Ref No:

Sri Krishna Institute of Technology, Bangalore

COURSE PLAN

Academic Year 2019-2020

Program:	B E – Electronics & Communication Engineering
Semester :	4
Course Code:	18EC43
Course Title:	Control Systems
Credit / L-T-P:	3 / 3-0-0
Total Contact Hours:	40
Course Plan Author:	ARUN KUMAR R

Academic Evaluation and Monitoring Cell

Sri Krishna Institute of Technology #29,Chimney hills,Hesaraghata Main road, Chikkabanavara Post Bangalore – 560090, Karnataka, INDIA Phone / Fax :08023721477/28392221/23721315 Web: www.skit.org.in , e-mail: <u>skitprinci@gmail.com</u>

Table of Contents

A. COURSE INFORMATION	2
1. Course Overview	2
2. Course Content	3
<u>3. Course Material</u>	3
<u>4. Course Prerequisites</u> 5. Content for Placement, Profession, HE and GATE	3
5. Content for Placement, Profession, HE and GATE	4
B. OBE PARAMETERS	4
<u>1. Course Outcomes</u>	4
2. Course Applications	4
3. Articulation Matrix	
4. Curricular Gap and Content	5
C. COURSE ASSESSMENT	5
1. Course Coverage	
2. Continuous Internal Assessment (CIA)	
D1. TEACHING PLAN - 1	5
Module - 1	5
Module – 2.	<u>6</u>
E1. CIA EXAM – 1	7
a. Model Question Paper - 1	7
b. Assignment -1	7
D2. TEACHING PLAN - 2	7
Module – 3	7
Module – 4	8
E2. CIA EXAM – 2	9
a. Model Question Paper - 2	9
b. Assignment – 2	
D3. TEACHING PLAN - 3	
Module – 5.	
E3. CIA EXAM – 3	
a. Model Question Paper - 3	
b. Assignment – 3	
F. EXAM PREPARATION	
1. University Model Question Paper	
2. SEE Important Questions	

.

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	EC
Semester:	4	Academic Year:	2019-20
Course Title:	CONTROL SYSTEMS	Course Code:	18EC43
Credit / L-T-P:	3/3-0-0	SEE Duration:	180 Minutes
Total Contact Hours:	40 Hours	SEE Marks:	100 Marks
CIA Marks:	30 Marks	Assignment	1 / Module
Course Plan Author:	ARUN KUMAR R	Sign	Dt:16/12/2019
Checked By:		Sign	Dt:
CO Targets	CIA Target : %	SEE Target:	%

Note: Define CIA and SEE % targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute.

Mod	Content	<u> </u>	Blooms Learning
ule			Levels
1	Introduction to Control Systems: Types of Control Systems, Effect of Feedback Systems, Differential equation of Physical Systems –Mechanical Systems, Electrical Systems, Electromechanical systems, Analogous Systems.		L1, L2, L3
2	Block diagrams and signal flow graphs: Transfer functions, Block diagram algebra and Signal Flow graphs.	10 hours	L1, L2, L3
3	Time Response of feedback control systems: Standard test signals, Unit step response of First and Second order Systems. Time response specifications, Time response specifications of second order systems, steady state errors and error constants. Introduction to PI, PD and PID Controllers (excluding design).		L1, L2, L3
4	Stability analysis: Concepts of stability, Necessary conditions for Stability, Routhstability criterion, Relative stability analysis: more on the Routh stability criterion. Introduction to Root-Locus Techniques, The root locus concepts, Construction of rootloci. Frequency domain analysis and stability: Correlation between time and frequency response, Bode Plots, Experimental determination of transfer function.		L1, L2, L3
5	Introduction to Polar Plots, (Inverse Polar Plots excluded) Mathematical preliminaries, Nyquist Stability criterion, (System s with transportation lag excluded) Introduction to lead, lag and lead- lag compensating networks (excluding design). Introduction to State variable analysis: Concepts of state, state variable and state models for electrical systems, Solution of state equations.		L1, L2, L3
-	Total	50	

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 – 30 minutes

2. Design: Simulation and design tools used – software tools used ; Free / open source

3. Resea	arch: Recent developments on the concepts – publications in journals; cc	onferences	s etc.
Modul	Details	Chapters	Availability
es		in book	
18EEC 43	Copyright ©2017. c/	AAS. All right	s reserved.

Α	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
	Text Book: J.Nagarath and M.Gopal, — Control Systems Engineering∥, New Age International (P) Limited, Publishers, Fifth edition-2005, ISBN: 81-224-2008-7.		In Lib / In Dept
В	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
5	Reference Books: 1. —Modern Control Engineering,∥ K.Ogata, Pearson Education Asia∕PHI, 4th Edition, 2002. ISBN 978-81-203-4010-7.	,8,11	
1,2,3,4, 5	2. —Automatic Control Systems , Benjamin C. Kuo, John Wiley India Pvt. Ltd., 8th Edition, 2008. 3. —Feedback and Control System, Joseph J Distefano III et al., Schaum's Outlines, TMH, 2nd Edition 2007.	1,3,5,7,8 ,10	In Lib
1,2,3,4, 5	"Feedback and Control System," Joseph J Distefano III et al., Schaum'sOutlines, TMH, 2 nd Edition 2007.	1,3,5,6,7 ,8,11,13, 15,	In Lib
С	Concept Videos or Simulation for Understanding	-	-
C1	https://www.youtube.com/watch? v=Wv2MgI2sFkM&list=PL4KgrgdYCOopjw3dyiZ8wdPDuXHIvGHSq		
C2	https://www.youtube.com/watch?v=WrVk_lT60dk		
C3	https://www.youtube.com/watch?v=Jlz_C-005m8 https://www.youtube.com/watch?v=sFqFrmMJ-sq		
C4	https://www.youtube.com/watch?v=nqbCgOV_oH4 https://www.youtube.com/watch?v=72y_uQ8A0e8 https://www.youtube.com/watch?v=hyDR25WhZ44		
C5	<u>https://www.youtube.com/watch?</u> v=DSvBXXnZv34&list=PLW6YlvHa65xg5asFyEm6hx0wjHNcaVpTT		
D	Software Tools for Design	-	-
	matlab		
E	Recent Developments for Research	-	-
	https://www.youtube.com/watch?v=_5TG_zQny2E https://www.youtube.com/watch?v=Vu6zR5yN430		
F	Others (Web, Video, Simulation, Notes etc.)	-	_
1	https://www.youtube.com/watch?v=7LZSjgZz- Qw&list=PLxn52v8fxX5l5tGzU1NAxRDkgqxK0k5UZ		
2	https://www.youtube.com/watch? v=XMfH2P2Fc6Q&list=PLWPirh4EWFpGpH_Rb6Q4iQ6vGGRA6MORZ		

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Students must have learnt the following Courses / Topics with described Content

Mod ules	Course Code	Course Name	Topic / Descrip	tion Sem	Remarks	Blooms Level
	18MAT31		Laplace Transformation	3		Apply L3
		Calculus, Fourier Series				
		And Numerical				
		Techniques				
2	18EC32	Network	KVL, KCL	3		Apply L3
		Analysis				

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Mod	Topic / Description	Area	Remarks	Blooms
ules				Level
1	Transformation of mathematical	Control	Required for higher education	L2
	modeling using MATLAB	engineering		
3	Transient response analysis using	Control	Required for higher education	L2
	MATLAB	engineering		
4	Root-Locus Techniques using MATLAB	Control	Required for higher education	L2
		engineering		
5	Transformation of system models using	Control	Required for higher education	L2
	MATLAB	engineering		

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs.

Mod	Course	Course Outcome	Teach. Hours	Instr Method	Assessme	Blooms'
ules	Code.#	At the end of the course, student			nt	Level
		should be able to			Method	
1	18EC43.1	Apply mathematical	10	Lecture/	Assignme	L ₂ –
		modeling to determine the		Tutorial	nt / CIA	Understand
		transfer function of a system.				ing L ₃ –
						Applying
2	18EC43.2	Apply block diagram	10	Lecture/	Assignme	L ₂ –
		reduction technique and		Tutorial	nt / CIA	Understand
		signal flow graph reduction				ing L ₃ –
		methods to determine the				Applying
		transfer function of a system				
3	18EC43.3	: Analyze the behavior of the	10	Lecture/	Assignme	L ₂ –
	10 0	system in time domain for 1 st		Tutorial		Understand
		and 2 nd order systems and				ing L ₃ –
		PID controllers				Applying
4	18EC43.4	Analyze the stability of the	10	Lecture/	Assignme	
4	102043.4		10	Tutorial		∟_ Understand
		system using various time				ing L_3 –
		domain and bode plot				Applying
		technique				
5	18EC43.5	Analyze the stability of the	10	Lecture/	Assignme	
		system using frequency		Tutorial	nt / CIA	Applying,
		domain techniques and				L ₄ –
		Analyze the electrical system				Analysing
		using state variable				
		technique.				
-	-	Total	50	-	-	L2-L4

2. Course Applications

Write 1 or 2 applications per CO.

Students should be able to employ / apply the course learnings to ...

Mod	Application Area	CO	Level
ules	Compiled from Module Applications.		

1	Used in steam generator design	1	L2
2	Used in single-input single-output filters in the fields of signal processing	2	L4
3	Practical application to the measurement of phase noise and jitter,	3	L3
	Used in digital temperature controller		L2
4	Used in ilinear time-invariant systems.	4	L2
	Used to design the damping ratio and natural frequency of a feedback system.		L3
	The plot can be used to interpret how the input affects the output in both		L3
	magnitude and phase over frequency.		
5	Used in Design of model based controllers such as MPC,	5	L2

3. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

	-	Course Outcomes	Program Outcomes								_						
Mod	CO.#		PO	PO	PO	PO							PO	Pς	P۹	P۹	Lev
ules	00.11	student should be able to	1	2	3	4	5	6	7	8					02		-
1	18EC43.1	Apply mathematical modeling		3	2				,	-			3	3			
		to determine the transfer		-													
		function of a system.															
2	18EC43.2	Apply block diagram	З	3	2								3	3			
_		reduction technique and signal		5	-												
		flow graph reduction methods															
		to determine the transfer															
		function of a system															
3		: Analyze the behavior of the	2	3	2								3	3			
5				3									3	3			
		system in time domain for 1 st															
		and 2 nd order systems and PID															
		controllers	_	_		_											
4		Analyze the stability of the		3	2	2							3	3			
		system using various time															
		domain and bode plot															
		technique															
5	18EC43.5	Analyze the stability of the		3	2	2							3	3			
		system using frequency															
		domain techniques and															
		Analyze the electrical system															
		using state variable technique.															
-		Average	3	3	2	2							3	3			-
-		1.Engineering Knowledge; 2.Probl															
		4.Conduct Investigations of Compl					-				<u> </u>				0		
		Society; 7.Environment and St 10.Communication; 11.Project N															
												/(<i>z-i</i> C	'nIJ	<i></i> €	sun	iiiig,
S1.Software Engineering; S2.Data Base Management; S3.Web Design																	

4. Curricular Gap and Content

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Mod	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
ules					
1	Transformation of	Seminar	3 nd week of March	Concerned faculty	PO5
	mathematical modeling		2020		
	using MATLAB				
3	Transient response	Seminar	3 nd week of	Concerned faculty	PO5

	analysis using MATLAB		April 2020		
4	Root-Locus Techniques	Seminar		Concerned faculty	PO5
	using MATLAB		2 nd week of May		
			2020		
5	Transformation of	Seminar	4 th week of May	Concerned faculty	PO5
	system models using MATLAB		2020		

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation.

Mod	Title	Teach.			f quest		Exam		CO	Levels
ules		Hours	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE		
							Asg			
1	Introduction to Control System	10	2	-	-	1	1	2	CO1	L2, L3
2	Block diagrams and signal flow	10	2	-	-	1	1	2	CO2	L2, L3
	graphs									
3	Time Response of feedback	10	-	2	-	1	1	2	CO3	L2, L3
	control systems									
4	Stability analysis	10	-	2	-	1	1	2	CO4	L2, L3
	Frequency domain analysis and									
	stability									
	Introduction to Polar Plots,	10	-	-	4	1	1	2	CO5	L3, L4
	Introduction to State variable									
	analysis									
-	Total	50	4	4	4	5	5	10	-	-

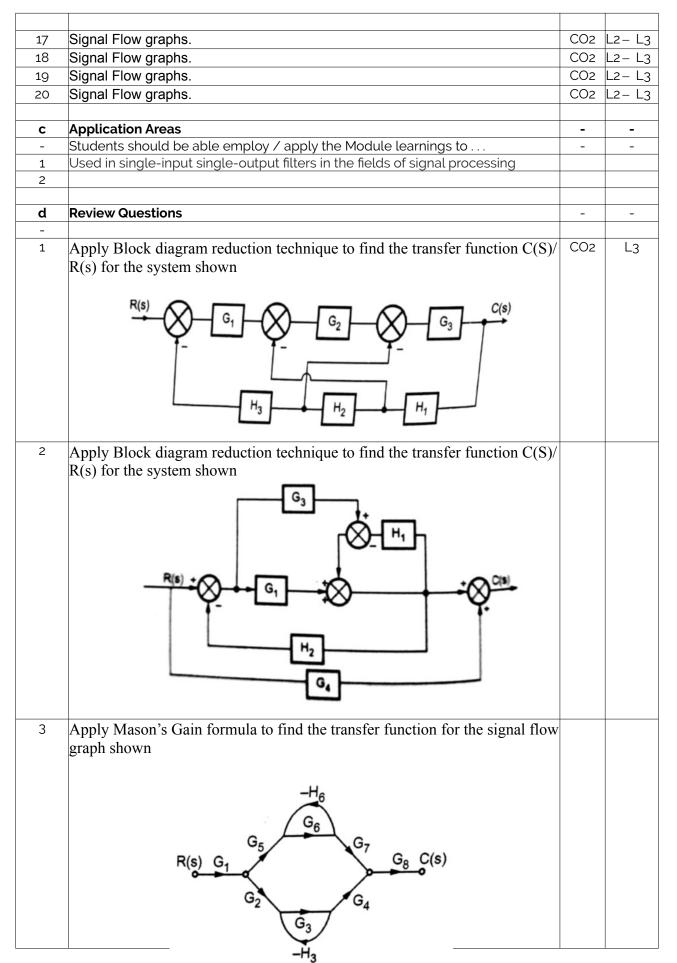
2. Continuous Internal Assessment (CIA)

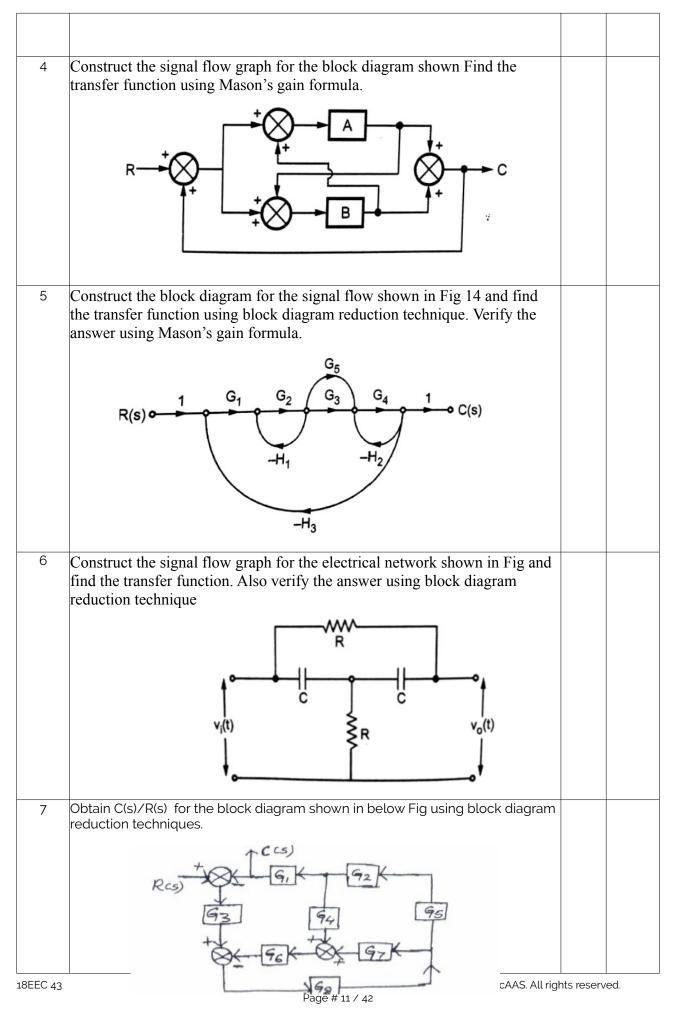
Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Mod	Evaluation	Weightage in	СО	Levels
ules		Marks		
1, 2	CIA Exam – 1	30	CO1, CO2	L2,L3
3, 4	CIA Exam – 2	30	CO3,Co4	L2,L3
5	CIA Exam – 3	30	CO5	L2,L4
	Assignment - 1	10	CO1, CO2	L2,L3
	Assignment - 2	10	CO3,Co4	L2,L3
5	Assignment - 3	10	CO5	L2,L4
1, 2	Seminar - 1		_	-
3, 4	Seminar - 2		-	-
5	Seminar - 3		_	-
	Quiz - 1		-	-
	Quiz - 2		-	-
5	Quiz - 3		_	-
1 - 5	Other Activities – Mini Project	-	_	-
	Final CIA Marks	40	-	-

D1. TEACHING PLAN - 1

Module - 1

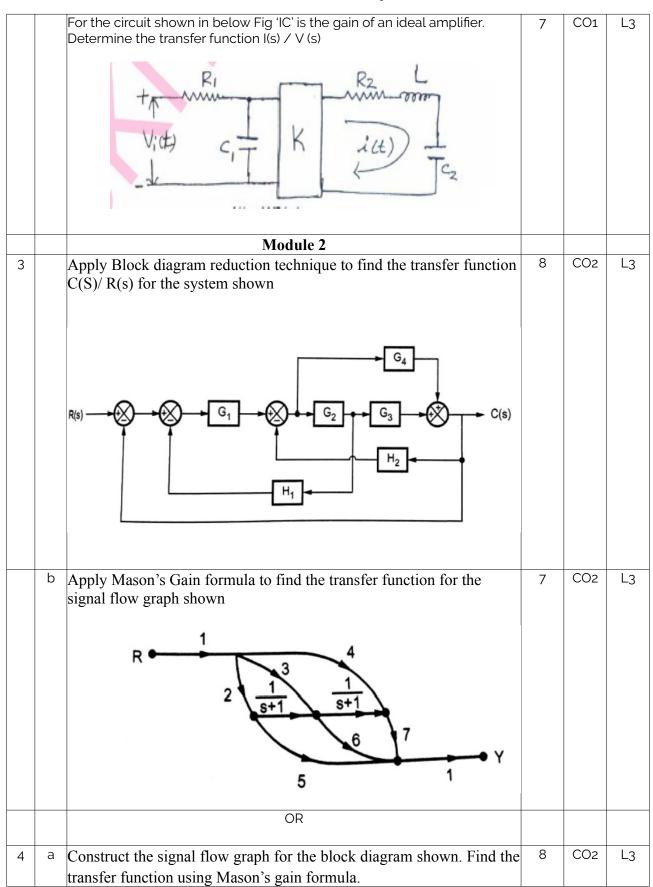

Title: Introduction to Control Systems Appr 10 Hrs
--

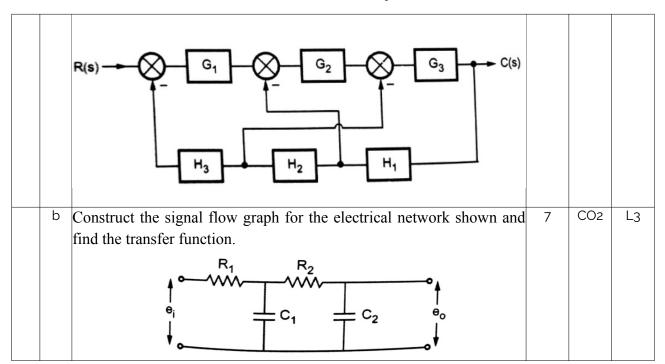

a	Course Outcome	Time: CO	Bloom
a	The student should be able to:		вюот
	Apply mathematical modeling to determine the transfer function of a		
	system.		
b	Course Schedule	-	-
	o Portion covered per hour	- CO1	- L2
1	Types of Control Systems. Effect of Feedback Systems.	CO1	L2 L2
2	Differential equation of Physical Systems – Mechanical Systems.	CO1	L2 – L
<u> </u>	Differential equation of Physical Systems –Electrical Systems.	CO1	
4 5	Electromechanical systems.	CO1	L2 – L
<u> </u>	Electromechanical systems.	CO1	
7	Electromechanical systems.		L2 – L
/ 8	Analogous Systems.	CO1	
9	Analogous Systems.	CO1	
10	Analogous Systems.	CO1	L2 – L
10		001	
с	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	Used in steam generator design	CO1	L2– L
2	Used in servomotors	CO1	L2– L
<u>م</u>	Review Questions		
d	Review Questions		
1	For the mechanical system shown in below Fig. (i)Obtain its mathematical model .(ii)Write the performance equation (iii)Obtain its Force-Voltage and Force-current analogous circuits	CO1	L2
	Distinguish aloged logg control system (a)	<u> </u>	
2	Distinguish closed loop control system from open loop control system with suitable examples.	CO1	L3
3	Obtain the transfer function of the system shown in below Fig.	CO1	L3
4	Explain linear and non-linear control system.	CO1	L2
5	For the mechanical system shown in Fig.Q1(b): i) Draw the mechanical network. ii) Obtain equations of motion. H.) Draw an electrical network based on force current analogy.	CO1	L3
	$\begin{array}{c} K_{3} \\ \hline \\ $		

For the circuit shown in below Fig 'IC' is the gain of an ideal amplifier. Determine the transfer function I(s) / V (s) $\frac{1}{2} \frac{k_1}{\sqrt{J_1} + \sqrt{J_2} + \sqrt$	CO1	L3
7 For the circuit shown in below Fig 'IC' is the gain of an ideal amplifier. Determine the transfer function I(s) / V (s) $\frac{R_1}{V_1 + K_2} + \frac{R_2}{V_1 + K_2} + \frac{L_2}{V_1 + K_2} + \frac{L_2}{V_2} + \frac{L_2}{V_2} + \frac{L_2}{V_2} + $	CO1	L3
e Experiences		
e Experiences	- - CO1	- L2

Module – 2

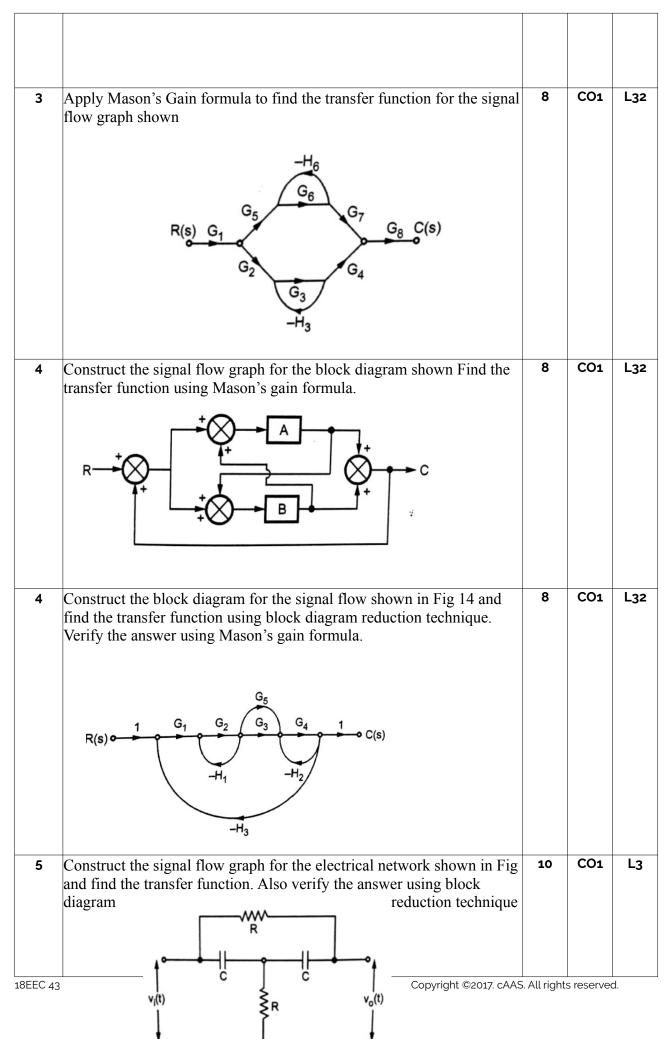
Title:	Block diagrams and signal flow graphs	Appr	10 Hrs
		Time:	
а	Course Outcomes	СО	Blooms
-	The students should be able to:	-	Level
	Apply block diagram reduction technique and signal flow graph reduction		
	methods to determine the transfer function of a system		
b	Course Schedule	-	-
Class	Portion covered per hour	-	-
No			
11	Transfer functions,	CO2	L2– L3
12	Block diagram algebra	CO2	L2– L3
13	Block diagram algebra	CO2	L2– L3
14	Block diagram algebra	CO2	L2– L3
15	Block diagram algebra	CO2	L2- L3
16	Block diagram algebra	CO2	L2- L3

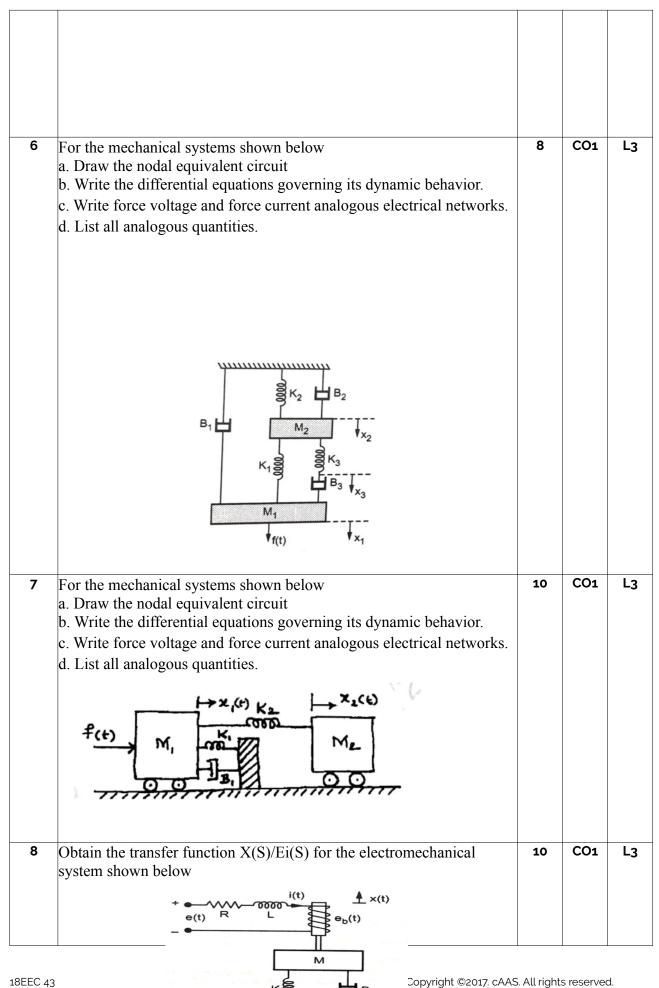


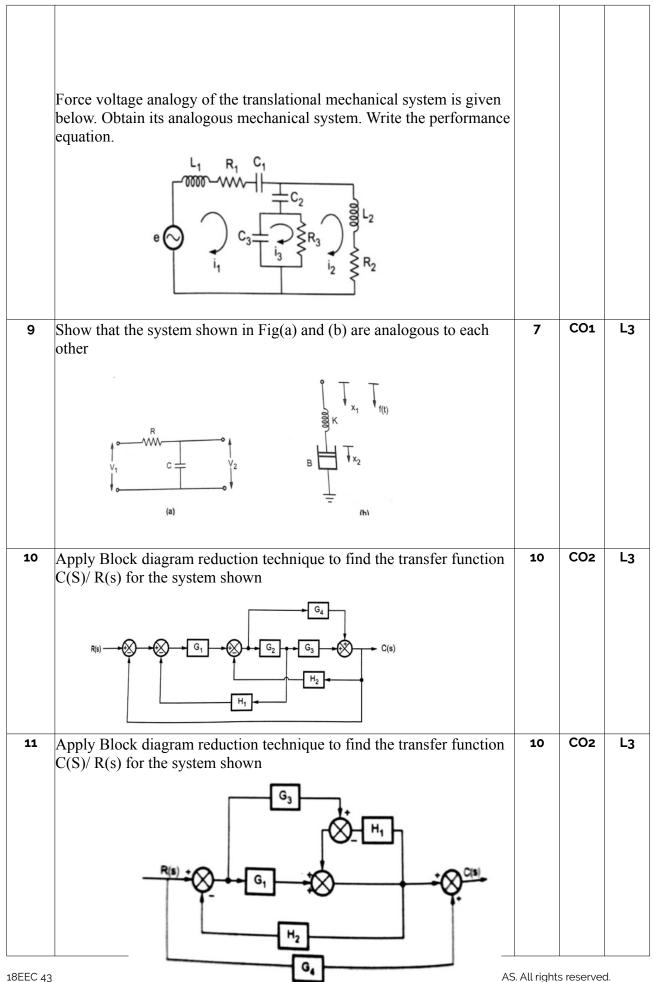

е	Experiences	-	-
1		CO3	L2
2			

E1. CIA EXAM – 1

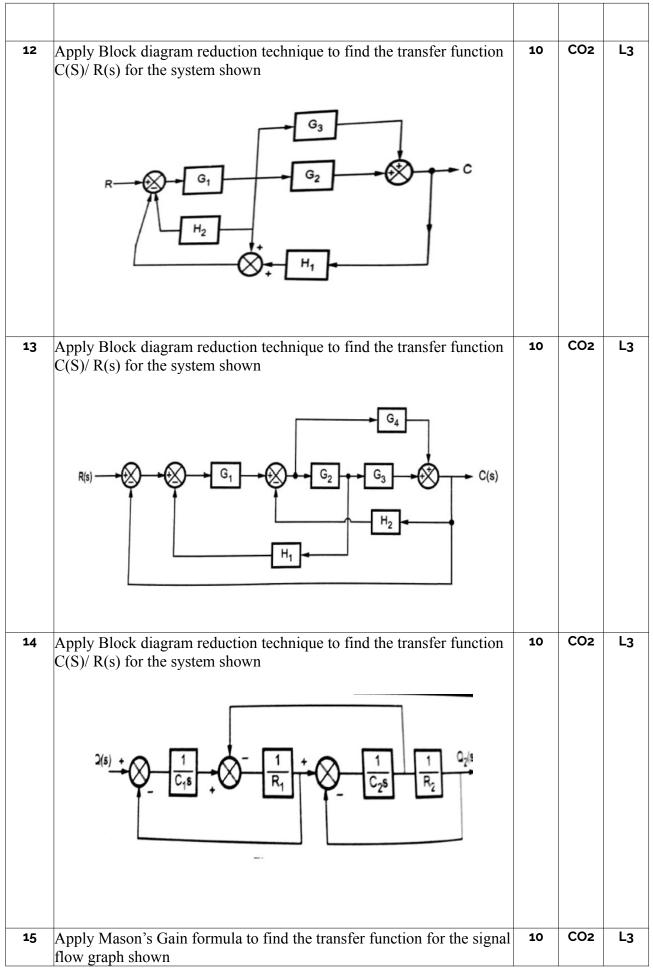
a. Model Question Paper - 1

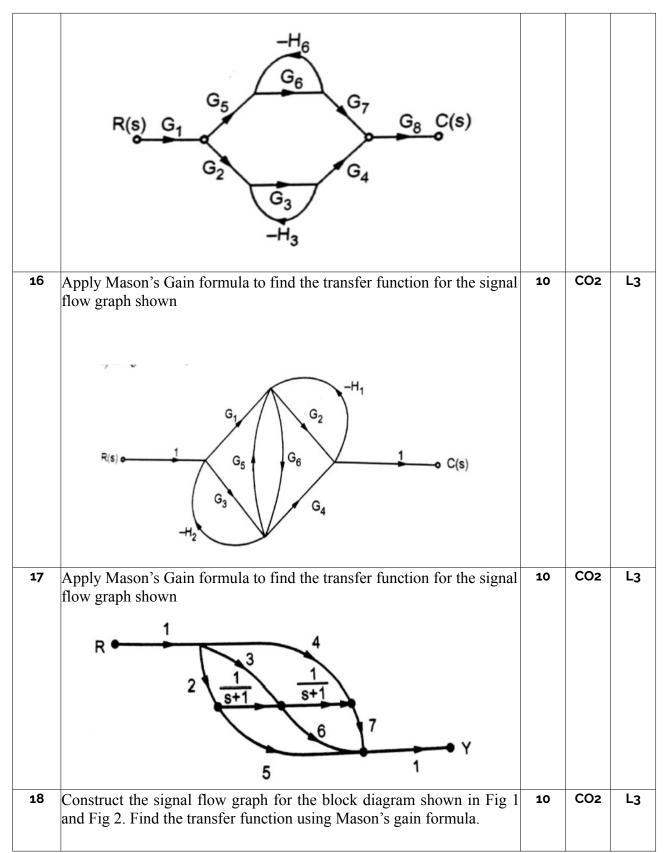

18EC43	Sem:	4	Marks:	30	Time:	75 minute	es	
Control Sys	stems							
Note: Answ	ver all que	stions, eac	h carry equa	l marks. I	Module : 1, 2	Marks	СО	Leve
		I	Module 1					
a. Draw th b. Write th c. Write fo	e nodal ec e differen orce voltag	quivalent ci tial equation	ons governing e current ana	logous el	amic behavior. lectrical networ	rks.	CO1	L3
		in below Fig er function I		ain of an io	deal amplifier.	7	CO1	L3
			OR					
a. Draw th b. Write th c. Write fo	e nodal ec e differen orce voltag	uivalent ci tial equatic ge and force quantities.	pown below ircuit ons governing e current ana κ_1	logous el $K_2 \qquad B_2$ $M_2 \qquad K_3$ B_3		8 rks.	CO1	L3
			8		B ₁ M ₂ K ₁ M ₁ F ₁ M ₁ F ₁ M ₁ M ₁	$B_1 \qquad M_2 \qquad X_2 \\ K_1 \qquad H_3 \qquad X_3 \\ M_1 \qquad H_1 \\ F_{f(t)} \qquad X_1$	$B_1 \qquad M_2 \qquad X_2 \\ K_1 \qquad K_3 \\ M_1 \\ M_1 \\ M_1 \\ M_1 \\ K_1 $	$B_1 \underbrace{M_2}_{X_2} \underbrace{K_3}_{K_3} \underbrace{K_3} \underbrace{K_3}_{K_3} \underbrace{K_3} \underbrace{K_3}_{K_3} \underbrace{K_3} \underbrace{K_3} \underbrace{K_3}_{K_3} \underbrace{K_3} \underbrace$

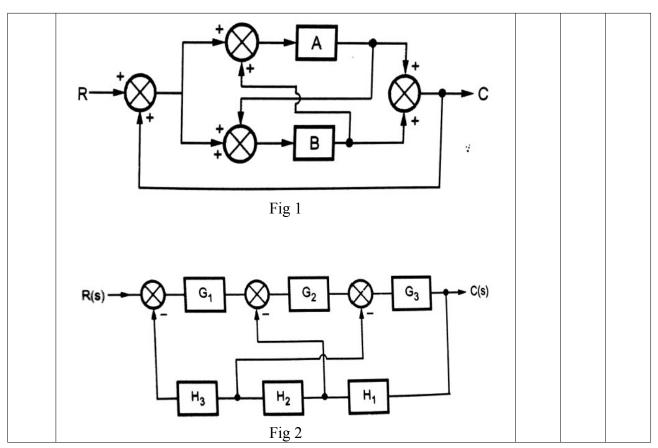




b. Assignment -1


	Model Assignment Questions			
Crs Cod		0 – 120 I	minute	S
Course:	Control Systems			
SNo	Assignment Description	Marks	со	Level
	Apply Block diagram reduction technique to find the transfer function $C(S)/R(s)$ for the system shown $\frac{R(s)}{\bigcirc - G_1 - \bigcirc - G_2 - \bigcirc - G_3 - C(s)}{- G_2 - \bigcirc - G_3 - C(s)}$	8	C01	L32
	Apply Block diagram reduction technique to find the transfer function C(S)/ R(s) for the system shown	8 5. All rights	CO1	L32





Page # 17 / 42

D2. TEACHING PLAN - 2

Module - 3

Title:	Time Response of feedback control systems	Appr	10 Hrs
		Time:	
a	Course Outcomes	СО	Blooms
-	At the end of the topic the student should be able to	-	Level
	Analyze the behavior of the system in time domain for 1 st and 2 nd order	CO3	L2-L3
	systems and PID controllers		
b	Course Schedule		
Class No	Portion covered per hour	-	-
21.	Standard test signals,	CO3	L2-L3
22.	Unit step response of First and Second order Systems.	CO3	L2-L3
23.	Unit step response of First and Second order Systems.	CO3	L2-L3
24.	Time response specifications, Time	CO3	L2-L3
	response specifications of second order systems,		
25.	Time response specifications of second order systems,	CO3	L2-L3
26.	steady state errors and error constants.	CO3	L2-L3
27.	steady state errors and error constants.	CO3	L2-L3
28.	steady state errors and error constants.	CO3	L2-L3
29.	Introduction to PI, PD and PID Controllers (excluding design).	CO3	L2-L3
30.	Introduction to PI, PD and PID Controllers (excluding design).	CO3	L2-L3
с	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
	Practical application to the measurement of phase noise and jitter		
	Used in digital temperature controller		
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-

1.	For the system shown in Fig. Find the : i) system type ii) static error constants kp, k_v and ka and iii) the steady state error for an input r(t) = 3 + 2t.	CO3	L3
	$\frac{g(s)}{-\frac{s}{s(s+\eta(s+2))}}$		
2.	Find the step-response, C(t) for the system described by C(s) / R(s) = 4/ (S+ 4) Also find the time constant, rise time and settling time.	CO3	L
3.	Write short notes on PI controller.	CO3	L;
4.	Derive the expression for unit step response for 1^{st} order control system with closed loop transfer function K/(S+1/t)	CO3	L
5.	Derive the expression for unit step response for 2 nd order control system with closed loop transfer function K/(S+1/t)	CO3	L
6.	Write short notes on PD controller.	CO3	L
7.	List the standard test inputs used in control system and write their Laplace transform.	CO3	Le
8.	Find Kp, Kv, Ka and steady state error for a system with open loop transfer function as G(s) / H(s) = $(10(s + 2)(s + 3))$ / $(s(s + 1)(s + 4)(s + 5))$ where the input is r(t) = $3 + t + t^2$.	CO3	L
9.	For the system shown in Fig. obtain closed loop transfer function, damping ratio natural frequency and expression for the output response if subjected to unit step input.	CO3	L
10.	Define rise time and maximum oversnoot and write their formula.	CO3	L
10.	For a given system $G(s) / H(s) = 2 K / (s (s + 2)(s + 3))$. Find the value of K to limit steady state error to 10 when input to system is 1+10t + 20t ²	CO3	 L3
12.	For a unity feedback control system with G(s) = 64/ (s(s + 9.6)) Write the output response to a unit step input. Determine: i) The response at t = 0.1 sec. ii) Settling time for ± 2% of steady state.	CO3	L
13.	A control system with open loop transfer function K(S+2)/(S ² +10S+20) produces 20% steady state error with unit step input. Determine the value of constant K.	CO3	L
14.	Derive the expression for unit step response for 1^{st} order control system with closed loop transfer function K/(S+1/t)	CO3	L;
15.	Derive the expression for unit step response for 2 nd order control system with closed loop transfer function K/(S+1/t)	CO3	L
	Experiences	_	
e			

Module – 4

Title:	Stability analysis	Appr Time:	10 Hrs
a	Course Outcomes	СО	Blooms

-	At the end of the topic the student should be able to	-	Level
	Analyze the stability of the system using various time domain and bode plot techniques	CO4	L2-L3
b	Course Schedule		
Class No	Portion covered per hour	-	-
	Concepts of stability.	CO4	L2-L3
	Necessary conditions for Stability, Routh stability criterion,	CO4	L2-L3
33.	Relative stability analysis: more on the Routh stability criterion.	CO4	L2-L
	Introduction to Root-Locus Techniques,	CO4	L2-L
34.		CO4	L2-L
35.	The root locus concepts. Construction of root loci.		
-		CO4	L2-L
37.	Construction of root loci.	CO4	L2-L
38.	Frequency domain analysis and stability: Correlation between time and frequency response, Bode Plots,	CO4	L2-L
39.	Bode Plots,	CO4	L2-L3
40.	Experimental determination of transfer function.	CO4	L2-L
С	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
	Used in linear time-invariant systems.		
	Used to design the damping ratio and natural frequency of a feedback system.		
	The plot can be used to interpret how the input affects the output in both magnitude and phase over frequency.		
d	Review Questions	-	-
_	The attainment of the module learning assessed through following questions	-	_
1.	Determine the ranges of K such that the characteristic equation :	CO4	L2-L
1.	$S^3 + 3(K + 1)S^2 + (7K + 5)S + (4K + 7) = 0$, has roots more negative than $S = -1$.	004	LZ-L
2.	Find the range of K for which the system with closed loop transfer function $K / (S(S+2))$	CO4	L2-L
۷.	$(S^{2+} S^{+1})$ is stable. For what value of K the system oscillates and what is the corresponding frequency of oscillation.		LZ-L
3.	The open loop transfer function of a feedback control system is given by $K/(S(S+2)(S+1))$. Construct the root locus and find the range of K for which the closed loop system is stable.	CO4	L2-L;
4.	Check the; & ability of the given characteristic equation using Routh's method. $S^6 + 2S^5 + 8S^4 + 12S^3 + 20S^2 + 16S + 16 = 0$.	CO4	L2-L
5.	Mention few limitations of Routh's criterion	CO4	L2-L
6.	Construct the root locus of a control system with characteristic equation $(S2+2S+2) + K(S+4)=0$. Determine the stability of the closed loop system. Show that a part of root locus is a circle of radius $\sqrt{10}$ units with centre at $(-4, 0)$.	CO4	L2-L;
7.	Sketch the complete root locus of system having, G(s) = K / (S(S+1)(S+2)(S+3))	CO4	L2-L
8.	Consider the system with $G(S)H(s) = . K / (S (S - 1)(S + 4))$ Find whether $S = -2$ point is on root locus or not using angle condition.	CO4	L2-L;
9.	Sketch the root locus plot for a negative feedback control system whose open loop transfer function is given by $G(s)H(s) = K / (s(s+3)(s^2+2s+2))$ for all values of K ranging from 0 to infinity. Also find the value of K for a damping ratio of 0.5	CO4	L2-L
10.	Sketch the rough nature of the root locus of a certain control system whose C.E is given by $s^3 + 9s^2 + Ks + K = 0$, comment on the stability.	CO4	L2-L3
11.	Explain Rouths-Harwitz stability criterion.	CO4	L2-L
<u> </u>	$s^{6}+4s^{5}+3s^{4}-16s^{2}-64s-48=0$. Find the number of roots of this equation real		

	part, zero real part and negative real part using RH criterion.		
13.	The open loop transfer function of a system is $G(s) = K/(s (1+s)(1+0.1s))$ Determine the values of K such that (i) gain margin = 10 dB ii) phase margin = 24°. Use Bode plot.	CO4	L2-L
14.	Derive the expression for resonant peak 'Mr' and corresponding resonant frequency 'Wr' for a second—order under-damped system in frequency response analysis.	CO4	L2-L
15.	For a closed loop control system $G(s) = 100 / (s (s+8), H(s) = 1$. Determine the resonant peak and resonant frequency.	CO4	L2-L
16.	Explain lag-lead compensator network and briefly discuss the effects of lead-lag compensator.	CO4	L2-L
17.	For a unity feedback system $G(s) = 242((s+5))/(s(s+1)(s^2+5s+121))$ Sketch the bode plot and find gain crossover freq, phase crossover freq, gain margin and phase margin.	CO4	L2-L
18.	Construct the Bode plot for the system with open loop transfer function $\frac{K}{S(S+1)(1+0.1S)}$ Determine the value of K such that (a) gain margin = 10db (b) Phase margin = 50 ⁰ .	CO4	L2-L
19.	Determine the transfer function of a system whose asymptotic Bode plot is as shown in fig $db \int \frac{20 db [sec}{0 db [sec} \frac{10 db [sec}{1 db [sec$	004	L2-L
е	Experiences	-	-
e 1 2	Experiences	-	-

E2. CIA EXAM – 2

a. Model Question Paper - 2

Crs Code	ð.	18EC43	Sem:	4	Marks:	30	Time: 7	5 minute	S	
Cour		Control Sys	stems							
-	-	Note: Answ	ver all qu	estions, ea	ch carry equa	l marks.	Module : 3, 4	Marks	СО	Level
					MODULE 1					
1	a		atio natura	l frequenc	btain closed lo y and express 20 (5+1)(5+1)		fer function, e output response	7 if	CO3	L3
	b				step response on K/(S+1/t)	TOT 2 TH C	praer control syster	n 8	CO3	L3
					OR					

2	а	Find Kp, Kv, Ka and steady state error for a system with open loop transfer function as G(s) / H(s) = $(10(s + 2)(s + 3))$ / ($s(s + 1)(s + 4)(s + 5)$) where the	7	CO3	L3
		input is r(t) = 3 + t + t ² .			
	b	Write short notes on PI and PD controller.	8	CO3	L3
		MODULE 2			
3	а	Find the range of K for which the system with closed loop transfer function K / $(S(S+2)(S^2+S+1))$ is stable. For what value of K the system oscillates and what is the corresponding frequency of oscillation.	7	CO4	L3
	b	Construct the root locus of a control system with characteristic equation $(S2+2S+2) + K(S+4)=0$. Determine the stability of the closed loop system. Show that a part of root locus is a circle of radius $\sqrt{10}$ units with centre at $(-4, 0)$.	8	CO4	L3
		OR			
4	а	For a unity feedback system $G(s) = 242((s+5))/(s(s+1)(s^2+5s+121))$ Sketch the bode plot and find gain crossover freq, phase crossover freq, gain margin and phase margin.	10	CO4	L3
	b	Derive the expression for resonant peak 'Mr' and corresponding resonant frequency `Wr' for a second—order under-damped system in frequency response analysis.	5	CO4	L3

b. Assignment – 2

	Model Assignment Questions			
Crs Cod	e: 18EC43 Sem: 4 Marks: 10 Time: 9)0 – 120 r	minute	S
Course:	Control Systems			
SNo	Assignment Description	Marks	со	Level
1.	For the system shown in Fig. Find the : i) system type ii) static error constants kp, k _v and ka and iii) the steady state error for an input r(t) = 3 + 2t.	10	CO3	L3
2.	Find the step-response, C(t) for the system described by C(s) / R(s) = 4/ (S+ 4) Also find the time constant, rise time and settling time.	10	CO3	L3
3.	Write short notes on PI controller.	10	CO3	L3
<u> </u>	Derive the expression for unit step response for 1 st order control system with closed loop transfer function K/(S+1/t)		CO3	 L3
5.	Derive the expression for unit step response for 2 nd order control system with closed loop transfer function K/(S+1/t)	1 0	CO3	L3
6.	Write short notes on PD controller.	10	CO3	L3
7 .	List the standard test inputs used in control system and write their Laplace transform.	10	CO3	L3
8.	Find Kp, Kv, Ka and steady state error for a system with open loop transfer function as G(s) / H(s) = $(10(s + 2)(s + 3))$ / $(s(s + 1)(s + 4)(s + 5))$ where the input is r(t) = $3 + t + t^2$.	10	CO3	L3
9.	For the system shown in Fig, obtain closed loop transfer function, damping ratio natural frequency and expression for the output response in	10	CO3	L3

	P.) C(S)		1	
	K(s) v 20			
	(S+1)(S+4)			
10.	Define rise time and maximum overshoot and write their formula.	10	CO3	L
11.	For a given system G(s) / H(s) = 2 K / (s (s + 2)(s + 3)). Find the value of K to limit steady state error to 10 when input to system is 1+10t + $20t^2$	10	CO3	L
	For a unity feedback control system with $G(s) = 64/(s(s + 9.6))$ Write the output response to a unit step input. Determine: i) The response at t = 0.1 sec. ii) Settling time for ± 2% of steady state.	10	CO3	L
	A control system with open loop transfer function K(S+2)/(S ² +10S+20) produces 20% steady state error with unit step input. Determine the value of constant K.	10	CO3	L
	Derive the expression for unit step response for 1^{st} order control system with closed loop transfer function K/(S+1/t)	10	CO3	L
	Derive the expression for unit step response for 2^{nd} order control system with closed loop transfer function K/(S+1/t)	10	CO3	L
	Sketch the root locus plot for a negative feedback control system whose open loop transfer function is given by $G(s)H(s) = K / (s(s+3)(s^2+2s+2))$ for all values of K ranging from 0 to infinity. Also find the value of K for a damping ratio of 0.5	10	CO4	L
17.	Sketch the rough nature of the root locus of a certain control system whose C.E is given by $s^3 + 9s^2 + Ks + K = 0$, comment on the stability.	10	CO4	L
18.	Explain Rouths-Harwitz stability criterion.	10	CO4	L
	$s^{6}+4s^{5}+3s^{4}-16s^{2}-64s-48=0$. Find the number of roots of this equation real part, zero real part and negative real part using RH criterion.	10	CO4	L
	The open loop transfer function of a system is $G(s) = K/(s (1+s)(1+0.1s))$ Determine the values of K such that (i) gain margin = 10 dB ii) phase margin = 24°. Use Bode plot.	10	CO4	L
	Derive the expression for resonant peak 'Mr' and corresponding resonant frequency `Wr' for a second—order under-damped system in frequency response analysis.	10	CO4	L.
	For a closed loop control system $G(s) = 100 / (s (s+8), H(s) = 1$. Determine the resonant peak and resonant frequency.	10	CO4	L
	Explain lag-lead compensator network and briefly discuss the effects of lead-lag compensator.	10	CO4	L
	For a unity feedback system $G(s) = 242((s+5))/(s(s+1)(s^2+5s+121))$ Sketch the bode plot and find gain crossover freq, phase crossover freq, gain margin and phase margin.	10	CO4	L.
25.	Construct the Bode plot for the system with open loop transfer function $\frac{K}{S(S+1)(1+0.1S)}$ Determine the value of K such that (a) gain margin = 10db (b) Phase margin = 50 ⁰ .	10	CO4	L
	Determine the transfer function of a system whose asymptotic Bode plot is as shown in fig db -20 db[sec 0 db[sec 20 db]sec 20 db]sec	10	CO4	L

D3. TEACHING PLAN - 3

Module - 5

<i>Course Outcomes</i> At the end of the topic the student should be able to Analyze the stability of the system using frequency domain techniques and	со	Bloom
	_	
		Level
	CO5	L3-L4
Analyze the electrical system using state variable technique.		
Course Schedule	-	_
Portion covered per hour	-	-
Introduction to Polar Plots, (Inverse Polar Plots excluded)	CO5	L3-L4
Mathematical preliminaries, Nyquist Stability criterion, (System s with transportation lag excluded)	CO5	L3-L4
Nyquist Stability criterion	CO5	L3-L4
	CO5	L3-L4
Introduction to lead, lag and lead- lag compensating networks (excluding	CO5	L3-L4
Introduction to State variable analysis: Concepts of state, state variable and state models for electrical systems.	CO5	L3-L4
State models for electrical systems.	CO5	L3-L4
State models for electrical systems.	CO5	L3-L4
Solution of state equations.	CO5	L3-L4
Solution of state equations.	CO5	L3-L4
Application Areas	-	-
	-	-
Used in Design of model based controllers such as MPC,		
Peview Questions		_
		_
Find the state-taranneition matrix for $A = \begin{bmatrix} 0 & -1 \\ +2 & -3 \end{bmatrix}$.	CO5	L3
Obtain an appropriate state model for a system re mented by an electric circuit as shown in below Fig.	CO5	L3
$+ \qquad \qquad$		
linear time invariant system is characterized by the homogeneous state equation $\begin{bmatrix} \bullet \\ \mathbf{x}_1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \end{bmatrix}$	CO5	L3
	Mathematical preliminaries, Nyquist Stability criterion, (System s with transportation lag excluded) Nyquist Stability criterion Nyquist Stability criterion Introduction to lead, lag and lead- lag compensating networks (excluding design). Introduction to State variable analysis: Concepts of state, state variable and state models for electrical systems. State models for electrical systems. State models for electrical systems. Solution of state equations. Solution of state equations. Solution of state equations. Application Areas Students should be able employ / apply the Module learnings to Used in Design of model based controllers such as MPC, Review Questions The attainment of the module learning assessed through following questions Find the state-tarannsition matrix for $A = \begin{bmatrix} 0 & -1 \\ +2 & -3 \end{bmatrix}$. Obtain an appropriate state model for a system remented by an electric circuit as shown in below Fig. Inear time invariant system is characterized by the homogeneous state equation $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$. Copyright ©2017. CAAS. All right	Mathematical preliminaries, Nyquist Stability criterion, (System s with transportation lag excluded)CO5 transportation lag excluded)CO5Nyquist Stability criterionCO5Nyquist Stability criterionCO5Introduction to lead, lag and lead- lag compensating networks (excluding design).CO5Introduction to State variable analysis: Concepts of state, state variable and state models for electrical systems.CO5State models for electrical systems.CO5Solution of state equations.CO5Solution of state equations.CO5Solution of state equations.CO5Students should be able employ / apply the Module learnings toUsed in Design of model based controllers such as MPCFind the state-taransition matrix for $A = \begin{bmatrix} 0 & -1 \\ +2 & -3 \end{bmatrix}$.CO5Obtain an appropriate state model for a system re mented by an electric circuit as shown in below Fig.CO5

Compute the solution of homogeneous equation, assume the initial state vector. $\mathbf{X}_{0} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$		
State the properties of state transition matrix.	CO5	L
Find the transfer function of the system having state model.	CO5	Ľ
$\dot{\mathbf{X}} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \mathbf{u} \text{ and } \mathbf{y} = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix}$		
Obtain the state model for the system represented by the differential equation	CO5	L
$\frac{d^3 y(t)}{dt^3} + 6 \frac{d^2 y(t)}{dt^2} + 11 \frac{dy(t)}{dt} + 10 y(t) = 3u(t) .$		
Obtain the state model of given electrical network shown in Fig.	CO5	L
$E_{1} V_{c} + \frac{L_{2}}{T_{c}} R E_{2}$		
Find the state transition matrix for	CO5	L
$\mathbf{A} = \begin{bmatrix} 0 & -1 \\ 2 & -3 \end{bmatrix}.$		
single input single output system has the state and output equations	CO5	L
i) Determine its transfer function (ii) Find its state transition matrix.		
Draw polar plot of $G(s)H(s) = 100/(s^2 + 10S + 100)$	CO5	L
	CO5	L
Draw the polar plot for the following open-loop transfer function	005	
Draw the polar plot for the following open-loop transfer function G(S)H(s) = 1/(1+0.1s) Sketch the Nyquist plot for a system with the open-loop transfer function : G(s)H(s) = (k (1+0.5s)(1+s)) / ((1+10s)(s-1)). Determine the range of values of	CO5	L
Draw the polar plot for the following open-loop transfer function G(S)H(s) = 1/(1+0.1s) Sketch the Nyquist plot for a system with the open-loop transfer function :		L

	control system whose open-loop transfer function is given by		
	G(s)H(s) = 5 / (s(s-1))		
е	Experiences	-	-
1		CO10	L2
2		CO9	

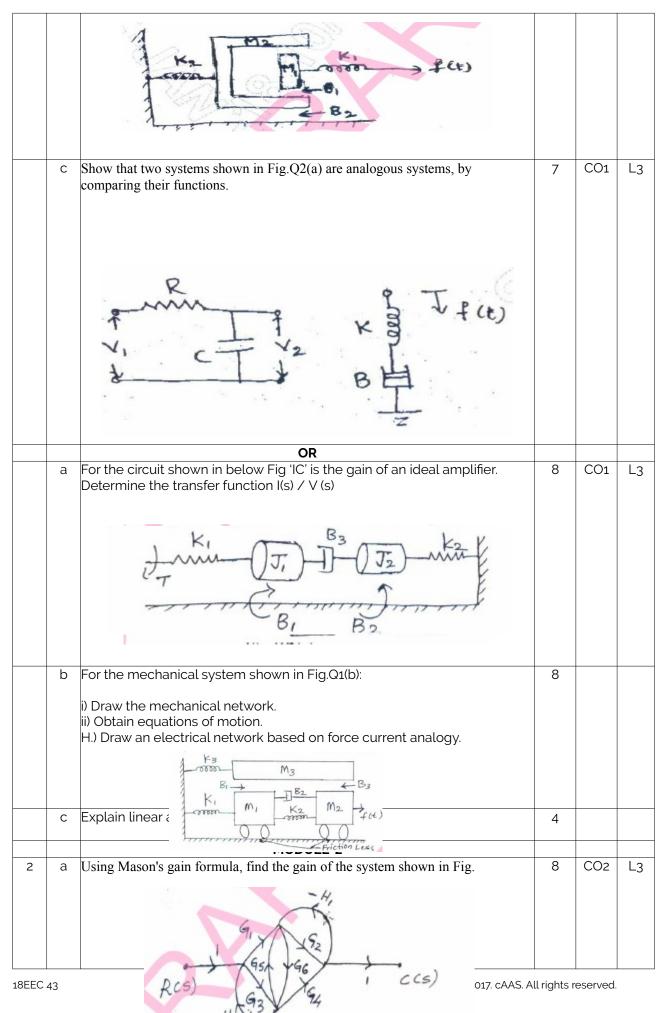
E3. CIA EXAM – 3

a. Model Question Paper - 3

		18EC43 Sem: 4 Marks: 30 Time:	75 minute	S	
Cour -	rse:	Control Systems Note: Answer all questions, each carry equal marks. Module : 5	Marks	со	Level
1	а	Obtain the state model of given electrical network shown in Fig. $ \begin{array}{c} $	7	CO5	L3
	b	Find the state-taranneition matrix for $A = \begin{bmatrix} 0 & -1 \\ +2 & -3 \end{bmatrix}.$	8	CO5	L3
2	2	OR Draw the polar plot for the following open-loop transfer function	7	CO5	L3
۷	a	G(S)H(s) = 1/(1+0.1s)	7	005	L3
	b	Sketch the Nyquist plot for a system with the open-loop transfer function : $G(s)H(s) = (k (1+0.5s)(1+s)) / ((1+10s)(s-1))$. Determine the range of values of 'K' for which the system is stable.	8	CO5	L3
		MODULE-2	15		
З	а	Find the transfer function of the system having state model. $\dot{X} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u \text{ and } y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$	7	CO5	L2
	b	Obtain the state model for the system represented by the differential equation $\frac{d^3 y(t)}{dt^3} + 6 \frac{d^2 y(t)}{dt^2} + 11 \frac{dy(t)}{dt} + 10 y(t) = 3u(t).$	8	CO5	L3
		<u></u>			
	2	OR State the properties of state transition matrix	6	COF	12
4	а	OR State the properties of state transition matrix.	6	CO5	L2

i) Determine its transfer function (ii) Find its state transition matrix.		

b. Assignment – 3


	Model Assignment Questions		· .	
Crs Code: Course:	18EC43Sem:4Marks:10Time:gControl Systems	0 - 120	minute	S
Jourse.	Control Systems			
SNo	Assignment Description	Marks	со	Level
1.	Obtain the state model of given electrical network shown in Fig. $ \begin{array}{c} $	7	CO5	L3
2.	Find the state-taranneition matrix for $A = \begin{bmatrix} 0 & -1 \\ +2 & -3 \end{bmatrix}.$	8	CO5	L3
3.	linear time invariant system is characterized by the homogeneous state equation $\begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix}$ Compute the solution of homogeneous equation, assume the initial state vector. $\mathbf{x}_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	7	CO5	L3
4 . BEEC 43	Obtain an appropriate state model for a system re mented by an electric circuit as shown in below Fig. $ \begin{array}{c} $		CO5	L3 d.

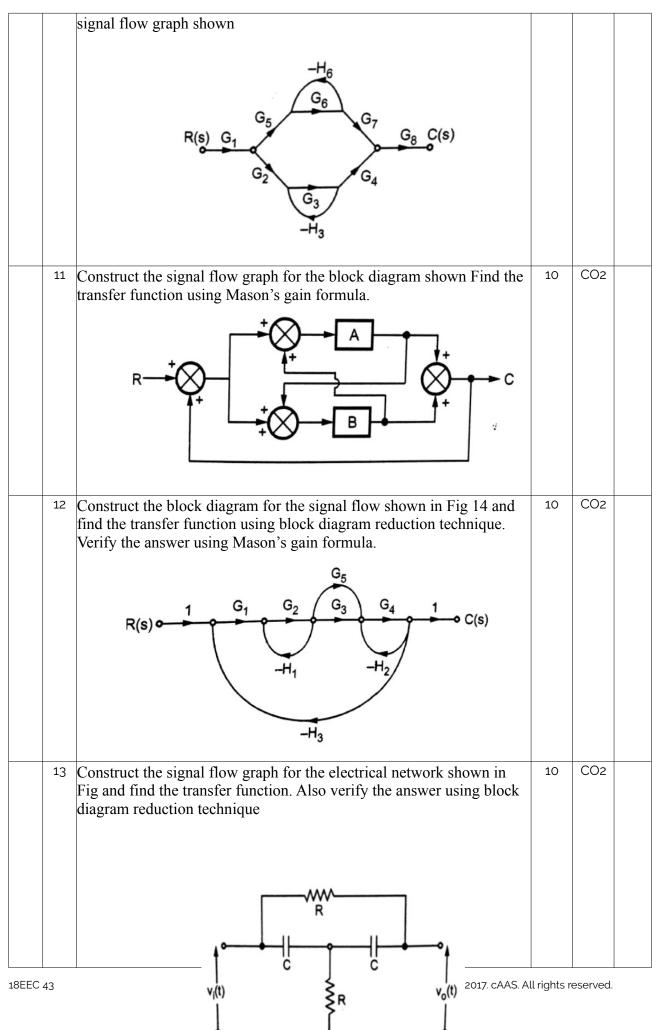
5.	Find the transfer function of the system having state model.	7	CO5	L
	$\dot{\mathbf{X}} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \mathbf{u} \text{ and } \mathbf{y} = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix}$			
6.	Obtain the state model for the system represented by the differential equation	8	CO5	L
	$\frac{d^{3}y(t)}{dt^{3}} + 6\frac{d^{2}y(t)}{dt^{2}} + 11\frac{dy(t)}{dt} + 10y(t) = 3u(t).$			
7.	State the properties of state transition matrix.	7	CO5	L
8.		8		
	single input single output system has the state and output equations		CO5	
•		10	COF	<u>⊢</u>
9. 10	Draw polar plot of $G(s)H(s) = 100/(s^2 + 10S + 100)$	10	CO5	
9. 10.		10 10	CO5 CO5	
	Draw polar plot of $G(s)H(s) = 100/(s^2 + 10S + 100)$ Draw the polar plot for the following open-loop transfer function	-	-	L
10.	Draw polar plot of $G(s)H(s) = 100/(s^2 + 10S + 100)$ Draw the polar plot for the following open-loop transfer function $G(S)H(s) = 1/(1+0.1s)$ Sketch the Nyquist plot for a system with the open-loop transfer function : $G(s)H(s) = (k (1+0.5s)(1+s)) / ((1+10s)(s-1)))$ Draw polar plot of G(s)(1+s)) / ((1+10s)(s-1)))	10	CO5	L

F. EXAM PREPARATION

1. University Model Question Paper

Cours	se:	Control System	าร				Month /	∕ Year	June/2	2020
Crs Co	ode:	18EC43	Sem:	4	Marks:	100	Time:		180 mi	nutes
Mod		Answer all FIVI	E full questior	ns. All questio	ns carry equa	al marks.		Marks	СО	Level
ule										
1	а	Define control s	system. Disting	uish between o	open loop and	closed loop s	systems	6	CO1	L3
		with examples.								
	b	Write the differe	ential equations	s for the mecha	anical system s	shown in Fig	. and	7	CO1	L3
		obtain F-V and	F-1 analogous	electrical netw	orks.					
			-							

	b	Define the follwing terms with respect SFG (i) Input node (ii) output node (iii) loop (iv) forward path	4	CO2	Lź
		Reduce the block diagram shown in Fig.Q2(c) using reduction rules and obtain C(s)/R(s).	8	CO2	L
		R(S) GIL GIL GIL GIL (CC)			
	a	OR Using Mason's gain formula, find the gain of the system shown in Fig.	10		
		$R(s) = \begin{array}{c} G_{14} \\ G_{14} \\ G_{15} \\ G_{1} \\ G_{1} \\ G_{12} \\ G_{13} \\ G_{13} \\ G_{13} \\ G_{12} \\ G_{13} \\ G_{13} \\ G_{13} \\ G_{12} \\ G_{13} \\ G_{13} \\ G_{13} \\ G_{12} \\ G_{13} \\ G_{13} \\ G_{12} \\ G_{13} \\ $			
		Obtain C(s)/R(s) for the block diagram shown in below Fig using block diagram reduction techniques.	10		
		$R_{cs} \xrightarrow{+} \bigotimes_{i} \overbrace{G_{i}} \overbrace{G_{i}} \overbrace{G_{2}} \overbrace{G_{2}} \overbrace{G_{2}} \overbrace{G_{3}} \overbrace{G_{4}} \overbrace{G_{5}} \overbrace$			
		MODULE-3			
1		Obtain an expression for time response of the first order system subjected to unit step input.	6	CO3	L
		Explain proportional + integral + differential controller and their effect on stability.	7	CO3	L3


G(s) = K/(s(s+10)). Determine the gain K so that system will have a damping ratio of 0.5. For this value of K,find settling time (2% criterion), peak overshoot and time to peak overshoot for a unit step input.			
OR		CO	L
a With a neat sketch explain all the time domain specifications.	12	CO4	L3
b For the system shown in Fig. Determine the value of 'a' which gives damping factor 0.7. What is the steady state error to unit ramp input for value of 'a'.	8	CO4	L3
MODULE-4			
4 a The open loop transfer function of a system is $G(s) = K / (s(1 + 0.5s)(1 + 0.2s))$ using Bode plot. Find K so that : i) Gain margin is 6dB ii) Phase margin is 25°.	10	CO4	L3
b List the advantages of Root Locus method.	3	CO4	L2
c Using RH criterion determine the stability of the system having the characteristic equation $s^6 + 2s^5 + 5s^4 + 8s^4 + 8s^2 + 8s + 4 = 0$.	7	CO4	L2
OR			
a The open loop transfer function of a control system is given by $G(s) = \frac{k}{s(s+2)(s^2+6s+2s)}$ Sketch the complete root locus as k is varied from zero to infinity.	10		
b The open loop transfer function of a control system is $G(s)H(s) = 1/(s^2+s+2)$. Sketch the Bode plot and analyze the gain margin and phase margin.	10	CO4	L3
MODULE-5			
5 a Find the transfer function of the system having state model. $\dot{X} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} u & and & y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$	10	CO5	L3
b Consider the circuit of Fig. Identify suitable state variables and write its state vector matrix equation. Note that there are two inputs. $ \begin{array}{c} $	10	CO10	L3

	OR			
a Find the sta	a Find the state-tarannel matrix for $A = \begin{bmatrix} 0 & -1 \\ +2 & -3 \end{bmatrix}.$ b A single input single output system has the state and output equations $\mathbf{x} = \begin{bmatrix} 0 & 1 \\ -6 & -5 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \mathbf{r}$ $\mathbf{y} = \begin{bmatrix} 5 & 0 \end{bmatrix} \mathbf{x}$	8	CO5	L3
b A single inp i) Determin	$ \mathbf{\hat{x}} = \begin{bmatrix} 0 & 1 \\ -6 & -5 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \mathbf{r} $ $ \mathbf{y} = \begin{bmatrix} 5 & 0 \end{bmatrix} \mathbf{x} $	12	CO5	L3

2. SEE Important Questions

Cours				Month	/ Year		
Crs C		1 Sem:	Marks:	Time:			
		Answer all FIVE full questions.	All questions carry equa	ıl marks.	-	-	
Mod ule	Qno.	Important Question			Marks	со	Year
1		For the mechanical system sho (i)Obtain its mathematical m (iii)Obtain its Force-Voltage and	odel .(ii)Write the per		10	CO1	
		Fe) Mr	KI M2 K2	E T			
		Distinguish closed loop contro with suitable examples.	l system from open loop	control system	10	CO1	
	3	Obtain the transfer function of		elow Fig.	10	CO1	
	4	Explain linear and non-linear c	ontrol system.		10	CO1	
		For the mechanical system sho i) Draw the mechanical networ ii) Obtain equations of motion. H.) Draw an electrical network	k. based on force current a M3	analogy.	10	CO1	
18EEC	43	- 38000 -	M, K2 M2))))))))))))))))))) (2017. cAAS. A	ll rights re	eserved	

	6	For the circuit shown in below Fig 'IC' is the gain of an ideal amplifier. Determine the transfer function I(s) / V (s)	10	CO1	
		Vict) C, T K ict) TC2			
	7	For the circuit shown in below Fig 'IC' is the gain of an ideal amplifier. Determine the transfer function I(s) / V (s)	10	CO1	
		$\frac{1}{T} = \begin{bmatrix} J_1 \\ J_2 \end{bmatrix} = \begin{bmatrix} J_2 \\ J_2 \end{bmatrix} = \begin{bmatrix} $			
2	8	Applyblock diagram reduction technique to find the dansfer function $C(S)/R(s)$ for the system shown	10	CO2	
		$\xrightarrow{R(s)} \bigcirc - G_1 - \bigcirc - G_2 - \bigcirc - G_3 + \overbrace{G_3} + \overbrace{G_1} - \bigcirc - G_3 + \overbrace{G_3} + \overbrace{G_3} + \overbrace{G_3} + \overbrace{H_3} + \overbrace{H_2} + \overbrace{H_1} + \overbrace{H_1} + \overbrace{H_2} + \overbrace{H_2} + \overbrace{H_1} + \overbrace{H_2} + I_{H_2} + $			
	9	Apply Block diagram reduction technique to find the transfer function $C(S)/R(s)$ for the system shown	10	CO2	
	10	Apply Mason's Gain formula to find the transfer function for the	10	CO2	

	14	Obtain C(s)/R(s) for the block diagram shown in below Fig using block diagram reduction techniques.	10	CO2	
		diagram reduction techniques.			
		Rcs) + K Gik Gik Gis G3 G4 G5 + GK G2K G2K			
3	15	For the system shown in Fig. Find the : i) system type ii) static error	10	CO3	
		constants kp, k_v and ka and iii) the steady state error for an input r(t) = 3 + 2t.			
		Mr.			
		(R(S)) $(S+T)(S+2)$ (S)			
		5+3			
	16	Find the same response, and an array arr	10	CO3	
		C(s) / R(s) = $4/$ (S+ 4) Also find the time constant, rise time and settling time.			
	17	Write short notes on PI controller.	10	CO3	
	18	Derive the expression for unit step response for 1 st order control system	10	CO3	
		with closed loop transfer function K/(S+1/t)		<u> </u>	
	19	Derive the expression for unit step response for 2 nd order control system with closed loop transfer function K/(S+1/t)	10	CO3	
	20	Write short notes on PD controller.	10	CO3	
	21	List the standard test inputs used in control system and write their Laplace transform.	10	CO3	
	22	Find Kp, Kv, Ka and steady state error for a system with open loop transfer	10	CO3	
		function as G(s) / H(s) = (10(s + 2)(s + 3)) / (s(s +1)(s + 4)(s + 5)) where the			
		input is r(t) = 3 + t + t².			
	23	For the system shown in Fig, obtain closed loop transfer function, damping ratio natural frequency and expression for the output response if subjected to unit step input.	10	CO3	
		$\frac{R_{(S)}}{(S+1)(S+4)} \xrightarrow{C(S)}$			

	24	Define rise time and maximum overshoot and write their formula.	10	CO3	
		For a given system $G(s) / H(s) = 2 K / (s (s + 2)(s + 3))$. Find the value of K to	10	CO3 CO3	
		limit steady state error to 10 when input to system is 1+10t + 20t ²			
	26	For a unity feedback control system with $G(s) = 64/(s(s + g.6))$ Write the output response to a unit step input. Determine: i) The response at t = 0.1 sec.	10	CO3	
		ii) Settling time for ± 2% of steady state.			
	27	A control system with open loop transfer function K(S+2)/(S ² +10S+20) produces 20% steady state error with unit step input. Determine the value of constant K.	10	CO3	
	28	Derive the expression for unit step response for 1 st order control system with closed loop transfer function K/(S+1/t)	10	CO3	
	29	Derive the expression for unit step response for 2 nd order control system with closed loop transfer function K/(S+1/t)	10	CO3	
1	20	Determine the ranges of K such that the characteristic equation :	10	CO4	
1	30	$S^{3}+3(K+1)S^{2}+(7K+5)S+(4K+7)=0$, has roots more negative than $S = -1$.	10	04	
	31	Find the range of K for which the system with closed loop transfer function K / $(S(S+2)(S^2+S+1))$ is stable. For what value of K the system oscillates and what is the corresponding frequency of oscillation.	10	CO4	
	32	The open loop transfer function of a feedback control system is given by $K/(S(S+2)(S+1))$. Construct the root locus and find the range of K for which the closed loop system is stable.	10	CO4	
	33	Check the; &ability of the given characteristic equation using Routh's method. S ⁶ $+ 2S^5 + 8S^4 + 12S^3 + 20S^2 + 16S + 16 = 0.$	10	CO4	
	34	Mention few limitations of Routh's criterion	10	CO4	
	35	Construct the root locus of a control system with characteristic equation $(S2+2S+2) + K(S+4)=0$. Determine the stability of the closed loop system. Show that a part of root locus is a circle of radius $\sqrt{10}$ units with centre at $(-4, 0)$.	10	CO4	
	36	Sketch the complete root locus of system having, G(s) = K / (S(S+1)(S+2)(S+3))	10	CO4	
		Consider the system with $G(S)H(s) = . K / (S (S - 1)(S + 4))$ Find whether $S = -2$ point is on root locus or not using angle condition.	10	CO4	
	38	Sketch the root locus plot for a negative feedback control system whose open loop transfer function is given by $G(s)H(s) = K / (s(s+3)(s^2 + 2s + 2))$ for all values of K ranging from 0 to infinity. Also find the value of K for a damping ratio of 0.5	10	CO4	
		Sketch the rough nature of the root locus of a certain control system whose C.E is given by $s^3 + 9s^2 + Ks + K = 0$, comment on the stability.	10	CO4	
	40	Explain Rouths-Harwitz stability criterion.	10	CO4	
	41	$s^{6} + 4s^{5} + 3s^{4} - 16s^{2} - 64s - 48 = 0$. Find the number of roots of this equation real part, zero real part and negative real part using RH criterion.	10	CO4	
		The open loop transfer function of a system is $G(s) = K/(s (1+s)(1+0.1s))$ Determine the values of K such that (i) gain margin = 10 dB ii) phase margin = 24°. Use Bode plot.	10	CO4	
		Derive the expression for resonant peak 'Mr' and corresponding resonant frequency `Wr' for a second—order under-damped system in frequency response analysis.	10	CO4	
		Sketch the Nyquist plot for a system with the open-loop transfer function : G(s)H(s) = (k (1+0.5s)(1+s)) / ((1+10s)(s-1)). Determine the range of values of 'K' for which the system is stable.	10	CO4	
				CO4	
	45	Explain Nyquist stability criteria	10	C04	
		Explain Nyquist stability criteria For a closed loop control system $G(s) = 100 / (s (s+8), H(s) = 1$. Determine the resonant peak and resonant frequency.	10 10	CO4	

		COURSE PLAN - CAY 2019-20			
		compensator.			
	48	Using Nyquist stability criterion, find the closed loop stability of a negative feedback control system whose open-loop transfer function is given by $G(s)H(s) = 5 / (s(s-1))$	10	CO4	
	49	For a unity feedback system $G(s) = 242((s+5))/(s(s+1)(s^2+5s+121))$ Sketch the bode plot and find gain crossover freq, phase crossover freq, gain margin and phase margin.	10	CO4	
	50	Construct the Bode plot for the system with open loop transfer function $\frac{K}{S(S+1)(1+0.1S)}$ Determine the value of K such that (a) gain margin = 10db (b) Phase margin = 50 ⁰ .	10	CO4	
	51	Determine the transfer function of a system whose asymptotic Bode plot is as shown in fig $db \int \frac{20 db [3ec}{1 - 20 db [3ec} \sqrt{10^{20} V^2} \sqrt{1 - 0^{20} db [3ec} \sqrt{10^{20} db [3ec} \sqrt{1 - 4e db [3ec} 1 - 4e $	10	CO4	
5	52	Find the state-taranneition matrix for $A = \begin{bmatrix} 0 & -1 \\ +2 & -3 \end{bmatrix}$.	10	CO5	
	53	Obtain an appropriate state model for a system re mented by an electric circuit as shown in below Fig. + $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	10	CO4	
	54	linear time invariant system is characterized by the homogeneous state equation	10	CO4	
		$\begin{bmatrix} \bullet \\ \mathbf{x}_1 \\ \bullet \\ \mathbf{x}_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix}$			
		Compute the solution of homogeneous equation, assume the initial state vector. $\mathbf{X}_{0} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$			
-	55	State the properties of state transition matrix.	10	CO4	
	56	Find the transfer function of the system having state model.	10	CO4	
		$\dot{\mathbf{X}} = \begin{bmatrix} 0 & 1 & \mathbf{x}_1 \\ -2 & -3 & \mathbf{x}_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \mathbf{u} \text{ and } \mathbf{y} = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix}$			
FC	40	Copyright ©2017 cAAS All	ria lata r		

57	Obtain the state model for the system represented by the differential equation		CO4
	$\frac{d^3 y(t)}{dt^3} + 6 \frac{d^2 y(t)}{dt^2} + 11 \frac{dy(t)}{dt} + 10 y(t) = 3u(t) .$		
58	Obtain the state model of given electrical network shown in Fig.		CO4
	$E_{1} V_{c} + C_{c} = C_{c} + C_{c}$		
59	Find the state transition matrix for		CO4
	$\mathbf{A} = \begin{bmatrix} 0 & -1 \\ 2 & -3 \end{bmatrix}.$		
60	single input single output system has the state and output equations		CO4
	i) Determine its transfer function (ii) Find its state transition matrix.		
	$ \mathbf{x} = \begin{bmatrix} 0 & 1 \\ -6 & -5 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \mathbf{r} $ $ \mathbf{y} = \begin{bmatrix} 5 & 0 \end{bmatrix} \mathbf{x} $		
61	Draw polar plot of $G(s)H(s) = 100/(s^2 + 10S + 100)$	10	CO5
62	Draw the polar plot for the following open-loop transfer function $G(S)H(s) = 1/(1+0.1s)$	10	CO5
63	Sketch the Nyquist plot for a system with the open-loop transfer function : G(s)H(s) = (k (1+0.5s)(1+s)) / ((1+10s)(s-1))). Determine the range of values of 'K' for which the system is stable.	10	CO5
64	Explain Nyquist stability criteria	10	CO5
65	Using Nyquist stability criterion, find the closed loop stability of a negative feedback control system whose open-loop transfer function is given by $G(s)H(s) = 5 / (s(s-1))$	10	CO5

Course Outcome Computation

Academic Year: Odd / Even semester						
INTERNAL TEST Course Outcome QUESTION NO	Tı	T2	T3			
MAX MARKS			AS All rights reserved			

	USN-1 USN-2				
	USN-3				
	USN-4				
	USN-5				
	USN-6				
	Average CO				
	Attainment				
LV Threshold : 3:>60%, 2:>=50% and <=60%, 1: <=49% CO1 Computation :(2+2+2+3)/4 = 10/4=2.5					

PO Computation

Program Outcome	PO1	PO3	PO3	PO1	PO12	PO12	PO6	PO1
Weight of CO - PO	3	1	3	2	2	3	3	1
Course Outcome								CO8
Test/Quiz/ Lab		T1			T2		T,	3
QUESTION NO								
MAX MARKS USN-1								
USN-2								
USN-3 USN-4								
USN-5 USN-6								
Average CO Attainment								
18EEC 43 Copyright ©2017. cAAS. All ri Page # 41 / 42				AS. All rights res	served.			