Ref No:

SRI KRISHNA INSTITUTE OF TECHNOLOGY, BANGALORE

COURSE PLAN

Academic Year 2018-19

Program:	BS
Semester :	4
Course Code:	18MAT41
Course Title:	COMPLE ANALYI, PROBABILITY& TATITICAL METHODS
Credit / L-T-P:	3 / 2:2:0
Total Contact Hours:	50
Course Plan Author:	PUJITHA G

Academic Evaluation and Monitoring Cell

No.29, Chimney Hills, Hesaragatta Road, Chikkabanavara Bangalore -560090, Karnataka, India Phone/ Fax: +91-08023721315/23721477 Web: www.skitorg.in

Table of Contents

A. COURSE INFORMATION	
1. Course Overview	
2. Course Content	
3. Course Material	
4. Course Prerequisites	
5. Content for Placement, Profession, HE and GATE	5
B. OBE PARAMETERS	5
1. Course Outcomes	-
2. Course Applications	6
3. Mapping And Justification	
4. Articulation Matrix	
5. Curricular Gap and Content	
6. Content Beyond Syllabus	
C. COURSE ASSESSMENT	10
1. Course Coverage	
2. Continuous Internal Assessment (CIA)	
D1. TEACHING PLAN - 1	11
Module - 1	
Module – 2	-
E1. CIA EXAM – 1	
a. Model Question Paper - 1	
b. Assignment -1	
D2. TEACHING PLAN - 2	
Module – 3	
Module – 4	-
E2. CIA EXAM – 2	
a. Model Question Paper - 2	-
b. Assignment – 2	
D3. TEACHING PLAN - 3	
Module – 5	
E3. CIA EXAM – 3	22
a. Model Question Paper - 3	
b. Assignment – 3	
F. EXAM PREPARATION	
1. University Model Question Paper	
2. SEE Important Questions	
G. Content to Course Outcomes	
1. TLPA Parameters	
2. Concepts and Outcomes:	

Note : Remove "Table of Content" before including in CP Book Each Course Plan shall be printed and made into a book with cover page

Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

All rights reserved. A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	ME/CV/ECE/CSE/ ISE/EEE
Year / Semester :	IV	Academic Year:	2019-20
	Complex		
Course Title:	analysis,probability&tatitical	Course Code:	18MAT41
	methods		
Credit / L-T-P:	3/ 2:2:0	SEE Duration:	180 Minutes
Total Contact Hours:	50	SEE Marks:	60 Marks
CIA Marks:	40	Assignment	1 / Module
Course Plan Author:	PUJITHA G	Sign	Dt: 10-02-2020
Checked By:		Sign	Dt:

Note: Define CIA and SEE % targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute. Identify 2 concepts per module as in G.

Mod	Content	1	Identified Module	
ule		ng	Concepts	Learning Levels
1	Complex Variables: Review of a function of a complex variable, limits, continuity, differentiability. Analytic functions-Cauchy-		Analytic functions	Levels L3
	Riemann equations in cartesian and polar forms. Properties and construction of analytic functions.			
2	Conformal transformations, discussion of transformations W= (z^2) W= e^z and bilinear transformations-problems.Complex line integrals-Cauchy's theorem andCauchy's integral formula, Residues.poles.Cauchy's Residue theorem (without proof) and problems.	10	Integrals and complex analysis	L4
3	Probability Distributions: Random variables (discrete and continuous), probability mass/density functions. Binomial distribution, Poisson distribution. Exponential and normal distributions, problems.	10	Random variables	L3
4	curve fitting ,Statistical methods, lines of regression, correlation ,rank correlation.	10	Data analyzing	L3
5	Joint probability distribution: Joint Probability distribution for two discrete random variables, expectation, covariance, correlation coefficient. Sampling Theory: Sampling, Sampling distributions, standard error, test of hypothesis for means and proportions, confidence limits for means, student's t-distribution, Chi- square distribution as a test of goodness of fit.		Discrete random variables. Sampling distribution in accepting or rejecting the hypothesis.	L3 - 3
-	Total	50	-	-

All rights reserved.

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 – 30 minutes

2. Design: Simulation and design tools used – software tools used ; Free / open source

3. Research: Recent developments on the concepts – publications in journals; conferences etc.

Modul	Details		Availability
es		in book	Availability
	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
	B.S.Grewal: Higher Engineering Mathematics, Khanna publishers, 43 rd Ed.,2015.		In Dept
2	E.Kreyszig: Advanced Engineering Mathematics, John Wiley & Sons, 10 th Ed.(Reprint),2016.		In Dept
В	Reference books (Title, Authors, Edition, Publisher, Year.)		
1	C Ray Wylie, Louis C Barrett: "Advanced Engineering Mathematics",6th Edition, 2.McGraw-Hill Book Co.,New york,1995.		Not Available
2	James Stewart:"Calculus- Early Transcendentals", Cengage Learning India Private Ltd.,2017.		Not Available
3	B.V.Ramana:"Higher Engineering Mathematics" 11 th Edition Tata McGraw- Hill,2010.		In Dept
4	Srimanta Pal & Subobh C Bhunia: "Engineering Mathematics", Oxford UniversityPress, 3 rd Reprint, 2016.		Not Available
5	Gupta C B, Singh S R and Mukesh Kumar:"Engineering Mathematics for Semesterl and II, Mc-Graw Hill Education(India)Pvt.Ltd., 2015.		Not Available
D	Software Tools for Design	-	-
E	Recent Developments for Research	-	-
	Others (Web, Video, Simulation, Notes etc.)	-	-
1	01. <u>https://youtu.be/f0GaD2p-x3c</u>		
	02. https://youtu.be/AvFs2zi3450		
	03. <u>https://youtu.be/pB41_cA8zck</u>		
	04. <u>https://youtu.be/lskNRQdSWXo</u>		
	05. <u>https://youtu.be/EVPb2GWb-Rc</u>		
	06. <u>https://youtu.be/5WCDuGkj_Fw</u>		
	07. https://youtu.be/XJYdcNiHHxo		
	08. https://youtu.be/6ZCWdyrRRKw		
	09. https://youtu.be/CFBYX-gywlw		
	1. https://nptel.ac.in/courses/111107056/		
3	1. <u>https://nptel.ac.in/courses/111105041/</u>		
	2. <u>https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/</u>		
	<u>text/105105045/lec7.pdf</u>		
	3.https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/		
	text/103106112/lec5.pdf		
4	https://www.youtube.com/watch?v=AzroLr1XS5E		
	https://www.youtube.com/watch?v=0WejW9MiTGg		
5	https://www.youtube.com/watch?v=LSIgQH06j74		
	https://www.youtube.com/watch?v=TvCzRW1hfUk		
G	Web links and Video Lectures:		
1			
1	VTU EDUSAT PROGRAMME - 20		

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Students must have learnt the following Courses / Topics with described Content

All righ	ts reserved.		COORSE FLAN - CAT 2019-20			
Mod ules	Course Code	Course Name	Topic / Description	Sem	Remarks	Blooms Level
1	18MAT41	Complex analysis,proba bility&stastistial methods	Calculus of complex function	M3	Knowledge of analytic functions.	L2
2	18MAT41		Conformal transformation&complex integration	er	Knowledge of Integrals&complex Analysis.	L3
3	18MAT41	Complex analysis,proba bility&stastistial methods	probability	Low er stan dard s	Knowledge of Random Variables	L2
4	18MAT41	Complex analysis,proba bility&stastistial methods	Curve fitting&staistical methods		Knowledge of Data Analyzing	L2
5	18MAT41	Complex analysis,proba bility&stastistial methods	Joint probability&sampling theory	M4	Knowledge of Dicrete Random Variables&sample Distributing in Accepting the Hypothesis	L3

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Mod	Topic / Description	Area	Remarks	Blooms
ules				Level
1	Calculus of complex function	HE		L4
	Conformal transformation&complex	HE		L4
	integration			
3	probability	HE		L6
4	Curve fitting&staistical methods	HE		L4
5	Joint probability&sampling theory	HE		L4
-				

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs. Identify a max of 2 Concepts per Module. Write 1 CO per Concept.

Mod	Course	Course Outcome	Teach.	Concept	Instr	Assessme	Blooms'
ules	Code.#	At the end of the course, student	Hours		Method	nt	Level
		should be able to				Method	
1	18MAT41	Apply the knowledge of complex	10	Analytic	Lecture	Assignme	L3
		analysis its properties and		functions		nt and	
		construction of analytical functions.				slip test	
2,4	18MAT41	Analyze various transformations to	10	Integrals	Lecture	Assignme	L3 &L4
		convert one plane to another		and		nt and	

All riah	ts reserved.	COURSE PLAN -	CAY 201	9-20			
		evaluate complex integral and finding the bet relation between the variables.		complex analysis		slip test	
3	18MAT41	Learn different probability measures ,distribution function and its properties and also apply various inequalities in statistical analysis.	10	Random variables, Discrete random variables &Statistical Methods,	Lecture	Assignme nt and slip test	L3
5	18MAT41	Solve the problem of statistical inference problems,of testing of hypothesis.	10	Sampling distribution in accepting or rejecting the hypothesis.		Assignme nt and slip test	L3
-	-	Total	50	-	-	-	L3-L4

2. Course Applications

Write 1 or 2 applications per CO.

Students should be able to employ / apply the course learnings to ...

Mod	Application Area	СО	Level
ules	Compiled from Module Applications.		
1	To study the nature of electromagnetic wave in conductors	CO1	L3
2	To study the nature of complex potential in field theory Curve fitting is the process	C02	L3&L4
	of constructing a curve that has the best fit to a series of data points.		
3	To analyze problems associated with optimization of digital circuits	co3	L3
4	To solve problems related to information and coding theory&To smoothen and	CO4	L3
	prediction of discrete data in digital computers & cruise control system in motor		
	vehicles.		

3. Mapping And Justification

CO – PO Mapping with mapping Level along with justification for each CO-PO pair.

To attain competency required (as defined in POs) in a specified area and the knowledge & ability required to accomplish it.

iequ	ieu ic	acco	<u>mpusnit.</u>		
Mod	l Mapping Mapping		Mapping	Justification for each CO-PO pair	Lev
ules			Level		el
-	CO	PO	-	'Area': 'Competency' and 'Knowledge' for specified 'Accomplishment'	-
1	CO1	PO1		Apply the knowledge of Complex Variables in finding the solution to complex engineering problems.	L3
1	CO1	PO2	3	Formulate engineering problems using first principles of Complex Variables .	L3
1	CO1	PO8	2	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	L3
1	CO1	PO9	3	Function effectively as an individual in multidisciplinary settings using Complex Variables .	L3
1	CO1	PO10		Communicate effectively on complex engineering activities with the engineering community and with society at large such as being able to comprehend and write effective reports and design documentation make effective presentation and give and receive clear instructions.	L3
1	CO1	PO12		Recognize the need for life- long learning with practical applications in engineering field using Complex Variables .	L3
2,4	CO2	PO1	-	Apply the knowledge of Statistical methods in finding the solution to complex engineering problems.	L3& L4
2,4	CO2	PO2	3	Formulate and review engineering problems using first principles of	L3&

All	right	s reserv	red.

All rigi	nts rese	erved.			
				Statistical methods.	L4
2,4	CO2	PO3	2	Develop and Design solutions for complex engineering problems using Statistical methods	L3& L4
2,4	CO2	PO8	2	Apply ethical principles and commit to professional ethics and	L3&
				responsibilities and norms of the engineering practice.	L4
2,4	CO2	_	3	Function effectively as an individual in multidisciplinary settings using Statistical methods .	L3& L4
2,4		PO10	3	Communicate effectively on complex engineering activities with the engineering community and with society at large such as being able to comprehend and write effective reports and design documentation make effective presentation and give and receive clear instructions.	L3& L4
2,4	CO2	PO12	3	Recognize the need for life- long learning with practical applications in engineering field using Statistical methods .	L3& L4
3	CO3	PO1	3	Apply the knowledge of Probability Distributions in finding the solution to complex engineering problems.	L3
3	CO3	PO2	2	Formulate engineering problems using first principles of Probability Distributions .	L3
3	CO3	PO8	3	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	L3
3	CO3	PO9	3	Function effectively as an individual in multidisciplinary settings using Probability Distributions	L3
3	CO3	PO10	3	Communicate effectively on complex engineering activities with the engineering community and with society at large such as being able to comprehend and write effective reports and design documentation make effective presentation and give and receive clear instructions.	L3
3	CO3	PO12	3	Recognize the need for life- long learning with practical applications in engineering field using Probability Distributions .	L3
5	CO4	PO1	3	Apply the knowledge of Sampling Theory in finding the solution to complex engineering problems.	L3
5	CO4	PO2	3	Formulate engineering problems using first principles of Sampling Theory	L3
5	CO4	PO8	3	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	L3
5	CO4	PO9	2	Function effectively as an individual in multidisciplinary settings using Sampling Theory	L3
5	-	PO10	3	Communicate effectively on complex engineering activities with the engineering community and with society at large such as being able to comprehend and write effective reports and design documentation make effective presentation and give and receive clear instructions.	
5	CO4	PO12	4	Recognize the need for life- long learning with practical applications in engineering field using Sampling Theory .	L3

4. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

		<u> </u>			,						<u> </u>					
-	-	Course Outcomes					P	rog	ram	η Οι	utco	ome	es			-
Mod	CO.#	At the end of the course	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO		Lev
ules		student should be able to	1	2	3	4	5	6	7	8	9	10	11	12		el
1		Apply the knowledge of complex analysis its properties and construction of analytical functions.	2.5	2.5						2.5	2.5	2.5		2.5		L3
2,4		Analyze various transformations to convert one plane to another evaluate complex integral and finding the bet relation between the variables.	2.5	2.5	2.5					2.5	2.5	2.5		2.5		L3& L4
3	18MAT41.3	Learn different probability	2.5	2.5						2.5	2.5	2.5		2.5		L3
		· · ·	•									·		· · · ·		

Aungri	its reserved.		-															
		measures ,distribution function and its properties and also apply																
		various inequalities in statistical																
		analysis.																
5		Solve the problem of statistical inference problems of testing of	2.5	2.5						2.5	2.5	2.5		2.5				L3
		hypothesis.																
-	CS501PC	Average attainment (1, 2, or 3)																-
-	PO, PSO	1.Engineering Knowledge; 2.Probl	lem	Ar	naly	sis;	3.Ľ	Desig	gn	/	Dei	velo	pm	ent	of	So	luti	ons;
		4.Conduct Investigations of Compl	ex I	Prok	oler	ns; g	5.M	oder	rn 7	Гоо	l Us	age	e; 6.	The	: En	gine	er (and
		Society; 7.Environment and Su	ısto	aina	bilit	y;	8.E	thics	S;	9.lr	ndiv	idu	al	and	d	Teal	тw	ork;
		10.Communication; 11.Project M	1an	nage	eme	nt	an	d	Fin	and	ce;	12	Life	e-loi	ng	Le	arn	ing;
		S1.Software Engineering; S2.Data E	Base	e Ñ	ana	iger	nen	t; S3	3. W	'eb	Des	sign			2			-

5. Curricular Gap and Content

All rights recorved

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Mod ules	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping

6. Content Beyond Syllabus

Topics & contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Mod ules	Gap Topic	Area	Actions Planned	Schedule Planned	Resources Person	PO Mapping

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Mod	Title	Teach.			f quest				CO	Levels
ules		Hours	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE		
							Asg			
1	Calculus of complex function	10	2	-	-			2	CO1	L3
	Conformal	10	2	-	-			2	CO2	L4
	transformation&complex									
	integration									
3	probability	10	-	2	-			2	CO3	L3
4	Curve fitting&staistical methods	10	-	2	-			2	CO2	L3
5	Joint probability&sampling theory	10	-	-	4			2	CO5	L3
-	Total	50	4	4	4			10	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Mod	Evaluation	Weightage in	СО	Levels
ules		Marks		
1, 2	CIA Exam – 1	30	CO2,CO3,	L3,L3

		COURSE PLAN - CAY	2019-20	
	hts reserved.			
3, 4	CIA Exam – 2	30	CO1,co4	L3 ,L3
5	CIA Exam – 3	30	CO2	L4
			001.001	
	Assignment - 1	10	CO2,CO3,	L3,L3
	Assignment - 2	10	CO1,co4	L3 ,L3
5	Assignment - 3	10	CO2	L4
	Seminar - 1		-	-
	Seminar - 2		-	-
5	Seminar - 3		-	-
1 2	Quiz - 1			_
	Quiz - 2		-	-
5	Quiz - 3		-	-
1 - 5	Other Activities – Mini Project	-		
	Final CIA Marks	20	-	-

D1. TEACHING PLAN - 1

Module - 1

Title:	Calculu of complex functions:	Appr Time:	12 Hrs
a	Course Outcomes	CO	Blooms
-	The student should be able to:	-	Level
1	Apply the knowledge of complex analysis its properties and construction of analytical functions	CO1	L3
b	Course Schedule	-	-
Class N	o Portion covered per hour	-	-
1	Complex Variables: Review of a function of a complex variable, limits, continuity, differentiability. Analytic functions-Cauchy-Riemann equations in cartesian and polar forms. Properties and construction of analytic functions	C01	L3
2	Function of a complex variables	C01	L3
3	Analytic functions problems& theorems	C01	L3
4	Cauchy-Riemann equations in cartesian form	C01	L3
5	Cauchy-Riemann equations in polar forms	C01	L3
6	Harmonic property	C01	L3
7	Cauchy' theorems	C01	L3
8	Consequence of cauchy's theorem	C01	L3
9	Construction of analytic function	C01	L3
10	Milne thomon method problems	C01	L3
С	Application area;		
1	To study the nature of electromagnetic wave in conductors	C01	L3
d	REVIEW QUESTIONS:		
1	Derive the Cauchy Riemanns equation in the Cartesian form.	C01	L3
2	Derive Cauchy Riemann equations in Polar form. (OR) Derive the processory conditions for $f(z) = v(z, \theta)$ to be applying in a	C01	L3
	Derive the necessary conditions for $f(z)=u(r,\theta)+iv(r,\theta)$ to be analytic in a		

		COURSE PLAN - CAY 2019-20	All rights
		All rights reserved. regio	All rights I
L3	C01	3 Show that Z ⁿ is analytic .Hence find its derivative	3
L3	C01	4 If $w=z^3$ find dw/dz.	4
L3	CO1	5 If $f(z)=u+iv$ is analytic and hence find $f(z)$ if $u-v = (x-y)(x^2+4xy+y^2)$.	5
L3	CO1	⁶ Find the analytic function u+iv where u is given to be $u=e^{x}((x^{2}-y^{2})\cos y)$	6
		2xysiny)	
L3	C01	7 If $f(z)=u+iv$ is analytic prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial x^2}\right) f(z) ^2 = 4 f^I(z) ^2$	7
L3	CO1	8 If $f(z)=u+iv$ is analytic function ,show that	8
		$\left[\frac{\partial}{\partial x} f(Z) \right]^{2} + \left[\frac{\partial}{\partial y} f(Z) \right]^{2} = \left f^{I}(Z)\right ^{2}.$	
L3	CO1	⁹ Find the analytic function $f(z)=u+iv$ given that $u=\mathfrak{F}(x)+\frac{x}{(x^2+y^2)}$.	9
L3	CO1	¹⁰ If $f(z) = u(r, \theta) + iv(r, \theta)$ is an analytic function, show that u and v satisfy	10
		yhe equation $\frac{\partial^2 \phi}{\partial r^2} + \frac{1}{r} \frac{\partial \phi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \phi}{\partial \theta^2} = 0$	
L3	C01	¹¹ Find the analytic function $f(z)=u+iv$ whose real part is $y+e^x \cos y$.	11
		e Experiences	е
-	C01	11 Find the analytic function $f(z)=u+iv$ whose real part is $y+e^x cosy$.	

Module – 2

Title:	Conformal tranformation & comple integration:	Appr Time:	7 Hrs
а	Course Outcomes	CO	Blooms
	The student should be able to:	-	Level
1	Analyze various transformations to convert one plane to another evaluate complex integral and finding the bet relation between the variables.	CO2	L3 &L4
b	Course Schedule	-	-
Class N	o Portion covered per hour	-	-
1	Conformal transformation introduction	C02	L3 &L4
2	Discussion of transformations:W=z^2	CO2	L3 &L4
3	Discussion of transformations:W=e^Z	C02	L3 &L4
4	Discussion of transformations:W=Z+1/Z	C02	L3 &L4
5	Bilinear transformation problems	C02	L3 &L4
6	Complex integration introduction	C02	L3 &L4
7	Line function integral of a complex	C02	L3 &L4
8	cauchy's theorem	C02	L3 &L4
9	cauchy's integral formmula	C02	L3 &L4
10	Baed on problems	C02	L3 &L4
с	Application Areas	-	-
1	To study the nature of complex potential in field theory Curve fitting is the process of constructing a curve that has the best fit to a series of data points.	CO2	L3&L4
d	Review Questions	_	
-		-	_
1	Discussion of transformations:W=z^2	CO2	L4
2	Discussion of transformations:W=e^Z	CO2	L4
3	Discussion of transformations:W=Z+1/Z	C02	L4

	COURSE PLAN - CAY 2019-20		
All rights re	served.		
4	Find the bilinear transformation that maps the points z=-1,i,1 on to the points	CO2	L3
	w=1,i,-1 respectively.		
5	Find the bilinear transformation that maps the points 1,i,-1 onto the points i,0,-1	C02	L3
	respectively		
6	Find the bilinear transformation that transforms the points z1=1,z2=i,z3=-1 onto	C02	L3
	the points w1=2,w2=i,w3=-2 find the fixed points of the transformation.		
7	Line function , complex line integrals	C02	L3
8	cauchy's theorem	C02	L3
9	cauchy's integral formmula	C02	L3
10	Baed on problems	C02	L3
е	Experiences	-	-
1			

E1. CIA EXAM – 1

a. Model Question Paper - 1

			minute	es	
Cou	urse:	Complex analysis,probability&stastistial methods			
	-	Note: Answer all questions, each carry equal marks. Module : 1, 2	Marks	СО	Level
1	а	Derive the Cauchy Riemanns equation in the Cartesian form.	5	CO1	L3
	b	Derive Cauchy Riemann equations in Polar form. (OR) Derive the necessary conditions for $f(z)=u(r,\theta)+iv(r,\theta)$ to be analytic	5	CO1	L3
	С	in a region Find the analytic function u+iv where u is given to be u=e ^x ((x^2-y^2)cosy-2xysiny)	5	CO1	L3
	_	OR			
2	a		5	CO1	L3
2		Show that Z^n is analytic .Hence find its derivativeIf $w=z^3$ find dw/dz .		CO1	-
	b	Find the analytic function $f(z)=u+iv$ given that $u=\frac{2i}{(x^2+y^2)}$.	5	CO1	L3
	С	Find the analytic function $f(z)=u+iv$ whose real part is $y+e^x cosy$	5	CO1	L3
3	a	Discussion of transformations:W=z^2	5	CO2	L4
	b	cauchy's theorem	5	CO2	L3
	С	Find the bilinear transformation that maps the points 1,i,-1 onto the points i,0,-1 respectively	5	CO2	L3
		OR			
4	a	Discussion of transformations:W=Z+1/Z	5	CO2	L4
4	b	cauchy's integral formmula	5	CO2 CO2	L3
	C	Find the bilinear transformation that transforms the points z1=1,z2=i,z3=-1 onto the points w1=2,w2=i,w3=-2 find the fixed points of the transformation.	5	CO2	L3

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

Model Assignment Questions

	9						
Crs Code:	18MAT41 Se	em: 4		Marks:	5	Time:	90 – 120 minutes
Course:	Complexanal	lysis,probab	lity&stas	tistialmetho	Module : 1, 2	2	

All riak	COURSE PLAN - CAY 2019-20 its reserved.			
All Hyi	ds			
Note	Each student to answe5r 2-3 assignments. Each assignment carries equa	l mark.		
	USN Assignment Description	Marks	CO	Level
1	Derive the Cauchy Riemanns equation in the Cartesian	5	CO1	L3
	form.			
	ionn.			
2	Derive Cauchy Riemann equations in Polar form.	5	CO1	L3
	(OR)			
	Derive the necessary conditions for $f(z)=u(r,\theta)+iv(r,\theta)$ to	be		
	analytic in a regio			
3	Show that Z ⁿ is analytic .Hence find its derivative	5	CO1	L3
4	If $w=z^3$ find dw/dz.	5	CO1	L3
5	If $f(z)=u+iv$ is analytic and hence find $f(z)$ if $u-v = (x-y)(z-y)$	5	CO1	L3
	$x^{2}+4xy+y^{2}$).			
6	Find the analytic function $u+iv$ where u is given to be $u=0$	e ^x ((5	CO1	
0				
	$x^2 - y^2$)cosy-2xysiny)		0.01	
7	If $f(z)=u+iv$ is analytic prove that	5	CO1	L3
	$\left(\begin{array}{c} \partial^2 \\ \partial^2 \end{array}, \begin{array}{c} \partial^2 \\ \partial^2 \end{array} \right) _{\mathcal{L}(-)} ^2 - \mathcal{L} _{\mathcal{L}^{I}(-)} ^2$			
	$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial x^2}\right) f(z) ^2 = 4 f^I(z) ^2$			
8	If $f(z)=u+iv$ is analytic function ,show that	5	CO1	L3
0		5		L-3
	$\left[\frac{\partial}{\partial x} f(Z) \right]^{2} + \left[\frac{\partial}{\partial y} f(Z) \right]^{2} = \left f^{I}(Z)\right ^{2}.$			
	$\begin{bmatrix} \partial x^{[I]} & - y \end{bmatrix} \begin{bmatrix} \partial y^{[I]} & - y \end{bmatrix}$			
9	Find the analytic function $f(z)=u+iv$ given that $u=i$) + 5	CO1	L3
	X	, I		
	$\overline{(x^2+y^2)}$.			
10	If $f(z) = u(r, \theta) + iv(r, \theta)$ is an analytic function, show that	u 5	CO1	L3
10		.u 5		L-3
	and v satisfy the equation $\frac{\partial^2 \phi}{\partial r^2} + \frac{1}{r} \frac{\partial \phi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \phi}{\partial \theta^2} = 0$			
	and v satisfy the equation $\partial r^2 + r \partial r + r^2 \partial \theta^2$			
11	Find the analytic function $f(z)=u+iv$ whose real part is	5	CO1	L3
	$y + e^x \cos y$.			
12	Discussion of transformations:W=z^2	5	CO2	L4
13	Discussion of transformations:W=e^Z	5	CO2	L4
14	Discussion of transformations:W=Z+1/Z	5	CO2	L4
15	Find the bilinear transformation that maps the points z=-1,i,:		CO2	L4
	to the points w=1,i,-1 respectively.			
16	Find the bilinear transformation that maps the points 1,i,-1 o	onto 5	CO2	L4
	the points i,0,-1 respectively			
17	Find the bilinear transformation that transforms the po		CO2	L4
	z1=1,z2=i,z3=-1 onto the points w1=2,w2=i,w3=-2 find the fi points of the transformation.	xea		
18	Line function , complex line integrals		CO2	
10 19	cauchy's theorem	5	CO2	L4 L4
19 20	cauchy's integral formmula	5	CO2	L4
20 21	Baed on problems	5	CO2	L4
22	P.T w=1+z/1-z map the region $ z $ less than are equal to 1 c		CO2	L4
	the half plane R(U) greaterthan are equal to 0 being the reg			
	ugreater than are equal to 0	·		
23		near 5	CO2	L4
	transformations w=z-1-i/z+2			

All rights reserved.

24	Bilinear transformationw=3z-4/z-1	5	CO2	L4
25	Obtain the image of the region bounded by the line x=1,x=2,y=1,y=2 under the tranformation w=e^z and sketch the region		CO2	L4

D2. TEACHING PLAN - 2

Module – 3

Title:	PROBABILITY DISTRIBUTIONS:	Appr Time:	12 Hrs
а	Course Outcomes	СО	Blooms
-	The student should be able to:	-	Level
1	Learn different probability measures ,distribution function and its properties and also apply various inequalities in statistical analysis.	CO3	
b	Course Schedule		
Class No	Portion covered per hour	-	-
1	Probability distributions: Introduction on probability some examples	CO3	L3
2	Random variables(discrete and continuous)	CO3	L3
3	probability mass/density function	CO3	L3
4	Binomial distribution based on problems	CO3	L3
5	poisson distribution based on problems	CO3	L3
6	Exponential ditribution and problems normal	CO3	L3
7	normal distribution& problems.	CO3	L3
8	More examples on dirtibutions	CO3	L3
С	Application Areas	-	-
-		-	-
1	To analyze problems associated with optimization of digital circuits	co3	L3
d	Review Questions	-	-
-		-	-
1	Find the binomial probability distribution which has mean 2 and variance 4/3		
2	Fit a poiSSon distribution for the following data and calculate the theoretical frequency X:0 1 2 3 4 Y:122 60 15 2 1		
3	The number of telephone lines busy at an instant of time is binomial variate with probability 0.1 that a line is busy. If 10 lines are chosen at random, what is the probability that i) No line is busy ii) At least 5 lines are busy iii) At most 3 lines are busy.	CO3	L3
4	The probability that a man aged 60 will live up to 70 is 0.65. Out of 10 men, now at the age of 60 ,find probability that 1)Atlest 7 will live up) 2)Exactly 9 will live up to 7	CO3	L3
5	The probability that a man aged 60 will live up to 70 is 0.65. Out of 10 men, now at the age of 60 ,find probability that 1)Atlest 7 will live up) 2)Exactly 9 will live up to 7	CO3	L3

	COURSE PLAN - CAY 2019-20		
All rights re	In sampling a large number of parts manufactured by a company, the mean number of defectives in a samples of 20 is 2. Out of 1000 such samples, how many would be expected to contain atleast three defective parts	CO3	L3
7	Given that 2% of the fuses manufactured by a firm are defective ,find by using Poisson distribution ,the probability that a box containing 200 fuses has i)No defective fuses ii)3 or more defective fuses iii)At least one defective fuse.	CO3	L3
8	For the following normal distribution find c and also the mean and S.D of frequency distribution	CO3	L3
9	In normal distribution 31% of the items are under 45 and 8% are over 64 .Find the mean and standard deviation given that A(0.5)-0.19 And A(1.4)=0.42	CO3	L3
10	 i) A die is thrown 8times. Find the probability that '3' falls ii) Exactly 2 times iii) At least once At the most 7times 	CO3	L3
11	In certain town the duration of shower has mean 5 minutes. What is the probability that shower will last for i) 10 minutes or more ii) less than 10 minutes iii) between 10 and 12 minutes	CO3	L3
12	If x I a normal variate with mean 30 and S.D 5 find the probability that (1) 26 less than are equal to"" X"Less than are equal to40 (2) X greater than are equal to 45.		L3
е	Experiences	-	_
1			
2			

Module – 4

Title	Curve fitting & statistical methods	Appr	13 Hrs
		Time:	
a	Course Outcomes	CO	Blooms
-	Student should be able to		LEVEL
1	Analyze various transformations to convert one plane to another evaluate complex integral and finding the bet relation between the variables.& Apply to construct numerical data and solving by least square method	CO2	L3
b	Course Schedule		
Class No	p Portion covered per hour	-	-
1	Correlation and rank correlation problems	CO2	L3
2	More examples on rank correlation		
3	Regression and Regression coefficients	C02	L3
4	lines of regression - problems	CO2	L3
5	Regression line XON Y &Y ON X problems	C02	L3
6	Fitting of curves introduction- Fitting equation of straight line.	C02	L3
7	Fitting equation of parabola.	CO2	L3
8	Second degree parabola problems	CO2	L3
9	Fitting equation of exponential curve problems	CO2	L3
10	More examples	C02	L3

abte re	COURSE PLAN - CAY 2019-20		
C C	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	_
1	To study the nature of complex potential in field theory Curve fitting is the process of constructing a curve that has the best fit to a series of data points.	CO2	L
d	Review Questions	_	_
-			
1	Fit a curve of the form $y=ae^{bx}$ to the following data :x : 77100185239285y: 2.43.47.011.119.6	CO2	L;
2	Fit a parabola by using least squares method to the following method to the following data :	CO2	L
	x : 1.0 1.5 2.0 2.5 3.0 3.5 4.0 y : 1.1 1.3 1.6 2.0 2.7 3.4 4.1		
3	Fit a traight line y=ax+b for the following data x:1 3 4 6 8 9 11 14 Y:1 2 4 4 5 7 8 9	CO2	L;
4	Fit a straight line in the leat quare ence for the following data X:50 70 100 120 Y:12 15 21 25	CO2	Ľ
5	Fit a second degree parabola y=ax^2 +bx+c in the leat square sence for the following data X:1 2 3 4 5 Y:10 12 13 16 19	CO2	L;
6	Fit a curve of the form $y=ae^bx$ for the dataX: 024Y:8.121231.82	CO2	L;
7	Compute the coefficient of correlation and the equation of the lines of regression for the data X:1 2 3 4 5 6 7 Y:9 8 10 12 11 13 14	CO2	L;
8	Obtain the line of regression and f hence find the coefficient of correlation for the data X:1 2 3 4 5 6 7 Y:9 8 10 12 11 13 14	CO2	Ľ
9	Find the correlation coefficient for the data A:92 89 87 86 83 77 71 63 53 50 Y:86 83 91 77 68 85 52 82 37 57	CO2	L
10	Compute the rank correlation coefficient for the followingdate	CO2	L
10	Compute the rank correlation coefficient for the followingdata	002	

All rights reserved.

	x:68 64 75 50 64 80 75 40 55 64 y:62 58 68 45 81 60 68 48 50 70		
е	Experiences	-	-
1			

E2. CIA EXAM – 2

a. Model Question Paper - 2

Lrs (Cour		: 18MAT41 Sem: IV Marks: 30 Time: 75 Complexanalysis,probability&stastistialmethods	minute	S	
-	-	Note: Answer all questions, each carry equal marks. Module : 3, 4	Marks	со	Level
1	а	Find the binomial probability distribution which has mean 2 and variance 4/3	5	CO3	L3
	b	Fit a poion distribution for the following data and calculate the theoretical frequency X:0 1 2 3 4 Y:122 60 15 2 1	5	CO3	L3
	С	The number of telephone lines busy at an instant of time is binomial variate with probability 0.1 that a line is busy. If 10 lines are chosen at random, what is the probability that i) No line is busy ii) At least 5 lines are busy iii) At most 3 lines are busy.			L3
			5	CO3	L3
		OR			<u> </u>
2	a	Given that 2% of the fuses manufactured by a firm are defective ,find by using Poisson distribution ,the probability that a box containing 200 fuses has i)No defective fuses ii)3 or more defective fuses iii)At least one defective fuse.	5	CO3	L3
	b	Obtain the mean and S.D of the normal distribution.	5	CO3	L3
	С	In a normal ditribution 31% of the itemes are under 45 and 8% of the item are over 64,find the mean and S.D of the distributions	5	CO3	L3
3	a	Fit a parabola by using least squares method to the following method to the following data :x : 1.01.52.02.53.03.54.0	5	CO2	L3
		y: 1.1 1.3 1.6 2.0 2.7 3.4 4.1			
	b	Fit a traight line y=ax+b for the following data x:1 3 4 6 8 9 11 14 Y:1 2 4 4 5 7 8 9	5	CO2	L3
	С	Fit a curve of the form y=ae^bx for the data X: 0 2 4 Y:8.12 12 31.82	5	CO2	L3
		OR			
4	а	Find the correlation coefficient for the data	CO2	L3	L3

	A:92 89 87 86 83 77 71 63 53 50 Y:86 83 91 77 68 85 52 82 37 57			
b	Compute the rank correlation coefficient for the followingdata x:68 64 75 50 64 80 75 40 55 64 y:62 58 68 45 81 60 68 48 50 70	CO2	L3	L3
С	Obtain the line of regression and f hence find the coefficient of correlation for the data X:1 2 3 4 5 6 7 Y:9 8 10 12 11 13 14	CO2	L3	L3

b. Assignment – 2

Note: A distinct assignment to be assigned to each student.

			grinnenee	¥	odel Assignm		ions					
Crs C	ode:	18MAT41	Sem:	IV	Marks:	10		Time:				
Cours	se:	Complex ds	analysis,		&stastistialme		le : 3, 4	4				
			to answe		nments. Each			ries equ	ial ma			1
SNo		USN			Assignment D					Marks	CO	Level
1			The pdf		e x is given b	y the foll				5	C03	L3
				Х	0	1	2		3			
				P(x)	k	3k	5k		7k			
				For wh	nat value of	k this re	prese	ents a	valid			
			probab	ility distri	oution?							
2			Fit a poi	SSon distr	ibution for th	e followi	ng dat	a and		5	CO3	L3
			calculate	e the theore	etical frequen	ncy	-					
			X:0 1	2 3 4								
			Y:122 6	50 15 2 1	l							
3			When a	coin is tos	sed 4 time fir	nd the pro	babili	ty of ge	ettinh	5	CO3	L3
			1) exact	ly one head	d 2)atmot 3 h	ead 3) at 1	mot 2	heads				
4			The nun	nber of tele	phone lines l	ousy at an	insta	nt of ti	ne is	5	CO3	L3
				binomial variate with probability 0.1 that a line is busy. If								
			10 lines	are chosen	at random, v	what is the	e prob	ability	that			
					i) At least 5							
				are busy.								
5		Given that 2% of the fuses manufactured by a firm are							5	CO3	L3	
			defective	e ,find by ι	using Poisson	distribut	ion ,th	ne				
			probabil	ity that a b	ox containing	g 200 fuse	es has					
			i)No def	fective fuse	es ii)3 or mor	e defectiv	e fuse	es iii)A	t least	:		
			one defe	ective fuse.								
6			The prol	bability tha	it a man aged	60 will li	ive up	to 70 i	S	CO3	L3	L3
			0.65. Ot	ut of 10 me	n, now at the	age of 60),find	l probal	oility			
			that									
			1)Atles	st 7 will liv	/e up) 2)Exa	actly 9 w	∕ill li∨	e up to	Э 7			
7					number of p					CO3	L3	L3
					n number of							
					0 such sampl		-		be			
			expected	d to contain	n atleast three	e defective	e parts	5				

All rights record	COURSE PLAN - CAY 2019-20			
All rights reser 8	vea.	5	CO3	L3
	5In normal distribution 31% of the items are under 45 and			
	8% are over 64. Find the mean and standard deviation			
	given that A(0.5)-0.19 And A(1.4)=0.42			
9	1. A die is thrown 8times. Find the probability that '3'	5	CO3	L3
	falls			
	2. Exactly 2 times			
	3. At least once			
	At the most 7times			
10	In certain town the duration of shower has mean 5 minutes.	5	CO3	L3
	What is the probability that shower will last for i) 10			
	minutes or more ii) less than 10 minutes iii) between 10			
	and 12 minutes			
11	The probability that a pen manufactured by a company will	5	CO3	L3
	be defective is 0.1. if 12 such pens are selected, find the			
	probability that i) exactly 2 will be defective ii) at least 2			
	will be defective iii) none will be defective.			
12	In a normal ditribution 31% of the itemes are under 45 and 8%	5	co3	L3
	of the item are over 64.find the mean and S.D of the			
	distributions			
13	If x I a normal variate with mean 30 and S.D 5 find the		co3	L3
	probability that (1) 26 less than are equal to"" X'"Less than are equal to40 (2) X greater than are equal to 45.			
	$equal 1040 (2) \land greater that are equal to 45.$			

D3. TEACHING PLAN - 3

Module – 5

Title:	Joint probability distribution & sampling theory	Appr	10 Hrs
		Time:	
a		CO	Blooms
-		-	Level
1	To solve problems related to information and coding theory&To smoothen and prediction of discrete data in digital computers & cruise control system in motor vehicles.	C04	L3
			L3
b	 Course Outcomes The student should be able to: To solve problems related to information and coding theory&To smoothen and prediction of discrete data in digital computers & cruise control system in motor vehicles. Course Schedule Portion covered per hour Introduction on joint probability distribution joint probability distribution for two discrete random variables Problems based on expectations Problems on co variance Sampling theory: Introduction to sampling distributions, standard error, test of hypothesis for means Type 1&Type 2 errors Confidence limits for means students's t-distribution 	-	-
Class No	Portion covered per hour	-	-
1	Introduction on joint probability distribution	co4	L3
2	joint probability distribution for two discrete random variables	C04	L3
3	Problems based on expectations	C04	L3
4	Problems on co variance	co4	L3
5	Sampling theory: Introduction to sampling distributions,	CO4	L3
6	standard error, test of hypothesis for means	CO4	L3
7	Type 1&Type 2 errors	CO4	L3
8	Confidence limits for means students's t-distribution	CO4	L3
9	Chi-square distribution as a test of goodness of fit	CO4	L3
10		co4	L3
с	Application Areas	-	-

Copyright ©2017. cAAS.

All rights reserved.

1	Solve the pro	oblem of statist	ical inferer	nce proble	ems,of testir	ng of hypothesis.	C04	Le
d	Review Que	stions					-	-
- 1		of a contain		linfinit		ion is a small to	CO4	L3
-	the standa size 100 c	rd error of lrawn from of a sample	the distr that pop	ibution ulation	of means find the	ion is equal to s of a sample of probability that he population		
2	If the mean of	an infinite popula				.3, how large a sample of the sample is less	CO4	L
3	Find the proba are heads	bility that in 100	tosses of a f	àir coin bet	ween 45% an	id 55% of the outcome	s CO4	L
4	than 40%are b	oys,2)between40	%and 60% a	are boys,3)	55% or more a			L
5	A random sample of 400 items chosen from an infinite population is found to have a mean of 82 and a standard deviation of 18.find the 95% confidence limits for the mean of the population from which the sample is drawn							L
6	and 2.92 find	The mean and standard deviation of marks scored by a sample of 100 students are 67.45 and 2.92 find 1)95% 2)99% confidence intervals for estimating the mean marks of the student population						L
7		limits for the proportion of heads turning up in infinitely many tosses					CO4	L
8		es and head	turns up 12	0 times .find	the 95% confidence	CO4	L;	
9	A coin was to coin is unbiase	A coin was tossed 400 times and the head turned up 216 times test the hypothesis that the coin is unbiased at 5% level of significance./				CO4	L	
10	Find how man significance.	Find how many heads in 64 tosses of a coin will ensure its fairness at 0.05 level of Co					CO4	L
11	deviations from		to 135 and	drawn from	a normal pop	ne squares of the pulation, find the 95% can of the population.	CO4	L
12		udents't'for king the mean				nple of eight:-4,-2,	- CO4	L
13	that the coin	is fair at 0.05 a	nd 0.01 lev	els of sigr	nificance	d test the hypothesi		L
14	appearing or X:1 2 3 4 5 6 f:15 6 4 7 11 2	rown 60 times In the face x is g 17 test the hypo tribution of two	iven by the	e following	g table s unbiased	ion for the numbe	r CO4	L3
	X\Y	-4		2		7		
	1	1\8		1\4		1\8		
	1 1 1 1 1 5 1 1 1 1 1) E(X) AND E(Y) 2)E(Xy) 3) sigma x & sigma y 4) cov(x ,y) p(x,y)							

All	rights	reserved.

	1	0.1	0.2	0	0.3		
	2	0.2	0.1	0 0.3 0.1 0 distribution of x&y -			
	Determine the 1)E(X) &E(Y) 2) S.D OF X&Y 3)COV(X&Y) 4) CORRELATIO		bility distributio	n of x&y		_	_
е	Experiences					_	
1							

E3. CIA EXAM – 3

a. Model Question Paper - 3

1 a The mean of a certain normal infinite population is equal to the 5 standard error of the distribution of means of a sample of size 100 drawn from that population.find the probability that the mean of a sample of size 25 drawn from the population will be negative CO4 L b The joint distribution of two random variables X & Y is as follows 5 CO4 L X\Y -4 2 7 7 7 7 1 1\N &	ne: 75 minutes	Time:	s: 30	Ma	Sem: IV	:18mat41	Code	Crs		
a The mean of a certain normal infinite population is equal to the CO4 L standard error of the distribution of means of a sample of size 100 drawn from that population. find the probability that the mean of a sample of size 25 drawn from the population will be negative CO4 L b The joint distribution of two random variables X & Y is as follows 5 CO4 L X\Y -4 2 7 1 1\N 1\N 1\N 1 5 1\4 1\8 1\4 1\8 1\8 1 1 1 1 1\8 1\4 1\8 1\1 1 8 1		·	ethods	ty&stastistial	alysis,probabili	Complexan	urse:	Σοι		
standard error of the distribution of means of a sample of size 100 drawn from that population find the probability that the mean of a sample of size 25 drawn from the population will be negative CO4 b The joint distribution of two random variables X & Y is as follows 5 CO4 L X\Y -4 2 7 1 1\8 1\4 1\8 5 CO4 L X\Y -4 2 7 1 1\8 1\4 1\8 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td></t<>							-			
b The joint distribution of two random variables X & Y is as follows 5 CO4 L X\Y -4 2 7 1 1\8 1\4 1\8 1 1\8 1\4 1\8 1\8 1\8 1 1 DE(X) AND E(Y) 2)E(Xy) 3) sigma x & sigma y 4) cov(x, y) 4) cov(x, y) 6 CO4 L y 4) cov(x, y) p(x, y) 6 CO4 L <td>of size 100 mean of a</td> <td>a sample of size that the mean</td> <td>means of probabili</td> <td>distribution dulation.find th</td> <td>d error of the from that popu</td> <td>standar drawn</td> <td>a</td> <td>-</td>	of size 100 mean of a	a sample of size that the mean	means of probabili	distribution dulation.find th	d error of the from that popu	standar drawn	a	-		
1 1\8 1\4 1\8 1 1\8 1\4 1\8 1 E(X) AND E(Y) 2)E(Xy) 3) sigma x & sigma y 1) E(X) AND E(Y) 2)E(Xy) 3) sigma x & sigma y 4) cov(x, y) p(x,y) p(x,y) A normal population has a mean 0.1 and a standard deviation 2.15 find the probability that the mean of a sample of 900 members will be negative CO4 a The mean and standard deviation of marks scored by a sample of 5 100 students are 67.45 and 2.92 find 1/95% 2/99% confidence intervals for estimating the mean marks of the student populatio CO4 b X\Y -2 -1 4 5 1 0.1 0.2 0 0.3 2 2 0.2 0.1 0.1 0 0 Determine the marginal probability distribution of X,Y 1. Also find E(X),E(Y) AND E(XY) 2. S.D of X,Y 3. COV(X,Y) 4. Correlation of X AND Y 5. Further verify that X &Y are dependent random variables. CO4 L c A biased coin is tossed 500 times and head turns up 120 times .find5 CO4 L										
5 1\4 1\8 1\8 1) E(X) AND E(Y) 2)E(Xy) 3) sigma x & sigma y 4) Cov(x, y) 9) cov(x, y) p(x, y) y c A normal population has a mean 0.1 and a standard deviation 2.15 find the probability that the mean of a sample of 900 members will be negative CO4 a The mean and standard deviation of marks scored by a sample of 5 100 students are 67.45 and 2.92 find 1/95% 2/99% confidence intervals for estimating the mean marks of the student populatio CO4 L b X\Y -2 -1 4 5 CO4 L 1 0.1 0.2 0 0.3 CO4 L 1 0.1 0.2 0 0.3 CO4 L 2 0.2 0.1 0.1 0 CO4 L 1 Also find E(X),E(Y) AND E(XY) 2 S.D of X,Y CO4 L 2 0.2 0.1 0.1 0 CO4 L 2 0.2 0.1 0.1 0 CO4 L 2 0.2 0.1 0.1 0 CO4 L 4 5		7		2	-4	Х\Ү				
i) E(X) AND E(Y) 2)E(Xy) 3) sigma x & sigma y 4) cov(x, y) p(x,y) c A normal population has a mean 0.1 and a standard deviation 2.15 find the probability that the mean of a sample of 900 members will be negative CO4 a The mean and standard deviation of marks scored by a sample of 5 100 students are 67.45 and 2.92 find 1)95% 2)99% confidence intervals for estimating the mean marks of the student populatio CO4 L b X\Y -2 -1 4 5 CO4 L 1 0.1 0.2 0 0.3 2 CO4 L Determine the marginal probability distribution of X .Y 1. Also find E(X).E(Y) AND E(XY) 2. S.D of X,Y 3. COV(X,Y) 4. Correlation of X AND Y 5. Further verify that X &Y are dependent random variables. CO4 L c A biased coin is tossed 500 times and head turns up 120 times .find 5 CO4 L		1\8		1`	1\8	1				
3) sigma x & sigma y , 2 cov(x, y) p(x, y) p(x, y) c A normal population has a mean 0.1 and a standard deviation 2.15 find the probability that the mean of a sample of 900 members will be negative CO4 c A normal population has a mean 0.1 and a standard deviation 2.15 find the probability that the mean of a sample of 900 members will be negative CO4 a The mean and standard deviation of marks scored by a sample of 5 100 students are 67.45 and 2.92 find 1)95% 2)99% confidence intervals for estimating the mean marks of the student populatio CO4 b X\Y -2 -1 4 5 1 0.1 0.2 0 0.3 2 0.2 0.1 0.1 0 Determine the marginal probability distribution of X.Y 1. Also find E(X),E(Y) AND E(XY) CO4 CO4 2 0.2 0.1 0.1 0 2 0.2 0.1 0.1 0 2 0.2 0.1 0.1 0 3 COV(X,Y) 4. Correlation of X AND Y 5. Further verify that X &Y are dependent random variables. CO4 c A biased coin is tossed 500 times and head turns up 120 times find 5 CO4 L </td <td></td> <td>1\8</td> <td></td> <td>1`</td> <td></td> <td></td> <td></td> <td></td>		1\8		1`						
OR OR 2 a The mean and standard deviation of marks scored by a sample of 5 100 students are 67.45 and 2.92 find 1)95% 2)99% confidence intervals for estimating the mean marks of the student populatio CO4 L b X\Y -2 -1 4 5 CO4 L 1 0.1 0.2 0 0.3 0 CO4 L 2 0.2 0.1 0.1 0 0 CO4 L Determine the marginal probability distribution of X ,Y 1 Also find E(X),E(Y) AND E(XY) 2 S.D of X,Y S.D of X,Y 3 COV(X,Y) 4 Correlation of X AND Y 5 Further verify that X &Y are dependent random variables. CO4 L c A biased coin is tossed 500 times and head turns up 120 times .find 5 CO4 L		4) cov(x ,y) p(x,y) A normal population has a mean 0.1 and a standard deviation 2.15 find the probability that the mean of a sample of 900 members will								
a The mean and standard deviation of marks scored by a sample of 5 100 students are 67.45 and 2.92 find 1)95% 2)99% confidence intervals for estimating the mean marks of the student populatio CO4 L b X\Y -2 -1 4 5 CO4 L 1 0.1 0.2 0 0.3 CO4 L 2 0.2 0.1 0.1 0 CO4 L Determine the marginal probability distribution of X ,Y 1 Also find E(X),E(Y) AND E(XY) COV(X,Y) COV(X,Y) COV(X,Y) COV(X,Y) Correlation of X AND Y Further verify that X &Y are dependent random variables. CO4 L c A biased coin is tossed 500 times and head turns up 120 times .find 5 the 95% confidence limits for the proportion of heads turning up in CO4 L										
100 students are 67.45 and 2.92 find 1)95% 2)99% confidence intervals for estimating the mean marks of the student populatio CO4 b X\Y -2 -1 4 5 1 0.1 0.2 0 0.3 CO4 L 2 0.2 0.1 0.1 0 CO4 L Determine the marginal probability distribution of X ,Y 1. Also find E(X),E(Y) AND E(XY) COV(X,Y) S.D of X,Y S.D of X,Y S.D of X,Y COV(X,Y) Correlation of X AND Y Correlation of X AND Y Correlation of X AND Y COV(X,Y) COV CO4 CO4 L c A biased coin is tossed 500 times and head turns up 120 times .find 5 CO4 L										
1 0.1 0.2 0 0.3 2 0.2 0.1 0.1 0 Determine the marginal probability distribution of X ,Y 1. Also find E(X),E(Y) AND E(XY) 2. S.D of X,Y 2. S.D of X,Y 3. COV(X,Y) 4. Correlation of X AND Y 5. Further verify that X &Y are dependent random variables. CO4 c A biased coin is tossed 500 times and head turns up 120 times .find 5 CO4	confidence	100 students are 67.45 and 2.92 find 1)95% 2)99% confidence								
2 0.2 0.1 0.1 0 Determine the marginal probability distribution of X ,Y 1. Also find E(X),E(Y) AND E(XY) 2. S.D of X,Y 2. COV(X,Y) 3. COV(X,Y) 4. Correlation of X AND Y 5. Further verify that X &Y are dependent random variables. c A biased coin is tossed 500 times and head turns up 120 times .find 5 c A biased coin is torsed 500 times and head turns up 120 times .find 5	co4 L3	5	4	-1	-2	Х\Ү	b			
Determine the marginal probability distribution of X ,Y 1. Also find E(X),E(Y) AND E(XY) 2. S.D of X,Y 3. COV(X,Y) 4. Correlation of X AND Y 5. Further verify that X &Y are dependent random variables. c A biased coin is tossed 500 times and head turns up 120 times .find 5 the 95% confidence limits for the proportion of heads turning up in		0.3	0	0.2	0.1	1				
1. Also find E(X),E(Y) AND E(XY) 1. Also find E(X),E(Y) AND E(XY) 2. S.D of X,Y 1. Cov(X,Y) 3. COV(X,Y) 1. Correlation of X AND Y 5. Further verify that X &Y are dependent random variables. CO4 c A biased coin is tossed 500 times and head turns up 120 times find 5 the 95% confidence limits for the proportion of heads turning up in CO4				-						
c A biased coin is tossed 500 times and head turns up 120 times .find 5 CO4 L the 95% confidence limits for the proportion of heads turning up in	 Also find E(X),E(Y) AND E(XY) S.D of X,Y COV(X,Y) Correlation of X AND Y 									
	times .find 5 CO4 L3	ns up 120 time	nd head t	d 500 times	d coin is tosse	A biase the 95%	С			

All rights reserved.

1 Find the mean and S.D of the sampling distribution of mean by considering sampling of size 2 with replacement	5	CO4	L3 L3
The weights of 1500 ball bearings are normally distributed with a mean of 635 gms and S.D of 1.36 gms if 300 random samples of size 36 are drawn from this population determine the expected mean and S.D of the sampling distribution of mean if sampling I done 1) with replacement 2)without replacement A manufacturer claimed that atleast 95% of the equipment which he			L3
	5	CO4	1
ample of 200 pieces of equipment revealed that 18 of them were faulty.tet hi claim at a significancelevel of 1% and 5%		CO4	L3
•••			
Find the students 't' for the following values in a sample of eight:-4,-2,-2,0,2,2,3,3, taking the mean of the population to be zero	5	CO4	L3
Find the students 't' for the following values in a sample of eight 3 2 ,0,2 1 1 2 3, taking the mean of the population to be zero.	5	CO4	L3
number appearing on the face x is given by the following table: 1. X:1 2 3 4 5 6		CO4	L3
	 2,0,2,2,3,3, taking the mean of the population to be zero Find the students 't' for the following values in a sample of eight 3 2 ,0,2 1 1 2 3, taking the mean of the population to be zero. A die is thrown 60 times and the frequency distribution for the number appearing on the face x is given by the following table: 1. X:1 2 3 4 5 6 	 Find the students 't' for the following values in a sample of eight:-4,-2,-5 2,0,2,2,3,3, taking the mean of the population to be zero Find the students 't' for the following values in a sample of eight 3 2 ,0,2 15 1 2 3, taking the mean of the population to be zero. A die is thrown 60 times and the frequency distribution for the 5 number appearing on the face x is given by the following table: 1. X:1 2 3 4 5 6 	Find the students 't' for the following values in a sample of eight:-4,-2,-5CO42,0,2,2,3,3, taking the mean of the population to be zeroCO4Find the students 't' for the following values in a sample of eight 3 2 ,0,2 1 5CO41 2 3, taking the mean of the population to be zero.CO4A die is thrown 60 times and the frequency distribution for the 5CO41. X:1 2 3 4 5 6CO4

b. Assignment – 3

Note: A distinct assignment to be assigned to each student.

				Мос	lel Assignme	nt Questi	ons			
Crs C	ode:	18mat41	Sem:	IV	Marks:	10		90 - 120	minute	S
Cours	se:		exanalysis	s,probability8	&stastistialme	eth Modul	le : 5			
		ods								
_			o answer				nt carries equal ma			
SNo		USN			signment De			Marks	<u>CO</u>	Level
1			deviation8	3, how large a	population is sample must b ean of the samp	e used in o	order that there be on	e 5	CO4	L3
2	55% of the outcomes are heads							d 5	CO4	L3
3			expect to f		than 40% are b		low many would yo ween40% and 60% ar		CO4	L3
4			found to ha	ive a mean of	82 and a standa	ard deviati	finite population is on of 18.find the 95% from which the sampl	-	CO4	L3
5			95% confi				up 120 times .find th heads turning up i		CO4	L3
6			company i taken in or	s estimated as	100 hours. Fi confident that	nd how la	manufactured by rge a sample must b in the estimated mea	e	CO4	L3
7			company i taken in or	s estimated as	100 hours. Fi confident that	nd how la	manufactured by rge a sample must b in the estimated mea	e	CO4	L3

Copyright ©2017. cAAS.

All riahts	s reserved.	COU	RSE PLAN - CA`	Y 2019-20					
8	Find the s	tudents 't' for t 2,-2,0,2,2,3,3, tal				5	CO4	L3	
9	In 200 tos test the h	In 200 tosses of a coin,118 heads and 82 tails were observed test the hypothesis that the coin is fair at 0.05 and 0.01 levels of significance							
10	Find how r	Find how many heads in 64 tosses of a coin will ensure its fairness at 0.05 level of significance.							
11	In 200 tos	ses of a coin,11 ypothesis that t				5	CO4	L3	
12	Consider in examp	the markov ch le show that in f the time,and	the long ru	n,A will thr	tern described ow the ball 20 ball 40 percent	5	CO4	L3	
13	1 Find	ulation consist I the mean and by considering	d S.D of the	e sampling	distribution of replacement	5	CO4	L3	
14	T dis grv this of 1) with rep	he weights c tributed with a	of 1500 bal a mean of m samples o etermine the	l bearings 635 gms a of size 36 a e expected	are normally nd S.D of 1.36 re drawn from mean and S.D	5	CO4	L3	
15	X\Y	-2	-1	4	5	5	CO4	L3	
	1	0.1	0.2	0	0.3				
	2	0.2	0.1	0.1	0				
	6. Als 7. S.E 8. CC 9. Co 10. Fu var	riables.	AND E(XY) ND Y hat X &Y	are deper	ndent random				
16	times		confidence li	mits for the	d turns up 120 e proportion of	5	CO4	L3	
17					es X & Y is as	5	CO4	L3	
	X\Y	-4	2		7				
	1	1\8	1\4		1\8				
	5	1\4	1\8		1\8				
18	which an ex revea	he supplied to amination of a	o a factory c a ample of 2 them were	onformed t 200 pieces	the equipment o specification of equipment hi claim at a				

All rights reserved. F. EXAM PREPARATION

1. University Model Question Paper

Cour			nth / Year		
		18MAT41 Sem: VII Marks: 80 Tim			ninutes
Mod ule	Note	Answer all FIVE full questions. All questions carry equal marks.	Marks	со	Leve
L	а	Derive the Cauchy Riemanns equation in the Cartesian form.	5	CO1	L3
	b	Derive Cauchy Riemann equations in Polar form. (OR)	5	CO1	L3
		Derive the necessary conditions for $f(z)=u(r,\theta)+iv(r,\theta)$ to be analytin a regio	tic		
	С	If $f(z)=u+iv$ is analytic and hence find $f(z)$ if $u-v = (x-y)(x^2+4xy+1)$	$\frac{5}{y^2}$	CO1	L3
		OR			
L	а	Find the analytic function u+iv where u is given to be $u=e^{x}((x^{2}-y^{2})\cos y-2xy\sin y)$	2 5	CO1	L3
	b	If $f(z)=u+iv$ is analytic function ,show that	5	CO1	L3
		$\left[\frac{\partial}{\partial x} f(Z) \right]^{2} + \left[\frac{\partial}{\partial y} f(Z) \right]^{2} = \left f^{I}(Z)\right ^{2}.$		<u> </u>	
	С	Find the analytic function $f(z)=u+iv$ whose real part is $y+e^x cosy$	5	CO1	L3
2 2		Find the analytic function $f(z)=u+iv$ given that $u=i$, $\frac{x}{(x^2+y^2)}$.			
k	а	Discussion of transformations:W=z^2	5	CO2	L4
	b	Find the bilinear transformation that maps the points z=-1,i,1 on to points w=1,i,-1 respectively.	the 5	C02	L4
	С	cauchy's theorem	5	C02	L4
		OR			
2	а	cauchy's integral formula	5	C02	L3
	b	Find the bilinear transformation that transforms the points z1=1,z2=i,z onto the points w1=2,w2=i,w3=-2 find the fixed points of transformation.		CO2	L3
	с	Discussion of transformations:W=Z+1/Z	5	CO2	L4
3	а	Find the binomial probability distribution which has mea 2 and variance 4/3	an 5	CO3	L3
	b	Fit a poiSSon distribution for the following data and calculate the theoretical frequency X:0 1 2 3 4 Y:122 60 15 2 1	5	CO3	L3
	С	The probability that a man aged 60 will live up to 70 is 0.65. Out of 10 men, now at the age of 60 ,find probability that 1)Atlest 7 will live up) 2)Exactly 9 will live up to 7	of 5	соз	L3
		OR			
3	a	The number of telephone lines busy at an instant of time is binomi variate with probability 0.1 that a line is busy. If 10 lines are chose		CO3	L3

ll rigł	nts res	erved.	0	URSE PLAN - CA	41 2019-20						
		random, what is lines are busy iii		, ,	2	ii) At least 5					
	b	Given that 2% or by using Poisson 200 fuses has i)No defective fu defective fuse.	f the fuses ma distribution,	nufactured b the probabili	y a firm are ty that a bo	ox containing	5	CO3	L3		
	с	For the following S.D of frequency		ibution find	c and also t	the mean and	5	CO4	L3		
	D	In normal distrib over 64 .Find the And A(1.4)=0.42	oution 31% of e mean and sta				5	CO3	L3		
	a	Fit a curve of the fo	$rm v = ae^{bx}$ to the	following data	.:		5	CO2	L3		
		x : 77 100 y: 2.4 3.4	185 239	285 19.6							
	b	Fit a parabola by using least squares method to the following method to the following data :							L3		
		x : 1.0 1.5	2.0 2.5 3	3.0 3.5 4	4.0						
		y: 1.1 1.3	1.6 2.0 2.	7 3.4 4	l.1						
	С	Fit a traight line x:1 3 4 6 8 9 11 Y:1 2 4 4 5 7 8 9	14	e following o	data		5	CO2	L3		
				OR5							
	а	Obtain the line o	f ragragion on	df hanaa fin	the coeffi	aiont of	5	CO2	L3		
	a	correlation for th X:1 2 3 4 5 6	ne data 5 7			cient of	5		L3		
	b	Y:9 8 10 12 11 13 14 Find the correlation coefficient for the data A:92 89 87 86 83 77 71 63 53 50 Y:86 83 91 77 68 85 52 82 37 57						CO2	L3		
	С	Compute the ran x:68 64 75 50 y:62 58 68 45	0 64 80 75 4	0 55 64	or the follow	wingdata	5	CO2 L			
	а						5	CO4	L3		
		X\Y	-2	-1	4	5	ſ				
		1	0.1	0.2	0	0.3	1				
	1				-		1				
		2	0.2	0.1	0.1	0					

ll rig	ghts res	served.	C	COURSE PLAN - CAY 20	519-20			
			_					
	С	A goin was to			_			
	C	A coin was to that the coin i						
	а	F or a random deviations fro 95% confiden population.	ne	CO4	L3			
	b	Find the stu 2,0,2,2,3,3, ta	<u>2,</u> -5	CO4	L3			
	С	The joint distribution of two random variables X & Y is as follows						L3
		X\Y	-4	2	7			
		1	1\8	1\4	1\8			
		5	1\4	1\8	1\8			
		1) E(X) AND 3) sigma x & 4) cov(x ,y) correlations						

2. SEE Important Questions

Cours	se:	Complexanalysis,probability&stastistialmethods Mont	:h / Year	2020-	07-01
Crs C	ode:	18MAT41 Sem: 4 Marks: 80 Time	:	180 m	ninutes
	Note	Answer all FIVE full questions. All questions carry equal marks.	-	-	
Mod ule	Qno.	Important Question	Mark s	со	Year
1	a	Derive the Cauchy Riemanns equation in the Cartesian form.	5	CO1	2014
	b	Derive Cauchy Riemann equations in Polar form	5	CO1	2015
	С	If $w=z^3$ find dw/dz .	5	CO1	2009
	d	Construct the analytic function whose real part is $e^{x}(x \sin y + y \cos y)$	5	CO1	2010
		If $f(z) = u(r, \theta) + iv(r, \theta)$ is an analytic function, show that u and v satisfy yhe equation $\frac{\partial^2 \phi}{\partial r^2} + \frac{1}{r} \frac{\partial \phi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \phi}{\partial \theta^2} = 0$	5	CO1	2009
	f	Find the analytic function $f(z)=u+iv$ whose real part is $y+e^x \cos y$.	5	CO2	2007
			5	CO2	2017
2	a	Discussion of transformations:W=z^2	5	CO2	2009
	b	Discussion of transformations:W=e^Z	5	CO2	2011
	С	Discussion of transformations:W=Z+1/Z	5	CO2	2013
	d	Find the bilinear transformation that maps the points z=-1,i,1 on to points w=1,i,-1 respectively.	the5	CO2	2015
	e	Find the bilinear transformation that maps the points 1,i,-1 onto the poi i,0,-1 respectively	ints5	CO2	2015
	f	cauchy's integral formmula	5	CO2	2017
	g	P.T w=1+z/1-z map the region z less than are equal to 1 onto the h plane R(U) greaterthan are equal to 0 being the region ugreater than equal to 0		CO2	2017

All riç	ghts res	served.			OURSE PLAN	- CAY 2019-2	0			1		
					1 1 0							
3	а	The pdf	of a variat		- I						CO3	2017
			X	0	1	2	3	4	5			
			P(x)	k	3k	5k	7k	9k	1	1k		
					of k this r	epresent	s a valid					
			ility distri									
	b		hat 2% of t			•				5	CO3	2009
		fuses ha			· 1	2		-	; 200			
		i)No def defectiv	fective fuse e fuse.	es 11)3 or m	iore defect	ive fuses ii	1)At least	one				
	С		al distribut the mean 0.42							5	CO3	2011
	d		A die is thr	own 8time	s. Find the	probabilit	v that '3'	falls		5	CO3	2011
			Exactly 2 ti			P	<i>j</i>					
			At least one									
			At the most									
	е		df of a varia		en by the fo	llowing tab	le:				CO3	2018
			Х	-2	-1	0	1		2			
			P(X)	0.1	K	0.2	2k		0.3			
			t value of k			d probabilit	y distribut	ion?				
	c		lso find :i)p(1 !t						
	Т		nber of tel								CO3	2011
		variate with probability 0.1 that a line is busy. If 10 lines are chosen at random, what is the probability that i) No line is busy ii) At least 5 lines are										
			At most 3 l				1,7 10 10 40					
	g	Find the probability that in 100 tosses of a fair coin between 45% and 55% of the outcomes are heads								5	CO3	2017
	h	Out of 1000 samples of 200 children each in how many would you								5	CO3	2018
		expect to find that 1)iess than 40%are boys,2)between40%and 6										
		á	are boys,3)5	5%or more	are girls							
4			6.4 6	br , ,1	C 11 .	1 /					CO2	2016
4	а		e of the form		-	data :				5	002	2010
		x : 77	100	185 239	285							
		y: 2.4	3.4	7.0 11.:	1 19.6							
	b	-	bola by using	g least square	es method to	the following	g method to	the foll	owing	5	CO2	2017
		data :										
		x : 1.0	1.5 2.	0 2.5	3.0 3.5	4.0						
		y: 1.1	1.3 1.	6 2.0	2.7 3.4	4.1						
	с	Fit a traight line y=ax+b for the following data							5	CO2	2016	
		x:1 3 4 6 8 9 11 14										
		<u>Y</u> :1 2 4	45789									
	d	Fit a stra	aight line ii	n the leat c	uare ence	for the foll	owing da	ta		5	CO2	2007
			100 120	-			-					
		Y:12 15	21 25									

Page # 26 / 28

	0	Fit a second degree periods $y = ay \land 2 \pm by \pm a$ in the last gavers gaves for	5	CO2	2009
	e	Fit a second degree parabola $y=ax^2+bx+c$ in the leat square sence for the following data X:1 2 3 4 5	5	CO2	2006
		Y:10 12 13 16 19			
	f	Fit a curve of the form $y=ae^bx$ for the data X: 0 2 4 Y:8.12 12 31.82	5	CO2	2010
	g	Compute the coefficient of correlation and the equation of the lines of regression for the data X:1 2 3 4 5 6 7 Y:9 8 10 12 11 13 14	5	CO2	2010
	h	Obtain the line of regression and f hence find the coefficient of correlation for the data X:1 2 3 4 5 6 7 Y:9 8 10 12 11 13 14	5	CO2	2010
	İ	Find the correlation coefficient for the data A:92 89 87 86 83 77 71 63 53 50 Y:86 83 91 77 68 85 52 82 37 57	5	CO2	2013
	j	Compute the rank correlation coefficient for the followingdata x:68 64 75 50 64 80 75 40 55 64 y:62 58 68 45 81 60 68 48 50 70	5	CO2	200
	a	If the mean of an infinite population is 575 with standard deviation8.3, how large a sample must be used in order that there be one chance in 100 that the mean of the sample is less than 572?	5	CO4	201
	b	Find the probability that in 100 tosses of a fair coin between 45% and 55% of the outcomes are heads	5	CO4	201
	с	Out of 1000 samples of 200 children each in how many would you expect to find that 1)iess than 40% are boys, 2) between 40% and 60% are boys, 3) 55% or more are girls	5	CO4	201
	d	mean of 82 and a standard deviation of 18.find the 95% confidence limits for the mean of the population from which the sample is drawn	5	CO4	200
	e	The mean and standard deviation of marks scored by a sample of 100 students are 67.45 and 2.92 find 1)95% 2)99% confidence intervals for estimating the mean marks of the student population	5	CO4	200
	f	confidence limits for the proportion of heads turning up in infinitely many tosses	5	CO4	201
	g	A biased coin is tossed 500 times and head turns up 120 times .find the 95% confidence limits for the proportion of heads turning up in infinitely many tosses	5	CO4	201
	h	A coin was tossed 400 times and the head turned up 216 times test the hypothesis that the coin is unbiased at 5% level of significance./	5	CO4	201
	İ	Find how many heads in 64 tosses of a coin will ensure its fairness at 0.05 level of significance.	5	CO4	201
	j	F or a random sample of 16 values with mean 41.5 and the sum of the squares of the deviations from the mean equal to 135 and drawn from a normal population, find the 95% confidence limits and the confidence interval, for the mean of the mean of the population.	5	CO4	201
_	k	Find the students 't' for the following values in a sample of eight:-4,-2,- 2,0,2,2,3,3, taking the mean of the population to be zero	5	CO4	200

rights res	served.	Cl	JURSE PLAN - CAY 20	19-20			
l	In 200 tosses hypothesis th	the5	CO4	2009			
m	A die is throv appearing on	nber5	CO4	2011			
n	X:123456	5	CO4	2015			
0	f:15 6 4 7 11 17	5	CO4	2017			
р	The joint dist	5		2018			
	Х\Ү	-4	2	7			
	1	1\8	1\4	1\8			
	5	1\4	1\8	1\8			
	1) E(X) AND E(3) sigma x &si 4) cov(x ,y) p(x,y)	,					