Ref No:

Sri Krishna Institute of Technology, Bangalore

COURSE PLAN

Academic Year 2019-2020

Program:	B E – Computer Science &Engineering
Semester:	6
Course Code:	17CS651
Course Title:	Data Warehousing and Data Mining
Credit / L-T-P:	3/3-0-0
Total Contact Hours:	40
Course Plan Author:	Shweta S Bagali

Academic Evaluation and Monitoring Cell

Sri Krishna Institute of Technology

#29,Chimney hills,Hesaraghata Main road, Chikkabanavara Post Bangalore – 560090, Karnataka, INDIA

Phone / Fax:08023721477/28392221/23721315

Table of Contents

A. COURSE INFORMATION	<u>2</u>
1. Course Overview	<u>2</u>
2. Course Content	3
3. Course Material	
4. Course Prerequisites	
5. Content for Placement, Profession, HE and GATE	
B. OBE PARAMETERS	<u>4</u>
1. Course Outcomes	
2. Course Applications	<u>4</u>
3. Articulation Matrix	
4. Curricular Gap and Content	
C. COURSE ASSESSMENT.	<u>5</u>
1. Course Coverage	
2. Continuous Internal Assessment (CIA)	<u>5</u>
D1. TEACHING PLAN - 1	<u>5</u>
Module - 1	
Module - 2	<u>6</u>
<u>E1. CIA EXAM – 1</u>	<mark>Z</mark>
a. Model Question Paper - 1	
<u>b. Assignment -1</u>	
D2. TEACHING PLAN - 2	<mark>7</mark>
Module - 3	<u>7</u>
Module - 4	
<u>E2. CIA EXAM – 2</u>	
a. Model Question Paper - 2	
<u>b. Assignment – 2</u>	
D3. TEACHING PLAN - 3	<u>10</u>
Module - 5	<u>10</u>
<u>E3. CIA EXAM – 3.</u>	<u>11</u>
a. Model Question Paper - 3	<u>11</u>
<u>b. Assignment – 3</u>	
F. EXAM PREPARATION	<u>11</u>
1. University Model Question Paper	<u>11</u>
2. SEE Important Questions	<u>12</u>

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	CSE
Semester:	6	Academic Year:	2019-2020
Course Title:	Data Mining and Data Warehousing	Course Code:	17CS651
Credit / L-T-P:	3-0-0	SEE Duration:	180minutes
Total Contact Hours:	40	SEE Marks:	60
CIA Marks:	40	Assignment	1/Module
Course Plan Author:	Shweta S Bagali	Sign	
Checked By:		Sign	
CO Targets	CIA Target :	SEE Target:	

Note: Define CIA and SEE % targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute.

Mod	Content	Teaching Hours	Blooms Learning
ule			Levels
1	Basic Concepts: Data Warehousing: A multitier	8	L1-L2
	Architecture, Data warehouse models: Enterprise		
	warehouse, Data mart and virtual warehouse, Extraction,		
	Transformation and loading, Data Cube: A		
	multidimensional data model, Stars, Snowflakes and Fact		
	constellations: Schemas for multidimensional Data		
	models, Dimensions: The role of concept Hierarchies,		
	Measures: Their Categorization and computation, Typical		
	OLAP Operations.		
2	Efficient Data Cube computation: An overview, Indexing	8	L1-L2
	OLAP Data: Bitmap index and join index, Efficient		
	processing of OLAP Queries, OLAP server Architecture		
	ROLAP versus MOLAP Versus HOLAP.: Introduction:		
	What is data mining, Challenges, Data Mining Tasks,		
	Data: Types of Data, Data Quality, Data Preprocessing,		
	Measures of Similarity and Dissimilarity		
3	Association Analysis: Problem Definition, Frequent Item	8	L1-L3
	set Generation, Rule generation. Alternative Methods for		
	Generating Frequent Item sets, FP-Growth Algorithm,		
	Evaluation of Association Patterns		
4	Decision Trees Induction, Method for Comparing	8	L1-L2

	Classifiers, Rule Based Classifiers, Nearest Neighbor		
	Classifiers, Bayesian Classifiers		
5	Overview, K-Means, Agglomerative Hierarchical	8	L1-L3
	Clustering, DBSCAN, Cluster Evaluation, Density-		
	Based Clustering, Graph- Based Clustering, Scalable		
	Clustering Algorithms		
-	Total		

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C).

- 1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 30 minutes
- 2. Design: Simulation and design tools used software tools used; Free / open source

3. Research: Recent developments on the concepts - publications in journals; conferences etc.

3. Rese	arch: Recent developments on the concepts – publications in journals; co	nterences	
Modul	Details	Chapters	Availability
es		in book	
Α	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
3,4,5	1.Pang-Ning Tan, Michael Steinbach, Vipin Kumar:		In Lib
	Introduction to Data Mining, Pearson, First impression, 2014.		
1,2	2. Jiawei Han, MichelineKamber, Jian Pei: Data Mining -		In Lib
	Concepts and Techniques, 3rd Edition, Morgan Kaufmann		
	Publisher, 2012		
В	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
	1.Sam Anahory, Dennis Murray: Data Warehousing in the Real		In Lib
	World, Pearson, Tenth Impression, 2012.		
	2. Michael.J.Berry,Gordon.S.Linoff: Mastering Data Mining,		
	Wiley Edition, second edtion, 2012		
	Trioy Edition, cocona cation, 2012		
С	Concept Videos or Simulation for Understanding	_	
C ₁	https://www.youtube.com/channel/UC4EX8zLiBUalk704IX_zu1Q		You tube
C2	https://www.youtube.com/channel/UCkw4JCwteGrDHlsyllKo4tQ		
C3	https://youtu.be/OGjrtkrOzWI		
C4	https://www.youtube.com/watch?v=e_uoTQUJJTQ		
C5			
D	Software Tools for Design	-	-
E	Recent Developments for Research	-	-
	Machine Learning		
	Artificial intelligence		
	Data Mining for biological Data Analysis		
F	Others (Web, Video, Simulation, Notes etc.)	-	-
1	https://www.slideshare.net/NithinGowda3/vtu-data-mining15cs651-		
	notes-by-nithin-vvcemysuru		
	https://lecturenotes.in/subject/32/data-mining-and-data-		
	<u>warehousing-dmdw</u>		

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Students must have learnt the following Courses / Topics with described Content . . .

Mod ules	Course Code	Course Name	Topic / Description	Sem	Remarks	Blooms Level
	18CS53 Database Management System Relational Database Using ER-to SQL data de		Relational Database Design using ER-to-Relational mapping, SQL data definition and data types, Normalization	5		l3

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course

Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Mod	Topic / Description	Area	Remarks	Blooms
ules				Level
1	Data warehouse,Data mining	Entrepreneurs		L4
		hip		
2	Knowledge Discovery	HE		L2
3	Clustering, Classification	HE		L2

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs.

Mod	Course	Course Outcome	Teach. Hours	Instr Method	Assessme	Blooms'
ules	Code.#	At the end of the course, student			nt Method	Level
		should be able to				
1	17CS651	Understand the functionality of the	8	Lecture,	Viva,	L2
		various data mining and data		discussion, PPT	Assignment	
		warehousing component				
2	17CS651	Design Multidimensional data model for	8	Lecture / PPT,	Assignment,	L3
		datawarehouse and analyze the market		problem	seminar	
		needs by applying suitable OLAP		solving		
		operations.				
3		Explain the concept of Data mining	8	Lecture / PPT,	Assignment,	L2
		system and apply the various			seminar	
		preprocessing techniques on large				
		dataset.				
4		Apply Association rules, classification		Lecture,	Question	L3
		and clustering techniques to discover		discussion/PPT	and answer,	
		various mining techniques.			test	
5		Explore recent trends in data mining		Lecture / PPT,	Presentation	L4
		such as web mining, spatial-temporal		problem	,	
		mining		solving	assignment	
-	-	Total	40	-	-	

2. Course Applications

Write 1 or 2 applications per CO.

Students should be able to employ / apply the course learnings to . . .

Mod Application Area	CO	Level	

ules	Compiled from Module Applications.		
1	Used in Banking, Education, Health,Insurance, Finance, Government,Retail,Services.	1	L3
2	Used in marketing, industry, Banking, Education, Health, Insurance	2	L3
3	Used in marketing, industry, Banking, Education, Health, Insurance	3	L4
4	Used in market Basket analysis, Medical diagnosis, CRM of credit card business	4	L4
5	Helps in industry, research area.	5	L3

3. Articulation Matrix

CO - PO Mapping with mapping level for each CO-PO pair, with course average attainment.

<u>CO -</u>	- PO Mapping with mapping level for each CO-PO pair, with course average attainment.																	
-	-	Course Outcomes Program Outcomes -																
Mod	CO.#	At the end of the course	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	Lev
ules		student should be able to	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03	el
1	17CS651	Understand the functionality of the	3	1	2	3										2		
		various data mining and data																
		warehousing component																
2	17CS651	Design Multidimensional data model		3	2	3		2		2						2		
		for datawarehouse and analyze the																
		market needs by applying suitable																
		OLAP operations.																-
3	17CS651	Explain the concept of Data mining		3	3	2									2	2		
		system and apply the various																
		preprocessing techniques on large																
	1700/51	dataset.		_	_	_		_		_								-
4	17CS651	Apply Association rules, classification and clustering	_	2	3	2		2		2					3	2		
		classification and clustering techniques to discover various mining																
		techniques.																
5	17CS651	Explore recent trends in data mining	2	3	3	1	2								3	3		-
3	1/C3031	such as web mining, spatial-temporal		J	J	1	4								J	၂၂		
		mining																
_		Average																_
_		1.Engineering Knowledge; 2.Probl	lom	Δr	alv	icic,) Dec	ian	/	Ποι	رماد	l nm	ont	of	. Sc	Juti	ons.
		4.Conduct Investigations of Compl																
			Society; 7.Environment and Sustainability; 8.Ethics; 9.Individual and Teamwork; 10.Communication; 11.Project Management and Finance; 12.Life-long Learning;															
													1/ 0	<i>ا</i> -د	iig		Juii	mig,
	S1.Software Engineering; S2.Data Base Management; S3.Web Design																	

4. Curricular Gap and Content

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Mod ules	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation.

5	Clustering	8			2	1	1	2	CO5	L3
4	Classification	8		2	2	1	1	2	CO4	L3
3	Association Analysis	8		2		1	1	2	CO3	L2
2	Data mining	8	2			1	1	2	CO2	L3
1	Data warehouse	8	2			1	1	2	CO1	L2
							Asg			
ules		Hours	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE		
Mod	Title	Teach.		No. of	f quest	ion in	Exam		CO	Levels

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

	essment of learning outcomes for in			
Moc		Weightage in	CO	Levels
ules		Marks		
1, 2	CIA Exam – 1	30	CO1,CO2	L2,L3
3, 4	CIA Exam – 2	30	CO3,C04	L3
5	CIA Exam – 3	30	CO5	L4
1.0	A a ci cura curt	40		
	Assignment - 1	10		
	Assignment - 2	10		
5	Assignment - 3	10		
	Seminar - 1		-	-
3, 4	Seminar - 2		-	-
5	Seminar - 3		-	-
1, 2	Quiz - 1		-	-
3, 4	Quiz - 2		-	-
5	Quiz - 3		-	-
1 - 5	Other Activities - Mini Project	-		
	Final CIA Marks	40	-	-

D1. TEACHING PLAN - 1

Title:	Basic Concepts: Data Warehousing	Appr	10 Hrs
		Time:	
a	Course Outcomes	СО	Blooms
	The student should be able to:		
	Understand the functionality of the various data mining and data warehousing component		
b	Course Schedule	-	-
Class No	Portion covered per hour	-	-
1	Data Warehousing & modeling: Basic Concepts: Data Warehousing:	1	L2
2	A multitier Architecture	1	L2
3	Data warehouse models: Enterprise warehouse, Data mart and virtual	1	L2

	warehouse		
4	Extraction, Transformation and loading,	1	L2
5	Data Cube: A multidimensional data model, Stars, Snowflakes and Fact constellations	1	L2
6	Schemas for multidimensional Data models	1	L2
7	Dimensions: The role of concept Hierarchies,	1	L2
8	Measures: Their Categorization and computation, Typical OLAP Operations	1	L2
С	Application Areas		
-	Students should be able employ / apply the Module learnings to		
1	Banking, Education, Finanace, Industry		
2	Retailer,Health		
d	Review Questions		
-			
1	Define online analytical processing?	1	1
2	List the key features of data warehouse?	1	2
3	Differentiate operational database systems and data warehousing?	1	4
4	Discuss briefly about the multidimensional data models?	1	2
5	Describe the three-tier data warehousing architecture?	1	2
6	Compare Enterprise warehouse, data mart and virtual warehouse?	1	2
7	Name the OLAP operations? Express what is slice and dice operation?	1	2
8	List the various multidimensional models? Explain about the star schema,	1	2
	snowflake schema and fact constellation schema?		
9	Define the use of concept hierarchy?	1	1
е	Experiences	_	-
1			
2			

Title:		Appr	10 Hrs
		Time:	
a	Course Outcomes	CO	Blooms
-		-	Level
	The student should be able to:		
	Design Multidimensional data model for datawarehouse and analyze the market needs by	CO2	L3
	applying suitable OLAP operations.		
b	Course Schedule	-	-
Class	Portion covered per hour	-	-
No			
1	Data warehouse implementation Data mining: Efficient Data Cube computation	CO2	
2	Data warehouse implementation Data mining: Efficient Data Cube computation	CO2	
3	An overview, Indexing OLAP Data: Bitmap index and join index	CO2	
4	An overview, Indexing OLAP Data: Bitmap index and join index	CO2	
5	Efficient processing of OLAP Queries, OLAP server Architecture ROLAP versus	CO2	

6	MOLAP Versus HOLAP. : Introduction: What is data mining, Challenges,	CO2	
7	Data Mining Tasks, Data: Types of Data	CO2	
8	Data Quality, Data Preprocessing, Measures of Similarity and Dissimilarity	CO2	
С	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to		-
1	Banking, Education, Finanace, Indusrty		
2	Retailer,Health		
d	Review Questions	-	-
-			
1	Discuss the efficient processing of OLAP queries?		
2	Describe the common techniques are used in ROLAP and MOLAP?		
3	Discuss about types of OLAP Servers?		
4	Explain Indexing OLAP Data?		
5	Define data mining?Discuss motivating challenges in data mining?		
6	Explain the steps involved in data preprocessing?		
7	Explain the types of the data sets?		
8	Define data mining. Explain the process of knowledge discovery in databases		
9	Define DW by Inmon and Imhoff ?Explain in detail with example		
10	What is data cube mesures?How it is categorized? Explain		
е	Experiences	-	-
1		CO3	L2
2			

E1. CIA EXAM - 1

a. Model Question Paper - 1

Crs		17cs651	Sem:6	I	Marks:30		Time:			
Code	e:									
Cour	rse:	Data minir	ng and Data	warehousing	5					
-	-	Note: Ans	wer all que	stions, each	carry equal r	narks. Modu	ıle : 1, 2	Marks	CO	Level
				F	PART -A					
1	а				lain in detail wit			5	CO1	L4
	b	Explain ETL	process and	d explain three	e data warehou	se models.		5	CO1	L2
	С	Define 1) Di	mension 2)M	1easures 3) Fa	ct table 4)Forei	gn key 5) Prir	mary key	5	CO1	L2
					OR					
2	а		finition of Da general DW a		ng. With a schei	matic diagram	n explain the	8	CO1	L1,L2
	b				s(OLAP operati	ons)?		7	CO1	L2
			•	F	Part – B					
3	а	Describe th	e servers inv	olved in imple	ementatiton of	a warehouse :	server	7	CO2	L4
	b	Define data	mining. Expl	ain the proce	ss of knowledg	e discovery ir	n databases	4	CO2	L1,L2
	С	Explain inde	exing OLAP of	data.Bit map ir	ndex with exam	ple		4	CO2	L2
				·	OR					
4	а	What are the of attributes		necessary to	describe attrib	utes? Explain	different types	6	CO2	L2
	b	Explain vari	ous tasks of	data mining w	ith example fo	each		9	CO2	L2

b. Assignment -1

SN	0		Assignment Descr	iption	Marks	СО	Level
Course:	Data Mini	ng and Data warehousing	3				
Crs Code:	17CS651	Sem:6	Marks:10	Time:			
			Model Assignment (Questions			

SNo	Assignment Description	Marks	СО	Level
1	Define online analytical processing?	2	1	L1
2	List the key features of data warehouse?	3	1	L1
3	Differentiate operational database systems and data warehousing?	5	1	L4
4	Discuss briefly about the multidimensional data models?	8	1	L2
5	Describe the three-tier data warehousing architecture?	8	1	L2
6	Compare Enterprise warehouse, data mart and virtual warehouse?	6	1	L2
7	Name the OLAP operations? Express what is slice and dice operation?	8	1	L1
8	List the various multidimensional models? Explain about the star schema, snowflake schema and fact constellation schema?	10	1	L1
9	Define the use of concept hierarchy?	5	1	L1
10	Discuss the efficient processing of OLAP queries?	5	2	L2
11	Describe the common techniques are used in ROLAP and MOLAP?	5	2	L2
12	Discuss about types of OLAP Servers?	8	2	L2
13	Explain Indexing OLAP Data?	6	2	L1
14	Define data mining?Discuss motivating challenges in data mining?	6	2	L1
15	Explain the steps involved in data preprocessing?	9	2	L1
16	Explain the types of the data sets?	8	2	L1
17	Explain various tasks of data-mining with example for each	8	2	L1
18	Define data mining. Explain the process of knowledge discovery in databases	6	2	L1
19	What are the properties necessary to describe attributes? Explain different types of attributes	6	2	L1
20	Explain features subset selection process with a flow chart?	5	2	L2
21	Explain the types of data?	8	2	L2
22	Explain different sampling approaches with example?	6	2	L2
23	Consider the following vectors x and y. Find cosine, correlation , Euclidean, jaccard $x=(0, 1, 0,1)$ $y=(1,0,1,0)$	6	2	L3

D2. TEACHING PLAN - 2

Title:	Association Analysis	Appr	10 Hrs
		Time:	
a	Course Outcomes	CO	Blooms
-	At the end of the topic the student should be able to	-	Level
	Explain the concept of Data mining system and apply the various preprocessing techniques on large dataset.	CO3	L3

b	Course Schedule		
	Portion covered per hour	-	-
1	Association Analysis: Problem Definition,		
2	Frequent Item set Generation,		
3	Frequent Item set Generation		
4	Rule generation. Alternative Methods for Generating Frequent Item sets		
5	Rule generation. Alternative Methods for Generating Frequent Item sets		
6	FPGrowth Algorithm		
7	Evaluation of Association Patterns		
8	Evaluation of Association Patterns		
С	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
	Market Basket Analysis		
	,		
d	Review Questions	-	_
-	The attainment of the module learning assessed through following questions	CO3-	L2
1	Explain frequent item set generation of the Aprior algorithm	CO3-	L2
2	Explain rule generation in Aprior algorithm	CO3-	L2
3	Explain alternative methods for generating frequent itemsets	CO3-	L2
4	Explain briefly FP-growth algorithm	CO3-	L2
5	What is Association Analysis? Define Support & confidence. With an example	CO3-	 L1
6	Explain the various measures of evaluating association patterns	CO3-	L2
7			L3
/	Consider the following transaction dataset. Describe the construction of FP-tree	CO3-	L 3
	in FP-Growth algorithm		
	Tid Items		
	1 {a,b}		
	2 {b,c,d}		
	3 {a,c,d,e}		
	F		
e	Experiences	-	_
1			
2			

Title:	Classification	Appr Time:	10 Hrs
a	Course Outcomes	CO	Bloom
-	At the end of the topic the student should be able to	-	Level
	Apply Association rules, classification and clustering techniques to discover various mining techniques.	CO4	L3
b	Course Schedule		
	Portion covered per hour	-	-
1	Classification: Decision Trees Induction,		
2	Classification: Decision Trees Induction,		
3	Method for Comparing Classifiers		
4	Method for Comparing Classifiers		
5	Rule Based Classifiers		
6	Rule Based Classifiers, Nearest Neighbor Classifiers		
7	Nearest Neighbor Classifiers		
8	Bayesian Classifiers.		
С	Application Areas	_	_
-	Students should be able employ / apply the Module learnings to	-	-
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	CO4	-
1	With neat block diagram, explain general approach to solve classification problem		
2	Explain how to build a decision tree using Hunt's algorithm		L3
3	Explain rule based classifiers with illustration		L2
4	Explain K-nearest neighbour classification algorithm with example		L2
5	Explain characteristics of nearest neighbour classifies		L2
6	Explain different methods for expressing attribute test condition		L2
7	Explain the characteristics of decision tree induction		L2
8	Explain Naives bayes classifier and its characteristics		L2
9	How Bayes theorem can be used for solving a classification problem? Explain		L3

е	Experiences	-	-
1			
2			

E2. CIA EXAM - 2

a. Model Question Paper - 2

Crs		17CS651	Sem:6		Marks:30		Time			
Code:										
Cours	se:	DMDW								
-	-	Note: Ansv	wer all ques	tions, each c	arry equal r	narks. Modı	ıle : 3, 4	Marks	СО	Level
				P/	ART A					
	1a	Explain fre	quent item s	et generation	of the Apric	r algorithm		5	CO3	2
	b.	What is <i>I</i> example	Association	Analysis?Defi	ine Support	: & confide	ence. With	an 5	CO3	1
	c.	Explain brie	efly FP-grow	th algorithm				5	CO3	2
					OR					
	2.a	Explain rule generation in Aprior algorithm					6	CO3	2	
	b	Explain alte	ernative met	hods for gene	erating frequ	ent itemsets		9	CO3	2
				P/	ART B					
	3 a	With neat problem	block diagra	am, explain g	eneral appr	oach to solv	e classification	on 6	CO4	3
	b	How Baye Explain	s theorem	can be used	for solving	a classifica	tion problen	n? 9	CO4	4
					OR					
	4a	Explain K-n	earest neigh	bour classific	ation algorit	hm with exa	mple	7	CO4	3
	b	Explain Nai	ives bayes cl	assifier and its	s characteris	tics		8	CO4	3

b. Assignment - 2

			Mod	del Assignme	nt Questic	ons			
Crs Code:	17CS651	Sem:	6 th	Marks:	10	Time:			
Course:	DMDW								
SN	10		As	ssignment De	scription		Marks	CO	Level
1	_	Explain frequent	item set gen	eration of the	Aprior alg	gorithm	5	3	2
2	2	Explain rule gene	ration in Ap	rior algorithm			6	3	2
3	3	Explain alternativ	e methods f	for generating	frequent i	temsets	6	3	2
4	ļ	Explain briefly FP	growth algo	orithm			5	3	2
5	5	What is Associati	on Analysis?	Define Suppo	rt & confic	lence. With an example	5	3	2
6	5	Explain the vario	us measures	of evaluating	associatio	n patterns	7	3	1

Consider the following transaction dataset.Describe the construction of FP-tree

in FP-Growth algorithm

Tid

Items

	1 {a,b} 2 {b,c,d} 3 {a,c,d,e}			
8	With neat block diagram, explain general approach to solve classification problem	7	4	2
9	Explain how to build a decision tree using Hunt's algorithm	6	4	2
10	Explain rule based classifiers with illustration	6	4	2
11	Explain K-nearest neighbour classification algorithm with example	7	4	2
12	Explain characteristics of nearest neighbour classifies	5	4	2
13	Explain different methods for expressing attribute test condition	6	4	2
14	Explain the characteristics of decision tree induction	6	4	2
15	Explain Naives bayes classifier and its characteristics	8	4	2
16	How Bayes theorem can be used for solving a classification problem? Explain	9	4	3

D3. TEACHING PLAN - 3

Title:	Clustering Analysis	Appr Time:	10 Hrs
a	Course Outcomes	CO	Bloom
-	At the end of the topic the student should be able to	-	Level
	Explore recent trends in data mining such as web mining, spatial-temporal mining	CO5	L4
b	Course Schedule	CO5-	-
Class No	Portion covered per hour	-	-
1	Clustering Analysis: Overview		
2	K-Means,		
3	Agglomerative Hierarchical Clustering		
4	DBSCAN, Cluster Evaluation		
5	Density-Based Clustering		
6	Graph-Based Clustering		
7	Graph-Based Clustering		
8	Scalable Clustering Algorithms		
С	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
	Medical field		
		CO5	

d	Review Questions	_	-
-	The attainment of the module learning assessed through following questions	-	-
1	Describe different types of clustering mechanisms		L1
2	Explain DBSCAN algorithm. How the parameters are selected		L2
3	List out important issues for cluster validation		L1
4	Illustrate Grid-based clustering algorithms. How clusters are formed from densegrid cells.		L2
5	Develop DENCLUE algorithm for kernel density estimation		L3
6	What is cluster analysis?		L1
7	Explain briefly agglomerative hierarchical clustering with example		L2
8	Briefly explain BIRCH scalable clustering algorithm		L2
9	Explain the different types of cluster analysis methods and discuss their features		L2
10	Write and Explain basic K-means algorithm		L4
11	Explain different methods for computing distance between clusters		L2
е	Experiences	-	-
1		CO10	L2
2		CO9	

E3. CIA EXAM - 3

a. Model Question Paper - 3

Crs Co	ode	17CS651	Sem:6	Má	arks:30		Time:			
Course	e:	DMDW								
-	-	Note: Ansv	wer all questi	ons, each carr	ry equal r	narks. Modı	ıle : 5	Marks	CO	Level
				PAR1	ГА					
1	1 a	Describe d	ifferent types	of clustering m	echanism	s		6	5	L2
	b	Explain DB	SCAN algorith	m. How the pa	rameters	are selected		7	5	L2
	С	What is clu	ıster analysis?	with example				2	5	L1
				OR	₹					
2	2a	List out im	portant issues	for cluster vali	dation			6	5	L1
				ıstering algorit	hms.How	clusters are	e formed fro	om 9	5	L3
		dense-grid	cells.	PART	ГВ					
3	3 a	Develop DI	ENCLUE algori	thm for kernel		stimation		7	5	L2
	b	Explain bri	efly agglomera	ative hierarchic	al clusteri	ng with exar	nple	8	5	L2
				OR	₹					
4	4 a	Briefly exp	lain BIRCH sca	lable clustering	g algorithr	n		8	5	L2
	b	Write and	Explain basic I	K-means algorit	:hm			7	5	L4

		Model Assignment C	Questions	
Crs Code:17CS651	Sem:6	Marks:10	Time:	
Course:DMDW				

SNo	Assignment Description	Marks	СО	Level
1	Describe different types of clustering mechanisms	6	5	
2	Explain DBSCAN algorithm. How the parameters are selected	7	5	
3	List out important issues for cluster validation	6	5	
4	Illustrate Grid-based clustering algorithms. How clusters are formed from dense-grid cells.	9	5	
5	Develop DENCLUE algorithm for kernel density estimation	7	5	
6	What is cluster analysis?	2	5	
7	Explain briefly agglomerative hierarchical clustering with example	8	5	
8	Briefly explain BIRCH scalable clustering algorithm	8	5	
9	Explain the different types of cluster analysis methods and discuss their features	8	5	
10	Write and Explain basic K-means algorithm	7	5	
11	Explain different methods for computing distance between clusters	6	5	

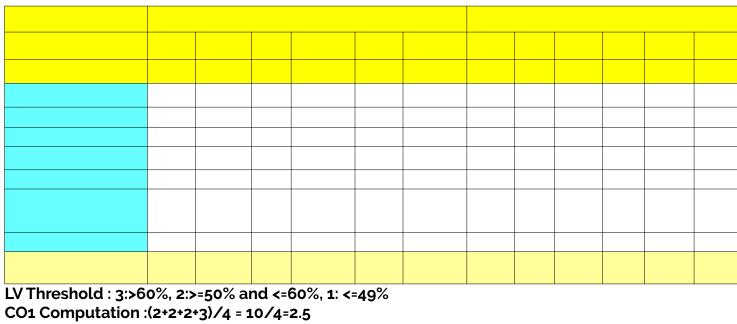
F. EXAM PREPARATION

1. University Model Question Paper

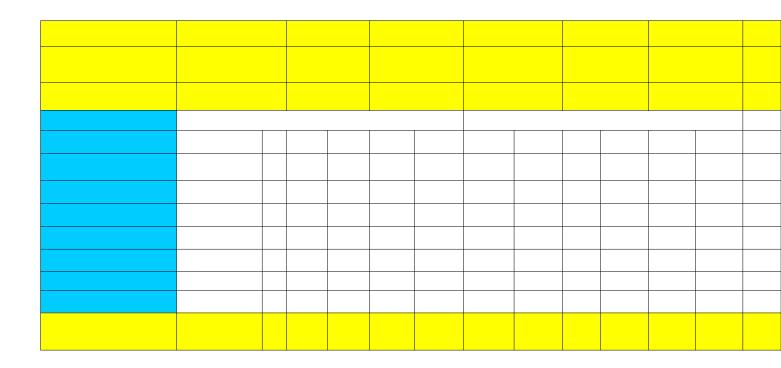
Cours	`O'	Data mining and Data warehousing	Month / Year	June 2	2020
Crs C			ime:	_	inutes
Mod	oue.	Answer all FIVE full questions. All questions carry equal marks.	Mark		Level
ule		Answer all Five rull questions. All questions carry equal marks.	IvialK	5 00	Level
1	1.a	What is datawarehouse? Differentiate between ODS and data wareho	ouse 5	CO1	L1
_	В	Explain With a neat diagram, a three-tier data warehouse architecture		CO1	L2
		OR	,	- 001	
	2 2	Explain OLAP operations with examples	8	CO1	L2
	b	What is metadata in data warehouse?What it contains?	4	CO1	L1
	Ŋ	vviide is inerauard in udra warenouse; vviide it contains;	4	COI	LI
2	3 a	Explain indexing OLAP data:Bitmap index and join index with example	e 8	CO2	L2
	b	Explain ROLAP versus MOLAP	4	CO2	L2
		OR			
	4 a	What is data mining?Briefly explain the motivating challenges	5	CO2	L1
	b	Explain data pre-processing steps	7	CO2	L2
3	5 a	Explain frequent itemset generation of the Aprior algorithm	6	CO3	L4
	b	Explain rule generation in Apriori algorithm	6	CO3	L2
		OR			
	6 a	Explain alternative methods for generating frequent itemsets	6	CO3	L2
	b	Explain briefly FP-growth algorithm	6	CO3	L2
4	7 a	With neat block diagram explain general approach to solve classi	fication 6	CO4	L3

		problem			
	b	Explain how to build a decision tree using Hunt's algorithm	6	CO4	L2
		OR			
	8 a	Explain rule based classifiers with illustration	6	CO4	L2
	b	Explain K-nearest neighbour classification algorithm with example	6	CO4	L2
5	9 a	What is cluster analysis?Explain different types of clusterings	6	CO5	L1
	b	Explain briefly agglomerative hierarchical clustering with example	6	CO5	L2
		OR			
	10 a	Explain DBSCAN algorithm with example	6		L2
				CO5	
	b	Briefly explain BIRCH scalable clustering algorithm	6	CO5	L2

2. SEE Important Questions


Course:		Data mining and Data warehousing Month	/ Year	ar June 2020	
Crs Code:		17CS651 Sem: 6 Marks: 60 Time:		180 minutes	
Mod		Answer all FIVE full questions. All questions carry equal marks.	Marks	CO	Level
ule					
1		Describe the operations of data cubes(OLAP operations)?	6	CO1	L1
	В	Explain With a neat diagram, a three-tier data warehouse architecture	6	CO1	L2
	OR				
	2.a	Explain ETL process and explain three data warehouse models	6	CO1	L2
	b	What is metadata in data warehouse?What it contains?	4	CO1	L1
	С	Define DW by Inmon and Imhoff?	2	CO1	L1
2	3 a	Explain indexing OLAP data:Bitmap index and join index with example	8	CO2	L2
	b	Explain ROLAP versus MOLAP	4	CO2	L2
		OR			
	4 a	What is data mining?Briefly explain the motivating challenges	5	CO2	L1
	b	Explain data pre-processing steps	7	CO2	L2
3	5 a	Explain frequent itemset generation of the Aprior algorithm	6	CO3	L4
	b	Explain rule generation in Apriori algorithm	6	CO3	L2
		OR			
	6 a	Explain alternative methods for generating frequent itemsets	6	CO3	L2
	b	Explain briefly FP-growth algorithm	6	CO3	L2
4	7 a	With neat block diagram explain general approach to solve classification problem	n 6	CO4	L3
	b	Explain how to build a decision tree using Hunt's algorithm	6	CO4	L2
		OR			

	8 a	Explain rule based classifiers with illustration	6	CO4	L2
	b	Explain K-nearest neighbour classification algorithm with example	6	CO4	L2
5	9 a	What is cluster analysis?Explain different types of clusterings	6	CO5	L1
	b	Explain briefly agglomerative hierarchical clustering with example	6	CO5	L2
		OR			
	10 a	Explain DBSCAN algorithm with example	6		L2
				CO5	
	b	Briefly explain BIRCH scalable clustering algorithm	6	CO5	L2


Course Outcome Computation

Academic Year:

Odd / Even semester

PO Computation

