Ref No:

Sri Krishna Institute of Technology, Bangalore

COURSE PLAN

Academic Year 2019-2020

Program:	B E – Electronics & Communication Engineering
Semester :	6
Course Code:	18EC44
Course Title:	ENGINEERING STATISTICS AND LINEAR ALGEBRA
Credit / L-T-P:	3/ 3-0-0
Total Contact Hours:	40
Course Plan Author:	N S MYTHREYE

Academic Evaluation and Monitoring Cell

Sri Krishna Institute of Technology #29,Chimney hills,Hesaraghata Main road, Chikkabanavara Post Bangalore – 560090, Karnataka, INDIA Phone / Fax :08023721477/28392221/23721315 Web: www.skit.org.in , e-mail: <u>skitprinci@gmail.com</u>

Table of Contents

ENGINEERING STATISTICS AND LINEAR ALGEBRA	1
A. COURSE INFORMATION	<u>3</u>
1. Course Overview	<u>3</u>
ENGINEERING STATISTICS AND LINEAR ALGEBRA	<u>3</u>
2. Course Content	<u>3</u>
3. Course Material	4
4. Course Prerequisites	4
5. Content for Placement, Profession, HE and GATE	5
B. OBE PARAMETERS	5
1. Course Outcomes	5
2. Course Applications	5
3. Articulation Matrix	<u>6</u>
4. Curricular Gap and Content	7
C. COURSE ASSESSMENT	7
1. Course Coverage	7
2. Continuous Internal Assessment (CIA)	7
D1. TEACHING PLAN - 1	<u>8</u>
Module - 1	8
<u>Module – 2</u>	8
E1. CIA EXAM – 1	9
a. Model Question Paper - 1	9
b. Assignment -11	0
D2. TEACHING PLAN - 21	1
<u>Module – 31</u>	1
<u>Module – 41</u>	2
E2. CIA EXAM – 21	<u>3</u>
a. Model Question Paper - 21	<u>3</u>
<u>b. Assignment – 21</u>	4
D3. TEACHING PLAN - 31	5
<u>Module – 51</u>	5
<u>E3. CIA EXAM – 31</u>	<u>6</u>
a. Model Question Paper - 31	<u>6</u>
<u>b. Assignment – 31</u>	7
F. EXAM PREPARATION1	7
1. University Model Question Paper1	7
2. SEE Important Questions1	9

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	EC
Semester:	6	Academic Year:	2019-20
Course Title:	ENGINEERING STATISTICS AND LINEAR ALGEBRA	Course Code:	18EC44
Credit / L-T-P:	3-0-0	SEE Duration:	180 Minutes
Total Contact Hours:	40	SEE Marks:	80 Marks
CIA Marks:	30	Assignment	1 / Module
Course Plan Author:	N S MYTHREYE	Sign	Dt:
Checked By:		Sign	Dt:
CO Targets	CIA Target :	SEE Target:	

Note: Define CIA and SEE % targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute.

Moc	Content	Teaching Hours	Blooms Learning
1	Single Random Variables: Definition of random variables, cumulative distribution function continuous and discrete random variables; probability mass function, probability density functions and properties; Expectations, Characteristic functions, Functions of single Random Variables, Conditioned Random variables. Application exercises to Some special distributions: Uniform, Exponential, Laplace, Gaussian; Binomial, and Poisson distribution.	8	L1,L2,L3
2	Multiple Random variables: Concept, Two variable CDF and PDF, Two Variable expectations (Correlation, orthogonality, Independent), Two variable transformation, Two Gaussian Random variables, Sum of two independent Random Variables, Sum of IID Random Variables – Central limit Theorem and law of large numbers, Conditional joint Probabilities, Application exercises to Chi-square RV, Student-T RV, Cauchy and Rayleigh RVs	8	L1,L2,L3
3	Random Processes: Ensemble, PDF, Independence, Expectations, Stationarity, Correlation Functions (ACF, CCF, Addition, and Multiplication), Ergodic Random Processes, Power Spectral Densities (Wiener Khinchin, Addition and Multiplication of RPs, Cross spectral densities), Linear Systems (output Mean, Cross correlation and Auto correlation of Input and output), Exercises with Noise.	8	L1,L2,L3
4	Vector Spaces: Vector spaces and Null subspaces, Rank and Row reduced form, Independence, Basis and dimension, Dimensions of the four subspaces, Rank-Nullity Theorem, Linear Transformations Orthogonality: Orthogonal Vectors and Subspaces, Projections and Least squares, Orthogonal Bases and Gram- Schmidt Orthogonalization procedure.	8	L1,L2,L3
5	Determinants: Properties of Determinants, Permutations and Cofactors Eigenvalues and Eigen vectors: Review of Eigenvalues and Diagonalization of a Matrix, Special Matrices (Positive Definite, Symmetric) and their properties, Singular Value Decomposition	8	L1,L2,L3
-	Total	40	-

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 – 30 minutes

2. Design: Simulation and design tools used – software tools used ; Free / open source

3. Research: Recent developments on the concepts – publications in journals; conferences etc.

Modul	Details	Chapters	Availability
es		in book	
Α	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
1	Richard H Williams, "Probability, Statistics and Random Processes for	4,5,6	Not available
	Engineers" Cengage Learning, 1st Edition, 2003, ISBN 13: 978-0-534-		
	36888-3, ISBN 10: 0-534-36888-3.		
2	Gilbert Strang, "Linear Algebra and its Applications", Cengage Learning,	2,3,4,5	Not available
	4th Edition, 2006, ISBN 97809802327 Telecommunication and Switching,		
	Traffic and Networks - J E Flood: Pearson Education, 2002.		
В	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
1	Hwei P. Hsu, "Theory and Problems of Probability, Random Variables,		Not available
	and Random Processes" Schaums Outline Series, McGraw Hill. ISBN 10:		
	0-07- 030644-3.		
2	K. N. HariBhat, K Anitha Sheela, Jayant Ganguly, "Probability Theory and		Not available
	Stochastic Processes for Engineers", Cengage Learning India, 2019,		
	ISBN: Not in book Digital Telephony - John C Bellamy: Wiley India Pvt.		
	Ltd, 3rd Ed, 2008.		
С	Concept Videos or Simulation for Understanding	-	-
D	Software Tools for Design	-	-
F	Pecent Developments for Pesearch	_	_
	Recent Developments for Research	-	-
<u> </u>			
F	Others (web, video, Simulation, Notes etc.)	-	-

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Students must have learnt the following Courses / Topics with described Content ...

Mod	Course	Course Name	Topic / Description	Sem	Remarks	Blooms
ules	Code					Level
	Maths	Mathematics	Matrices, determinants	2 nd	-	L2
				pu		
					-	
					-	

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

ModTopic / DescriptionAreaRemarksBlooms

ules		Level

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs.

Mod	Course	Course Outcome	Teach. Hours	Instr Method	Assessme	Blooms'
ules	Code.#	At the end of the course, student			nt	Level
		should be able to			Method	
1	18EC44.1	Identify and associate the random	16	Lecture	Test/	L3
		variables and random processes in			Assignme	
		communication events			nt	
2	18EC44.2	Analyze and model the random	8	Lecture	Test/	L3
		events in typical communication			Assignme	
		events to extract quantitative			nt	
		statistical parameters				
3	18EC44.3	Analyze and model typical signal	8	Lecture	Test/	L3
		sets in terms of a basis function set			Assignme	
		of amplitude, phase and frequency			nt	
1	18FC 4 4 4	Demonstrate by way of simulation	8	Lecture	Tost /	10
4	102044.4	or emulation the ease of analysis	0	Lecture	Assignme	L3
		employing basis functions			nt	
		statistical representation and eigen				
		values				
5						
-	-	Total	40	-	-	L3

2. Course Applications

Write 1 or 2 applications per CO.

Students should be able to employ / apply the course learnings to

Mod	Application Area	CO	Level			
ules	Compiled from Module Applications.					
1	Probability theory is applied in <u>risk</u> assessment and modeling. The insurance	CO1,	L3			
	industry and markets use actuarial science to determine pricing and make trading	CO2				
	decisions. Governments apply probabilistic methods in environmental regulation,					
	entitlement analysis (Reliability theory of aging and longevity), and financial					
	regulation.					
	A good example of the use of probability theory in equity trading is the effect of the					
	perceived probability of any widespread Middle East conflict on oil prices, which					
	have ripple effects in the economy as a whole. An assessment by a commodity					
	trader that a war is more likely can send that commodity's prices up or down, and					
	signals other traders of that opinion. Accordingly, the probabilities are neither					
	assessed independently nor necessarily very rationally. The theory of behavioral					
	finance emerged to describe the effect of such groupthink on pricing, on policy,					
	and on peace and conflict.					
	In addition to financial assessment, probability can be used to analyze trends in					
	biology (e.g. disease spread) as well as ecology (e.g. biological Punnett squares).					
	As with finance, risk assessment can be used as a statistical tool to calculate the					
	likelihood of undesirable events occurring and can assist with implementing					
	protocols to avoid encountering such circumstances. Probability is used to design					

	<u>games of chance</u> so that casinos can make a guaranteed profit, yet provide payouts to players that are frequent enough to encourage continued play. The discovery of rigorous methods to assess and combine probability assessments has changed society. Another significant application of probability theory in everyday life is reliability. Many consumer products, such as <u>automobiles</u> and consumer electronics, use reliability theory in product design to reduce the probability of failure. Failure probability may influence a manufacturer's decisions on a product's <u>warranty</u> . The <u>cache language model</u> and other <u>statistical language models</u> that are used in <u>natural language processing</u> are also examples of applications of probability theory.		
2	Linear algebra finds its wide application in the fields of Loss Functions, Regularization, Covariance Matrix, Support Vector Machine Classification, Principal Component Analysis (PCA), Singular Value Decomposition, Word Embeddings, Latent Semantic Analysis (LSA), Image Representation as Tensors, Convolution and Image Processing	CO3, CO4	L3

3. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	-	Course Outcomes		Program Outcomes					-									
Mod	CO.#	At the end of the course	PO	POPOPOPOPOPOPOPOPOPOPOPOPSPSPSL					Lev									
ules		student should be able to	1	2	3	4	5	6	7	8	9	10	11	12	O1	02	03	el
1,2	CO1	Identify and associate the random variables and random processes in communication events	3	3	3	2												
3	CO2	Analyze and model the random events in typical communication events to extract quantitative statistical parameters	3	3	3	2												
4	CO3	Analyze and model typical signal sets in terms of a basis function set of amplitude, phase and frequency	3	3	3	2												
5	CO4	Demonstrate by way of simulation or emulation the ease of analysis employing basis functions, statistical representation and eigen values	3	3	3	2												
-			3	3	3	2												-
-	PO, PSO	1.Engineering Knowledge; 2.Problem Analysis; 3.Design / Development of Solutions; 4.Conduct Investigations of Complex Problems; 5.Modern Tool Usage; 6.The Engineer and Society; 7.Environment and Sustainability; 8.Ethics; 9.Individual and Teamwork; 10.Communication; 11.Project Management and Finance; 12.Life-long Learning; S1.Software Engineering; S2.Data Base Management; S3.Web Design																

4. Curricular Gap and Content

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Mod	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
ules					
1					
2					

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation.

Mod	Title	Teach.	n. No. of question in Exam					CO	Levels	
ules		Hours	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE		
							Asg			
1	Single Random Variables	8		2		1	1	2	CO1	L3
2	Multiple Random variables	8		2	2	1	1	2	CO1	L3
3	Random Processes	8			2	1	1	2	CO2	L3
4	Vector Spaces	8	2			1	1	2	CO3	L3
5	Determinants, Eigenvalues and	8 k	2			1	1	2	CO4	L3
	Eigen vectors									
-	Total	40	8	8	8	5	5	10	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Mod ules	Evaluation	Weightage in Marks	СО	Levels
1, 2	CIA Exam – 1	30	CO3,CO4	L3
3, 4	CIA Exam – 2	30	CO1	L3
5	CIA Exam – 3	30	CO2	L3
1, 2	Assignment - 1	10	CO3,CO4	L3
3, 4	Assignment - 2	10	CO1	L3
5	Assignment - 3	10	CO2	L3
1, 2	Seminar - 1		_	-
3, 4	Seminar - 2		-	-
5	Seminar - 3		-	-
1, 2	Quiz - 1		_	-
3, 4	Quiz - 2		-	-
5	Quiz - 3		-	-
1 - 5	Other Activities – Mini Project	-		
	Final CIA Marks		-	-

D1. TEACHING PLAN - 1

Module - 1

Title:	Single Random Variables	Appr	8 Hrs
		Time:	
a		СО	Blooms
b	Course Schedule	-	-
Class No	Portion covered per hour	-	-
1	Network structure,	CO1	L1
2	Network services, terminology,	CO1	L1
3	Regulation, Standards.	CO1	L1

4	Introduction to telecommunications transmission,	CO1	L1
5	Power levels,	CO1	L2
6	Four wire circuits,	CO1	L2
7	Digital transmission, FDM,TDM,	CO1	L1
8	PDH and SDH	CO1	L1
С	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	Development of telecommunications is used in network topology, broadcasting, transmission of	CO1	L2
2	It is used in wired communication, analog signals multiplexing	CO1	L2
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	Explain briefly with neat diagram, the national telecommunication network	CO1	L1
2	Explain the principle operation of a Four wire circuit with neat diagram	CO1	L2
3	Explain the following power levels in dBW I) 1mW ii)1 W iii) 2mW iv) 100mW	CO1	L3
4	Explain various types of network structures	CO1	L2
5	Explain FDM with respect to a suitable block diagram	CO1	L2
6	Design any one type of PDH with a suitable diagram	CO1	L2
7	Briefly explaint he regulations, standards in a telecommunication network	CO1	L2
8	Explain in brief power levels encountered in telecommunication transmission system	CO1	L2
9	Calculate the total bit rate for a 30 channel PCM system and draw figure for the same with all the details included. Also show calculation for length of the frame	CO1	L2
10	Derive the expressions for the stability margin M ina four wire circuit	CO1	L3
11	With frame structure explain the SDH.	CO1	L2
12	Give the need for Echo compressor and define i)AAR ii)PBX iii)BRL	CO1	L2
13	An amplifier has an input resistance of 600Ω and a resistive load of 75 Ω . When it has an rms input voltage of 100mv, the rms output current is 20ma. Find the	CO1	L3
	gain in ab.		
•	Experiences		
ک	Lybenences	-	-
2			

Module – 2

Title:	Multiple Random variables	Appr	8 Hrs
		Time:	
a	Course Outcomes	CO	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Describe the electromechanical switching systems and its comparison with the digital switching.	CO1	L2
b	Course Schedule	-	-
Class No	Portion covered per hour	-	-
1	Introduction, Message switching, Circuit switching,	CO1	L2
2	Functions of switching systems,	CO1	L2
3	Distribution systems,	CO1	L2
4	Basics of crossbar systems, Electronic switching.	CO1	L2
5	Switching system hierarchy, Evolution of digital switching systems,	CO1	L2
6	Stored program control switching systems,	CO1	L2
7	Building blocks of a digital switching system,	CO1	L2
8	Basic call processing.	CO1	L2

С	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	Switching systems are used in packet switching of data, emails	CO1	L2
2	Digital signals can be coded signalled, & controlled	CO1	L2
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	Explain message switching and circuit switching. Bring out the difference	CO1	L3
	between them		
2	Define traffic: list different functions of switching systems	CO1	L2
3	Explain the working of basic central office linkages	CO1	L2
4	Highlight the advantages & disadvantages of crossbar switch	CO1	L2
5	Explain the working of distributionn frame in strowger exchange	CO1	L1
6	What are the functions of distribution frame in switching system	CO1	L2
7	Explain neatly with diagramthe evolution of digital switching systems	CO1	L1
8	Explain the functions of IDF,TDF in strowger exchange	CO1	L2
9	List the advantages of i)electronic switching system ii) cross point switch over	CO1	L2
	step by step switch		
10	Describe the fundamentals of DSS with a neat diagram	CO1	L1
11	Explain the process of basic Call processing.	CO1	L1
е	Experiences	-	-
1			
2			

E1. CIA EXAM – 1

a. Model Question Paper - 1

Crs C	Code:	18EC44	Sem:	VI	Marks:	30	Time:	75 m	ninutes	S	
Cour	se:	Digital swite	ching system	าร							_
-	-	Note: Answ	er all quest	ions, each d	carry equal I	marks. <mark>Mo</mark> d	lule : 1, 2	Μ	/larks	СО	Level
1	а	Explain brie	efly with neat	t diagram,th	ne national te	elecommun	ication netw	ork	5	CO1	L3
	b	Explain the	principle op	eration of a	Four wire ci	rcuit with ne	eat diagram		5	CO1	L2
	С	Explain mes between th	ssage switcł em	ning and cire	cuit switchin	g. Bring out	the differen	ce	5	CO1	L3
					OR						
2	а	Explain the 100mW	following p	ower levels	s in dBW I) :	ımW ii)1 W	/ iii) 2mW	i∨)	5	CO1	L2
	b	Explain various types of network structures							5	CO1	L2
	С	Explain the	working of k	basic centra	l office linka	ges			5	CO1	L2
3	а	Explain FDN	এ with respe	ct to a suita	ble block di	agram16			5	CO1	L1
	b	Design any	one type of	PDH with a	suitable dia	gram			5	CO1	L2
	С	Describe th	e fundamer	tals of DSS	with a neat	diagram			5	CO1	L1
					OR						
4	а	Briefly expla	aint he regul	ations, stan.	dards in a te	lecommun	ication netwo	ork	5	CO1	L1
	b	Explain in transmissio	brief pow n system	ver levels	encountere	ed in tele	communicat	tion	5	CO1	L2
	С	Explain the	working of a	distributionr	n frame in str	owger exch	nange		5	CO1	L1

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

Model Assignment Questions									
Crs Code:	18EC44	Sem:	VI	Marks:	30	Time:	90 – 120 minutes		
Course:	Digital Swi	tching Syste	ems	Module : 1, 2					
Note: Each student to answer 2-3 assignments. Each assignment carries equal mark.									

SNo	Assignment Description	Marks	со	Level
1	Explain briefly with neat diagram, the national telecommunication network	5	CO1	L1
2	Explain the principle operation of a Four wire circuit with neat diagram	5	CO1	L2
3	Explain the following power levels in dBW I) 1mW ii)1 W iii) 2mW iv)	5	CO1	L3
	100mW			
4	Explain various types of network structures	5	CO1	L2
5	Explain FDM with respect to a suitable block diagram	5	CO1	L2
6	Design any one type of PDH with a suitable diagram	5	CO1	L2
7	Briefly explaint he regulations, standards in a telecommunication network	5	CO1	L2
8	Explain in brief power levels encountered in telecommunication transmission system	5	CO1	L2
9	Calculate the total bit rate for a 30 channel PCM system and draw figure for the same with all the details included. Also show calculation for length of the frame	5	CO1	L2
10	Derive the expressions for the stability margin M ina four wire circuit	5	CO1	L3
11	With frame structure explain the SDH.	5	CO1	L2
12	Give the need for Echo compressor and define i)AAR ii)PBX iii)BRL	5	CO1	L2
13	An amplifier has an input resistance of 600Ω and a resistive load of 75Ω .	5	CO1	L3
	When it has an rms input voltage of 100mv, the rms output current is 20ma.			
	Find the gain in dB.			
14	Explain message switching and circuit switching. Bring out the difference between them	5	CO1	L3
15	Define traffic: list different functions of switching systems	5	CO1	L2
16	Explain the working of basic central office linkages	5	CO1	L2
17	Highlight the advantages & disadvantages of crossbar switch	5	CO1	L2
18	Explain the working of distributionn frame in strowger exchange	5	CO1	L1
19	What are the functions of distribution frame in switching system	5	CO1	L2
20	Explain neatly with diagramthe evolution of digital switching systems	5	CO1	L1
21	Explain the functions of DF,IDF,TDF in strowger exchange	5	CO1	L2
22	List the advantages of i)electronic switching system ii) cross point switch	5	CO1	L2
	over step by step switch			<u> </u>
23	Describe the fundamentals of DSS with a neat diagram	5	CO1	L1
24	Explain the process of basic Call processing.	5	CO1	L1

D2. TEACHING PLAN - 2

Module - 3

Title:	Random Processes	Appr	8Hrs
		Time:	
a		со	Blooms
b	Course Schedule		
Class No	Portion covered per hour	-	-
1	TELECOMMUNICATIONS TRAFFIC: Introduction,	CO2	L1
2	Unit of traffic, Congestion,	CO2	L2
3	Traffic measurement, Mathematical model,	CO2	L3
4	lost call systems,Queuing systems.	CO2	L3
5	SWITCHING SYSTEMS: Introduction,	CO2	L2
6	Single stage networks, Gradings,	CO2	L1
7	Link Systems, GOS of Linked systems.	CO2	L2
8	Effective height, Antenna efficiency, Antenna Field Zones and Polarization	CO2	L3
С	Application Areas	-	-
-	Students should be able employ \checkmark apply the Module learnings to	-	-
1	Telecommunication trafficsare used in TCP control, throughput measuring in systems	CO2	L2

2	To measure the Quality & oerformance of network& its linkages	CO2	L2
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	Define i) busy hour ii) holding time iii) unit of traffic iv) Grade of service	CO2	L1
2	During the busy hour a group of trunks is offered 100 calls having an average	CO2	L3
	duration of 3 min one of the call fails to find a designated trunk. Find the traffic		
	offered to the group, traffic carried by the group and the traffic lost.		
3	Derive an expression for iterative form of Erlangs lost call formula with	CO2	L2
	explanation of assumptions made	<u> </u>	
4	A progressive grading for connecting 20 trunks to switches having 10 outlets	CO2	L3
5	of trunks required(N)	CO2	L2
6	On an average, during the busy hour, a company makes 180 outgoing calls of	CO2	L3
	average duration of 3 min. It receives 400 incoming calls of average duration 6		
	min. The outgoing traffic, incoming traffic, total traffic	<u> </u>	
/	A group of 20 trunks provides a GOS of 0.01 when offered is the GOS improved if one over a trunk is added to the group. How much does the GOS deteriorate if	CO2	L3
	one trunk is out of service		
8	Define and explain plain the following terms I) traffic intensity ii) blocking	CO2	12
	probability iii) blocking network. iv) statistical equilibrium		
9	During the Busy hour on average 30E is offered to a group of Trunks. On	CO2	L3
	average total period during which all trunks are busy is 12secs and two calls		
	are lost. Find the average no of calls carried by the group and average call		
	duration		
10	What is grading exaplain any two types of gradings	CO2	L2
11	Derive an expression for gradee of service of a three stage network	CO2	L3
12	Derive a three stage network for connecting 100 incoming trunks to 100	CO2	L3
	outgoing trunks	00.	
13	Design a progressive grading system connecting 30 outgoing trunks and	CO2	L3
1 /	Define I) graded groups ii) availability iii) skipped grading uidgram.	<u> </u>	10
14	arading v) Congestion vi) CCR vii) peak busy hour	002	LZ
15	Design a two stage switching network for connecting 200 incoming trunks to	C02	12
-5	200 outgoing trunks.		L
е	Experiences	-	-
1			
2			

Module – 4

Title:	Vector Spaces	Appr	8 Hrs
		Time:	
a		CO	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Define the technologies associated with the data switching operations.	CO3	L2
b	Course Schedule		
Class No	Portion covered per hour	-	-
1	TIME DIVISION SWITCHING: Introduction,	CO3	L1
2	space and time switching,.	CO3	L2
3	Time switching networks, Synchronisation	CO3	L2
4	SWITCHING SYSTEM SOFTWARE: Introduction, Basic software architecture,	CO3	L1
5	Software architecture for level 1to 3 control,	CO3	L2
6	Digital switching system software classification,	CO3	L2
7	Call models, Software linkages during call,	CO3	L2
8	Feature flow diagram, Feature interaction.	CO3	L2

С	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	Used to measure strowger switching sytems	CO3	L2
2	Switching system software is used to make or break calls	CO3	L2
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	Explain the principle of operation of TST and STS network	CO3	L2
2	Explain with block diagram the frame alignment of PCM signal in digital exchange	CO3	L2
3	Explain in brief digital switching system software classification	CO3	L2
4	With the help of feature flow diagram, explain feature activation, feature operation and feature de-activation	CO3	L2
5	A TST network has 20 incoming and 20 outgoing PCM highway each conveys 30 channels the required GOS is 0.01,0.02. find the traffic capacity of network in mode 1 and mode 2.	CO3	L3
6	Explain frame synchronization	CO3	L1
7	With a suitable diagram, explain software linkages during a call	CO3	L1
8	With a neat sketch explain a space switch for K incoming PCM highways and m outgoing PCM highways	CO3	L1
9	Discuss the need for frame alignment in time division switching networks. Explain double ended unilateral and bilateral synchronization systems	CO3	L2
10	Briefly explain the basic call model.	CO3	L1
11	An STS switch has 16 incoming and 16 outgoing highways, each of which conveys 24 PCM channels. Between the incoming and outgoing space switches, there are 20 links containing time switches. During busy hour the network is offered 300 Erlangs of traffic. Estimate GOS if I) connection is required to aparticular free channel on a selected outgoing highway. ii) connection is required to a particular outgoing highway, but any free channel on it may be used.	CO3	L3
12	Explain in brief digital switching system software classification	CO3	L2
е	Experiences	-	-
1			
2			
3			
4			
5			

E2. CIA EXAM – 2

a. Model Question Paper - 2

Crs Code		18EC44	Sem:	VI	Marks:	30	Time:	75 minute	es	
Cour	rse:	Digital swite	ching system	າຣ						
-	-	Note: Answ	/er all quest	ions, each c	carry equal r	narks. Modu	ıle : 3, 4	Marks	СО	Level
1	а	Define i) bu	sy hour ii) ho	of service	16	CO2	L1			
	b	During the average du Find the tra traffic lost.	busy hour a g ration of 3 m iffic offered to	group of tru in one of th o the group	Inks is offere e call fails to , traffic carrie	d 100 calls h find a desig d by the gro	aving an Inated trunk Sup and the		CO2	L3
	С	An STS swi conveys 24 switches, th the networl I) connectic outgoing hi highway, bu	tch has 16 in PCM channe here are 20 li k is offered 3 on is required ghway. ii) co ut any free cl	coming anc els. Betwee nks contain 00 Erlangs l to aparticu nnection is nannel on it	I 16 outgoing n the incomi ing time swit of traffic. Esti Ilar free char required to a may be use	y highways, e ng and outg tches. During mate GOS if nnel on a sel a particular o d.	each of whic oing space g busy hour ected utgoing	:h	CO2	L3

	d	Explain in brief digital switching system software classification		CO2	L2
2	а	Define I) graded groups ii) availability iii) skipped grading iv) homogeneous grading v) Congestion vi) CCR vii) peak busy hour	16	CO2	L2
	b	Design a two stage switching network for connecting 200 incoming trunks to 200 outgoing trunks.		CO2	L2
	С	Explain frame synchronization		CO2	L1
	d	With a suitable diagram, explain software linkages during a call		CO2	L1
3	а	During the Busy hour on average 30E is offered to a group of Trunks. On average total period during which all trunks are busy is 12secs and two calls are lost. Find the average no of calls carried by the group and average call duration	16	CO3	L3
	b	What is grading exaplain any two types of gradings		CO3	L2
	С	Explain the principle of operation of TST and STS network		CO3	L2
	d	Explain with block diagram the frame alignment of PCM signal in digital exchange		CO3	L2
4	а	A progressive grading for connecting 20 trunks to switches having 10 outlets	16	CO3	L3
	b	Explain traffic capacity of gradings with a curve, traffic in Erlangs (A)v/s number of trunks required(N)		CO3	L2
	С	Discuss the need for frame alignment in time division switching networks. Explain double ended unilateral and bilateral synchronization systems		CO3	L2
	d	Briefly explain the basic call model.		CO3	L1

b. Assignment – 2

Note: A distinct assignment to be assigned to each student.

	Model Assignment Questions										
Crs Co	ode:	18EC44	Sem:	VI	Marks:	5	Time:	90 - 120	minute	S	
Cours	e:	Digital Sw	ritching sys	stems		Modu	ıle : 3, 4				
Note:	Each	n student to	o answer 2	-3 assign	ments. Each a	ssignmer	nt carries equal ma	rk.			
SNo				Assignr	nent Descript	ion		Marks	СО	Level	
1	Defi	ine i) busy	hour ii) hol	ding time	e iii) unit of traff	ic iv) Gra	ide of service	5	CO2	L1	
2	Dur	During the busy hour a group of trunks is offered 100 calls having an							CO2	L3	
	ave	rage durat	ion of 3 mi	n one of t	the call fails to	find a de	esignated trunk.				
	Find	the traffic	offered to	the grou	p, traffic carrie	d by the	group and the				
	traff	ic lost.			<u> </u>						
3	Der	ive an expr	ression for	iterative	form of Erlang	s lost cal	l formula with	5	CO2	L2	
	exp	lanation of	assumptio	ons made	<u>,</u>		1 1 1		001		
4	A p	rogressive .ets	grading fo	or connec	ting 20 trunks	to switch	nes having 10	5	CO2	L3	
5	Exp	lain traffic (capacity of	fgrading	s with a curve,	traffic in	Erlangs (A)v/s	5	CO2	L2	
	nun	nber of trui	nks require	ed(N)							
6	Ona	an average	e, during th	ie busy h	our, a compan	y makes	180 outgoing calls	5	CO2	L3	
	of a	verage du	ration of 3	min. it rea	ceives 400 inco	oming ca	lls of average				
	dura	ation 6 mir	n. find outg	oing traff	ic, incoming tr	affic, tota	l traffic				
7	A gr	roup of 20	trunks prov	vides a G	OS of 0.01 whe	en offered	d is the GOS	5	CO2	L3	
	Imp	roved if on	ie extra tru	nk is add	led to the grou	ip. How n	nuch does the GOS				
	dete	eriorate if c	one trunk is	s out of se	ervice	<u>~</u>					
8	Defi	ine and exp	olain plain	the follo	wing terms I) tr	affic inter	nsity II) blocking	5	CO2	L2	
	pro	Dadility III) I	DIOCKING N	elwork. IV	n statistical eq	uilibrium			001		
9	Dur	ing the Bus	sy nour on	average	30E is offered	to a grou	ip ot Irunks. On	5	CO2	L3	

	average total period during which all trunks are busy is 12secs and two calls are lost. Find the average no of calls carried by the group and average call duration			
10	What is grading exaplain any two types of gradings	5	CO2	L2
11	Derive an expression for gradee of service of a three stage network	5	CO2	L3
12	Derive a three stage network for connecting 100 incoming trunks to 100	5	CO2	L3
	outgoing trunks			-
13	Design a progressive grading system connecting 30 outgoing trunks and having an availability of only 10 switches. Draw the grading diagram.	5	CO2	L3
14	Define I) graded groups ii) availability iii) skipped grading iv) homogeneous	5	CO2	L2
	grading v) Congestion vi) CCR vii) peak busy hour			
15	Design a two stage switching network for connecting 200 incoming trunks	5	CO2	L2
	to 200 outgoing trunks.			
16	Explain the principle of operation of TST and STS network	5	CO3	L2
17	Explain with block diagram the frame alignment of PCM signal in digital	5	CO3	L2
	exchange			
18	Explain in brief digital switching system software classification	5	CO3	L2
19	With the help of feature flow diagram, explain feature activation, feature	5	CO3	L2
	operation and feature de-activation			
20	A TST network has 20 incoming and 20 outgoing PCM highway each	5	CO3	L3
	conveys 30 channels the required GOS is 0.01,0.02. find the traffic capacity			
	of network in mode 1 and mode 2.			
21	Explain frame synchronization	5	CO3	L1
22	With a suitable diagram, explain software linkages during a call	5	CO3	L1
23	With a neat sketch explain a space switch for K incoming PCM highways	5	CO3	L1
	and moutgoing PCM highways			
24	Discuss the need for frame alignment in time division switching networks.	5	CO3	L2
	Explain double ended unilateral and bilateral synchronization systems		000	
25	Briefly explain the basic call model.	5	003	L1
26	An STS switch has 16 incoming and 16 outgoing highways, each of which	5	CO3	L3
	conveys 24 PCM channels. Between the incoming and outgoing space			
	switches, there are 20 links containing time switches. During busy hour the			
	network is offered 300 Erlangs of traffic. Estimate GOS if			
	in connection is required to a particular free channel on a selected outgoing			
	frighway. II) connection is required to a particular outgoing highway, but any free channel on it may be used			
27	Eveloin in brief digital quitabing autom activized alegeifaction	<u>г</u>	COn	10
2/	Explain in oriel digital switching system software classification	5	003	LZ

D3. TEACHING PLAN - 3

Module – 5

Title:	Determinants, Eigenvalues and Eigen vectors	Appr	8 Hrs
		Time:	
a	Course Outcomes	СО	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Describe the software aspects of switching systems and its maintenance.	CO4	L2
b	Course Schedule	-	-
Class No	Portion covered per hour	-	-
1	Introduction , Software maintenance,	CO4	L2
2	Interface of a typical digital switching system central office,	CO4	L2
3	System outage and its impact on digital switching system reliability,	CO4	L2
4	Impact of software patches on digital switching system maintainability,	CO4	L2
5	A methodology for proper maintenance of digital switching system	CO4	L2

6	A GENERIC DIGITAL SWITCHING SYSTEM MODEL: Introduction, Hardware architecture	CO4	L2
7	Software architecture, Recovery strategy, Simple call through a digital system,	CO4	L2
8	Common characteristics of digital switching systems. Reliability analysis.	CO4	L2
с	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	Used in network control processor, OA&M funtions	CO4	L2
2	Data base management for recovery purpose, in servers, maintenance of computer systems.	CO4	L2
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	Explain in brief with neat diagram of organizational interfaces of a typical digital	CO4	L2
	switching system central office		
2	With a block diagram explain the strategy used for improvement of software	CO4	L2
	quality		
3	Explain with block diagram a generic switch software architecture	CO4	L2
4	Mention some common characteristics of DSS	CO4	L2
5	Writs a short note on analysis report of a DSS	CO4	L2
6	Explain recovery stage of initialization process with examples	CO4	L2
7	Explain in brief a methodology for proper maintaenance of a DSS such as	CO4	L2
	diagnostic capabilities and firmware development		
8	Explain with block diagram a generic switch hardware architecture	CO4	L2
9	List the basic steps necessary to complete a simple call	CO4	L2
10	Write a brief note on defect analaysis	CO4	L2
11	What is system outage impact on DSS & its impact on DSS reliability	CO4	L2
12	What is the scheme that a digital switching environment follows for the internal	CO4	L2
	and external reporting of faults. Discuss.		
е	Experiences	-	-
1			
2			

E3. CIA EXAM – 3

a. Model Question Paper - 3

Crs C	Code:	18EC44	Sem:	VI	Marks:	30	Time: 7	75 minute	S		
Cour	rse:	Digital Swit	ching Syst	ems							
-	-	Note: Answ	ver all ques	stions, each (carry equal	marks. Mod	ule : 5	Marks	СО	Level	
1	а	Write a brie	ef note on c	lefect analay	sis			5	CO4	L2	
	b	What is sys	tem outag	e impact on I	DSS & its im	pact on DSS	reliability	5	CO4	L2	
	С	What is the internal and	What is the scheme that a digital switching environment follows for the neuronal and external reporting of faults. Discuss.								
2	а	Mention so	Mention some common characteristics of DSS								
	b	Write a sho	rt note on a	analysis repo	rt of a DSS			5	CO4	L2	
	С	Explain reco	overy stage	e of initializat	ion process	with exampl	es	5	CO4	L2	
3	а	Explain in b digital swite	orief with n ching syste	eat diagram m central off	of organiza [.] ice	ional interfa	ces of a typic	al 5	CO4	L2	
	b	With a blo software qu	ock diagrai Jality	m explain th	ne strategy	used for ir	nprovement	of 5	CO4	L2	
	С	Explain with	5	CO4	L2						
4	а	Explain in b diagnostic (orief a meth capabilities	nodology for and firmwar	proper maii e developm	ntaenance of ient	f a DSS such a	as 5	CO4	L2	

b	Explain with block diagram a generic switch hardware architecture	5	CO4	L2
С	List the basic steps necessary to complete a simple call	5	CO4	L2

b. Assignment – 3

Note: A distinct assignment to be assigned to each student.

	Model Assignment Questions											
Crs Co	ode:	18EC44	Sem:	VI	M	arks:	5		Time:	90 - 120	minute	5
Course	e:	Digital Sw	/itching Syste	ems			Μ	1odule : 5				
Note: I	Each	student to	o answer 2-3	assigni	ments. I	Each as	ssigr	nment carr	ries equal ma	rk.		
SNo		Assignment Description								Marks	СО	Level
1	Expl digit	ain in brie al switchir	es of a typica	al 5	CO4	L2						
2	With soft	With a block diagram explain the strategy used for improvement of 5 CO4 L2 software quality									L2	
3	Expl	ain with bl.	lock diagram	n a gene	eric swi	tch sof	twar	e architect	ture	5	CO4	L2
4	Mer	ition some	common ch	aracte	ristics o	f DSS				5	CO4	L2
5	Writ	s a short n	ote on analy	sis repo	ort of a	DSS				5	CO4	L2
6	Expl	ain recove.	ery stage of in	nitializa	ition pro	ocess w	vith e	examples		5	CO4	L2
7	Expl diag	ain in brie nostic cap	f a methodo abilities and	ology fo firmwa	or prope are deve	er mair elopme	ntaer ent	nance of a	a DSS such a	s 5	CO4	L2
8	Expl	ain with bl.	lock diagram	n a gene	eric swi	tch har	rdwa	re archited	cture	5	CO4	L2
9	List	the basic s	steps necess	ary to d	comple	te a sin	nple	call		5	CO4	L2
10	Writ	e a brief no	ote on defec	t anala	ysis					5	CO4	L2
11	Wha	What is system outage impact on DSS & its impact on DSS reliability								5	CO4	L2
12	Wha inter	at is the s mal and ex	cheme that (ternal repor	a digit ting of t	tal swite faults. D	ching e Discuss	envir	onment fo	ollows for the	e 5	CO4	L2

F. EXAM PREPARATION

1. University Model Question Paper

Cours	se:	Digital Switchi	ing Systems				Month /	′ Year	May /	2018	
Crs C	ode:	18EC44	Sem:	VI	Marks:	80	Time:		180 m	nutes	
Mod	Note	Answer all FIV	'E full questi	ons. All quest	ions carry eq	ual marks.		Marks	СО	Level	
ule											
1	а	Explain brief network	ly with nea	at diagram,t	he national	telecommu	inication	5	CO1	L2	
	b	Explain the pr	inciple opera	ition of a Fou	r wire circuit v	with neat diag	gram	5	CO1	L2	
	С	Explain the fo 100mW	lain the following power levels in dBW I) 1mW ii)1 W iii) 2mW iv mW								
	d	Explain variou	s types of ne	twork structu	ures			5	CO1	L2	
				OR							
1	а	Define traffic: l	ist different f	unctions of s	witching syste	ems		5	CO1	L2	
	b	Explain the wo	orking of bas	ic central offic	ce linkages			5	CO1	L2	
	С	Highlight the a	advantages 8	k disadvantag	ges of crossba	ar switch		5	CO1	L2	
	d	Explain the wo	orking of dist	ributionn frar	ne in strowge	er exchange		5	CO1	L2	
2	а	Explain the wo	orking of bas	ic central offic	ce linkages			5	CO1	L2	
	b	Highlight the a	advantages 8	k disadvantag	ges of crossba	ar switch		5	CO1	L2	
	С	Explain the wo	orking of dist	ributionn frar	ne in strowge	er exchange		5	CO1	L2	
	d	What are the t	functions of o	distribution fr	ame in switch	ning system		5	CO1	L2	
				OR							
2	а	Explain the fu	nctions of ID	F,TDF in strov	vger exchang	е		5	CO1	L2	
	b	List the advan	itages of i)ele	ectronic switc	hing system i	ii) cross point	switch	5	CO1	L2	
		over step by s	/er step by step switch								
	С	Describe the f	fundamental	s of DSS with	a neat diagra	am		5	CO1	L2	
	d	Explain the pr	ocess of bas	ic Call proces	ssing.			5	CO1	L2	

3	а	During the busy hour a group of trunks is offered 100 calls having an average duration of 3 min one of the call fails to find a designated trunk. Find the traffic offered to the group, traffic carried by the group and the traffic lost.	5	CO2	L3
	b	Derive an expression for iterative form of Erlangs lost call formula with explanation of assumptions made	5	CO2	L2
	С	A progressive grading for connecting 20 trunks to switches having 10 outlets	5	CO2	L2
	d	Explain traffic capacity of gradings with a curve, traffic in Erlangs (A)v/s number of trunks required(N)	5	CO2	L2
		OR			
3	а	Derive an expression for iterative form of Erlangs lost call formula with explanation of assumptions made	5	CO2	L2
	b	A progressive grading for connecting 20 trunks to switches having 10 outlets	5	CO2	L2
	С	On an average, during the busy hour, a company makes 180 outgoing calls of average duration of 3 min. it receives 400 incoming calls of average duration 6 min. find outgoing traffic, incoming traffic, total traffic	10	CO2	L3
4	-	Evaluin the principle of exerction of TCT and CTC network		<u> </u>	
4	a	Explain the principle of operation of 151 and 515 network		CO3	L2
	D	exchange	5	CO3	L2
	С	Explain in brief digital switching system software classification	5	CO3	L2
	d	With the help of feature flow diagram, explain feature activation, feature operation and feature de-activation	5	CO3	L2
		OR			
4	а	Derive an expression for grade of service of a three stage network	5	CO3	L2
	b	Derive a three stage network for connecting 100 incoming trunks to 100 outgoing trunks	5	CO3	L2
	С	Design a progressive grading system connecting 30 outgoing trunks and having an availability of only 10 switches. Draw the grading diagram.	5	CO3	L2
	d	Define I) graded groups ii) availability iii) skipped grading iv) homogeneous grading v) Congestion vi) CCR vii) peak busy hour	5	CO3	L2
5	а	With a block diagram explain the strategy used for improvement of software quality	5	CO4	L2
	b	Explain with block diagram a generic switch software architecture	5	CO4	L2
	С	Mention some common characteristics of DSS	5	CO4	L2
	d	Write a short note on analysis report of a DSS	5	CO4	L2
		OR			
5	а	Explain in brief a methodology for proper maintaenance of a DSS such as diagnostic capabilities and firmware development	5	CO4	L2
	b	Explain with block diagram a generic switch hardware architecture	5	CO4	L2
	С	List the basic steps necessary to complete a simple call	5	CO4	L2
	d	Write a brief note on defect analysis	5	CO4	L2

2. SEE Important Questions

se:	e: Digital switchingsystems Mo			Month	/ Year	May /2	2018		
ode:	18EC44	Sem:	6	Marks:	80	Time:		180 minutes	
Note	Answer all FIVE full questions. All questions carry equal marks.						-	-	
Qno.	Important Question						Marks	СО	Year
а	Explain briefly with neat diagram, the national telecommunication network						20	CO1	2004
b	Explain the principle operation of a Four wire circuit with neat diagram							CO1	2013
С	Explain the fol	lowing powe	r levels in dE	3WI) 1mW ii)1 W 🛛 iii) 2m	nW iv)		CO1	2013
	se: ode: Note Qno. a b c	se: Digital switchin ode: 18EC44 Note Answer all FIVE Qno. Important Ques a Explain briefly b Explain the prir c Explain the fol	se: Digital switchingsystems ode: 18EC44 Sem: Note Answer all FIVE full question Qno. Important Question a Explain briefly with neat diag b Explain the principle operati c Explain the following powe	 bigital switchingsystems a Explain briefly with neat diagram, the nation b Explain the principle operation of a Foury c Explain the following power levels in dE 	 bigital switchingsystems c a Explain briefly with neat diagram, the national telecome b Explain the principle operation of a Four wire circuit wire c Explain the following power levels in dBW I) 1mW iii 	Be: Digital switchingsystems ode: 18EC44 Sem: 6 Marks: 80 Note Answer all FIVE full questions. All questions carry equal marks. Qno. Important Question a Explain briefly with neat diagram, the national telecommunication n b Explain the principle operation of a Four wire circuit with neat diagr c Explain the following power levels in dBW I) 1mW ii)1 W iii) 2m	Be: Digital switchingsystems Month ode: 18EC44 Sem: 6 Marks: 80 Time: Note Answer all FIVE full questions. All questions carry equal marks. Ono. Important Question Important Question a Explain briefly with neat diagram, the national telecommunication network b Explain the principle operation of a Four wire circuit with neat diagram c Explain the following power levels in dBW I) 1mW iii) 1W iii) 2mW iv)	See: Digital switchingsystems Month / Year ode: 18EC44 Sem: 6 Marks: 80 Time: Note Answer all FIVE full questions. All questions carry equal marks. - - - Qno. Important Question Marks Marks - - a Explain briefly with neat diagram, the national telecommunication network 20 20 b Explain the principle operation of a Four wire circuit with neat diagram - 20 c Explain the following power levels in dBW I) 1mW ii)1 W iii) 2mW iv -	See: Digital switchingsystems Month / Year May /2 ode: 18EC44 Sem: 6 Marks: 80 Time: 180 mi Note Answer all FIVE full questions. All questions carry equal marks. - - - Qno. Important Question Marks CO Marks CO a Explain briefly with neat diagram, the national telecommunication network 20 CO1 b Explain the principle operation of a Four wire circuit with neat diagram CO1 c Explain the following power levels in dBW I) 1mW ii)1 W iii) 2mW iv) CO1

		100mW			
	d	Explain various types of network structures		CO1	2013
	е	Explain FDM with respect to a suitable block diagram		CO1	2012
		OR			
2	а	Define traffic: list different functions of switching systems	20	CO1	2012
	b	Explain the working of basic central office linkages		CO1	2010
	С	Highlight the advantages & disadvantages of crossbar switch		CO1	2010
	d	Explain the working of distributionn frame in strowger exchange		CO1	2012
	е	What are the functions of distribution frame in switching system		CO1	2012
3	а	Define i) busy hour ii) holding time iii) unit of traffic iv) Grade of service	16	CO2	2012
	b	During the busy hour a group of trunks is offered 100 calls having an		CO2	2012
		Find the traffic offered to the group, traffic carried by the group and the traffic lost.			
	С	Derive an expression for iterative form of Erlangs lost call formula with explanation of assumptions made		CO2	2013
	d	A progressive grading for connecting 20 trunks to switches having 10 outlets		CO2	2010
	е	Explain traffic capacity of gradings with a curve, traffic in Erlangs (A)v/s number of trunks required(N)		CO2	2014
4	а	Explain the principle of operation of TST and STS network	16	CO3	2009
	b	Explain with block diagram the frame alignment of PCM signal in digital exchange		CO3	2009
	С	Explain in brief digital switching system software classification		CO3	2011
	d	With the help of feature flow diagram, explain feature activation, feature operation and feature de-activation		CO3	2009
	е	A TST network has 20 incoming and 20 outgoing PCM highway each conveys 30 channels the required GOS is 0.01,0.02. find the traffic capacity of network in mode 1 and mode 2.		CO3	2009
5	а	Explain in brief with neat diagram of organizational interfaces of a typical digital switching system central office	16	CO4	2011
	b	With a block diagram explain the strategy used for improvement of software quality		CO4	2011
	С	Explain with block diagram a generic switch software architecture		CO4	2010
	d	Mention some common characteristics of DSS		CO4	2012
	е	Write a short note on analysis report of a DSS		CO4	2009