Ref No:

Sri Krishna Institute of Technology, Bangalore

COURSE PLAN

Academic Year 2019-2020

Program:	B E – Computer Science & Engineering
Semester:	4
Course Code:	18CS43
Course Title:	Operating Systems
Credit / L-T-P:	3/2-1-0
Total Contact Hours:	40
Course Plan Author:	SUSHMA.M

Academic Evaluation and Monitoring Cell

Sri Krishna Institute of Technology

#29,Chimney hills,Hesaraghata Main road, Chikkabanavara Post Bangalore – 560090, Karnataka, INDIA

Phone / Fax :08023721477/28392221/23721315 Web: www.skit.org.in , e-mail: <u>skitprinci@gmail.com</u>

Table of Contents

A. COURSE INFORMATION	2
1. Course Overview	
2. Course Content	
3. Course Material	
4. Course Prerequisites	3
5. Content for Placement, Profession, HE and GATE	4
B. OBE PARAMETERS	4
1. Course Outcomes	4
2. Course Applications	4
3. Articulation Matrix	4
4. Curricular Gap and Content	
C. COURSE ASSESSMENT	5
1. Course Coverage	5
2. Continuous Internal Assessment (CIA)	5
D1. TEACHING PLAN - 1	5
Module - 1	5
Module - 2	6
E1. CIA EXAM - 1	7
a. Model Question Paper - 1	
b. Assignment -1b.	7
D2. TEACHING PLAN - 2	7
Module - 3	
Module - 4	
E2. CIA EXAM – 2	9
a. Model Question Paper - 2	9
b. Assignment – 2	10
D3. TEACHING PLAN - 3	
Module - 5	
E3. CIA EXAM – 3	11
a. Model Question Paper - 3	
b. Assignment – 3	
F. EXAM PREPARATION	11
1. University Model Question Paper	11
2. SEE Important Questions	

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	CS
Semester:	2019/4	Academic Year:	2019-20
Course Title:	Operating System	Course Code:	18CS43
Credit / L-T-P:	2-1-0	SEE Duration:	3 HOUR
Total Contact Hours:	40	SEE Marks:	60
CIA Marks:	40	Assignment	1 / Module
Course Plan Author:	SUSHMA.M	Sign	Dt:
Checked By:		Sign	Dt:
CO Targets	CIA Target: 90 %	SEE Target:	75 %

Note: Define CIA and SEE % targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute.

Mod	Content	Teaching Hours	Blooms Learning
ule			Levels
1	Introduction to operating systems, System structures: What operating systems do; Computer System organization; Computer System architecture; Operating System structure; Operating System operations; Process management; Memory management; Storage management; Protection and Security; Distributed system; Special-purpose systems; Computing environments. Operating System Services; User-Operating System interface; System calls; Types of system calls; System programs; Operating system design and implementation; Operating System structure; Virtual machines; Operating System generation; System boot. Process Management Process concept; Process scheduling; Operations on processes; Inter process communication	8	L2 Understand, L4 Analyze
2	Multi-threaded Programming: Overview; Multithreading models; Thread Libraries; Threading issues. Process Scheduling: Basic concepts; Scheduling Criteria; Scheduling Algorithms; Multiple-processor scheduling; Thread scheduling. Process Synchronization: Synchronization: The critical section problem; Peterson's solution; Synchronization hardware; Semaphores; Classical problems of synchronization; Monitors.	8	L2 Understand, L3 Apply
3	Deadlocks: Deadlocks; System model; Deadlock characterization; Methods for handling deadlocks; Deadlock prevention; Deadlock avoidance; Deadlock detection and recovery from deadlock. Memory Management: Memory management strategies: Background; Swapping; Contiguous memory allocation; Paging; Structure of page table; Segmentation.	8	L4 Analyze, L2 Understand
4	Virtual Memory Management: Background; Demand paging; Copy-on-write; Page replacement; Allocation of frames; Thrashing. File System, Implementation of File System: File system: File concept; Access methods; Directory structure; File system mounting; File sharing; Protection: Implementing File system: File system structure; File system implementation; Directory implementation; Allocation	8	L3 Apply, L2 Understand

_	Total	40	
	systems, Input and output; Inter-process communication.		
	management; Scheduling; Memory Management; File		
	Linux history; Design principles; Kernel modules; Process		
	Based systems. Case Study: The Linux Operating System:		
	Access control, Revocation of access rights, Capability-		
	protection, Access matrix, Implementation of access matrix,		' '
	Goals of protection, Principles of protection, Domain of		Apply
	Disk management; Swap space management. Protection:		L3
	structures; Disk structure; Disk attachment; Disk scheduling;		Apply,
5	Secondary Storage Structures, Protection: Mass storage	8	L3
	methods; Free space management.		

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C).

- 1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 30 minutes

2. Design: Simulation and design tools used – software tools used; Free / open source
3. Research: Recent developments on the concepts – publications in journals; conferences etc.

3. Rese	arch: Recent developments on the concepts – publications in journals; co	nferences	s etc.
Modul	Details	Chapters	Availability
es		in book	
	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
1, 2, 3,	Abraham Silberschatz, Peter Baer Galvin, Greg Gagne,	1,2,3,4,5	In Lib / In Dept
	Operating System Principles 7 th edition, Wiley-India, 2006.	,7,8	
В	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
		1,2,3,4,5	In Lib
2,3,4,5	Learning, 6 thEdition	,7,8	
1.	D.M Dhamdhere, Operating Systems: A Concept Based Approach 3rd Ed,	12215	In lib
2,3,4,5	McGraw-Hill, 2013.	,7,8	111 (10)
	P.C.P. Bhatt, An Introduction to Operating Systems: Concepts and		In lib
	Practice 4th Edition, PHI(EEE), 2014.	1,2,3,4,5	III UD
		,7,8	1 19
1,	William Stallings Operating Systems: Internals and Design Principles, 6th Edition, Pearson.		In lib
		,7,8	
	Concept Videos or Simulation for Understanding	-	-
C1	https://www.tutorialspoint.com/PPS/		
C2	https://vtuplanet.com/notes/		
C3	https;//www.khanacademy.com		
C4	https://www.slideshare.net/ashanrajpar/operating-system-		
	presentation-60556413		
C5	https://nptel.ac.in/contactus.php		
D	Software Tools for Design	-	-
E	Recent Developments for Research	-	-
	Improve efficiency -		
	https://ieeexplore.ieee.org/abstract/document/6891996		
F	Others (Web, Video, Simulation, Notes etc.)	-	-
1	How Electron / Vacuum Tubes work ?		
	https://www.youtube.com/watch?v=nA_tglygvNo		

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Students must have learnt the following Courses / Topics with described Content . . .

		. 10110 10011111 1110 1	ottowing courses? Topics with acse			
Mod	Course	Course Name	Topic / Description	Sem	Remarks	Blooms
ules	Code					Level
1	18CPS13	С	Introduction to Operating system	1	-	L2
		Programming				Understa
		For Problem				nd
		Solving				
3	17CS34	Computer	Memory system	3	-	L2
		Organization				Understa
						nd
4	17CS35	UNIX system	Introduction to file system and its	3	-	L2
		programming	implementation			Understa
						nd
7,8,9	15CS64	OPERATING	Deadlock handling	6		L2
		SYSTEM				Understa
						nd
-						

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course

Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Mod	Topic / Description	Area	Remarks	Blooms
ules				Level
3	Deadlock detection algorithms	Higher	Gap	Analyze
		Study	A seminar on detection	L4
			algorithms	
5	Design principles of Ubuntu OS	Higher	Gap	Apply
		Study	A seminar on Ubuntu OS	L3

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs.

Expedical real miles of the obtained, which with so mapped to 1 co.									
Mod	Course	Course Outcome	Teach. Hours	Instr Method	Assessme	Blooms'			
ules	Code.#	At the end of the course, student			nt	Level			
		should be able to			Method				
1	18CS43.1	Summarize the basic concepts and	8	Lecture	Question	L2			
		functions of operating system,			& Answer	Understand			
		Analyze different process			Assignme	, L4			
		scheduling algorithms and			nt	Analyze			
		measure their performance							
2	18CS43.2	Understand various threading	8	Lecture	Question	L2			
		models, Calculate the performance			& Answer	Understand			
		of various CPU scheduling			Assignme	, L3			
		algorithms			nt	Apply			
3	18CS43.3	Analyze various deadlock methods	8	Lecture	Slip Test	L4			
		and memory management			Assignme	Analyze, L2			
		schemes, Explain various memory			nt	Understand			
		management schemes							
4	18CS43.4	Interpret various paging	8	Lecture	Question,	L3			

		techniques, Understand organization of files and directories.			Slip Test & Answer Assignme	Apply, L2 Understand
					nt	
5		Interpret different methods of secondary storage, Show the Design principles of OS w.r.t Linux OS			Question, Slip Test & Answer Assignme nt	L3 Apply
-	_	Total	40	-	-	L2-L4

2. Course Applications

Write 1 or 2 applications per CO. Students should be able to employ / apply the course learnings to . . .

States its stream as able to stripte), apply the source team ingo to the								
Mod		CO	Level					
ules	Compiled from Module Applications.							
1	For developing the custom OS, It helps for developing various various OS functions.	CO1	L4					
2	Mobile Computing, web applications, development tools.	CO2	L3					
3	Image editing programs, and communication programs, managed resources can	CO3	L4					
	be controlled using mutexes.							
4	To develop operating system, To create computer applications.	CO4	L3					
5	Companies , Hospital, To build embedded softwares.	CO5	L3					

3. Articulation Matrix

CO - PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	-	Course Outcomes	Course Outcomes Program Outcomes														-	
Mod	CO.#	At the end of the course	РО	PO	PO	РО	PO	РО	PO	РО	РО	PO	PO	РО	PS	PS	PS	Lev
ules		student should be able to	1	2	3	4	5	6	7	8		10		12	01	02	О3	el
1		Summarize the basic concepts and functions of operating system, Analyze different process scheduling algorithms and measure their performance		2.3	2.2 5	-		0.8 5	1	1.0 5	-	2.3	-	1				L4
2		Understand various threading models, Calculate the performance of various CPU scheduling algorithms		2.3	5		_	-	1	-	-	2.3	-	-				L3
3		Analyze various deadlock methods and memory management schemes, Explain various memory management schemes	2.3	2.3	2.2 5	0.8 5	_	_	-	_	-	2.3	-					L4
4		Interpret various paging techniques, Understand organization of files and directories.	2.3	2.3	2.2 5	-	-	-	-	-	1.2 7	2.3	-	1				L3
5		Interpret different methods of secondary storage, Show the Design principles of OS w.r.t Linux OS	2.3	2.3	2.2 5	-	-	1	-	-	1.2 7	2.3	1.1	-				L3
-	_	Average			5	0.8 5		5		5	7							2.25
_		1.Engineering Knowledge; 2.Problem Analysis; 3.Design / Development of Solutions; 4.Conduct Investigations of Complex Problems; 5.Modern Tool Usage; 6.The Engineer and Society; 7.Environment and Sustainability; 8.Ethics; 9.Individual and Teamwork; 10.Communication; 11.Project Management and Finance; 12.Life-long Learning; S1.Software Engineering; S2.Data Base Management; S3.Web Design																

4. Curricular Gap and Content

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

	The state of the s										
Mod	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping						
ules											
1	Deadlock detection algorithms	Seminar	2 nd week / date	-	List from B4 above						
2	Design principles of Ubuntu OS	Seminar	3 rd Week	-							

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation.

-	Total	40	4	4	4	5	-	10	-	-
5	Secondary Storage Structures, Protection, Case Study: The Linux Operating System	8	_	_	4	1	_	2	CO5	L3,L3
4	System, Implementation of File System.	8	-	2		1	_	2	·	L3,L2
3	Deadlocks, Memory Management.	8	-	2	-	1	-	2	CO3	L4,L2
2	Multi-threaded Programming, Process Synchronization.	8	2	_	_	1	-	2	CO2	L2,L3
1	Introduction to operating systems, System structures, Operating System Services, Process Management.	8	2	-	-	1	-	2	CO1	L2,L4
ules		Hours	CIA-1	CIA-2	CIA-3	Asg	Extra Asg	SEE		
Moc	Title	Teach.				tion in			CO	Levels

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Mod	Evaluation	Weightage in	CO	Levels
ules		Marks		
1, 2	CIA Exam – 1	30	CO1, CO2.	L2,L4,L2,L3
3, 4	CIA Exam – 2	30	CO3,CO4.	L4,L2,L3,L2
5	CIA Exam – 3	30	CO5.	L3,L3.
1, 2	Assignment - 1	10	CO1, CO2.	L2,L4,L2,L3
3, 4	Assignment - 2	10	CO3,CO4.	L4,L2,L3,L2
5	Assignment - 3	10	CO5.	L3,L3
1, 2	Seminar - 1		-	-
3, 4	Seminar - 2		-	-
5	Seminar - 3		-	-
1, 2	Quiz – 1		-	-
3, 4	Quiz – 2		-	-
5	Quiz – 3		<u>-</u>	-
				-
1 - 5	Other Activities – Mini Project	-	<u>-</u>	
	Final CIA Marks	40	-	-

D1. TEACHING PLAN - 1

Title:	Introduction to operating systems, System structures	Appr Time:	8 Hrs
a	Course Outcomes	СО	Blooms
-	The student should be able to:	-	Level
1	Summarizing the basic concepts and functions of operating system	CO1	L2
2	Apply different process scheduling algorithms and measure their performance	CO1	L4
b	Course Schedule	-	-
lass N	Portion covered per hour	-	-
1	introduction to operating systems, System structures: What operating systems do; Computer System organization	C01	L2
2	Computer System architecture; Operating System structure; Operating System operations;	C01	L2
3	Process management; Memory management; Storage management; Protection and Security	C01	L2
4	Distributed system; Special-purpose systems	C01	L2
5	Computing environments. Operating System Services	C01	L2
6	User - Operating System interface; System calls; Types of system calls	C01	L4
7	System programs, Operating system design and implementation	C01	L4
8	Operating System structure; Virtual machines	C01	L4
9	Operating System generation; System boot	C01	L4
10	Process Management -Process concept; Process scheduling	C01	L4
11	Operations on processes;Inter process communication	C01	L4
С	Application Areas		
_	Students should be able employ / apply the Module learnings to		
1	web applications, development tools, image editing programs, and communication programs	CO1	L2
2	To create computer applications,embedded softwares	CO1	L4
d	Review Questions		
u	Review Questions		
1	What is an OS? List out the different services that an OS provides. Explain.	CO1	L2
2	Explain the layered approach to structuring of an OS along with a relevant diagram	CO1	L2
3	What are the major activities of an OS with regard to (i) Process management (ii) Memory management.	CO1	L2
4	Explain the fundamental difference between (i) N/W OS and Distributed OS (ii) Web-Based Computing and Embedded Computing.	CO1	L2
5	What is a process? Draw and explain the process state diagram	CO1	L4
6	Explain different scheduling criteria that must be kept in mind while choosing different scheduling algorithms.	CO1	L4
7	What are virtual machines? Explain its advantages with a diagram.	CO1	L4
8	List and explain services provided by an OS that are designed to make using computer system more convenient for users.	CO1	L4
9	What are system calls? With examples explain different categories of system calls.	CO1	L4
10	What is distributed OS? What are the advantages of distributed OS.	CO1	L4
	Differentiate between	CO1	L4
11	Dillerentiate between	COI	

	(ii) short-term and medium term scheduler		
	(iii) User level and Kernel level threads		
	(iv) Waiting and Turn-Around time		
12	What is a PCB? Explain with a neat diagram.	CO1	L4
13	What is interprocess communication? Explain direct and indirect	CO1	L4
	communication with respect to message passing system.		

Title:	Multithreaded programming and process synchronization	Appr Time:	8 Hrs
a	Course Outcomes	СО	Blooms
-	The student should be able to:	-	Level
1	Understanding various threading models	CO2	L2
2	Analyzing the performance of various CPU scheduling algorithms and threading models	CO2	L3
b	Course Schedule	_	-
Class No	Portion covered per hour	-	-
12	Multi-threaded Programming: Overview; Multithreading models	CO2	L2
13	Thread Libraries, Threading issues;	CO2	L2
14	Process Scheduling: Basic concepts; Scheduling Criteria	CO2	L3
15	Scheduling Algorithms	CO2	L3
16	Multiple-processor scheduling;Thread scheduling	CO2	 L3
17	Process Synchronization: Synchronization: The critical section Problem	CO2	L3
18	Peterson's solution	CO2	L3
19	Synchronization hardware;Semaphores	CO2	L3
20	Classical problems of synchronization; Monitors	CO2	L3
С	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	Mobile Computing	CO2	L2
2	web applications, development tools	CO2	L3
d	Review Questions	-	-
14	Explain the differences between single-threaded and multi threaded processes using neat diagram.	CO2	L2
15	What are the benefits of multi threading? Explain the multi threading models	CO2	L2
16	Explain the different threading issues.	CO2	L2
17 18	Define multithreading. Explain the benefits of multithreading. List and explain the different scheduling criteria. Explain priority scheduling with	CO2	L2 L2
10	an example. Explain critical section problem and solution to it	CO2	L2
19 20	Explain critical-section problem and solution to it Explain Synchronization Hardware in detail.	CO2	
21	Explain Synchronization readware in detail. Explain Readers-writers problem and provide a semaphore solution using semaphores for reads priority problem.	CO2	L3
22	Explain Dining-Philosopher's problem using monitors.	CO2	L3
23	Explain the range of monitors with a schematic view of its structure; write a monitor solution to bounded-buffer problem.	CO2	L3
		CO_2	L3
24	What is busy waiting in a critical section concept? How semaphore is used to solve critical section problem? What are the advantages of semaphore.	CO2	L3

26	Conside	er tł	he followina	set of proce	sses with	n arrival time:	CO2	L3
	Proce		Burst	Arrival				_5
	S		Time	time				
	P1		10	0				
	P2		1	0				
	P3		2	1				
	P4		4	2				
	P5		3	2				
				using FCFS,	SJF Pre	emptive and non preemptive		
	sched			a waiting time	for eac	n of scheduling algorithms.		
27			s the snapsh		o ioi eaci	TO SCHEduting algorithms.	CO2	
,	Process		CPU Burst	Arrival time				J
	P1		10	0				
	P2		29	1				
	P3		03	2				
	P4		07	3				
						g and turnaround time using FCFS, g aalgorthims.		
28						charts usingb preemptive and non	CO2	
	preemp					larger priority number has higher		J
	priority.	١.						
	Jobs	Ar	rival time		Priority	/		
				time				
	J1	0		6	4			
	J2	3		5	2			
	J3	3		3	6			
	J4	5		5	3			
29				set of proces	ses, witl	n length of CPU burst time given in	CO2	L3
	millisec			Б	D: 11	1		
	Proces	SS	Arrival	Burst time	Priorit			
			time		У	_		
	P1		0	10	3			
	P2		0	1	1			
	P3		3	2	3			
	P4		5	1	4			
	P ₅		10	5	2			
		fou	ur Gantt cha		ıg the e	excution of these processes using		
	FCFS,SJ	JF, a	non preem	ptive priority	and RR (Quantum=2) scheduling.		
			tne turn aro Iling algorith		waiting	time of each processes for each of		
30				r scheduling.			CO2	L3

С	Applicati	on Areas				СО	Level	
1	Mobile Co	omputing				CO2	L2	
2	web appl	ications, deve	elopment tool	S		CO2	L3	
D	Doviovy C	uestions						
14			between sind	ale-thread	ed and multi threaded processes	- CO2	- L2	
		at diagram.	- Botwooll only	gio imoda				
15					in the multi threading models	CO2	L2	
16		ne different th				CO2	L2	
17					nultithreading.	CO2	L2 L2	
18		st and explain the different scheduling criteria. Explain priority scheduling varieties.						
19		ritical-section	•		it	CO2	L2	
20		ynchronizatio				CO2	L3	
21					de a semaphore solution using	CO2	L3	
		res for reads				00-		
22		ining-Philoso				CO2	L3	
23	monitor s	olution to bou	unded-buffer	problem.	atic view of its structure; write a	CO2	L3	
24					cept? How semaphore is used to vantages of semaphore.	CO2	L3	
25	What are	the requirem	ents that a cri	tical sectio	n problem must satisfy?	CO2	L3	
26	Consider	the following	set of proce	sses with a	arrival time:	CO2	L3	
	Proces	Burst	Arrival					
	S	Time	time					
	Da	10						
	P1	10	0					
	P2	1	0					
	P3	2	1					
	P4	4	2					
	P5	3	2					
			using FCFS,	SJF Preer	mptive and non preemptive			
	schedu			.	Coolered Provider Street			
27				e for each o	of scheduling algorithms.	CO2	L3	
27	Process	g is the snapsh CPU Burst	Arrival time			CO2	L3	
	P1	10	0					
	P2	29	1					
	P3	03	2					
	P4	07	3					
					and turnaround time using FCFS,			
28		RR with time q			narts usingb preemptive and non	CO2	L3	
20					arger priority number has higher	CO2	L3	
	priority.							
		Arrival time	Burst	Priority				
			time					
	J1 ()	6	4				
	J2 3	3	5	2				
	J3 3	3	3	6				
	J4	5	5	3				

29	Consider the millisecond		set of proces	sses, with	n length of CPU burst time given in	CO2	L3
	Process		Burst	Priorit			
		time	time	У			
	P1	0	10	3			
	P2	0	1	1			
	P3	3	2	3			
	P4	5	1	4			
	P5	10	5	2			
					xcution of these processes using		
	FCFS,SJF, a non preemptive priority and RR (Quantum=2) scheduling.						
	ii) What is						
		ıling algorithr					
30	Explain mu	ultiprocessor	scheduling.			CO2	L3

E1. CIA EXAM - 1

a. Model Question Paper - 1

Crs			Sem:	1	Marks:		Time:				
Code											
Cour	se:						_		_		
-	-				arry equal n				Marks	СО	Level
1	a				t services tha		vides. Exp	lain	5	CO1	L2
	b	Explain the following Computer- System Architecture:							5	CO1	L2
					stered Syster						
	С	What are sy	stem calls?	Explain diff	erent types of	of system ca	alls.		5	CO2	L4
					OR						
2	а	What are the major activities of an OS with regard to:							5	CO1	L2
		(i) Storage M			mory Manag						
	b		irtual Mach	ine? Expla	in VM-Ware	e architectu	ure with	neat	5	CO1	L2
		diagram.									
	С				in the followi				5	CO2	L4
		(i) process s	state diagrar		ess Control B	lock(PCB)					
				MO	DULE-2						
3	а				cation? Exp		and ind	irect	6	CO2	L4
					ssage passin						
	b				ading? Expla		ading mod	els.	4	CO3	L4
	С	Explain critic	cal-section p	oroblem and	d solution to	it			5	CO3	L4
					OR						
4	а	Explain the	different thre	eading issue	es in Multithr	eaded Prog	ramming		5	CO4	L4
	b	Following is	the snapsh	ot of a CPU					6	CO4	L4
		Process		Burst Time	Э	Arrival Tin	ne				
		P1		5		0					
		P2 1 1									
		P3 4 2									
		Draw grant charts and calculate the waiting time and turnaround time using FCFS,Premptive SJF and RR with time quantum=4.									
	С	Explain Synd	.		<u>'</u>				4	CO4	L4

b. Assignment -1

Crs Code:	Sem:	Marks:	Time:				
Course:	·						
SNo		Assignment Dose	rinting	Marks	СО	Level	
SNO		Assignment Description					
1	What is an	What is an OS? List out the different services that an OS					
	provides. Ex			5 5			
2		layered approach to str	ructuring of an OS along	7	CO1	L2	
		ant diagram					
3		e major activities of an OS	S with regard to	6	CO1	L2	
		nanagement management.					
4		fundamental difference b	etween	6	CO1	L2	
4		and Distributed OS	Ctwccii		001	LE	
		ed Computing and Embe	edded				
		Computing.					
5		process? Draw and ex	plain the process state	e 5	CO2	L2	
	diagram			d 6	CO2		
6		Explain different scheduling criteria that must be kept in mind				L2	
_		sing different scheduling a virtual machines? Explai		- 0	000	1.0	
7	what are diagram.	a 8	CO2	L2			
8		plain services provided by	, an OS that are designed	8 b	CO2	L2	
		ng computer system mor			002	LE	
9	What are system calls? With examples explain different				CO2	L4	
	categories of						
10	What is o	of 7	CO2	L4			
	distributed						
11		CB? Explain with a neat di		5	CO2	L4	
12	What is in		CO2	L4			
	indirect co	9					
13	system. Explain th	e differences between	n single-threaded an	8 b	CO3	L4	
13		ed processes using neat			CO3	L4	
14		e benefits of multithreadi		8	CO3	L4	
_'	multithread					_ '	
15		different threading issues		6	CO3	L4	
16		ithreading. Explain the be		7	CO3	L4	
17		xplain the different sch	neduling criteria. Explai	7	CO4	L4	
		eduling with an example.		_			
18		cal-section problem and		6	CO4	L4	
19		chronization Hardware in		6	CO4	L4	
20		aders-writers problem ar		9 7	CO ₄	L4	
21		ng semaphores for reads ng-Philosopher's problen		6	CO ₄		
22		range of monitors with			CO ₄	L4 L4	
		rite a monitor solution to			CO4	L4	
	Juliaciaic, W	nto a monitor solution to	Sealided Saller prosteri	. 1		1	

D2. TEACHING PLAN - 2

Title:	Deadlocks and Memory management	Appr	8 Hrs
		Time:	
Α	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Analyze various deadlock methods and memory management schemes	CO3	L4
2	Explain various memory management schemes	CO3	L2

В	Course	Sche	edule	?									
Class No	Portior	1 COV	ered	per	hou	r						-	-
21	Deadlo						m m	node	el .			CO3	L4
22	Deadlo											CO3	L4
23	Method	ds for	han	dline	a dea	adlo	cks					CO ₃	L4
24	Deadlo							void	ance			CO3	 L4
25									n deadl	.ock		CO3	 L4
26										t strategies		CO3	 L2
27	Backgr											CO3	L2
28	Contig	uous	men	nory	allo	catio	on					CO3	L2
29	Paging	; Stru	cture	e of	page	tab	le					CO3	L2
30	Segme	entatio	on.									CO3	L2
С	Applic											-	-
-										Module lea	rnings to	-	-
1										programs		CO3	L2
2	manag	ed re	sour	ces	can	be c	ontr	olled	d using	mutexes		CO3	L2
	_												
D	Review											-	-
-											following questions	-	-
31									llock to			CO3	L4
32										with an exar	nple.	CO3	L4
33	Explair											CO ₃	L4
34										adlock.	211 21 1 1	CO3	L4
35	Dead le		exists	ıt a	cycl	e ex	(ISts.	Yes	or no. J	Justify your a	answer with a suitable	CO3	L4
36	What a	are th									Explain how circular	CO3	L4
27									occurri		and commentation	COn	1.4
37 38											ng and segmentation. t? In a simple paging	CO3	<u>L4</u> L2
	system	ı, wha	at info	orm	ation	is s	tore	d in T	ΓLB ? Ε	xplain.			
39	your ar	nswer	s. S								ems overhead? Justify		L2
40	What o									n difference	e between internal and	CO3	L2
41	Explair	n basi	c me	tho	d and	d ha	rdwa	are re	equired	for segmer	itation.	CO3	L2
42	Disting	guish	betv	veer	1:							CO3	L2
	I) Logic ii) Pagir Iii) First	ng ve	rsus	seg	men [°]	tatic	n.	spa	ce				
43										K, 300K and dd 426K.	600K apply first fit and	CO3	L2
44										ect to hierar	chy paging.	CO3	L2
45									system:		,, , ,	CO3	L2
										_			
		Allo	cati	on	MΑ	Χ		Ava	ailabl				
								е					
				_						_			
		Α	В	С	Α	В	С	Α	В				
								С					
	Ро	0	0	2	0	0	4	1	0				
			Ū	_	J			2					
	P1	1	0	0	2	0	1						
	P2	1			1	_	7			-			
		_ 1	3		1	3	7						
		5											

											1								
	P3	6	3	2	8	4	2												
	P4	1	4		1	5	7												
		3																	
								sing	Bar	nker	s al	gorithm:	:						
	Is the s									/-	\				1 1		1.	.1	
	immed			n pr	oce	SS F	² 2 a	rrive	SIC	ır (C	102)	can the	e re	eque	est i	be g	rante	a	
46	For the			apsh	ot:													CO3	L2
		All	loca	tior	n		М	AX		F	∖vail	lable							
		А	B D	С		Α	В	С	D	Α	В	C D							
	P1	0 2	0	1		0	0	1	2	1 0	- 5	2							
	P2	1 0	0	0		1	7	5	0										
	P3	1	3	5		2	3	5	6										
	P4	0	6	3	2	0	6	5											
	P5	0	0	1	6	0	6	5											
	Using I) Wha II) Is the	t is ne e syste	ed n em ir	natri 1 saf	x cc e st	nte: ate?		P2(0),4,2	,O) a	arrive	ers, can i	it b	e gr	ante	ed?			
Е	Experi			Í														-	-
1																		CO6	L2
2																			

Title:	Virtual memory management and file system	Appr	8 Hrs
		Time:	
Α	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Interpret various paging techniques	CO4	L3
2	Understand organization of files and directories.	CO4	L2
В	Course Schedule		
Class No	Portion covered per hour	-	-
31	Virtual Memory Management: Background	CO4	L3
32	Demand paging; Copy-on-write; Page replacement; Allocation of frames	CO4	L3
33	Thrashing	CO4	L3
34	File System;Implementation of File System: File system: File concept; Access methods;Directory structure File system mounting	CO ₄	L2
35	File sharing;Protection:Implementing File system: File system structure; File system implementation	CO ₄	L2
36	Director implementation	CO4	L2
37	Allocation methods; Free space management	CO4	L2

С	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	To develop operating system	CO4	L3
2	To create computer applications	CO ₄	L2
D	Review Questions	_	-
-	The attainment of the module learning assessed through following questions	-	-
47	What is page fault? With a supporting diagram explain the steps involved in handling page fault.	CO4	L3
48	Consider the following page reference stream 7,0,1,2,0,3,0,4,2,3,0. Calculate the number of page faults when number of frames is equal to 3, using FIFO, LRU and Optimal page replacement algorithms.		L3
49	Explain the different LRU-approximation page replacement algorithms.	CO4	L3
50	Explain copy-on-write process in virtual memory.	CO4	L3
51	Write short note on thrashing.	CO4	L3
52	What are the different allocation methods in disk? Explain in detail any two methods.	CO7	L3
53	What are different types of file sharing? Explain.	CO4	L2
54	List the different Directory Structure. Explain acyclic-graph directory and tree structured directory.	CO4	L2
55	Explain different free space management	CO4	L2
56	What is a file? Also list different file operations	CO4	L2
57	Explain different free space management	CO4	L2
58	What are the different techniques with which a file can be shared among users.	CO4	L2
59	Explain various file protection mechanisms.	CO4	L2
60	Explain briefly different file systems and file attributes.	CO ₄	L2
E	Experiences		-
1	·	CO7	L2
2			

E2. CIA EXAM - 2

a. Model Question Paper - 2

Crs Code	7,	Ser	m:		Marks:		Time			
Cour										
- 1	-	Note: Answer a	all questio	ns, each c	arry equal	marks. Modu	ıle : 3, 4	Mark	s CO	Level
1	Α	What are the circular wait co					? Explain ho	pw 7	CO7	L2
	В	Explain differen						8	CO7	L2
					OR					
2	Α	Why are transpaging system,					? In a simp	ole 6	CO8	L2
	В	What is swapp Justify your ans		this incre	ase the op	erating syste	ms overhea	d? 5	CO8	L2
	С	What do you mand external fra					etween interr	nal 4	CO8	L2
				MOI	DULE-4					
3	Α	What is page fain handling pag		a support	ing diagran	n explain the	steps involv	ed 8	CO9	L3
	В	Consider the Calculate the nusing FIFO, LRU	umber of i	page faults	s when nur	nber of frame	es is equal to		CO9	L3
					OR					
4	Α	What are the dusers.	ifferent ted	chniques v	vith which	a file can be	shared amo	ng 8	CO10	L3
	В	Explain briefly o	different fil	e systems	and file att	ributes.		7	CO10	L3

b. Assignment - 2

				Mo	odel			ent C	Ques	stio		-			
Crs Code:	Sem	:				Ma	rks:				Time:				
Course:															
SNo				Α	ssig	nme	ent C	escr	iptio	on			Marks	СО	Level
1											eadlocks? Ex		6	CO3	L2
2	What	how circular wait condition can be prevented from occurring. What is locality of reference? Differentiate between paging and segmentation.											7	CO3	L2
3	simple Explai	e pag n.	ing s	syste	em,	wha	at int	forma	atior	ı is	3) important? s stored in T	LB ?		CO3	L2
4	What overhe							creas	e th	e c	perating sys	tems	6	CO3	L2
5		en ir									Explain differ tation with			CO3	L2
6	Explai segme		asic on.	m	etho	od	and	l ha	ardw	vare	e required	for	7	CO3	L2
7	Distin I) Logi ii) Pagi Iii) Firs	ing ve	rsus rsus	phy seg	sical mer	ntatio	on.	·	ce				6	CO3	L2
8	Consid								syste	em:			6	CO3	L2
		Allocation M				AX Availabl e									
		А	В	С	А	В	С	A C	В						
	Ро	0	0	2	0	0	4	1 2	0						
	P1	1	0	0	2	0	1								
	P2	1 5	3		1	3	7								
	Р3	6	3	2	8	4	2								
	P4	3	4		1	5	7								
	Is the	er the syster quest	n in a fron	a "sa n pro	afe stoces	tate' ss Pa	'?				discounties algorithm:				
9		e give											6	CO3	L2
		Al	loca	atio	n		Μ	IAX	Available						
		A	A В			Α	В	СІ	D	Α	B C D				

F	P1 2	0	0	1	0	0	1	2	1 0	5	2				
F	P ₂	1 0	0	0	1	7	5	0							
F	² 3	1 4	3	5	2	3	5	6							
F	P4 2	0 2	6	3	0 2	6	5								
F	P5 4	0 4	0	1	0 6	6	5								
	Jsing Ba What is Is the s I) If a rec ranted?	s nee syster quest	ed m m in t fro	natrix o safe : m pro	conter state? ocess f	rom									
	Vhat is _l teps inv							ing	diag	ram	explair	n the	6	CO3	L2
11 Co 7. no	steps involved in handling page fault. Consider the following page reference strear 7,0,1,2,0,3,0,4,2,3,0. Calculate the number of page faults when number of frames is equal to 3, using FIFO, LRU and Optima page replacement algorithms.										when	7	CO3	L2	
12 Ex	xplain t lgorithm	the c					xima	atior	n pa	ge re	eplace	ment	7	CO3	L2
13 Ex	xplain c	ору-	on-	write p	oroces	s in v	/irtu	al n	nemo	ry.			6	CO4	L2
	Write sh												6	CO4	L2
	What are etail any					ation	me	tho	ds in	disk	? Expla	ain in	6	CO ₄	L2
	Vhat are												6	CO4	L3
	ist the irectory								xplai	n ac	yclic-g	graph	7	CO4	L3
18 Ex	xplain d	liffere	nt f	ree sp	ace m	ana	gem	ent					7	CO4	L3
19 W	Vhat is a	file?	Als	o list o	differer	nt file	е ор	erat	ions				6	CO4	L3
	xplain d												7	CO4	L3
	Vhat are hared ar				techr	nique	es v	vith	whic	:h a	file ca	n be	8	CO4	L3

D₃. TEACHING PLAN - 3

	• •		
Title:	Secondary Storage Structures, Protection	Appr	8 Hrs
		Time:	
Α	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Interpret different methods of secondary storage	CO5	L3
2	Show the Design principles of OS w.r.t Linux OS	CO5	L3
В	Course Schedule	-	-
Class No	Portion covered per hour	-	-
38	Secondary Storage Structures, Protection: Mass storage structures; Disk	CO5	L3
	structure; Disk attachment; Disk scheduling		
39	Disk management; Swap space management. Protection: Goals of protection, Principles of protection	CO ₅	L3

40	Domain of protection, Access matrix, Implementation of access matrix, Access	CO ₅	L3
	control		
41	Revocation of access rights, Capability- Based systems	CO5	L3
42	Case Study: The Linux Operating System: Linux history; Design principles; Kernel modules	CO5	L3
43	Process management; Scheduling; Memory Management;	CO5	L3
44	File systems	CO5	L3
45	Input and output;Inter-process communication	CO5	L3
С	Application Areas	_	
	Students should be able employ / apply the Module learnings to	_	
1	Companies , Hospital	CO ₅	L3
2	To build embedded software	CO5	<u></u>
	To baild embedded software	005	
D	Review Questions	_	_
-	The attainment of the module learning assessed through following questions	_	
61	List the different disk scheduling techniques, Explain any two		
	scheduling,considering the following disk queue requests: 98,183,37,122,14,124,65,67.	005	_5
62	What is an access matrix? Explain the different methods of implementing access matrix.	CO ₅	L3
63	Explain bad-block recovery in disk.	CO ₅	L3
64	Explain the different steps involved in disk formatting	CO5	L3
65	Suppose that a disk has 50 cylinders named 0 to 49. The read/write head is		<u></u>
	currently serving at cylinder 15. The queue of pending requests are in order: 4, 40,11, 35, 7,14. For each of the scheduling algorithms: SCAN, C-LOOK and C-SCAN, i) Show the graphical representation for above scheduling algorithms. (ii) Find the average head movement for above scheduling algorithms		
66	Differentiate between protection and security.	CO5	L3
67	Explain the various storage mechanisms available to store files with neat diagram.	CO ₅	L3
68	Write a short notes on: I) Swap space management ii) Revocation of access rights	CO ₅	L3
69	With supporting diagrams, explain linked and indexed method of allocating disk space.	CO ₅	L3
70	Explain the following disk scheduling algorithm in brief:	CO ₅	L3
71	Explain in brief the selection of disk scheduling algorithm.	CO ₅	L3
72	Explain the Design principle of Linux.	CO ₅	L3
73	Explain the process management in Linux platform.	CO5	L3
74	Explain the interprocess communication mechanism in Linux.	CO5	L3
75	Explain File Systems in Linux.	CO5	L3
76	What do you mean by Cloning? How is it achieved in Linux system.	CO5	L3
77	Write a short notes on:	CO5	L3
	I) Portability issues in LINUX		
	ii) Network structure in LINUX.		
E	Experiences	-	-
1		CO5	L2
2		CO5	

E3. CIA EXAM - 3

a. Model Question Paper - 3

	-			
rs Code	Sem:	Marks:	Time:	

Cou	rse:				
-	-	Note: Answer all questions, each carry equal marks. Module : 5	Marks	СО	Level
1	Α	What is an access matrix? Explain the different methods of implementing access matrix.	6	CO5	L3
	В	Explain bad-block recovery in disk.	7	CO ₅	L3
		OR			
2	а	List the different disk scheduling techniques, Explain any two scheduling, considering the following disk queue requests: 98,183,37,122,14,124,65,67.	1 1	CO5	L3
	b	Explain the interprocess communication mechanism in Linux.	8	CO5	L3
		MODULE-5			
3	а	Explain the various storage mechanisms available to store files with neat diagram.	7	CO ₅	L3
	b	Write a short notes on: I) Swap space management ii) Revocation of access rights	8	CO5	L3
		OR			
4	а	With supporting diagrams, explain linked and indexed method of allocating disk space.	8	CO ₅	L3
	b	Explain the following disk scheduling algorithm in brief:) SSTF ii) SCAN iii) LOOK	7	CO5	L3

b. Assignment - 3

	Model	Assignment	Questions			
Crs Code:	Sem:	Marks:	Time:			
Course:						
SNo	Assignme	on	Marks	СО	Level	
1	What is an access matrix? implementing access matrix.	Explain the	different methods o	f 5	CO5	L3
2	Explain bad-block recovery in disk	ζ.		6	CO5	L3
3	Explain the different steps involved	d in disk forn	natting	7	CO ₅	L3
4	Suppose that a disk has 50 cylin head is currently serving at cylind are in order: 4, 40,11, 35, 7,14.For SCAN, C-LOOK and C-SCAN. i) Sabove scheduling algorithms.(ii) Fabove scheduling algorithms	er 15. The qu each of th how the gra	ueue of pending request e scheduling algorithms uphical representation fo	s :: r	CO5	L3
5	Differentiate between protection a	4	CO5	L3		
6	Explain the various storage med neat diagram.	hanisms ava	ailable to store files with	5	CO ₅	L3
7	Write a short notes on: I) Swap space management ii) Revocation of access rights			7	CO5	L3
8	With supporting diagrams, expl allocating disk space.	ain linked a	and indexed method o	f 7	CO ₅	L3
9	Explain the following disk schedul I) SSTF ii) SCAN iii) LOOK	ing algorithr	n in brief:	6	CO ₅	L3
10	Explain in brief the selection of dis	k scheduling	g algorithm.	5	CO ₅	L3
11	Explain the Design principle of Lir			7	CO ₅	L3
12	Explain the process management	in Linux pla	tform.	6	CO ₅	L3
13	Explain File Systems in Linux.			5	CO5	L3
14	What do you mean by Cloning? Ho	ow is it achie	ved in Linux system.	7	CO5	L3
15	Write a short notes on: I) Portability issues in LINUX				CO ₅	L3

ii) Network structure in LINUX.		

F. EXAM PREPARATION

1. University Model Question Paper

Cours	se:	Sensors	and Trar	sducers				Month /	/ Year	May /	2018
Crs C	ode:	15EE66	52 S	em:	6	Marks:	80	Time:		180 m	inutes
Mod ule		Answer	all FIVE f	ull questi	ons. All qu	estions carry eq	ual marks.		Marks	СО	Level
1	a	Define (mode of	06	CO1	L2					
	b		the serv		perating	System that are	helpful for u	setr and	06	CO1	L2
	С	I) virtual ii) CPU (iii) Syste	. machine schedule	•		20			04	CO1	L2
				0.0		OR					—
	a	What is	05	CO2	L4						
	b	commu	nication \	with respe	ct to mes	ation? Explain sage passing sy	stem.	indirect		CO2	L4
	С	Explain diagran		ed approa	ach to stru	cturing of an OS	along with a	relevant	09	CO2	L4
2	a	Progran	hreaded	06	C03	L2					
	b	Explain	04	Co3	L2						
	С									CO3	L2
		Proc ess	Burst Time (m sec)	Arrival time (m sec)	priority						
		P1	10	0	4						
		P2	5	3	2						
		P3 P4	6	3 5	6	_					
		Conside time a	er larger r nd turn	number as around	s highest time and SJF sche] priority. Calculat draw Gantt o duling. DR					
	a	solutior	to critica	l section	s to critica problem.	l section probler	-	terson's	06	CO ₄	L3
	b					n with semapho	res.		05	CO ₄	L3
	С									CO ₄	L3
3	a			necessary ver from c		ons for deadlo	ck? Explain	different	. 08	CO ₅	L4
	b	Consider the following snapshot of a system: Allocation MAX Availabl								CO5	L4

									е						
			Α	В	С	Α	В	С	A C	В					
		Ро	0	0	2	0	0	4	1 2	0					
		P1	1	0	0	2	0	1			_				
		P2	1 5	3		1	3	7							
		Р3	6	3	2	8	4	2							
		P4	1 3	4		1	5	7							
		Answer the following questions using Banker's algorithm: Is the system in a "safe state"? If a request from process P2 arrives for (002) can the request be granted immediately?													
									OF						
		What buffer.	is pa	ging)? E:	xplai	n p	agin	g ha	ırdware	with translat	ion look-aside	06	CO6	L2
	b	Explain the structure of page table with respect to hierarchical paging.									06	CO6	L2		
		Given the 5 memory partitions of 100K, 500K, 200K, 300K and 600K apply first fit and best fit and worst fit algorithm to place 212K, 417K, 112K and 426K size. Which algorithm makes efficient use of memory?										04	CO6	L2	
4		What is in hanc					ı a s	uppo	orting	g diagra	am explain the	steps involved	06	CO7	L3
		Consid Calcula	ler t	he e nu	follo imbe	wing er of	pag	e fai	ults v	vhen ni		1,2,0,3,0,4,2,3,0. es is equal to 3,	06	CO7	L3
	С	Explair										-	04	CO7	L3
	-	1	- 1*.	,		1		<u> </u>	OF		,		<u> </u>	,	
	а	What two me			liffer	ent a	alloc	catio	n me	ethods	in disk? Explai	n in detail any	06	CO8	L2
	Ь	What is	s a file	e? Al	so li	st dit	fere	nt fil	e op	eration	S		03	CO8	L2
		List the tree sti						truct	ure.	Explair	acyclic-graph	directory and	07	CO8	L2
5		List t schedu 98,183,	uling,		ider	ing	th		eduli follo	ng te owing	chniques,Expla disk quet	•	06	CO9	L3
	b	What is			ss m	natrix	(? E)	kplai	n the	differe	ent methods of	implementing	06	COg	L3
	U	Explair	bad	-bloo	ck re	COVE	ery i	n dis	k.				04	CO9	L3
									OF	₹					
	а	Explair	the	Desi	ign p	orinc	iple	of L	inux.				06	CO10	L3
											latform.		06	CO10	L3
	С	Explair	the	inter	rpro	cess	con	nmu	nicat	ion me	chanism in Lin	ux.	04	CO10	L3

2. SEE Important Questions

Course:						Month .	/ Year		
Crs Code:	1	Sem:		Marks:		Time:			
Note	Answer all FIVE	full auestion	ıs. All auestioi	ns carry equa	l marks.		_	-	

Mod ule	Qno.	Importa	ınt Quest	ion			Marks	СО	Year
1	1		Operating		With a ne	eat diagram explain the dual mode of	06	CO1	2018
			the serv		perating :	System that are helpful for usetr and	06	CO1	2018
	3	Define t I) virtual ii) CPU s iii) Syste	he follow machine schedule	r	:		04	CO1	2018
				n the process state diagram	05	CO2	2018		
		What	is interp	ation? Explain direct and indirect sage passing system.		CO2	2018		
	6		the layer			cturing of an OS along with a relevant	09	CO2	2018
	7			ial propert	ies of bate	ch,real time and distributed OS	06	CO1	2014
	8	What a	e the diff	erent way	s in which	P-threads terminate	05	CO1	2015
	9					ning and multiprocessing.	05	CO1	2015
	10	What a system		m calls?	With exa	mple explain different categories of	07	CO2	2012
	11					ts advantages with a neat diagram	08	CO2	_
	12	1		nefits offe process of	•	-operating processes? Describe direct cation.	07	CO2	2012
2	1	Explain Progran	06	C03	2018				
	2			cessor Sch		sses with arrival time:	04	C03	2018
		Proc ess	Burst Time (m sec)	Arrival time (m sec)	priority				
		P1	10	0	4				
		P2	5	3	2				
		P3	6	3	6				
		time a schedu	nd turn ling and p	around to premptive	ime and	priority. Calculate the average waiting draw Gantt chart for preemptive duling. need for control synchronization with			
		an exan	08	CO3	2018				
						enefits of multithreading. scheduling criteria. Explain priority	7	CO3	
		schedu		CO4	2015				
						solution to it	6 06	CO ₄	
		What are the requirements to critical section problem? Explain Peterson's solution to critical section problem.							2017
		-		<u> </u>	<u> </u>	n with semaphores.	05	CO4	
						ew of monitors	05	CO4	
3	1	method	ls to reco	ver from c	leadlock.	ons for deadlock? Explain different		CO5	2018
	2	Conside	er trie foll	owing sna	psnot of a	a system.	07	CO5	2018

											1					
			Allo	cati	ion	MA	Χ			ailabl						
									е		_					
			Α	В	С	Α	В	С	A C	В						
		Ро	0	0	2	0	0	4	1	0						
		P1	1	0	0	2	0	1			-					
		P2	1 5	3		1	3	7								
		P3	6	3	2	8	4	2								
		P4	1 3	4		1	5	7								
		Is the s	r the syster quest	n in fron	a "sa	ife st	ate"	?] 's algorithr) can the re	n: equest be gra	nted			
	3		are	the						s for	deadlock?	Explain diffe	erent	08	CO5	2017
	4	What i	s swa	appir	ng?	Does				e the c	perating s	ystems overh	ead?	08	CO ₅	2016
	5	Justify your answers What do you mean by fragmentation? Explain difference between internal and external fragmentation with neat diagrams.								ernal	08	CO ₅	2015			
	6	Explain basic method and hardware required for segmentation.									07	CO6	2017			
	7	Distinguish between: I) Logical versus physical address space ii) Paging versus segmentation. lii) First fit and best fit algorithms.									07	CO6	2016			
	8	Given t	the 5 and	men best	nory fit a	part	itior wors	ns of st fit	algo	rithm t		0K and 600K a 2K, 417K, 112K ory?		06	CO6	2015
4	1	Evolair	a tho	diffo	ront	I DI I	- 2 Dr	rovi	mati	20 D20	o roplacom	nent algorithm		06	CO7	2016
4	2		s pag	e fai	ult ?	With						the steps invo		06	CO7	2017
	3	Consid Calcula	ler t ate th	he ie nu	follo ımbe	wing er of	pag	e fau	ults w	/hen nu		7,0,1,2,0,3,0,4,2 ames is equal nms.		06	CO7	2016
	4	Explair												04	CO7	2018
	5	What two me			liffer	ent a	alloc	atio	n me	ethods	in disk? Ex	plain in detail	l any	06	CO8	2018
	6	What is												05	CO8	2018
	7							truct	ture.	Explair	n acyclic-gi	raph directory	and	07	CO8	2017
	8		ler t ate th	he ie nu	follo ımbe	wing er of	g p pag	e fau	ults w	/hen ni		7,0,1,2,0,3,0,4,2 ames is equal nms.		80	CO8	2017
5	1	Write a I) Swap ii) Revo	spac	ce m	ana	gem		5						80	CO9	2017
	2		suppo	ortin	g d	iagra			plain	linked	d and ind	lexed method	d of	08	CO9	2016
	3		n the	follo	wing			nedu	ıling	algorith	nm in brief:			08	CO9	2015
		_' , 5511	11/ 3	J/ (1 \	. 111	,	-11									

COURSE PLAN - CAY 2019-20

4	Explain in brief the selection of disk scheduling algorithm.	80	CO9	2018
5	Explain the Design principle of Linux.	80	CO10	2017
6	Explain the process management in Linux platform.	05	CO10	2015
7	Explain the interprocess communication mechanism in Linux.	07	CO10	2016
	List the different disk scheduling techniques, Explain any two scheduling, considering the following disk queue requests: 98,183,37,122,14,124,65,67.	08	CO10	2018
-	What is an access matrix? Explain the different methods of implementing access matrix.	80	CO10	2018
10	Explain bad-block recovery in disk.	08	CO10	2018