Ref No:

Sri Krishna Institute of Technology, Bangalore

COURSE PLAN

Academic Year 2019-2020

Program:	UG
Semester :	IV
Course Code:	18EC45
Course Title:	Signals & Systems
Credit / L-T-P:	4/4-0-0
Total Contact Hours:	40
Course Plan Author:	M.Nagaraja

Academic Evaluation and Monitoring Cell

Sri Krishna Institute of Technology

#29,Chimney hills,Hesaraghata Main road, Chikkabanavara Post Bangalore – 560090, Karnataka, INDIA

Phone / Fax :08023721477/28392221/23721315 Web: www.skit.org.in , e-mail: <u>skitprinci@gmail.com</u>

Table of Contents

A. COURSE INFORMATION	2
1. Course Overview	2
2. Course Content	3
<u>3. Course Material</u>	
<u>4. Course Prerequisites</u>	3
5. Content for Placement, Profession, HE and GATE	4
B. OBE PARAMETERS.	4
<u>1. Course Outcomes</u>	4
2. Course Applications	4
3. Articulation Matrix	4
<u>4. Curricular Gap and Content</u>	5
C. COURSE ASSESSMENT.	5
<u>1. Course Coverage</u>	5
2. Continuous Internal Assessment (CIA)	5
D1. TEACHING PLAN - 1	5
Module - 1	5
Module – 2	<u>6</u>
E1. CIA EXAM – 1.	7
a. Model Question Paper - 1	7
<u>b. Assignment -1</u>	7
D2. TEACHING PLAN - 2	7
Module – 3	7
Module – 4	8
E2. CIA EXAM – 2.	9
a. Model Question Paper - 2	9
b. Assignment – 2	
D3. TEACHING PLAN - 3	
Module – 5	
E3. CIA EXAM – 3	11
a. Model Question Paper - 3	
b. Assignment – 3	
F. EXAM PREPARATION	11
1. University Model Question Paper	11
2. SEE Important Questions	

A. COURSE INFORMATION

1. Course Overview

Degree:	B.E	Program:	UG
Semester:	IV	Academic Year:	2019-20
Course Title:	Signals & Systems	Course Code:	18EC45
Credit / L-T-P:	4/4-0-0	SEE Duration:	180 minutes
Total Contact Hours:	40	SEE Marks:	60
CIA Marks:	30	Assignment	10
Course Plan Author:	M.Nagaraja	Sign	
Checked By:		Sign	
CO Targets	CIA Target :20	SEE Target:	45

Note: Define CIA and SEE % targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute.

Mod	Content	Teaching Hours	Blooms Learning
ule		-	Levels
1	Introduction and Classification of signals: Definition of signal	8	L1,L2,L3
	and systems, communication and control system as		
	examples Classification of signals.		
	Basic Operations on signals: Amplitude scaling, addition,		
	multiplication, differentiation, integration, time scaling, time		
	shift and time reversal.		
	Elementary signals/Functions: Exponential, sinusoidal,		
	step, impulse and ramp functions. Expression of triangular,		
	rectangular and other waveforms in terms of elementary		
	signals.	0	
2	System Classification and properties: Linear-nonlinear, Time	ð	L1,L2,L3
	unstable invertible		
	Time domain representation of ITI System. Impulse		
	response convolution sum convolution integral		
	Computation of convolution sum and convolution integral		
	using graphical method for unit step and unit step, unit step		
	and exponential, exponential and exponential, unit step and		
	rectangular, and rectangular and rectangular.		
3	LTI system Properties in terms of impulse response: System	8	L1,L2,L3
	interconnection, Memory less, Causal, Stable, Invertible and		
	Deconvolution, and step response.		
	Fourier Representation of Periodic Signals: CTF Sproperties		
	and basic problems.		
4	Fourier Representation of aperiodic Signals: Introduction to	8	L1,L2,L3
	Fourier Transform & DTFT, Definition and basic problems.		
	Properties of Fourier Transform: Linearity, Lime shift,		
	Frequency snift, Scaling, Differentiation and integration,		
	Convolution and Modulation, Parseval's theorem and		
	problems on properties of Fourier Transform.	0	
5	The Z-transforms : Z transform, properties of the region of convergence, properties of the Z transform, inverse Z	ð	L1,L2,L3
	transform Causality and stability Transform analysis of LT		
	eveteme		
2 3 4 5	rectangular and other waveforms in terms of elementary signals. System Classification and properties: Linear-nonlinear, Time variant-invariant, causal-noncausal, static-dynamic, stable- unstable, invertible. Time domain representation of LTI System: Impulse response, convolution sum, convolution integral. Computation of convolution sum and convolution integral using graphical method for unit step and unit step, unit step and exponential, exponential and exponential, unit step and rectangular, and rectangular and rectangular. LTI system Properties in terms of impulse response: System interconnection, Memory less, Causal, Stable, Invertible and Deconvolution, and step response. Fourier Representation of Aperiodic Signals: CTF Sproperties and basic problems. Fourier Transform & DTFT, Definition and basic problems. Properties of Fourier Transform: Linearity, Time shift, Frequency shift, Scaling, Differentiation and Integration, Convolution and Modulation, Parseval's theorem and problems on properties of Fourier Transform. The Z-Transforms: Z transform, properties of the region of convergence, properties of the Z-transform, Inverse Z- transform, Causality and stability, Transform analysis of LTI systems.	8 8 8 8	L1,L2,L3 L1,L2,L3 L1,L2,L3 L1,L2,L3

-	Total	

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 – 30 minutes

2. Design: Simulation and design tools used – software tools used ; Free / open source

3. Rese	arch: Recent developments on the concepts – publications in journals; co	onferences	s etc.
Modul	Details	Chapters	Availability
es		IN DOOK	
A	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
	Simon Haykins and Barry Van Veen, Signals and Systems , 2nd Edition, 2008, Wiley India. ISBN 9971-51-239-4.		IN LID
			In Lib
В	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
1	Michael Roberts, "Fundamentals of Signals & Systems", 2nd		In Lib
	edition, Tata McGraw-Hill, 2010, ISBN 978-0-07-070221-9.		
2	Alan V Oppenheim, Alan S, Willsky and A Hamid Nawab,		In Lib
	"Signals and Systems" Pearson Education Asia / PHI, 2nd		
	edition, 1997. Indian Reprint 2002.		
3	H.P Hsu, R. Ranjan, "Signals and Systems", Scham's outlines,		In Lib
	ТМН, 2006.		
4	B. P. Lathi, "Linear Systems and Signals", Oxford University		In Lib
	Press, 2005.		
5	Ganesh Rao and SatishTunga, "Signals and Systems",		In Lib
	Pearson/Sanguine.		
С	Concept Videos or Simulation for Understanding	-	-
1	https://www.youtube.com/watch?v=PHtoMPqs_Gc		
2	https://www.youtube.com/watch?v=G2axsmS12Ms		
3	https://www.youtube.com/watch?v=iDMwtJxXb28&vl=en		
4	https://www.youtube.com/watch?v=QLCXSxgxRPY		
5	https://www.youtube.com/watch?v=wG6VUnkrO90		
D	Software Tools for Design	-	-
	MATLAB		
E	Recent Developments for Research	-	-
F	Others (Web, Video, Simulation, Notes etc.)	-	-
1	NPTEL VIDEOS		In Lib

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Students must have learnt the following Courses / Topics with described Content

Mod	Course	Course Name	Topic / Description	Sem	Remarks	Blooms
ules	Code					Level
1	18EC31	Engg Maths	Fourier Transform	3		L2

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Mod	Topic / Description	Area	Remarks	Blooms
ules				Level

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs.

Mod	Course	Course Outcome	Teach. Hours	Instr Method	Assessme	Blooms'
ules	Code.#	At the end of the course, student			nt	Level
		should be able to			Method	
1	18EC45.1	Understand the basic elementary	8	Lecture	Slip Test	L2
		signals and their classification by				Understand
2	18FC 45 2	Dovelop input output relationship	8	Locturo	Accianmo	1.2
	102045.2	for LTI system and understand the	0	Lecture	n	۲3
		convolution operation for				
		continuous time and Discrete				
		signals.				
2	18FC / 5 3	Resolve the signals in frequency	8	Lecture	Assianme	12
5	102040.0	domain using Fourier transform	Ũ	Lecture	nt and	Understand
		of continuous time signal			Slip Test	
4	18EC45.4	Apply Fourier transform	8	Lecture and	Assignme	L3
		representation to study and		lutorial	nt	Apply
		resolve the signal and system				
5	18EC45.5	Apply z-transform and its	8	Lecture	Slip test	L3
		properties for the analysis of				Apply
		discrete time system using				
		partial fraction expansion				
		method.				
-	-	Total	40	-	-	-

2. Course Applications

Write 1 or 2 applications per CO.

Students should be able to employ / apply the course learnings to ...

Mod	Application Area	CO	Level
ules	Compiled from Module Applications.		
1	Speech and audio processing, biological signal analysis	CO1	L2
1	Remote sensing system.	CO1	L2
2	Radars, Digital filter design.	CO2	L3
2	Distance phone calls, Digital recording, image processing.	CO2	L3
3	Radars, Digital filter design	CO3	L2
3	3Distance phone calls, Digital recording, image processing	CO3	L2
4	Amplitude modulation, frequency multiplexing	CO4	L3
4	Circuit analysis, sampling	CO4	L3

5	Analysis of digital system, system design, automatic controls in telecommunication.	CO5	L3
5	Simulate the continuous system, Analysis of digital filters	CO5	L3

3. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	-	Course Outcomes	Program Outcomes									Program Outcomes						-
Mod	CO.#	At the end of the course	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	Lev
ules		student should be able to	1	2	3	4	5	6	7	8	9	10	11	12	O1	02	03	el
1	18EC45.1	Understand the basic elementary signals and their classification by mathematical	3	3							2			1				
2	18EC45.2	description. Develop input output relationship for LTI system and understand the convolution operation for continuous time and Discrete signals	3	3							2			1				
3	18EC45.3	Resolve the signals in frequency domain using Fourier transform of continuous time signal	3	3							2			1				
4	18EC45.4	Apply discrete time Fourier transform representation to study and resolve the signal and system	3	3							2			1				
5	18EC45.5	Apply z-transform and its properties for the analysis of discrete time system using partial fraction expansion method.	3	3							2			1				
-	17EC62.	Average	3	3							2			1				-
-	PO, PSO	1.Engineering Knowledge; 2.Problem Analysis; 3.Design / Development of Solutions 4.Conduct Investigations of Complex Problems; 5.Modern Tool Usage; 6.The Engineer and Society; 7.Environment and Sustainability; 8.Ethics; 9.Individual and Teamwork 10.Communication; 11.Project Management and Finance; 12.Life-long Learning S1.Software Engineering; S2.Data Base Management; S3.Web Design								ons; and vork; ning;								

4. Curricular Gap and Content

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Mod	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
ules					
1	MATLAB	Seminar	^{3rd} week of March		List from B4
			2020		above
2	MATLAB to Obtain the	Seminar	3 rd Week April 2020		List from B4
	spectrum of signals				above

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation.

100000	fillent of total ing outcombe for ins	connac ai			
Mod	Title	Teach.	No. of question in Exam	CO	Levels
18EC45			Copyright ©2017. cAAS. Al	l rights reserve	ed.

COURSE PLAN - CAY 2019-20

ules		Hours	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE		
							Asg			
1	Introduction and Classification of	8	2	-	-	1	1	2	CO1, CO2	L1, L2
	signals .Basic Operations on signals									
	Elementary signals / Functions									
2	System Classification and	8	2	-	-	1	1	2	CO3, CO4	L2, L3
	properties									
	Time domain representation of LTI									
	System									
3	LTI system Properties in terms of	8	-	2	-	1	1	2	CO5, CO6	L2, L3
	impulse response								_	_
	Fourier Representation of Periodic									
	Signals									
4	Fourier Representation of aperiodic	8	-	2	-	1	1	2	CO7, C08	L2, L3
.	Signals									
	Properties of Fourier Transform:									
5	The 7-Transforms	8	_	_	4	1	1	2	CO9, CO10	12.13
	Total	40	4	4	- 1		-	10		,
-	iulal	40	4	4	4	D	5	10		-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Mod	Evaluation	Weightage in	СО	Levels
ules		Marks		
1, 2 Cl	IA Exam – 1	30	CO1,CO2	L1,L2, L3
3, 4 Cl	IA Exam – 2	30	CO3,CO4	L2, L3
5 CI	IA Exam – 3	30	CO5	L2, L3
1, 2 As	ssignment - 1	10	CO1,CO2	L1,L2, L3
3, 4 As	ssignment - 2	10	CO3,CO4	L2, L3
5 As	ssignment - 3	10	CO5	L2, L3
1, 2 Se	eminar - 1		-	-
3, 4 Se	eminar - 2		-	-
5 Se	eminar - 3		-	-
1, 2 QI	uiz - 1		-	-
3, 4 QI	uiz - 2		-	-
5 Q1	uiz - 3		-	-
1-50	ther Activities – Mini Project	-		
	Final CIA Marks		-	-

D1. TEACHING PLAN - 1

Module - 1

Title:		Appr	8 Hrs
		Time:	
a	Course Outcomes	СО	Blooms
	Understand the basic elementary signals and their classification by mathematical description.	CO1	L2
b	Course Schedule	-	-
Class No	Portion covered per hour	-	-
1	Introduction: Definitions of signals and a system	CO1	L2

2	Classification of signals.	CO1	L2
3	Basic operations on signals: Amplitude and time operations	CO1	L2
4	Folding, Time shifting, time scaling operations	CO1	L2
5	Problems	CO1	L2
6	Problems	CO2	L2
7	Elementary signals and their representation	CO2	L2
8	Elementary signals viewed as interconnections of operations	CO2	L2
Q	properties of systems	CO2	12
10	problems	CO2	2
	Application Areas		
-	Students should be able employ / apply the Module learnings to		
1	Speech and audio processing, biological signal analysis	CO1	L2
d	Review Questions		
-			
1	Define Signals and systems?	CO1	L2
2	What are the major classifications of the signal?	CO1	L2
3	Explain the basic elementary signals with their mathematical equation?	CO1	L2
4	Define periodic signal and non-periodic signal?	CO1	L2
5	Define Energy and power signal ?	CO1	L2
6	Define even and odd signal ?	CO1	L2
7	Determine whether the following systems are linear, time invariant, causal , sta-	CO1	L2
-	ble. $y(n)=log(x(n))$.		
8	Determine whether the following systems are linear or not dy(t) / dt + $3ty(t) = 12y(t) + 2y(n) + 4y(n) + 4y($	CO1	L2
0	$12 \times (1) \otimes y(1)=2 \times (1)+17 \times (1-1)$	CO1	1.2
9	betermine whether the following systems are time-invarient of not $Y(t) = t X(t)$ $\delta_{1}y(n) = x(2n)$	COI	LZ
10	Find whether the signal $x(t) = 2 \cos(10 t+1) - \sin(4t-1)$ is periodic or not (6)	CO1	12
10	Evaluate Σ n=(-∞ to ∞) e 2n δ (n-2)	001	
11	b) Determine whether the following signals are energy or power and calculate	CO1	L2
	their energy and power. i) $x(n)=(1/2)n u(n)$ ii) $x(t)=rect(t/To)$ iii) $x(t)=cos2 (\Omega t)$		
12	Define unit step, ramp, pulse, impulse and exponential signals. Obtain the	CO1	L2
	relationship between the unit step and unit ramp function.		
13	Find the fundamental period T of the signal ,	CO1	L2
	$x(n)=\cos(n\pi/2)-\sin(n\pi/8)+3\cos(n\pi/4+\pi/3)$		<u> </u>
14	Determine the power of the following signals.	CO1	L2
4 5	1) $X_1(1)=5\cos(501+11/3)$ II) $X_2(1)=20\cos(501\cos(51))$	<u> </u>	
15	Determine whether the following systems are time variant of time -invariant. If $y(t)=ty(t)$ ii) $y(n)=y(2n)$	COI	L2
16	Determine whether the following signal is periodic. If periodic, determine the	CO1	12
10	fundamental period: $X(t)=3cost+4cos(t/2) X(t)=cos60\pit+sin50\pit$	001	
17	Determine whether the following system is linear, time invariant, causal, stable	CO1	L2
	and static 1. $y(n) = x^2 (n) ^2 (n) = x(-n)$		
18	A discrete time signal is given by x(n)={1,1,1,1,2} Sketch the following signals	CO1	L2
	a)x(n-2) b)x(n+1) c)x(3-n) d)x(n)u(n-1) e)x(n-1) δ (n-1) f)Even samples of x(n)		
	g)odd samples of x(n)		

Module – 2

Title:		Appr	8 Hrs
		Time:	
a	Course Outcomes	СО	Blooms
_	Develop input output relationship for LTI system and understand the convolution operation for continuous time and Discrete signals.	CO2	L3

b	Course Schedule	-	-
Class	Portion covered per hour	-	-
No			
11	System Classification and properties	CO3	L3
12	Linear-nonlinear,	CO3	L3
13	Time variant-invariant	CO3	L3
14	causal-noncausal,	CO3	L3
15	static-dynamic,	CO4	L3
16	stable-unstable, invertible.	CO4	L3
17	ime domain representation of LTI System:	CO4	L3
18	Impulse response, convolution sum, convolution integral	CO4	L3
19	Computation of convolution sum and convolution integral using graphical method for unit step and unit step, unit step and exponential exponential and exponential unit step, and rectangular, and rectangular		
20	and rectangular.		
с	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
	Padars, Digital filter decign	<u> </u>	
1	Radars, Digital Illier design. Distance phone calls. Digital recording, image processing	CO3	
	Distance phone caus, Digitat recording, image processing.	004	L3
d	Review Questions	-	
-			
1	The impulse response of a continuous time LTI system is given by h(t)=e ^{2t} u(t-1) check whether the system is stable causal and memoryless.	CO2	L3
2	A continuous time LTI system with unit impulse response $h(t)=u(t)$ and input $x(t)=e^{-at} u(t) a>0$ find the output $y(t)$ of the system.	CO2	L3
3	Find the step response for the LTI system represented by the impulse response $h(n)=(1/2)^n u(n)$.	CO2	L3
4	consider a continuous time LTI system is represented by the impulse response h(t)=e ^{-3t} u(t-1) determine whether it is i)stable ii) causal	CO2	L3
5	Solve the differential equation, d²y(t)/dt² + 3 dy(t)/dt + 2y(t) = 2x(t) with y(0)=-1 dy(t)/dt with t=0 and x(t)=cost u(t)	CO2	L3
6	The impulse response of a continuous time LTI system is given by h(t)=e ^{2t} u(t-1) check whether the system is stable,causal and memoryless.	CO2	L3
7	Find the response of the system described by difference equations y(n)-1/9 y(n-2)=x(n-1) with y(-1)=1, y(-2)=0 and x(n)=u(n)	CO2	L3
8	find the difference equation representation for the block diagram representation of continuous time LTI system shown in figure 3c, $x(H) = \int_{Fig.Q3(c)}^{y(H)} \int_{Fig.Q3(c)}^{y$	CO2	L3
9	response h(t)=e ^{at} u(-t) is stable. Also find out whether the system is i)causal ii) memoryless	002	L3
10	Represent the differential equation given below in direct form I and II $d^2y(t)/dt^2 + 3 dy(t)/dt + 2y(t) = d^2y(t)/dt^2 + dx(t)/dt^2$	CO2	L3
11	Find the zero input response and forced response for the system described by the difference equation $y(n)-1/4 y(n-2)=2x(n)+x(n-1)$ given $x(n)=u(n)$; $y(-2)=8$, $y(-1)=0$.	CO2	L3
12	For the given impulse response determine whether system is memory less,	CO2	L3

	stable and causal justify your answer h(n)=2 ⁿ u(-n)		
13	Given impulse response of the system $h(n)=(1/2)^n u(n-2)$ find out step response	CO2	L3
	of the system.		
14	Draw direct form-I and direct form- II implementation for the following	CO2	L3
	difference equation y(n)-1/4 y(n-1)-1/8y(n-2)=2x(n)+3x(n-1)		
15	Find the step response of a LTI system if impulse response h(t)=t ² u(t)	CO2	L3
16	Obtain the response of the system given by $d^2y(t)/dt^2y(t) + y(t) = 3 dx(t)/dt$ with	CO2	L3
	$y(0)=-1$, $dy(t)/dt = d^2y(t)/dt^2=1$ and $2e^{-t}u(t)$		
17	Find the difference equation for the system shown in fig.	CO2	L3
	3(h) (E) (S) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C		

E1. CIA EXAM – 1

a. Model Question Paper - 1

Crs Code	s 18EC45 Sem: IV Marks: 30 Time: 90 ode:		90 minute	ès						
Cour	rse:	Signals & S	ystems							
-	-	Note: Answ	ver all ques	tions, each	n carry equal	marks. Mod	ule : 1, 2	Marks	СО	Level
1	а	Distinguish Discrete tin odic signals	between: i ne signals i s) Energy sig i) Even and	nal and Powe Odd signal	er signal ii)(iv)Periodic a	Continuous ar Ind non peri-	nd 8	CO1	L2
	b	Determine i) x(t)=1+t²+t	the even a tant+tan²t o	nd Odd cor cot t + cot³t	mponents of ii) x(t)=[sir	the signal ht+cost]³		7	CO1	L2
2	а	Determine determine t i) x(t)=[2cos	e whether the fundarr ²(⊓t∕2)-1]sir	the follow nental perio nпt cosпt	wing signals d ii) >	are perioc	dic, if perioo 7) sin(⊓n∕3)	lic 8	CO1	L3
	b	Determine i) x(t)=e ^{-a t}	the followin a>0	ng signal is ii) x(t)	Energy or Po = 5+t for 1 5-t 0	wer signal (-5,-4) for (-4, 4) for (4, 5) otherwise		7	CO1	L2
		Droyy the ci	anal						CO1	
3	d	i)x(t)=3r(t-1)	9nai -4r(t-2)-6r(t	-3)+r(t)	ii)Y(t)={{x(t)+x(2-t)}u(1-t)}u(t)		COI	L2
	b	b) Express case signa	x(t) interms l	s of g(t) usin	ng shifting and	d scaling of 3	stepped stai	r- 8	CO1	L3
		Determine	whatharth	o ovetom io		no Invariant		0	<u> </u>	
4	d	i) y(t)=d/dt ii) y(n)=x(k+2	sal v) stable [e ^{-t} x(t)] 2)	e system is 9	n Linear II) Th		iii) memory-	0	02	
	b	Determine	the relatio	nship betwe	een the signa	ls.		7	CO2	L3

b. Assignment -1

Crs Code:	17EC62	Sem:	VI	Marks:	30	Time:	90 minut	es	
Course:	ARM Mic	crocontroller 8	k Embec	lded System					
	1	1							
SN	lo		As	ssignment Des	scription		Marks	со	Level
1		Define signal	s and sy	stems, with ap	propriate	examples?	5	CO1	L3
2		Write a note	on class	ification of sigr	hals with s	suitable	5	CO1	L3
2		examples?	a and or	ld component	of the ci	anal		<u> </u>	
3		$x(t) = (1+t^3)\cos(2t)$	³ (10t).	iu component:		gnat			L3
4		Find the over y(n)= 1/3[x(n+	rall oper 1)+x(n)+x	ator of the syst (n-1)].	em		5	CO1	L3
5		Determine w varient iii)me	hether t mory iv)	he system y(t) causal v)stable	= x(t/2) is	i) linear ii)Time ir	- 5	CO1	L3
6		Sketch the for component x(t)= u(t)- r(t-	ollowing of signa -1)+2r(t-2	ı signal, hence l, draw even ar)-r(t-3)	find the e nd odd pa	even and odd art of	5	CO1	L3
7		State whethe odic find the ii)x(t)=cos(2πt	er the fol fundam). sin(2π1	lowing signals ental period: i); ;))	is period x(n) = cos(ic or not, if peri- (πn/2)+sin(πn/2)	5	CO1	L3
8		Consider the mine where i)memoryles	e system it is , is ii)caus	ı whose output al. iii)linear. iv)	t is y(t)=co	psω _c +x(t) deter-	5	CO1	L3
9		Sketch the s x(t) = 2t for t 1 to 2. deterr	ignal for varies fr nine the	the following om 0 to 1 and odd compone	function, x(t)=4-2t ent of x(t).	for t varies from	5	CO1	L3
10)	Given x(n)=[3 2)+y(n+2)	21012	2 3] and y(n)= [-	-1 -1 -1 -1	0 1 1 1 1] plot x(r	1- 5	CO1	L3
11	L	Determine w time -invaria	hether 1 nt. i) y(t)=	:he following s tx(t) ii)y(n)=x(2n	systems a)	are time variant (Dr 5	CO1	L3
12	2	Determine w determine X(t)=cos60πt·	hether t the fu •sin50πt	he following si ndamental p	gnal is pe eriod: X	eriodic. If periodic ((t)=3cost+4cos(t/	2) 2)	CO1	L3
13	3	Determine th i) x1(t)=5cos(5	ie powei jot+π/3)	r and RMS valu ii) x₂(t)= 20cos5	e of the f otcos15t	ollowing signals.	5	CO1	L3
14	1	Determine w variant.causa	hether t Il .stable	he following sy , v(n)=log(x(n)),	/stems ar	e linear,time in-	5	CO2	L3
15	5	Determine w dy(t) / dt + 3	/hether ty(t) = t2	the following s x(t) & y(n)=2x(n	ystems a)+ 1 / x(n-	re linear or not 1)	5	CO2	L3
16	6	Determine v invariant, cau	whether Isal, stab	the followin ole and static 1	g systen y(n) = x2	n is linear, tim (n) 2. y(n) = x(-n)	ie 5	CO2	L3
17	7	A discrete to following sig	me sigi nals a)x(/en sam	nal is given b n-2) b)x(n+1) (ples of x(n)	y x(n)={1,: c)x(3-n) d) g)odd sa	1,1,1,2) Sketch th x(n)u(n-1) e)x(r mples of x(n)	ie 5 1-	CO2	L3
18	3	Determine w memoryless i) y(t)=d/dt[e ii) y(n)=x(k+2)	hether t iv) caus ^{-t} x(t)}	he system is i) al v) stable	Linear ii) ⁻	Time Invariant iii.	5	CO2	L3
19)	Draw the sigi i)x(t)=3r(t-1)-2	nal µr(t-2)-6r	(t-3)+r(t) ii)Y	′(t)={{x(t)+x	(2-t)}u(1-t)}u(t)	5	CO2	L4
20)	Define signal	s and sy	rstems, with ap	propriate	examples?	5	CO2	L4
2:	L	Write a note examples?	on class	ification of sigr	hals with s	suitable	5	CO2	L3
22	2	Distinguish b ii)Continuous iv)Periodic ar	etween: and Dis nd non p	i) Energy signa crete time sigr eriodic signals	al and Pov nals iii) Eve	wer signal en and Odd sign	al 5	CO2	L3
23	3	Determine t i) x(t)=1+t²+t ta	ne even ant+tan²t	and Odd com cot t + cot³t	oonents c ii) x(t)=[of the signal sint+cost]³	5	CO2	L3
24	1	Define signal	s?				5	CO2	L3

25	The impulse response of a continuous time LTI system is given by h(t)=e ^{2t} u(t-1) check whether the system is stable causal and memoryless.	5	CO2	L3
26	A continuous time LTI system with unit impulse response h(t)=u(t) and input x(t)=e ^{-at} u(t) a>0 find the output y(t) of the system.	5	CO2	L3
27	Find the step response for the LTI system represented by the impulse response $h(n)=(1/2)^n u(n)$.	5	CO2	L3
28	consider a continuous time LTI system is represented by the impulse response h(t)=e ^{-3t} u(t-1) determine whether it is i)stable ii) causal	5	CO2	L3
29	Solve the differential equation, d²y(t)/dt² + 3 dy(t)/dt + 2y(t) = 2x(t) with y(0)=-1 dy(t)/dt with t=0 and x(t)=cost u(t)	5	CO2	L3
30	The impulse response of a continuous time LTI system is given by h(t)=e ^{2t} u(t-1) check whether the system is stable,causal and memoryless.	5	CO2	L3
31	Find the response of the system described by difference equations y(n)-1/9 y(n-2)=x(n-1) with y(-1)=1, y(-2)=0 and x(n)=u(n)	5	CO2	L3
32	find the difference equation representation for the block diagram representation of continuous time LTI system shown in figure 3c,	5	CO2	L3
33	Determine the conditions so that the continuous time system with impulse response h(t)=e ^{at} u(-t) is stable. Also find out whether the system is i)causal ii) memoryless	5	CO2	L3
34	Represent the differential equation given below in direct form I and IId ² y(t)/dt ² + 3 dy(t)/dt + 2y(t) = d ² y(t)/dt ² + dx(t)/dt ²	5	CO2	L3
35	Find the zero input response and forced response for the system described by the difference equation $y(n)-1/4 y(n-2)=2x(n)+x(n-1)$ given $x(n)=u(n)$; $y(-2)=8$, $y(-1)=0$.	5	CO2	L3
36	For the given impulse response determine whether system is memory less, stable and causal justify your answer h(n)=2 ⁿ u(-n)	5	CO2	L3
37	Given impulse response of the system h(n)=(1/2) ⁿ u(n-2) find out step response of the system.	5	CO2	L3
38	Draw direct form-I and direct form- II implementation for the following difference equation y(n)-1/4 y(n-1)-1/8y(n-2)=2x(n) +3x(n-1)	5	CO2	L3
39	Find the step response of a LTI system if impulse response h(t)=t² u(t)	5	CO2	L3
40	Obtain the response of the system given by $d^2y(t)/dt^2y(t) + y(t) = 3 dx(t)/dt with y(0)=-1, dy(t)/dt = d^2y(t)/dt^2=1 and 2e^{-t}u(t)$	5	CO2	L3
41	Find the difference equation for the system shown in fig. $2 \ln 3$ (5) (5) (5) (1) (1) (1) (1) (2) (2) (2) (2) (2) (2) (2)	5	CO2	L3

D2. TEACHING PLAN - 2

Module – 3

Title:

Appr 10 Hrs

Time:

2	Course Outcomes	0	Blooms
a	At the end of the tonic the student should be able to	-	
_	Desclue the signals in frequency demain using Fourier transform of	CO_2	
		003	LZ
	continuous time signal		
h	Course Schodule		
	Course Schedule Portion covered per bour		
21	They stom Droportions in terms of impulse response:	- 	- 2
21	Custom interconnection	<u> </u>	
22	System Interconnection,	003	LZ
23	Memory less, Causal, Stable, Invertible	CO3	L2
24	Deconvolution,	CO3	L2
25	step response	CO3	L2
26	Fourier Representation of Periodic Signals:	CO3	L2
27	CTFS definition	CO3	L2
28	CTFS Properties	CO3	L2
29	Problems	CO3	L2
30	Problems	CO3	L2
0			
с	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	Radars. Digital filter design	1	L2
2	Distance phone calls. Digital recording, image processing	2	
d	Review Questions	_	-
-	The attainment of the module learning assessed through following questions	-	-
1	State & prove the following properties of FT. i) Time shifting property ii)	CO3	L2
	parseval's theorem.	•	
2	Obtain the fourier transform of x(t) = te ^{-at} u(t)	CO3	L2
3	Find the fourier transform of rectangular pulse shown below $x(\omega) = 1/(a+j\omega)^2$	CO3	L2
4	Find the frequency response & impulse response of the system	CO3	L2
	described by differential equation $dv(t)/dt + 8v(t) = x(t)$		
5	Find the Fourier transform of i) $x(t) = t2 u(t) u(1-t)$ and ii) $x(t) = t exp(-t) u(t)$.	CO3	L2
6	Find the fourier transform of triangular pulse (10) $x(t) = (t/m) = \frac{102 t }{m} t 0$	CO3	 L2
	otherwise	0	
7	Obtain the exponential Fourier series of the waveform	CO3	L2
	70		
	-172 0 -1772 E		
	Final the Fourier transforms of restance day pulse. Clustels the signal and its	<u> </u>	
8	Find the Fourier transform of rectangular pulse. Sketch the signal and its	03	L2
0	Fourier transform of a triangular pulso	COn	10
10	State and prove following properties of Fourier Transformation	$\frac{003}{002}$	
10	i) Frequency shift ii) Convolution theorem	003	LZ
11	Determine Fourier transformation of following signals	0.03	12
	i) $x(t) = e-at u(t)$ ii) $x(t) = cost Wot.$	660	<u> </u>
12	Find the frequency response and the impulse response of the system	CO3	L2
	described by the differential equation.		
	$d^2 y/dt^2 + 5d y/dt + 6y = -d /dt x(t).$		
13	State and explain parsavel's theorem	CO3	L2
14	Obtain the fourier transform of the following signal i)x(t)=e ^{-at} u(t);a>0	CO3	L2
	ii)x(t)=delta(t)		
15	The impulse response of continuous time signal is given by h(t)=1/Re e-t/RC	CO3	L2
	u(t) find the frequency response and plot the magnitude		

Module – 4

Title:	Data Transmission and Telemetry	Appr	10 Hrs
	Measurement of Non – Electrical Quantities	Time:	
a	Course Outcomes	СО	Blooms
_	At the end of the topic the student should be able to	-	Level
	Apply Discrete time Fourier transform representation to study and	CO4	L3
	resolve the signal and system		
b	Course Schedule		
Class No	Portion covered per hour	-	-
31	Fourier Representation of aperiodic Signals:	CO4	L3
32	Introduction to Fourier Transformsignals: The	CO4	L3
33	Introduction to DTFT	CO4	L3
34	Problems on FT	CO4	L3
35	Problems on DTFT	CO4	L3
36	Properties of Fourier Transform: Linearity, Time shift,	CO4	L3
37	Frequency shift, Scaling, Differentiation and Integration,	CO4	L3
38	Convolution and Modulation.	CO4	L3
39	Parseval?s theorem	CO ₄	L3
40	Problems	CO ₄	L3
с	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	_
1	Amplitude modulation, frequency multiplexing	CO4	L3
2	Circuit analysis, sampling	CO4	L4
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	State and explain following DTFT properties I) Time shift ii) Linearity	CO4	L3
2	Determine the DTFT of the following signal,	CO4	L3
2	(1)X(1)=U(1) II) X(1)=2 U(-1) Obtain the frequency response of the impulse response of the system	CO4	1.2
5	described by the difference equation $y(n)-1/4 y(n-1)=3x(n)-3/4 x(n-1)$	004	L3
4	Define Transfer function of the DT system and Define impulse response of a DT	CO4	L3
	system		0
5	State the significance of difference equations and Write the differece equation	CO4	L3
	for Discrete time system		
6	Define frequency response of the DT system and explainWhat is the condition	CO4	L3
	for stable system	<u> </u>	
/	Obtain the DTFT of the signal X(n) =2n u(-n) State & prove the following properties of DTFT i) Convolution property ii)	<u>CO4</u>	L3
0	State & prove the following properties of DTFT. I/ Convolution property ii/	CO4	L3
0	Using DTET find the total solution to the difference equation for discrete time	COA	3
9	signal. $5y(n+2) - 6y(n+1) + y(n) = 0.8 u(n)$	004	-5
10	Find the fourier transform of the following. x(n) = 1 ; -2 ≤ n≤ 2	CO4	L3
	= 0 ; Otherwise		
11	Find the fourier transform of $x[n]$ = an $u[n]$ for -13. Determine the fourier	CO4	L3
	transform of the discrete time rectangular pulse of amplitude A and length L		
	I.e xln] = A for 0= n=L-1 0 otherwise	00.	
12	Determine the discrete time sequence where DTFT is given as $Y(y_1) = 1$ for $y_2 = y_3 = 0$ for $y_2 = 1$ for $y_3 = 1$ for $y_4 = 0$	004	L3
10	Find the DTET of the signal $v(n) = 2^{ n +1} x + 1$	CO4	1.2
11	Find the inverse DTFT of the signal $X(a^{j\Omega})=2-(1/4 a^{-j\Omega})/-1/16 a^{-2j\Omega}+1$	CO4	<u>∟</u> 3 ว
15	Find the impulse response of the system having output $v(n)=1/A(1/2)^n$ $u(n)$	CO4	 २
18EC45	Copyright ©2017. cAAS. All right	s reserv	ed.

	+(1/4) ⁿ u(n)		
16	Obtain the difference equation for the system with frequency response $h(e^{j\Omega})=1+e^{-j\Omega}/(1-(1/2e^{-j\Omega}))(1=(1/24e^{-j\Omega}))$	CO4	L3
е	Experiences	-	-
1		CO7	L2
2			

E2. CIA EXAM – 2

a. Model Question Paper - 2

Crs	0	18EC45	Sem:	IV	Marks:	30	Time 9	90 minutes		
Code			Votovoo							
Cour	rse:	Signals & S	ystems	ationa a		menulue M		Marka	<u> </u>	Loval
-	-	Note: Ansv	ver all qu	estions, ea	ach carry equa	marks. M	ioaule : 3, 4	Marks		Level
1	а	i) x(t) = e ^{-at} u	Fourier tra i(t) ii) x(t) =	ansformati cost Wot.	on of following	signals.		5	CO3	L1
	b	Find the free described d² y/dt² +50	equency r by the diff d y/dt +6y	esponse a erential ec =-d /dt x(1	nd the impulse ¡uation. :).	response	of the system	4	CO3	L2
	С	Find the D	FFT of the	signal x(n))= a ⁿ ; a <1			3	CO3	L2
	d	Find the fo	urier trans	form of th	e following. x(n = 0 ;) = 3; -4 ≤ r Otherwise	1≤ 24 9	3	CO3	L2
2	а	State and e	explain pa	rsavel's the	eorem			3	CO3	L3
	b	Obtain the ii)x(t)=delta	e fourier (t)	transform	of the follow	ing signa	l i)x(t)=e ^{-at} u(t);a>	0 4	CO3	L3
	С	The impulse response of continuous time signal is given by $h(t)=1/Re e^{-t/RC}$ u(t) find the frequency response and plot the magnitude						^{3C} 3	CO3	L2
	d	Find the inv	verse DTF	T of the si	gnal X(e ^{jΩ})=3-(1/	′4 e ^{-jΩ})/-1/1	6 e ^{-2jΩ} +1	5	CO3	L2
3	а	State and e	explain fol	lowing DT	FT properties I)	Time shif	t ii) Linearity	3	CO4	L3
	b	Determine i)x(n)=u(n) ii	the DTFT) x(n)=2 ⁿ u	of the foll (-n)	owing signal,			4	CO4	L3
	с	Obtain the described	frequence by the diff	y respons erence eq	e of the impu uation y(n)-1/4	lse respo y(n-1)=3x(r	nse of the syster n)-3/4 x(n-1)	n 5	CO4	L3
	d	Find the fo	urier trans	form of th	e following. x(n = 0 ;) = 1 ; -2 ≤ ı Otherwise	1≤ 2 ?	3	CO4	L3
4	а	Obtain the	DTFT of t	ne signal x	[n] =2n u(-n)			3	CO4	L3
	b	State & pro Frequency	ove the fo differentia	llowing pr ation	operties of DTF	T. i) Conv	olution property i	i) 4	CO4	L3
	С	Using DTF time signal	T find the . 5y(n+2) –	total solu 6y(n+1) +y	tion to the diffe (n) = 0.8 u(n)	erence eq	uation for discret	e 4	CO4	L3
	d	Obtain the $h(e^{j\Omega})=1+e^{-j\Omega}$	difference /(1-(1/2 e-	e equation ^{jΩ}))(1=(1/24	for the system 1 e- ^{jΩ}))	with frequ	lency response	5	CO4	L3

b. Assignment – 2

		Model Assignment Que	stions			
Crs Code:	Sem:	Marks:	Time:			
Course:						
SN	D C	Assignment Description				
1	State & prov property ii) p	State & prove the following properties of FT. i) Time shifting property ii) parseval's theorem.				L2

2	Obtain the fourier transform of x(t) = te-atu(t)	8	CO3	L2
3	Find the fourier transform of rectangular pulse shown below $x(\omega) = 1/(a+j\omega)^2$	7	CO3	L2
4	Find the frequency response & impulse response of the system described by differential equation dy(t)/ dt + 8y(t) =x(t)	8	CO3	L2
5	Find the Fourier transform of i) x(t)= t2 u(t) u(1-t) and ii) x(t)= t exp(- t) u(t) , >0	7	CO3	L2
6	Find the fourier transform of triangular pulse (10) x(t) = _(t/m) ={102 t /m t 0 otherwise	8	CO3	L2
7	Obtain the exponential fourier series of the waveform	5	CO3	L2
8	Find the Fourier transform of rectangular pulse. Sketch the	6	CO3	L2
	Signal and its Fourier transform		<u> </u>	
10	Pind the Fourier transform of a triangular pulse. Obtain the DTFT of the signal $x[n] = 2n u(-n)$	<u>/</u> 8	CO3	L2
11	State & prove the following properties of DTFT, i) Convolution	7	CO3	12
	property ii) Frequency differentiation	,		
12	Using DTFT find the total solution to the difference equation for discrete time signal. 5y(n+2) – 6y(n+1) +y(n) = 0.8 u(n)	8	CO3	L2
13	Obtain the difference equation for the system with frequency response $h(e^{j\Omega})=1+e^{-j\Omega}/(1-(1/2 e^{-j\Omega}))(1=(1/24e^{-j\Omega}))$	7	CO3	L2
14	State and explain following DTFT properties I) Time shift ii) Linearity	8	CO3	L2
15	Determine the DTFT of the following signal, i)x(n)=u(n) ii) x(n)=2 ⁿ u(-n)	7	CO3	L2
16	Obtain the frequency response of the impulse response of the system described by the difference equation y(n)-1/4 y(n-1)=3x(n)-3/4 x(n-1)	8	CO3	L2
17	Find the fourier transform of the following. x(n) = 1 ; -2 ≤ n≤ 2 = 0 ; Otherwise	7	CO3	L2
18	State and explain parsavel's theorem	8	CO3	L2
19	Obtain the fourier transform of the following signal i)x(t)=e ^{-at} u(t);a>0 ii)x(t)=delta(t)	7	CO3	L2
20	The impulse response of continuous time signal is given by h(t)=1/Re e ^{-t/RC} u(t) find the frequency response and plot the magnitude	8	CO3	L2
21	Find the inverse DTFT of the signal X($e^{j\Omega}$)=3-(1/4 $e^{-j\Omega}$)/-1/16 $e^{-2j\Omega}$ +1	7	CO4	L3
22	Determine Fourier transformation of following signals. i) x(t) = e-at u(t) ii) x(t) = cost Wot.	8	CO4	L3
23	Find the frequency response and the impulse response of the system described by the differential equation. d² y/dt² +5d y/dt +6y =-d /dt x(t).	7	CO4	L3
24	Find the DTFT of the signal $x(n) = a^{ n }; a < 1$	8	CO4	L3
25	Find the fourier transform of the following. x(n) = 1 ; -2 ≤ n≤ 2 = 0 ; Otherwise	7	CO4	L3
26	Determine the DTFT of the following signal, i)x(n)=u(n) ii) x(n)=2 ⁿ u(-n)	8	CO4	L3
27	Obtain the frequency response of the impulse response of the system described by the difference equation y(n)-1/4 y(n-1)=3x(n)-3/4 x(n-1)	7	CO4	L3

28	Find the fourier transform of the following. x(n) = 4 ; -3 ≤ n≤ 3 = 0 ; Otherwise	8	CO4	L3
29	State and explain parsavel's theorem	7	CO4	L3
30	Obtain the fourier transform of the following signal i)x(t)=e ^{-at} u(t);a>0 ii)x(t)=delta(t)	8	CO4	L3
31	Using DTFT find the total solution to the difference equation for discrete time signal. 5y(n+2) – 6y(n+1) +y(n) = 0.8 u(n)	7	CO4	L3
32	Obtain the difference equation for the system with frequency response $h(e^{j\Omega})=1+e^{-j\Omega}/(1-(1/2 e^{-j\Omega}))(1=(1/24e^{-j\Omega}))$	8	CO4	L3
33	State and explain following DTFT properties I) Time shift ii) Linearity	7	CO4	L3
34	Obtain the fourier transform of x(t) = te-atu(t)	8	CO4	L3
35	Find the fourier transform of rectangular pulse shown below $x(\omega) = 1/(a+j\omega)^2$	7	CO4	L3
36	Find the frequency response & impulse response of the system described by differential equation dy(t)/dt + 8y(t) =x(t)	8	CO4	L3
37	Find the Fourier transform of i) x(t)= t2 u(t) u(1-t) and ii) x(t)= t exp(- t) u(t) , >0	7	CO4	L3
38	Find the fourier transform of triangular pulse x(t) =(t/m) ={102 t /m t 0 otherwise	8	CO4	L3

D3. TEACHING PLAN - 3

Module – 5

Title:	Loop and Horn Antenna and Antenna Types	Appr	10 Hrs
		Time:	
a	Course Outcomes	СО	Blooms
-	At the end of the topic the student should be able to	-	Level
	Explain the need of real time operating system for embedded system		L3
	applications. Apply z-transform and its properties for the analysis of		
	discrete time system using partial fraction expansion method.		
b	Course Schedule	-	-
Class No	Portion covered per hour	-	-
41	IThe Z-Transforms-Definition	CO5	L3
42	ROC, properties of the region of convergence,	CO5	L3
43	properties of the Z-transform,	CO5	L3
44	properties of the Z-transform	CO5	L3
45	iInverse Z-transform,	CO5	L3
46	Causality and stability,	CO5	L3
47	Transform analysis of LTI systems	CO5	L3
48	Transform analysis of LTI systems.,	CO5	L3
49	Problems	CO5	L3
50	Problems.	CO5	L3
С	Application Areas	-	-
-	Students should be able employ \checkmark apply the Module learnings to	-	-
1	Analysis of digital system,system design,automatic controls in telecommunication.	CO5	L3
2	Simulate the continuous system, Analysis of digital filters	CO5	L4

d	Review Questions	-	_
-	The attainment of the module learning assessed through following questions	-	-
1	Define Z-Transform for a general discrete time signal x[n].	CO5	L1
2	What is ROC w.r.t. Z-Transform?	CO5	L3
3	What are the properties of ROC?	CO5	L2
4	What are the properties of Z-Transforms?	CO5	L3
5	State and prove the properties of Unilateral Z-Transform and ROC.	CO5	L3
6	Find the Z-Transform of $x[n] = -u(n-1)+(1/2)^n u(n)$	CO5	L4
7	Determine the Z-Transform, ROC, pole and zero locations for the following	CO5	L3
	signals: a) x(n) = $(1/2)^n u(n) + (-1/3)^n u(n) b)x(n) = e^{i\Omega} 0^n u(n)$		
8	Find the inverse Z-Transform of ,H(Z) = (1+Z ⁻¹)/ (1-0.9 $e^{j\pi/4}$ Z ⁻¹)(1-0.9 $e^{-j\pi/4}$ Z ⁻¹)	CO5	L3
9	Find the inverse Z-Transform assuming a) Signal is causal; b) Signal has DTFT 1/	CO5	L3
	$(1-1/2 Z^{-1}) + 2/(1-2Z^{-1})$		
10	A system is described by the difference equation $y[n] - y[n-1] + 1/4 y[n-2] = x[n] +$	CO5	L3
	$1/4 \times [n-1] - 1/8 \times [n-2]$ a) Find the Transfer Function of the Inverse System. b)		
	Does a stable and causal inverse system exist?		
11	Define Z transform?What are the two types of Z transform? Define unilateral Z	CO5	L3
	transform.		
12	What is region of Convergence and What are the Properties of ROC.	CO5	L3
13	What is the time shifting property of Z transform, differentiation property in Z	CO5	L3
	domain, convolution property of Z transform		
14	State the methods to find inverse Z transform.	CO5	L3
15	State and prove parseval's relation for Z transform	CO5	L3
е	Experiences	-	-
1		CO10	L2
2		CO9	

E3. CIA EXAM – 3

a. Model Question Paper - 3

Crs Code	e:	18EC45	Sem:	IV	Marks:	30	Time:	75 minute	5 minutes			
Cour	se:	Signals & S	ystems									
-	-	Note: Answ	/er any 2 qi	lestions, ead	ch carry equ	al marks.		Marks	СО	Level		
1	а	Find the Z- ⁻ location	transform o	of the sequer	nce, and ske	tch the ROC	and pole ze	ero 8	CO5	L1		
		i) x(n)=(1/3)	ⁿ sin(Π/4 n)	u(n)	ii)x(n)=a ⁿ u	ı(n)+b ⁿ u(-n-1))					
	b	What is RO	C with resp	ect to Z-tran	sform? Wha	t are its prop	erties	7	CO5	L2		
2	а	Find the inverse z transform of the following by partial fraction method $X(z)=(z^4 + z^2) / (z^2-3/4 z+1/8)$ $ z >1/2$						8	CO5	L2		
	b	Find the inv X(Z)= 1/ 1-1.	verse Z tran 5Z ⁻¹ +0.5Z ⁻²	sform of X(Z)) by power so ROC	eries expans C: Z <1	ion method	7	CO5	L4		
3	а	A difference equation of the system is given as below determine the transfer function of the inverse system. Check whether the inverse system is causal and stable $y(n)=y(n=1)=1/4$ $y(n=2)=y(n)=1/4$ $y(n=2)=1/4$					ne 8 em	CO5	L1			
	b	Determine the forced response for the following system $y(n)-5/6 y(n-1)+1/6 y(n-2)=x(n)$ if input $x(n)=2^nu(n)$					7	CO5	L2			
4	а	Solve the fo with y(-1)=0	ollowing dif , y(-2)=1 &	ference equa x(n)=3u(n)	ation y(n)-1/9	9 y(n-2)=x(n-1	_)	8	CO5	L2		
	b	Explain the theorem	following	properties i) (Convolution	property	ii) Initial val	ue 7	CO5	L2		

b. Assignment – 3

	Model Assignment Questions			
Crs Code:	18EC45 Sem: IV Marks: 30 Time: c	90 minut	es	
Course:	Signals & Systems			
SNo	Assignment Description	Marks	СО	Level
1	Determine the transfer function and impulse response for the causal LT	T 5	CO5	L3
	system described by the equation using \angle transform Y(n) - 1/4y(n-1)	-		
2	3/0y(1-2) = -x(1) + 2x(1-1) Find the inverse 7 Transform of $Y(z) = 1/(1-0)z^{-2} + 0 z^{-1} = 0$ for DOC 17	<u>' </u>	COF	
2		. 5	005	L3
3	Find the 7-transform of the following i) $x(n) = 2n u(-n-1)$ ii) $x(n) = (3)2n u(-n-1)$	- 5	C:05	3
5	n		005	
4	Solve the following difference equation using unilateral Z-transform Y(n) 5	CO5	L3
	+ $3y(n-1) = x(n)$ with $x(n) = u(n)$ and the initial condition $y(-1) = 1$			
5	Prove the following properties of Z-transform i) Linearity ii) Initial value	9 5	CO5	L3
	theorem			
6	Find Inverse Z-transform of the following using partial fraction	า 5	CO5	L3
	expansion method. $X(z) = (1+2z-1+z-2)/(1-1.5z-1+0.5z-2)$			
7	Check whether the system is causal or not the $H(Z)$ is given by $(Z_3 - Z_3)/(Z_2 + 1)$ ii) $H(Z)$ is given by $(Z_3 - Z_3)/(Z_2 + 1)$ iii) $H(Z)$ is given by $(Z_3 - Z_3)/(Z_2 + 1)$	+ 5	C05	L3
8	Determine the transfer function for the system described by the		COF	10
0	difference equation $v(n)_0 v(n_01) = x(n)_0 x(n_02)$	5	005	L3
g	find the inverse z-transform of $x(z) = 1+3z-1 / 1+3z-1 + 2z-2$ using residue	2 5	CO5	L3
	method			
10	Determine the inverse z transform of the following function $x(z)=1/(1+z-1)$.) 5	CO5	L3
	(1-z-1)2 ROC : Z>1			
11	Find the Z – transform of the signal (8) (i)x(n)= u(n) (ii)x(n)= A cos(ω_0) u(n)	5	CO5	L3
12	Find the Unilateral Z-transform and R.O.C of $x(n) = \sin \omega 0 n u(n)$	5	CO5	L3
13	What is the time shifting property, differentiation property and	5	CO5	L3
	Convolution property of 2 transform .		<u> </u>	
14	Define 7 transform?///hat are the two types of 7 transform? Define	5	CO5	
15	unilateral 7 transform	5	005	L3
16	Find the 7-transform of the sequence, and sketch the ROC and pole	2 5	CO5	3
	zero location			
	i) $x(n)=(1/3)^n \sin(\Pi/4 n) u(n)$ ii) $x(n)=a^n u(n)+b^n u(-n-1)$			
17	What is ROC with respect to Z-transform? What are its properties	5	CO5	L3
18	Find the inverse z transform of the following by partial fraction method	5	CO5	L3
	$X(z)=(z^4+z^2)/(z^2-3/4z+1/8)$ z >1/2			
19	Find the inverse Z transform of X(Z) by power series expansion method	5	CO5	L3
	$X(Z) = 1/1 - 1.5Z^{-1} + 0.5Z^{-2}$ ROC: $ Z < 1$			
20	Define Z-Transform for a general discrete time signal x[n].	5	CO5	L3
21	What is ROC w.r.t. Z-Transform?	5	CO5	L3
22	What are the properties of ROC?	5	CO5	L3
23	What are the properties of Z-Transforms?	5	CO5	L3
24	State and prove the properties of Unilateral Z-Transform and ROC.	5	CO5	L3
25	Find the Z-Transform of $x[n] = -u(n-1)+(1/2)^n u(n)$	5	CO5	L3
26	Determine the Z-Transform, ROC, pole and zero locations for the	5	CO5	L3
	Totolowing signals: a) $x(n) = (1/2)'' u(n) + (-1/3)'' u(n) b)x(n) = e^{\mu} 0'' u(n)$		<u> </u>	
2/	Find the inverse Z-iransiorm of $H(Z) = (1+Z^{-1})/(1-0.9e^{-1/2}Z^{-1})(1-0.9e^{-1/2}Z^{-1})$	5	005	L3
20	FIND THE INVERSE Z-ITANSION ASSUMING A SIGNAL IS CAUSAL DI SIGNAL NAS		UUS	_ ∟≺

	DTFT 1/(1-1/2 Z ⁻¹) + 2/(1-2Z ⁻¹)			
29	A system is described by the difference equation y[n] – y[n-1] + 1/4 y[n-2] = x[n] + 1/4 x[n-1] – 1/8 x[n-2] a) Find the Transfer Function of the Inverse System. b) Does a stable and causal inverse system exist?	5	CO5	L3
30	Define Z-Transform for a general discrete time signal x[n].	5	CO5	L3

F. EXAM PREPARATION

1. University Model Question Paper

Course:		Signals & Systems			
Crs C	ode:	18EC45 Sem: 4 Marks: 60			
-	Note	Answer all FIVE full questions. All questions carry equal marks.			Mark s
1	а	Distinguish between i) Even and Odd Signals ii) Periodic and nonperiodic signals	CO1	L2	4
	b	b. Determine whether the following signals are periodic, if periodic determine the fundamental period. i) x(t) = cos2t + sin3t ii)x[n] = sin2n	CO1	L3	4
	С	c. Sketch the following signal for x(t) is shown in figure. i) x(3t+2) ii) x(2(t +2) iii) x(-2t-1) iv) x(-2t+3)	CO1	L3	8
2	а	a. Find total energy of the following signals i) x(t) = A; -T/2 < t < T/2 ii) $x(t) = \begin{bmatrix} 1 \\ cos(\omega t) + 1 \end{bmatrix} = \begin{bmatrix} -\pi \\ cos(\omega t) + 1 \end{bmatrix} = \begin{bmatrix} -\pi \\ cos(\omega t) + 1 \end{bmatrix} = 0;$ Otherwise	CO1	L3	8
	b	Dete do de la conterwise 12) is i) Linear ii) Time-invarient iii) Memory iv) Causal v) Stable	CO1	L3	8
		OR			
3	a	Consider an LTI system with input x(n) & unit impulse response h(n) given below, Compute y(n). x(n) = 2n u(-n); & h(n) = u(n)	CO2	L3	8
	b	Find the step response for the LTI system represented by impulse response i) h(n) = u(n) ii) h(n) = (1/2)n u(n)	CO2	L3	4
	С	Determine stability & causality of the following i) h(n) = (1/2)n u(n) ii) h(t) = e-3tu(t-1)	CO2	L3	4
		OR			
4	а	Find Forced response of the following system given by y(n) – 5/6 y(n-1) + 1/6 y(n-2) = x(n) where x(n) = 2 ⁿ	CO2	L3	10
	b	Draw direct form-I & II structures for the system described by the differential equation. $\frac{d^{3}y(t)}{dt^{3}} + \frac{2dy(t)}{dt} + 3y(t) = x(t) + \frac{3dx(t)}{dt}$	CO2	L3	6
5	а	State & prove the following properties of FT. i) Time shifting property ii) parseval's theorem	CO3	L3	10
	b	Obtain the fourier transform of x(t) = te ^{-at} u(t)	CO3	L3	6
		OR			-
6	а	Find the fourier transform of rectangular pulse shown below x(w) = 1/(a+jw) $^{\rm 2}$	CO3	L3	8
	b	Find the frequency response & impulse response of the system described by differential equation. dy(t)/dt + 8y(t) =x(t)	CO3	L3	8
7	a	Obtain the DTFT of the signal x[n] =2n u(-n)	CO4	L2	6
	b	State & prove the following properties of DTFT. i) Convolution property ii) Frequency differentiation.	CO4	L3	10
		OR			

-					-
8	а	Using DTFT find the total solution to the difference equation for discrete	CO4	L3	8
		time signal, 5v(n+2) – 6v(n+1) +v(n) = 0.8 u(n)			
	h	Find the fourier transform of the following $y(n) = 1 + 2 \le n \le 2$	COA	10	8
	D		004	∟ 3	0
		= 0 ; Otherwise			
9	а	Find the Z-transform of the following i) x(n) = 2n u(-n-1) ii) x(n) = (3)2n u(-n)	CO5	L3	8
	b	Prove the following properties of Z-transform i) Linearity ii) Initial value	CO5	L3	8
		theorem		•	
		UR UR			-
10	а	Find Inverse Z-transform of the following using partial fraction expansion	CO5	L3	8
		method. X(z) = (1+2Z ⁻¹ +Z ⁻²)/(1-1.5Z ⁻¹ +0.5Z ⁻²)			
	b	Solve the following difference equation using unilateral Z-transform Y(n) +	CO5	L3	8
		3y(n-1) = x(n) with x(n) = u(n) and the initial condition y(-1) =1	-		
	b	With FSM model, explain the design and operation of automatic tea/	CO5	L3	5
		coffee vending machine		_0	
			00-	1	
	С	Explain the assembly language based embedded firmware development	005	L3	7
		with a diagram and mention its advantages and disadvantages.			
1	1		I		1

2. SEE Important Questions

Cours	se:	Signals & Systems Month	/ Year	May /	2018
Crs C	ode:	18EC45 Sem: 4 Marks: 60 Time:		180 m	inutes
	Note	Answer all FIVE full questions. All questions carry equal marks.	-	-	
Mod ule	Qno.	Important Question	Marks	со	Year
1	1	Distinguish between: i) Energy signal and Power signal ii)Continuous and Discrete time signals iii) Even and Odd signal iv)Periodic and non periodic signals	6	CO1	2018
	2	Determine the even and Odd components of the signal i) x(t)=1+t²+t tant+tan²t cot t + cot³t ii) x(t)=[sint+cost]³	6	CO1	2018
	3	Determine whether the following signals are periodic, if periodic determine the fundamental period i) x(t)=[2cos²(Пt/2)-1]sinПt cosПt ii) x(n)=cos(Пn/7) sin(Пn/3)	c 6	CO1	
	4	Determine the following signal is Energy or Power signal i) x(t)=e ^{-a t} a>0 ii) x(t) = 5+t for (-5,-4) 1 for (-4, 4) 5-t for (4, 5) 0 otherwise	6	CO1	2018
	5	Determine whether the system is i) Linear ii) Time Invariant iii) memory- less iv) causal v) stable i) y(t)=d/dt[e ^{-t} x(t)] ii) y(n)=x(k+2)	6	CO1	2018
2	1	The impulse response of a continuous time LTI system is given by $h(t)=e^{2n}u(n-1)$ and the input $x(n)=2u(n)+5u(n-1)$	8	CO2	2018
	2	A continuous time LTI system with unit impulse response $h(t)=u(t)$ and input $x(t)=e^{-at} u(t) a>0$ find convolution of the signals	6 b	CO2	2018
	3	Find the step response for the LTI system represented by the impulse response $h(n)=(1/2)^n u(n)$.	e 8	CO2	2018
	4	consider a continuous time LTI system is represented by the impulse response h(t)=e ^{-3t} u(t-1) determine whether it is i)stable ii) causal	e 6	CO2	2018
	5	Solve the differential equation, d²y(t)/dt² + 3 dy(t)/dt + 2y(t) = 2x(t) with y(0)=-1 dy(t)/dt with t=0 and x(t)=cost u(t)	8	CO2	2018

3	1	Determine Fourier transformation of following signals. i) x(t) = e-at u(t) ii) x(t) = cost wot.	6	CO3	2018
	2	Find the frequency response and the impulse response of the system described by the differential equation. d² y/dt² +5d y/dt +6y =-d /dt x(t).	8	CO3	2018
	3	State and explain parsavel's theorem	6	CO3	2018
	4	Obtain the fourier transform of the following signal i)x(t)=e ^{-at} u(t);a>0 ii)x(t)=delta(t)	8	CO3	2018
	5	obtain the fourier transform of $x(t) = te^{-at}u(t)$	6	CO3	2018
4	1	State and explain following DTFT properties I) Time shift ii) Linearity	6	CO4	2018
	2	Determine the DTFT of the following signal, i)x(n)=u(n) ii) x(n)=2 ⁿ u(-n)	6	CO4	2018
	3	Obtain the frequency response of the impulse response of the system described by the difference equation $y(n)-1/4 y(n-1)=3x(n)-3/4 x(n-1)$	8	CO4	2018
	4	Find the fourier transform of the following. x(n) = 1 ; -2 ≤ n≤ 2 = 0 ; Otherwise	6	CO4	2018
	5	Obtain the DTFT of the signal x[n] =2n u(-n)	6	CO4	2018
5	1	Find the inverse Z-Transform assuming a) Signal is causal; b) Signal has DTFT 1/(1-1/2 Z $^{-1}$) + 2/(1-2Z $^{-1}$)	5	CO5	2018
	2	What is z-transformation? List the properties of ROC. State and prove following properties i) Convolution ii) Time reversal	8	CO5	2018
	3	Find Inverse Z-transform of the following using partial fraction expansion method. $X(z) = (1+2z^{-1}+z^{-2})/(1-1.5z^{-1}+0.5z^{-2})$	6	CO5	2018
	4	Solve the following difference equation using unilateral Z-transform Y(n) + $3y(n-1) = x(n)$ with $x(n) = u(n)$ and the initial condition $y(-1) = 1$	6	CO5	2018
	5	Find the z-transformation of i) x(n) = n a nu(-n) ii) x(n) = n sin (∏/2n)u(-n)	8	CO5	2018
	b	Mention the sequence of operations for embedding the firmware with a programmer and draw the interfacing diagram.	6	CO5	2018

Course Outcome Computation

Academic Year:

Odd / Even semester													
INTERNAL TES			T1	T2									
Course Outco	me	CO1		CO2		CO3		CO4		CO5		CO6	
QUESTION NO)	Q1	LV	Q2	LV	Q3	LV	Q1	LV	Q2	LV	Q3	LV
MAX MARKS		10	-	10	-	10	-	10	-	10	-	10	-
USN-1		5	2	10				10	3	9	3	4	1
USN-2		5	2	8	3								
USN-3		7	3	7	3	10	3	8	3	8	3	5	2
USN-4						4	1	10	3	8	3	6	2
USN-5		8	3	6	2	9	3	10	3	8	3		
USN-6								10	3	9	3	4	1
Average Attainment	CO		2.5		2.75		2.33		3		3		1.5

LV Threshold : 3:>60%, 2:>=50% and <=60%, 1: <=49%

CO1 Computation :(2+2+2+3)/4 = 10/4=2.5

PO Computation

Program Outcome	PO1		PO3		3 PO3		3 PC		PO12		PO12		
Weight of CO - PO	3	1		1	3		2		2		3		
Course Outcome	CO1	CO1 CC		D2 CO3		03	CO4		CO5		CO6		
Test/Quiz/Lab			T1	L					Т	2			
QUESTION NO	Q1	LV	Q2	LV	Q3	LV	Q1	LV	Q2	LV	Q3	LV	(
MAX MARKS	10	-	10	-	10	-	10	-	10	-	10	-	-
USN-1	5	2	10	3			10	3	9	3	4	1	
USN-2	5	2	8	3									
USN-3	7	3	7	3	10	3	8	3	8	3	5	2	
USN-4					4	1	10	3	8	3	6	2	
USN-5	8	3	6	2	9	3	10	3	8	3			
USN-6							10	3	9	3	4	1	
Average CO Attainment		2.5		2.75		2.33		3		3		1.5	
18EC45						Сору	right ©20	17. cAAS. /	All rights	reserved			