	IV Marks:	30	Time: 90	90 minutes			
Course:	Signals \& Systems							
SNo	Assignment Description				Marks	CO	Level	
1	Determine the transfer function and impulse response for the causal LTI system described by the equation using Z transform $Y(n)-1 / 4 y(n-1)$ $3 / 8 y(n-2)=-x(n)+2 x(n-1)$				5	CO 5	L3	
2	Find the inverse Z Transform of $X(z)=1 /\left(1-0.5 Z^{-2}-1+0.5 Z^{-1}-2\right)$ for ROC $\|Z\|$ >1				5	CO 5	L3	
3	Find the Z-transform of the following i) $x(n)=2 n u(-n-1)$ ii) $x(n)=(3) 2 n u(-$ n)				5	CO 5	L3	
4	Solve the following difference equation using unilateral Z-transform $\mathrm{Y}(\mathrm{n})$ $+3 y(n-1)=x(n)$ with $x(n)=u(n)$ and the initial condition $y(-1)=1$				5	CO 5	L3	
5	Prove the following properties of Z-transform i) Linearity ii) Initial value theorem				5	CO 5	L3	
6	Find Inverse Z-transform of the following using partial fraction expansion method. $X(z)=(1+2 z-1+z-2) /(1-1.5 z-1+0.5 z-2)$				5	CO 5	L3	
7	Check whether the system is causal or not ,the $\mathrm{H}(z)$ is given by ($\mathrm{z} 3+$ $z) /(z+1)$. ii) $H(z)$ is given by ($z / z 0 a$).,\|a	<1.				5	CO 5	L3
8	Determine the transfer function for the system described by the difference equation $y(n)_{0} y\left(n_{0} 1\right)=x(n)_{0} x\left(n_{0} 2\right)$.				5	CO 5	L3	
9	find the inverse z-transform of $x(z)=1+3 z-1 / 1+3 z-1+2 z-2$ using residue method				5	CO 5	L3	
10	Determine the inverse z transform of the following function $x(z)=1 /(1+z-1)$ (1-z-1)2 ROC : \|Z>1					5	CO 5	L3
11	Find the Z - transform of the signal (8) (i)x(n)=u(n) (ii) $\times(n)=A \cos \left(\omega_{0}\right) u(n)$				5	CO 5	L3	
12	Find the Unilateral Z-transform and R.O.C of $x(n)=\sin \omega 0 n u(n)$				5	CO 5	L3	
13	What is the time shifting property, differentiation property and convolution property of Z transform .				5	CO 5	L3	
14	State parseval's relation for Z transform				5	CO 5	L3	
15	Define Z transform?What are the two types of Z transform? Define unilateral Z transform				5	CO 5	L3	
16	Find the Z-transform of the sequence, and sketch the ROC and pole zero location i) $x(n)=(1 / 3)^{n} \sin (\Pi / 4 n) u(n)$ ii) $x(n)=a^{n} u(n)+b^{n} u(-n-1)$				5	CO 5	L3	
17	What is ROC with respect to Z-transform? What are its properties				5	CO 5	L3	
18	Find the inverse z transform of the following by partial fraction method $X(z)=\left(z^{4}+z^{2}\right) /\left(z^{2}-3 / 4 z+1 / 8\right)$ $\|z\|>1 / 2$				5	CO 5	L3	
19	Find the inverse Z transform of $X(Z)$ by power series expansion method $X(Z)=1 / 1-1.5 Z^{-1}+0.5 Z^{-2}$ ROC: $\|Z\|<1$				5	CO 5	L3	
20	Define Z-Transform for a general discrete time signal $\times[n]$.				5	CO 5	L3	
21	What is ROC w.r.t. Z-Transform?				5	CO 5	L3	
22	What are the properties of ROC?				5	CO 5	L3	
23	What are the properties of Z-Transforms?				5	CO 5	L3	
24	State and prove the properties of Unilateral Z-Transform and ROC.				5	CO 5	L3	
25	Find the Z-Transform of $x[n]=-u(n-1)+(1 / 2)^{n} u(n)$				5	CO 5	L3	
26	Determine the Z-Transform, ROC, pole and zero locations for the following signals: a) $\left.x(n)=(1 / 2)^{n} u(n)+(-1 / 3)^{n} u(n) \quad b\right) x(n)=e^{i 2} 0^{n} u(n)$				5	CO 5	L3	
27	Find the inverse Z-Transform of , $\mathrm{H}(\mathrm{Z})=\left(1+Z^{-1}\right) /\left(1-0.9 e^{j \pi / 4} Z^{-1}\right)\left(1-0.9 \mathrm{e}^{-j \pi / 4} Z^{-1}\right)$				5	CO 5	L3	
28	Find the inverse Z-Transform assuming a) Signal is causal; b) Signal has				5	CO 5	L3	

	DTFT $1 /\left(1-1 / 2 Z^{-1}\right)+2 /\left(1-2 Z^{-1}\right)$			
29	A system is described by the difference equation y[n] $-y[n-1]+1 / 4$ y[n-2] $=x[n]+1 / 4 \times[n-1]-1 / 8 \times[n-2] ~ a)$ Find the Transfer Function of the Inverse System. b) Does a stable and causal inverse system exist?	5	CO 5	L 3
30	Define Z-Transform for a general discrete time signal $\times[n]$.	5	CO 5	L 3

F. EXAM PREPARATION

1. University Model Question Paper

8	a	Using DTFT find the total solution to the difference equation for discrete time signal. $5 y(n+2)-6 y(n+1)+y(n)=0.8 u(n)$	CO 4	L3	8
	b	Find the fourier transform of the following. $x(n)=1 ;-2 \leq n \leq 2$ $=0$; Otherwise	CO 4	L3	8
9	a	Find the Z-transform of the following i) $x(n)=2 n u(-n-1)$ ii) $x(n)=(3) 2 n \quad u(-n)$	CO 5	L3	8
	b	Prove the following properties of Z-transform i) Linearity ii) Initial value theorem	CO 5	L3	8
		OR			
10	a	Find Inverse Z-transform of the following using partial fraction expansion method. $X(z)=\left(1+2 z^{-1}+z^{-2}\right) /\left(1-1.5 z^{-1}+0.5 z^{-2}\right)$	CO 5	L3	8
	b	Solve the following difference equation using unilateral Z-transform $Y(n)+$ $3 y(n-1)=x(n)$ with $x(n)=u(n)$ and the initial condition $y(-1)=1$	CO 5	L3	8
	b	With FSM model, explain the design and operation of automatic tea/ coffee vending machine.	CO 5	L3	5
	c	Explain the assembly language based embedded firmware development with a diagram and mention its advantages and disadvantages.	CO 5	L3	7

2. SEE Important Questions

Course: Crs Code:		Signals \& Systems				Month / Year May /2018			
		18EC45	Sem:	4 Marks:	60	Time:		180 minutes	
	Note Answer all FIVE full questions. All questions carry equal marks.						-	-	
Mod ule	Qno. Important Question						Marks	CO	Year
1	1	Distinguish between: i) Energy signal and Power signal ii)Continuous and Discrete time signals iii) Even and Odd signal iv)Periodic and non periodic signals					6	CO 1	2018
	2	Determine the even and Odd components of the signal i) $x(t)=1+t^{2}+t \tan t+\tan ^{2} t \cot t+\cot ^{3} t$ ii) $x(t)=[s i n t+\operatorname{cost}]^{3}$					6	CO 1	2018
	3	Determine whether the following signals are periodic, if periodic determine the fundamental period i) $x(t)=\left[2 \cos ^{2}(\square t / 2)-1\right] \sin \Pi t \cos \Pi t$ ii) $x(n)=\cos (n n / 7) \sin (\pi n / 3)$					6	CO1	
	4	Determine the following signal is Energy or Power signal i) $x(t)=e^{-a\|t\|} \quad a>0$ ii) $x(t)=5^{+t}$ for $(-5,-4)$ 1 for ($-4,4$) 5-t for $(4,5)$ o otherwise					6	CO1	2018
	5	Determine whether the system is i) Linear ii) Time Invariant iii) memoryless iv) causal v) stable i) $y(t)=d / d t\left[l^{-t} x(t)\right\}$ ii) $y(n)=x(k+2)$					6	CO1	2018
2	1	The impulse response of a continuous time LTI system is given by $h(t)=e^{2 n} u(n-1)$ and the input $x(n)=2 u(n)+5 u(n-1)$					8	CO 2	2018
	2	A continuous time LTI system with unit impulse response $h(t)=u(t)$ and input $x(t)=e^{-a t} u(t) a>0$ find convolution of the signals					6	CO 2	2018
	3	Find the step response for the LTI system represented by the impulse response $h(n)=(1 / 2)^{n} u(n)$.					8	CO 2	2018
	4	consider a continuous time LTI system is represented by the impulse response $h(t)=e^{-3 t} u(t-1)$ determine whether it is i)stable ii) causal					6	CO 2	2018
	5	Solve the differential equation, $d^{2} y(t) / d t^{2}+3 d y(t) / d t+2 y(t)=2 x(t)$ with $y(0)=-1 d y(t) / d t$ with $t=0$ and $x(t)=\operatorname{cost} u(t)$					8	CO 2	2018

3	1	Determine Fourier transformation of following signals. i) $x(t)=e-a t u(t) ~ i i) x(t)=$ cost wot.	6	CO 3	2018
	2	Find the frequency response and the impulse response of the system described by the differential equation. $d^{2} y / d t^{2}+5 d y / d t+6 y=-d / d t x(t)$.	8	CO 3	2018
	3	State and explain parsavel's theorem	6	CO_{3}	2018
	4	Obtain the fourier transform of the following signal $i) x(t)=e^{-a t} u(t) ; a>0$ ii) $)(t)=d e l t a(t)$	8	CO_{3}	2018
	5	obtain the fourier transform of $x(t)=t e^{-a t} u(t)$	6	CO_{3}	2018
4	1	State and explain following DTFT properties I) Time shift ii) Linearity	6	CO 4	2018
	2	Determine the DTFT of the following signal, i) $x(n)=u(n)$ ii) $x(n)=2^{n} u(-n)$	6	CO 4	2018
	3	Obtain the frequency response of the impulse response of the system described by the difference equation $y(n)-1 / 4 y(n-1)=3 x(n)-3 / 4 x(n-1)$	8	CO 4	2018
	4	Find the fourier transform of the following. $x(n)=1 ;-2 \leq n \leq 2$ $=0$; Otherwise	6	CO 4	2018
	5	Obtain the DTFT of the signal $x[n]=2 n u(-n)$	6	CO 4	2018
5	1	Find the inverse Z-Transform assuming a) Signal is causal; b) Signal has DTFT $1 /\left(1-1 / 2 Z^{-1}\right)+2 /\left(1-2 Z^{-1}\right)$	5	CO 5	2018
	2	What is z-transformation? List the properties of ROC. State and prove following properties i) Convolution ii) Time reversal	8	CO 5	2018
	3	Find Inverse Z-transform of the following using partial fraction expansion method. $X(z)=\left(1+2 z^{-1}+z^{-2}\right) /\left(1-1.5 z^{-1}+0.5 z^{-2}\right)$	6	CO 5	2018
	4	Solve the following difference equation using unilateral Z-transform $Y(n)$ + $3 y(n-1)=x(n)$ with $x(n)=u(n)$ and the initial condition $y(-1)=1$	6	CO 5	2018
	5	Find the z-transformation of i) $x(n)=n$ a nu($-n$) ii) $x(n)=n \sin (\Pi / 2 n) u(-n)$	8	CO 5	2018
	b	Mention the sequence of operations for embedding the firmware with a programmer and draw the interfacing diagram.	6	CO 5	2018

Course Outcome Computation

Academic Year:

Odd / Even semester

Attainment
LV Threshold : 3:>60\%, 2:>=50\% and <=60\%, 1: <=49\%
CO1 Computation : $(2+2+2+3) / 4=10 / 4=2.5$

PO Computation

Program Outcome	PO1	PO 3			PO 3		PO1		PO12		PO12	
Weight of	3	1			3		2		2		3	
CO-PO												
Course Outcome	CO 1		CO 2		CO_{3}		CO 4		CO 5		CO6	
Test/Quiz/Lab QUESTION NO	T1						T2					
	Q1	LV	Q2	LV	Q3	LV	Q1	LV	Q2	LV	Q3	LV
MAX MARKS	10	-	10	-	10	-	10	-	10	-	10	-
USN-1	5	2	10	3			10	3	9	3	4	1
USN-2	5	2	8	3								
USN-3	7	3	7	3	10	3	8	3	8	3	5	2
USN-4					4	1	10	3	8	3	6	2
USN-5	8	3	6	2	9	3	10	3	8	3		
USN-6							10	3	9	3	4	1
Average Attainment		2.5		2.75		2.33		3		3		1.5

