Ref No:

SRI KRISHNA INSTITUTE OF TECHNOLOGY BANGALORE

COURSE PLAN

Academic Year FEB 2019

Program:	B E – Computer Science Engineering
Semester :	4
Course Code:	18CS42
Course Title:	Design And Analysis of Algorithm
Credit / L-T-P:	4 / 4-0-0
Total Contact Hours:	50
Course Plan Author:	SHILPA

Academic Evaluation and Monitoring Cell

No. 29, Chimney hills, Hesaraghatta Road, Chikkabanavara BANGALORE-5600990, KARNATAKA , INDIA Phone / Fax :+91-08023721315/23721477 www.skit.org.in

Table of Contents

	4
1. Course Overview	4
2. Course Content	4
3. Course Material	
4. Course Prerequisites	
5. Content for Placement, Profession, HE and GATE	6
B. OBE PARAMETERS	6
1. Course Outcomes	6
2. Course Applications	
3. Mapping And Justification	
4. Articulation Matrix	
5. Curricular Gap and Content	
6. Content Beyond Syllabus	
C. COURSE ASSESSMENT	
1. Course Coverage	
2. Continuous Internal Assessment (CIA)	
D1. TEACHING PLAN - 1	
Module - 1	
Module – 2	
E1. CIA EXAM – 1	
a. Model Question Paper - 1	
b. Assignment -1	
	16
D2. TEACHING PLAN - 2	
Module – 3	16
Module – 3 Module – 4	16 17
Module – 3 Module – 4 E2. CIA EXAM – 2	
Module – 3 Module – 4 E2. CIA EXAM – 2 a. Model Question Paper - 2	
Module – 3 Module – 4 E2. CIA EXAM – 2 a. Model Question Paper - 2 b. Assignment – 2	
Module – 3 Module – 4 E2. CIA EXAM – 2 a. Model Question Paper - 2	
Module – 3 Module – 4 E2. CIA EXAM – 2 a. Model Question Paper - 2 b. Assignment – 2 D3. TEACHING PLAN - 3 Module – 5	
Module – 3 Module – 4 E2. CIA EXAM – 2 a. Model Question Paper - 2 b. Assignment – 2 D3. TEACHING PLAN - 3	
Module – 3 Module – 4 E2. CIA EXAM – 2 a. Model Question Paper - 2 b. Assignment – 2 D3. TEACHING PLAN - 3 Module – 5 E3. CIA EXAM – 3 a. Model Question Paper - 3	
Module – 3 Module – 4 E2. CIA EXAM – 2 a. Model Question Paper - 2 b. Assignment – 2 D3. TEACHING PLAN - 3 Module – 5 E3. CIA EXAM – 3 a. Model Question Paper - 3 b. Assignment – 3	
Module – 3 Module – 4 E2. CIA EXAM – 2 a. Model Question Paper - 2 b. Assignment – 2 D3. TEACHING PLAN - 3 Module – 5 E3. CIA EXAM – 3 a. Model Question Paper - 3 b. Assignment – 3 F. EXAM PREPARATION	16 17 18 18 19 22 22 22 24 24 24 24 24 24
Module – 3 Module – 4 E2. CIA EXAM – 2 a. Model Question Paper - 2 b. Assignment – 2 D3. TEACHING PLAN - 3 Module – 5 E3. CIA EXAM – 3 a. Model Question Paper - 3 b. Assignment – 3	16 17 18 18 19 22 22 22 24 24 24 24 24 24
Module – 3 Module – 4 E2. CIA EXAM – 2 a. Model Question Paper - 2 b. Assignment – 2 D3. TEACHING PLAN - 3 Module – 5 E3. CIA EXAM – 3 a. Model Question Paper - 3 b. Assignment – 3 F. EXAM PREPARATION 1. University Model Question Paper 2. SEE Important Questions	16 17 18 18 19 22 22 22 22 24 24 24 24 24 24 26 26 28
Module - 3 Module - 4 E2. CIA EXAM - 2 a. Model Question Paper - 2 b. Assignment - 2 D3. TEACHING PLAN - 3 Module - 5 E3. CIA EXAM - 3 a. Model Question Paper - 3 b. Assignment - 3 F. EXAM PREPARATION 1. University Model Question Paper 2. SEE Important Questions G. Content to Course Outcomes	16 17 18 18 19 22 22 22 24 24 24 24 24 24 24 24 24 24
Module – 3 Module – 4 E2. CIA EXAM – 2 a. Model Question Paper - 2 b. Assignment – 2 D3. TEACHING PLAN - 3 Module – 5 E3. CIA EXAM – 3 a. Model Question Paper - 3 b. Assignment – 3 F. EXAM PREPARATION 1. University Model Question Paper 2. SEE Important Questions	16 17 18 18 19 22 22 22 22 24 24 24 24 24 24 24 24 26 26 28 29 29

Note : Remove "Table of Content" before including in CP Book

Each Course Plan shall be printed and made into a book with cover page

Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	CS
Year / Semester :	2/4	Academic Year:	2019-20
Course Title:	Design and Analysis of Algorthim	Course Code:	17cs43
Credit / L-T-P:	4/L	SEE Duration:	180 Minutes
Total Contact Hours:	50	SEE Marks:	60 Marks
CIA Marks:	30	Assignment	5/5
Course Plan Author:	Shilpa	Sign	Dt:
Checked By:		Sign	Dt:
CO Targets	CIA Target : %	SEE Target:	%

Note: Define CIA and SEE % targets based on previous performance.

2. Course Content

Content \checkmark Syllabus of the course as prescribed by University or designed by institute. Identify 2 concepts per module as in G.

Mod	Content	Teachi	Identified Module	Blooms
ule		ng	Concepts	Learning
		Hours		Levels
1	Introduction: What is an Algorithm?(T2:1.1),Algorithm Specification (T2:1.2), Analysis Framework (T1:2.1), Performance Analysis: Space complexity, Time complexity (T2:1.3). Asymptotic Notations:Big-Oh notation (O), Omega notation (Ω),Theta notation (Θ), and Little-oh notation (o), Mathematical analysis of Non-Recursive and recursive Algorithms with Examples (T1:2.2, 2.3, 2.4).Important Problem Types:Sorting, Searching, String processing, Graph Problems, Combinatorial Problems. Fundamental Data Structures: Stacks, Queues, Graphs, Trees, Sets and Dictionaries . (T1:1.3,1.4)	(4, 6)	- Specification -Framework -Recurrence Notation -Mathematical Analysis	
	Divide and Conquer: General method, Binary search, Recurrence equation for divide and conquer, Finding the maximum and minimum (T2:3.1, 3.3, 3.4), Merge sort, Quick sort (T1:4.1, 4.2), Strassen's matrix multiplication (T2:3.8), Advantages and Disadvantages of divide and conquer. Decrease and Conquer Approach: Topological Sort. (T1:5.3)		-Sorting -Matrix Operation -Travesal method -Source Removal Methodology	
3	Greedy Method: General method, Coin Change Problem, Knapsack Probl em, Job sequencing with deadlines (T2:4.1, 4.3, 4.5). Minimum cost spanning trees: Prim's Algorithm, Kruskal's Algorithm (T1:9.1, 9.2). Single source shortest paths: Dijkstra's Algorithm (T1:9.3). Optimal Tree problem: Huffman Trees and Codes (T1:9.4).)Transform and Conquer Approach: Heaps and Heap Sort (T1:6.4		-Knapsack Problem -Sequencing -Spanning Tree -Shortest Path -Code Generation -Representation change -Sorting	
4	Dynamic Programming: General method with Examples, Multistage Graphs (T2:5.1, 5.2) . Transitive Closure: Warshall's Algorithm, All Pairs Shortest Paths: Floyd's Algorithm, Optimal Binary Search Trees, Knapsack problem ((T1:8.2, 8.3, 8.4), Bellman-Ford Algorithm (T2:5.4) , Travelling Sales Person problem (T2:5.9) , Reliability design (T2:5.8).		-Multistage graph -Transitive Closure -Shortest path -Negetive Edge Weight	

			-TSP Problem	
5	Backtracking: General method (T2:7.1), N-Queens problem	10	-State Space	
	(T1:12.1) , Sum of subsets problem (T1:12.1) , Graph coloring	(5, 3,2)	Tree	
	(T2:7.4) , Hamiltonian cycles (T2:7.5) . Branch and Bound:		-Subsets	
	Assignment Problem, Travelling Sales Person problem	1	Generation	
	(T1:12.2)0/1 Knapsack problem (T2:8.2, T1:12.2): LC Branch and		-Coloring of	
	Bound solution (T2:8.2) , FIFO Branch and Bound solution		Graphical	
	(T2:8.2) . classes (T2:11.1) . NP-Complete and NP Hard		-Cycle	
	problems: Basic concepts, non deterministic algorithms, P,		Identification	
	NP, NP-Complete, and NP-Hard		-Lower count	
			-assignment	
			-TSP	
			Deteministic	
			-NP,P Complete	
			Problem	
-	Total	50	-	-

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 – 30 minutes

2. Design: Simulation and design tools used – software tools used ; Free / open source

	arch: Recent developments on the concepts – publications in journals; co	onference	
Modul	Details	Chapters	Availability
es		in book	
Α	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
	T1.Introduction to the Design and Analysis of Algorithms, Anany Levitin:,	1,2,3,4,8,	In Lib / In Dept
	2rd Edition, 2009. Pearson.	9	
	T2.Computer Algorithms/C++, Ellis Horowitz, Satraj Sahni and	2,3,5,8,9	In Lib/ In dept
4, 5	Rajasekaran, 2nd Edition, 2014, Universities Press		
В	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
1, 2	1.Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronal L. Rivest, Clifford Stein, 3rd Edition, PHI	?	In Lib
	2.Design and Analysis of Algorithms , S. Sridhar, Oxford (Higher education)	?	Not Available
1, 0		?	In lib
С	Concept Videos or Simulation for Understanding	-	-
C1	www.tutorialspoint.com/design_and_analysis_of_algorithms		
C2	https://www.javatpoint.com/daa-tutorial		
C3	http://openclassroom.stanford.edu/MainFolder/CoursePage.php?		
-	course=IntroToAlgorithms		
C4	https://onlinecourses.nptel.ac.in/noc17_cs27/preview		
C5	https://www.khanacademy.org/computing/computer-science/ algorithms		
C6			
C7			
C8			
C9			
C10			
D	Software Tools for Design	-	-
	http://www.sciencehq.com/computing-technology/programming-		
	tools.html		
	http://www.sciencehq.com/computing-technology/programming- tools.html		
	1. And the second s		·

E	Recent Developments for Research	-	-
	http://www.niser.ac.in/~aritra/AWorkshop		
F	Others (Web, Video, Simulation, Notes etc.)	-	-
1	https://www.tutorialspoint.com/design_and_analysis_of_algorithms/		
	design_and_analysis_of_algorithms_p_np_class.htm		
?			

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Students must have learnt the following Courses / Topics with described Content

			<u> </u>			
Mod	Course	Course Name	Topic / Description	Sem	Remarks	Blooms
ules	Code					Level
1	17pcd13/	C Programing	1. Knowledge on Data Structures	2		Understa
	23					nd L2
2	17CS33	Data Structure	Knowledge of Algorithm	3		Understa
		and				nd L2
		Application				
3						
4						
-						
-						

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Mod	Topic / Description	Area	Remarks	Blooms
ules				Level
1			Gap	Understa
			A seminar on Electron Tubes &	nd L2
			amplifiers	
3				
3				
5				
-				
-				

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs. Identify a max of 2 Concepts per Module. Write 1 CO per Concept.

Mod	Course	Course Outcome	Teach.	Concept	Instr	Assessme	Blooms'
ules	Code.#	At the end of the course, student	Hours		Method	nt	Level
		should be able to				Method	
1	18CS42.1	understand a given algorithm and	3	Algorithm	Black	Test/	L2

		express its time and space complexities in asymptotic notations.		Properties	board ⁄system		Understand
1		Solve recurrence equations using Iteration Method, Recurrence Tree Method and Master's Theorem	7	Recurrenc e strategy	Black board ⁄system		L4 Analyze
2	18CS42.3	Analyze time efficiency of algorithms using Divide and Conquer Strategy.	8	Divide and Conquer	Black board ⁄system		L4 Analyze
2		Analyze algorithms using Decrease and Conquer Strategy.	2	Decrease and Conquer	Black board ⁄system		L4 Analyze
3	18CS42.5	solve Optimization problems using Greedy strategy.	9	Optimizatio n	Black board ⁄system		L4 Analyze
3		solve Optimization problems using transform and conquer strategy.	1	Instance Transforma tion	Black board ⁄system	Test/ assignme nts	L4 Analyze
4	18CS42.7	Distinguish Dynamic Programming and Greedy Strategies.	10	Dynamic Programmi ng	Black board ⁄system	Test/ assignme nts	L4 Analyze
4	18CS42.8	Test the efficient algorithms using Back Tracking for solving problems.	3	Back tracking	Black board ⁄system	Test/ assignme nts	L4 Analyze
5	18CS42.9	Differentiate Branch Bound with Back tracking for solving problems.	3	Branch and Bound			L4 Analyze
5		examine computational problems into P, NP, NP-Hard and NP- complete	4	Computati onal problem	Black board ⁄system	Test/ assignme nts	L3 Apply
-	-	Total	50	-	-	-	L2-L4

2. Course Applications

Write 1 or 2 applications per CO.

Students should be able to employ / apply the course learnings to ...

Mod	Application Area	CO	Level
ules	Compiled from Module Applications.		
1	Database Management	CO1	L2
1	Web Design	CO2	L4
2	Traffic Management	CO3	L4
2	Big data ,	CO4	L4
3	Data Science	CO5	L4
3	Optimized Telecommunications Routing	CO6	L4
4	Biometric Invention	CO7	L4
5	Genetic Algorithms	CO8	L4
5	Data Compression	CO9	L4
5	Resource Allocation	CO10	L3

3. Mapping And Justification

CO – PO Mapping with mapping Level along with justification for each CO-PO pair.

To attain competency required (as defined in POs) in a specified area and the knowledge & ability required to accomplish it.

Mod	Мар	Mapping Mapping		Justification for each CO-PO pair						
ules			Level		el					
-	СО	PO	-	'Area': 'Competency' and 'Knowledge' for specified 'Accomplishment'	-					
1	17CS	PO1	3	As the students could just define the knowledge acquired	L2					
	43.1									
1	17CS	PO2		Knowledge of algorithm analysis methods helps students in problem	L2					

	43.1			analysis	
1	17CS 43.1	PO3	1	Knowledge of algorithm analysis is the first step in developing solutions	L2
	43.1 17CS 43.1	PO4		This knowledge is the basis of conducting investigations of complex problems	L2
2	17CS	PO12		Learning is required as technology changes	L2
2	43.1 17CS 43.2	PO3		Complexity analysis of the engineering solutions will help students to design and develop sustainable solutions.	L4
2	43.2 17CS 43.2	PO4		A complexity analysis of the engineering solutions provide Information to provide valid conclusions	L4
	17CS 43.2	PO12		Learning is required as technology changes	L4
	17cs 43.3	PO3		Choosing an appropriate problem solving method helps students during the design and development of solutions.	L4
	43.3	PO5		A knowledge in the problem solving methods will help the students to choose the best method to solve a problem	L4
	17cs 43.3	PO12		Learning is required as technology changes	L4
	17cs 43.4	PO3		Knowledge of algorithm analysis is the first step in developing solutions	L2
	17cs 43.4	PO5		A knowledge in the problem solving methods will help the students to choose the best method to solve a problem	L4
5	17cs 43.4	PO12		Learning is required as technology changes	L4
5	17cs 43.5	PO1		As the students could just define the knowledge acquired	L4
5	17CS 43.5	PO2		Knowledge of algorithm analysis methods helps students in problem analysis	· ·
	17cs 43.5	PO3		Knowledge of algorithm analysis is the first step in developing solutions	L4
	17cs 43.5	PO12		Learning is required as technology changes	L4
	17CS 43.6	PO1		As the students could just define the knowledge acquired	L4
	17cs 43.6	PO2		Knowledge of algorithm analysis methods helps students in problem analysis	L4
	17cs 43.6	PO3		Knowledge of algorithm analysis is the first step in developing solutions	L4
	17cs 43.6	PO12		Learning is required as technology changes	L4
	17cs 43.7	PO3		Knowledge of algorithm analysis is the first step in developing solutions	L4
	17cs 43.7	PO4		This knowledge is the basis of conducting investigations of complex problems	L4
	17cs 43.7	P12		Learning is required as technology changes	L4
	17cs 43.8	PO1		As the students could just define the knowledge acquired	L4
	17cs 43.8	PO2		Knowledge of algorithm analysis methods helps students in problem analysis	L4
	17cs 43.8	PO3		Knowledge of algorithm analysis is the first step in developing solutions	L4
	17cs 43.8	PO4		This knowledge is the basis of conducting investigations of complex problems	L4
	17cs 43.8	PO5		A knowledge in the problem solving methods will help the students to choose the best method to solve a problem	L4
	17cs 43.8	PO12		Learning is required as technology changes	L4

17CS	PO1	As the students could just define the knowledge acquired	L3
43.9			
17CS	PO2	Knowledge of algorithm analysis methods helps students in problem	L3
43.9		analysis	
17CS	PO3	Knowledge of algorithm analysis is the first step in developing solutions	L3
43.9			
17CS	PO4	This knowledge is the basis of conducting investigations of complex	L3
43.9		problems	
17CS	PO12	Learning is required as technology changes	L3
43.9			
17CS	PO1	As the students could just define the knowledge acquired	L3
43.10			

4. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

			· •	10 0.	, .						<u> </u>				•			
-	_	Course Outcomes									utco							-
Mod	CO.#		PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	Lev
ules		student should be able to	1	2		4	5	6	7	8	9	10	11			02	03	el
1	18CS42.1	Analyze a given algorithm and	2.4	1.8	2.6	2.5	-	-	-	-	-	-	-	2.8	-	-	-	L2
		express its time and space																
		complexities in asymptotic																
		notations.																
1	18CS42.2	Solve recurrence equations	-	-	2.6	2.5	-	-	-	-	-	-	-	2.8	-	-	-	L4
		using Iteration Method,																
		Recurrence Tree Method and																
		Master's Theorem																
2	18CS42.3	Classify the Problem using	-	-	2.6	-	2.2	-	-	-	-	-	-	2.8	-	-	-	L4
		Divide and Conquer Strategy.					5											
2		Analyze algorithms using	-	-	2.6		2.2						-	2.8	-	-	-	L4
		Decrease and Conquer Strategy.					5											
3		Compare Optimization problems	2.4	1.8	2.6	-	-	-	-	-	-	-	-	2.8	-	-	-	L4
		using Greedy strategy.																
3		Analyze Optimization problems		2.4	2.6								-	2.8	-	-	-	L4
		using transform and conquer																
		strategy.																
4		Differentiate Dynamic		-	2.6	2.5	-	-	-	-	-	-	-	2.8	-	-	-	L4
		Programming and Divide and																
		Conquer Strategies.																
4	•	Analyze efficient algorithms		1.8	2.6	2.5	2.2	-	-	-	-	-	-	-	-	-	-	L4
		using Back Tracking and Branch					5											
		Bound Techniques for solving																
		problems.																
5		Analyze efficient algorithms		1.8	2.6	2.5							-	-	-	-	-	L3
		using Branch Bound Techniques																
		for solving problems.																
5		classify computational problems	2.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	L3
		into P, NP, NP-Hard and NP-																
		complete																
-		Average attainment (1, 2, or 3)				<u> </u>			,					L				-
-		1.Engineering Knowledge; 2.Prob																
		4.Conduct Investigations of Compl																
		Society; 7.Environment and Su																
		10.Communication; 11.Project N												2-10	ng	Le	earr	ning;
		S1.Software Engineering; S2.Data E	sase	e M	ana	iger	nen	ι, 5	3. W	ep	Des	ign						

5. Curricular Gap and Content

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.ModGap TopicActions PlannedSchedule PlannedResources PersonPO Mapping

ules					
1	Substitution method	Assignment	Given	_	3,4
2	Stress en's Matrix	Assignment	Given	_	3,4
3					
4					
5					

6. Content Beyond Syllabus

Topics & contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Mod ules	Gap Topic	Area	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1	Examples of NP Hard, NP Complete problems.	Extra Classes		Concern Faculty		List from B4 above
1	•					
2						
2						
3						
3						
4						
4						
5						
5						

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Mod	Title	Teach.			f quest				CO	Levels
ules	inte	Hours						SEE		LUVUUS
utes		TIOUIS	CIA-1	CIA-2	CIA-3	Asy		SEE		
							Asg			
	Definition,specification,framework,	10	2	-	-	1	1	4	CO1,CO2	L2,L4
	Asymptotic notation,problem types									
2	Divide and Conquer,Decrease and	10	2	-	-	1	1	4	CO3,CO4	L4
	conquer									
3	Greedy method ,Transform and	10	-	2	-	1	1	4	CO5,CO6	L4
	conquer approach								_	_
4	Dynamic Programming	10	-	2	-	1	1	4	CO7	L4
5	Backtracking,Branch and	10	-	-	4	1	1	3	CO8,CO9,C	L4,L3,L
	Bound,Knapsack problem,NP-								O10	3
	Complete and NP-Hard Problem									
-	Total	50	4	4	4	5	5	19	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Evaluation Weightage in Marks CO Levels

Copyright ©2017. cAAS. All rights reserved.

Final CIA Marks	40	-	-
Assignment - 3	10	CO8,CO9,CO10	L3, L4
Assignment - 2	10	CO5, CO6, CO7	L3, L4
Assignment - 1	10	CO1, CO2, CO3, CO4	L2, L3, L4
CIA Exam – 3	30	CO8,CO9,CO10	L3, L4
CIA Exam – 2	30	CO5, CO6, CO7	L3, L4
CIA Exam – 1	30	CO1, CO2, CO3, CO4	L2, L3, L4

D1. TEACHING PLAN - 1

Module – 1

Title:	Introduction to Algorithm and recurrence Method	Appr Time:	10 Hrs
а	Course Outcomes	TITIE.	Blooms
- -	Students will be able	_	Level
1	To Analyze a given algorithm and express its time and space complexities		Level L2
T	in asymptotic notations.		
2	To Solve recurrence equations using Iteration Method, Recurrence Tree	_	L4
-	Method and Master's Theorem		— 1
b	Course Schedule	-	_
lass N	o Module Content Covered	СО	Level
1	What is an Algorithm?Algorithm Specification	CO1	L2
2	,Analysis Framework	CO1	L2
3	Performance Analysis: Space complexity,	CO1	L2
4	Time complexity	CO1	L2
5	Asymptotic Notations:Big-Oh notation (O), Omega notation (Ω), Theta notation (Θ), and Little-oh notation (o),	CO2	L3
6	Mathematical analysis of Non-Recursive with Examples	CO2	L4
7	recursive Algorithms with Examples .	CO2	L4
8	Important Problem Types:Sorting, Searching, String processing, Graph Problems, Combinatorial Problems.	CO1	L3
9	Fundamental Data Structures: Stacks, Queues,	CO1	L3
10	Graphs, Trees, Sets and Dictionaries.	CO1	L3
с	Application Areas	со	Level
1	Able to Analyze a given algorithm and express its time and space complexities	CO1	L2
2	Able to Solve recurrence equations	CO2	L4
d	Review Questions	-	-
1	Define best case, worst case and average case efficiency. Give these efficiencies for sequential search.	CO1	L2
2	Briefly explain important fundamental data structures used in algorithm design.	CO1	L2
3	Describe basic efficiency classes. (9 points)	CO1	L2
4	Briefly explain the important problem types coming under design and analysis of algorithms.	CO2	L4
5	Explain three asymptotic notations with a neat diagram. Prove n2+ 5n + 7 = $\Theta(n_2)$	CO2	L3
е	Experiences		
1			
2			
3			

Module – 2

Title:	Divide and Conquer Technique	Appr Time:	10 Hrs
a	Course Outcomes	_	Blooms
-	The student should be able to:	-	Level
1	Design algorithms using Divide and Conquer Strategy.		L4
2			
b	Course Schedule		_
	D Module Content Covered	со	Level
11	Divide and Conquer: General method,	CO3	L4
12	Binary search,	CO3	L4
13	Recurrence equation for divide and conquer,	CO3	L4
14	Finding the maximum and minimum	CO3	L4
15	Merge sort,	CO3	L4
16	Quick sort ,	CO3	L4
17	Strassen's matrix multiplication	CO3	L4
18	Advantages and Disadvantages of divide and conquer	CO3	L4
19	Decrease and Conquer Approach:	CO3	L4
20	Topological Sort.	CO3	L4
с	Application Areas	со	Level
1	Able to design algorithms using Divide and Conquer Strategy.	CO3	L4
d	Review Questions	-	-
6	Find the upper bound of recurrences given below by substitution method. i) $T(n) = 2 T(n/2)+n$ ii) $T(n) = T(n/2) + 1$	CO3	L4
7	Briefly explain binary search algorithm along with efficiency analysis	CO3	L4
7 8		CO3 CO3	L4 L4
	Briefly explain binary search algorithm along with efficiency analysis Write the algorithm for Merge Sort. Derive the time efficiency of the	-	
8	Briefly explain binary search algorithm along with efficiency analysis Write the algorithm for Merge Sort. Derive the time efficiency of the algorithm.	CO3	L4
8	Briefly explain binary search algorithm along with efficiency analysisWrite the algorithm for Merge Sort. Derive the time efficiency of the algorithm.State and apply Master theorem applicationSort the following elements using merge sort. Write the recursion tree. 70, 20, 30, 40, 10, 50, 60 Twisted : Use D & C method which divides	CO3 CO3	L4 L3
8 9 10	 Briefly explain binary search algorithm along with efficiency analysis Write the algorithm for Merge Sort. Derive the time efficiency of the algorithm. State and apply Master theorem application Sort the following elements using merge sort. Write the recursion tree. 70, 20, 30, 40, 10, 50, 60 Twisted : Use D & C method which divides problem size by considering position 	CO3 CO3	L4 L3
8 9 10 e	 Briefly explain binary search algorithm along with efficiency analysis Write the algorithm for Merge Sort. Derive the time efficiency of the algorithm. State and apply Master theorem application Sort the following elements using merge sort. Write the recursion tree. 70, 20, 30, 40, 10, 50, 60 Twisted : Use D & C method which divides problem size by considering position 	CO3 CO3	L4 L3
8 9 10 e 1	 Briefly explain binary search algorithm along with efficiency analysis Write the algorithm for Merge Sort. Derive the time efficiency of the algorithm. State and apply Master theorem application Sort the following elements using merge sort. Write the recursion tree. 70, 20, 30, 40, 10, 50, 60 Twisted : Use D & C method which divides problem size by considering position 	CO3 CO3	L4 L3
8 9 10 e 1 2	 Briefly explain binary search algorithm along with efficiency analysis Write the algorithm for Merge Sort. Derive the time efficiency of the algorithm. State and apply Master theorem application Sort the following elements using merge sort. Write the recursion tree. 70, 20, 30, 40, 10, 50, 60 Twisted : Use D & C method which divides problem size by considering position 	CO3 CO3	L4 L3

E1. CIA EXAM – 1

a. Model Question Paper – 1

Crs	Code:	17CS43	Sem:	IV	Marks:	30	Time:	75 minute	S		
Cou	rse:	Design and Analysis of Algorithms									
-	-	Note: Answ	lote: Answer any 2 questions, each carry equal marks.								
1	a	Compare th	Compare the orders of growth of following functions								
		i) (½) n (n-1)	and n								

		ii) 3n+2 and n			
	b	Explain the mathematical analysis of fibonacci recursive algorithm. Write Bruteforce string matching algorithm.	10	CO2	L4
				0.01	
2	a	Explain the asymptotic notations with examples.	5	CO2	L3
	b	Write an algorithm for selection sort. Analyze its efficiency	10	CO2	L4
3	а	Sort the following elements using merge sort. Write the recursion tree. 70, 20, 30, 40, 10, 50, 60 Twisted : Use D & C method which divides problem size by considering position	9	CO3	L4
	b	what is divide and conquer? Explain the general method of divide and conquer.	6	CO3	L4
4	a	Write a algorithm for Quick sort, and sort the following number's 10, 8, 5, 15, 25, 75, 12. Obtain its time complexity. (10 Marks)	9	CO3	L4
	b	Write the algorithm for sequential search, obtain the time complexity of this algorithm for successful and unsuccessful search in the worst case and best case. (04 Marks)	6	CO3	L4

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

				Mod	el Assignme	nt Questions				
Crs C	code:	17CS43	Sem:	IV	Marks:	5 / 10	Time:	90 - 120	minute	S
	Course: Design and Analysis of Algorithms									
	lote: Each student to answer 2-3 assignments. Each assignment carries equal ma									1
SNo		USN Assignment Description						Marks	со	Leve
1	1KT17	7CS001	Describe bas	sic efficier	icy classes. (9 points)		5	CO1	L2
2	1KT17	7CS002	Briefly expla design and a			em types co	ming under	6	CO2	L4
3	1KT17	T17CS003 Consider Tower of Hanoi puzzle. Derive the recurrence relation for the total movement of disk. Solve the recurrence relation using substitution method						CO2	L4	
4	1KT17	7CS004		Write the algorithm for Quick Sort. Derive the best case, worst case, average case time efficiency of the algorithm					CO3	L4
5	1KT17	7CS005	What is an algorithm? Explain the notion of algorithm with an example.					n 10	CO3	L4
6	1KT17	7CS006	Find gcd(31415, 14142) by applying Euclid's algorithm. Estimate how many times it is faster when compared to the algorithm based on consecutive integer checking. (04 Marks)					4	CO3	L4
7	1KT17	7CS007	Compare	the order	of growth	of $\frac{1}{2}$ n(n -	1) and n ² .	4	CO3	L4

		Find the upper bound of recurrences given below by substitution method. i) $2T\left(\frac{n}{2}\right) + n$ ii) $T\left(\frac{n}{2}\right) + 1$			
8	1KT17CS008		4	CO3	L4
9	1KT17CS009	write an algorithm for merge sort. Analyze its efficiency.	7	CO3	L4
10		Apply quick sort on following list and draw recursive call tree : 5, 3, 1,9, 8,2, 4,7	10	CO3	L4
11	1KT17CS011	Write the algorithm for quick sort. Derive the worst case time efficiency of the algorithm.	10	CO3	L4

D2. TEACHING PLAN - 2

Module – 3

Title:	Greedy Techqunic	Appr Time:	10 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Solve Optimization problems using Greedy strategy.	CO4	L4
2			
b	Course Schedule	-	-
Class N	oModule Content Covered	CO	Level
21	General method, Coin Change Problem,	CO4	L2
22	Knapsack Problem,	CO4	L3
23	Job sequencing with deadlines	CO4	L4
24	Minimum cost spanning trees:Prim's Algorithm,	CO4	L4
25	Kruskal's Algorithm	CO4	L4
26	Single source shortest paths:Dijkstra's Algorithm	CO4	L4
27	Optimal Tree problem:	CO4	L4
28	Huffman Trees and Codes	CO4	L4
29	Transform and Conquer Approach		
30	Heaps and Heap Sort		
с	Application Area		
1	Able to solve Optimization problems using Greedy strategy.	CO4	L4
2			
d	Review Questions		
	Introduction		
11	Define Optimal solution and feasible solution.	CO4	L2
12	Define Coin Change Problem. State the greedy method to solve the coin change problem. For 49 rupees, find the denominations with least no. of	CO4	L4
	coins. The available denominations in rupees are { 1, 2, 5, 10} Job Sequencing		
14	What is the solution generated by the function job scheduling (JS) when $n = 5$,		
	$[P_1, P_2, P_3, P_4, P_5] = [20, 15, 10, 5, 1]$ and	CO4	L4
	$[d_1, d_2, d_3, d_4, d_5] = [2, 2, 1, 3, 3]$		

	Knapsack Problem		
16	What is a knapsack problem? Obtain solution for the knapsack problem using greedy method for $n = 3$, capacity $m = 20$ values 25, 24, 15 and weights 18, 15, 10 respectively.	CO4	L4
	MST		
17	Write a Kruskal algorithm to find minimum cost spanning tree and obtain spanning tree of the graph shown below: $ \begin{array}{c} 08 \text{ Marks} \\ 6 & 2 \\ 6 & 2 \end{array} $	CO4	L4
18	Apply PRIMS algorithm for the following graph to find minimum spanning tree.	CO4	L4
19	Write Krushkal 's algorithm to construct minimum spanning tree and show that the time efficiency isO($ \in \log \in $)	CO4	L4
20	Apply Kruskal's algorithm to find the min spanning tree of the graph.	CO4	L4
21		CO4	L4
	Using Prim's algorithm, determine minimum cost spanning tree for the following graph 5 fig. Q3(b) Fig. Q3(c) Fig. Q3(c)		

	Using Prim's algorithm, determine minimum cost spanning tree for the weighted graph 7 shown below, fig.Q.3(b): (07 Marks) (07 Marks) (07 Marks)		
	· 6		
	Dijiktra's Algorithm		
	Write the dijiktra's algorithm for single source shortest path	CO4	L4
24	Write Dijkstra's shortest path algorithm. Apply Dijkstra's algorithm on Fig. Q3(b) to obtain a shortest paths. (10 Marks)	CO4	L4
25	In the weighted digraph given below, fig.Q.3(c) determine the shortest paths from vertex 1 to all other vertices. (06 Marks)	CO4	L4
	Apply Dijikras algorithm to find single source shortest path. Consider source vertes as a) 1 b) 5 $3 \frac{2}{4} \frac{4}{5} \frac{3}{5} \frac{6}{5} \frac{6}{5}$	CO4	L4
	Huffman's coding	00	
27	Construct the Huffman code for the following data.	CO4	L4
	symbol A B C D		
	Also i) encode DAD. ii) Decode 1001101101101		
	Heaps and Heapsort	00	
28	Construct a heap for the list 1, 8, 6, 5, 3, 7, 4 by the bottom-up algorithm. Sort the array 2, 9, 7, 6, 5, 8 by heapsort.	CO4 CO4	L4
29	5011 the diray 2, 9, 7, 0, 5, 0 by fiedpsort.	004	L4
	Experiences	-	-
1 2			
3			

Module – 4

Title:	Dynamic Programming Technique	Appr Time:	10 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Compare Dynamic Programming and Divide and Conquer Strategies.	CO5	L4
2			
	Course Schedule Module Content Covered	- CO	- Level
31	Dynamic Programming: General method with Examples, Multistage Graphs	CO5	L2
32	Transitive Closure:	CO5	L4
33	Warshall's Algorithm,	CO5	L4
34	All Pairs Shortest Paths:	CO5	L4
35	Floyd's Algorithm,	CO5	L4
36	Optimal Binary Search Trees,	CO5	L4
37	Knapsack problem	CO5	L4
38	Bellman-Ford Algorithm	CO5	L3
39	Travelling Sales Person problem		
40	Reliability design		
С	Application Areas	CO	Level
1	Able to compare Dynamic Programming and Divide and Conquer Strategies.	CO5	L4
2			
d	Review Questions	-	-
	Introduction		
30	Briefly explain how dynamic programming works.	CO5	L2
21	Multistage Graph Find the shortest path from A to L , in the following multistage graph,	COF	
31	using dynamic programming. Use forward approach to solve the prob lem.	CO5	L5
	V1 V2 V3 V4 V5 $\begin{array}{cccccccccccccccccccccccccccccccccccc$		
	Transitive Closure - Warshalls Algorithm		<u> </u>
32	Generate Transitive Closure for the given graph	CO5	L5
	$ \begin{array}{c} $		
33	Explain warshall algorithm to find the transitive closure of a directed graph. Apply this algorithm to the graph given below. (08 Marks)	CO5	L5

е	Experiences	
1		
2		
3		
4		
5		

E2. CIA EXAM – 2

a. Model Question Paper – 2

Crs C	Code:	17CS43 Sem: IV Marks: 30 Time: 75 r	minutes	5	
Cour		Design and Analysis of Algorithms			
-		Note: Answer any 2 questions, each carry equal marks.	Marks	CO	Level
1	a	Obtain the optimal solution for the job sequencing problem with deadline, where $n = 4$ profit $(P_1, P_2, P_3, P_4) = (100, 10, 15, 27)$ and dead lines $(d_1, d_2, d_3, d_4) = (2, 1, 2, 1)$. (04 Marks)	4		
		Define MST. Apply PRIMS and KRUSKAL algorithm for the following graph to get MST. Show the intermediate steps.	11		
2	а	Explain the concepts of greedy technique for prim's algorithm. Obtain minimum cost spanning tree for the graph whose weight matrix is given below $\begin{bmatrix} 0 & 3 & \infty & 7 & \infty \\ 3 & 0 & 4 & 2 & \infty \\ \infty & 4 & 0 & 5 & 6 \\ 7 & 2 & 5 & 0 & 4 \\ \infty & \infty & 6 & 4 & 0 \end{bmatrix}$ (08 Marks)	7		
	b	Explain the concept of greedy technique for Prim's algorithm. Obtain minimum cost spanning tree for the graph below Prim's algorithm. (09 Marks)	8		
3		Find the shortest path from S to T inthe following multistage graph using dynamic programming. Use forward approach to solve the prob lem	8		
	b	Generate Transitive Closure for the given graph	7		
18CS4	42	Copyright ©2017. cAAS Page # 17 / 29	5. All right	ts reser	, ved.

	С			
	d			
4	a	Explain warshall algorithm to find the transitive closure of a directed graph. Apply this algorithm to the graph given below. (08 Marks)	8	
	b	Write Warshall's-Floyd Algorithm	7	
	С			
	d			

b. Assignment – 2

Note: A distinct assignment to be assigned to each student.

				Mod	lel Assignme	nt Questions	5			
Crs C	ode:	17CS43	Sem:	IV	Marks:	5 / 10	Time:			
Cours	se:	Design a	and Analysis	of Algorith	hms					
Note:	Each	student	to answer 2-	3 assignm	nents. Each a	ssignment c	arries equal mai	rk.		_
SNo		USN		Ass	signment De	scription		Marks	со	Level
1	1KT17	7CS001	getting the	optimal		oins availab	edy strategy for le are of values) 55 b)77			
2	1KT17	7CS002	What is job sequence of the se	adlines for 7 jol	adline problem? Fi bs given profits 3, 5	nd solution genera 5, 20, 18, 1, 6, 30	ted by job sequencing and deadlines 1, 3, 4, (06 Marks)	6		
3	1KT17	7CS003		um cost spannin	-c / w	's and Kruskal's al	gorithm on Fig. Q3(a). (10 Marks)	10		

4	1KT17CS004	Define minimum cost spanning tree. Give high level description of Prim's algorithm to find 8 minimum spanning tree and find minimum spanning tree for graph shown in Fig.Q3(b) using Prim's algorithm. (08 Marks)	8	
5	1KT17CS005	Solve the following single source shortest path problem assuming vertex 5 as the source. (09 Marks) 20 15 20 10 35 20 4.5 35 35 35 20 4 35 35 35 35 4 35 35 35 35 35 35 35 35	9	
6	1KT17CS006	Construct a Huffman code for the following data:	10	
		symbol A B C D _		
		frequency 0.4 0.1 0.2 0.15 0.15		
		Encode ABACABAD using the code. Decode 100010111001010		
7	1KT17CS007	Sort the following lists by heapsort by using the array representation of heaps. 5, 2, 4, 1, 3 (in increasing order)	8	
8	1KT17CS008	Find the shortest path from A to L , in the following multistage graph, using dynamic programming. Use forward approach to solve the problem	10	
		V1 V2 V3 V4 V5		
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
9	1KT17CS009	Explain dynamic programming. Find transitive closure using Warshall's algorithm for the digraph $O_{4}(a)$	6	
		digraph Q4(a). (06 Marks)		
		a to		
		Cx		
	1KT17CS010			
11 12	1KT17CS011			
12				

D3. TEACHING PLAN - 3

Module – 5

Title:	Backtracking,Branch and Bound,P,NP-Hard	Appr Time:	10 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Design efficient algorithms using Back Tracking and Branch Bound Techniques for solving problems.		L\$
2	Classify computational problems into P, NP, NP-Hard and NP-complete		L3
3			
b	Course Schedule	-	-
Class No	Module Content Covered	CO	Level
41	Backtracking: General method , N-Queens problem.		
42	Sum of subsets problem , Graph coloring Hamiltonian cycles.		
43	Branch and Bound: Assignment Problem,		
44	Travelling Sales Person problem		
45	0/1 Knapsack problem LC Branch and Bound solution ,		
46	FIFO Branch and Bound solution		
47	NP- Complete and NP-Hard problems: Basic concepts,		
48	non-deterministic algorithms, P, NP,		
49	NP-Complete, and NP-Hard classes		
50			
с	Application Areas	СО	Level
1	Able to design efficient algorithms using Back Tracking and Branch Bound Techniques	CO6	L4
2	Able to classify computational problems into P, NP, NP-Hard and NP- complete	CO7	L3
d	Review Questions	-	-
34	What is backtracking. Give the general Procedure.		
35	Apply backtracking to solve the 3-cloring problem for the graph given below.		
36	Apply the backtracking to the problem of finding Hamiltonian cycle in the following graphs		
37	What branch and bound method. How it is different from backtracking.		
38	Apply the branch – and -bound algorithm to solve the travelling sales man problem for the following graph. Start city is a. Give the states pace tree		

			3 5 4 2 0		9			
39		anch and Bound olem to get the o						
		Item No.	1	2	3	4		
		Weight	2	4	6	9		
		Value	10	10	12	18		
е	Experiences						 	
1 1								
2								
3								
4								
5								

E3. CIA EXAM – 3 a. Model Question Paper – 3

Crs Co		17CS43	Sem:	IV	Marks	30	Time:	75 minute	s	
Cours	se:	Design and	d Analys	is of Algoi	rithms					
-	-	Note: Ansv	wer any	2 questio	ns, each carr	y equal ma	ırks.	Marks	CO	Level
1	а				t of n-queen: state space ti		Explain the solution	on 6		
	b				the following 1. Draw the sta		f the subset-sum ree.	9		
2	a						for the graph given 3 valid assignments			
	b	Give the Hamiltonia				n to the	problem of findi	ng 5		
3	a		nt proble	em to find		Job 4 8 Pe 7 Pe 8 Pe	lowing instance re the complete sta rson a rson b rson c rson d			
	b	Apply the problem f		and- bou	nd algorithm t	o solve the	e travelling sales m	an 6		
18CS42	2			\sim	10	5	yright ©2017. c	AAS. All righ	ıts resei	rved.

C

		C 11 1										
		following	graph. Consider	start cit	y is A. C	live the	state s	space t	ree.			
	С											
	d											
4	а	With the	help of a state	space	tree, s	solve th	ne follo	owing i	nstance	e of	10	
			problem by									
		Capacity W = 15										1
			· ±J	-			-			,		
			Item No.	1	2	3	4	5	6]		
				1 5	2	3	4	5	6			
			Item No. Weight		7	2	4	5	6 1 2			
			Item No.	1 5 40	-				6 1 2			
	b		Item No. Weight Value	40	7 35	2	4	5	6 1 2		5	
	b	Explain th	Item No. Weight Value e following with	40	7 35	2	4	5	6 1 2	-	5	
	b	Explain th a. Class P	Item No. Weight Value e following with Problems	40	7 35	2	4	5	6 1 2		5	
	b	Explain th a. Class P b. Class NI	Item No. Weight Value e following with Problems Problems	40	7 35	2	4	5	6 1 2	-	5	
	b	Explain th a. Class P I b. Class NI c. NP com	Item No. Weight Value e following with Problems Problems plete problem	40	7 35	2	4	5	6 1 2		5	
		Explain th a. Class P b. Class NI	Item No. Weight Value e following with Problems Problems plete problem	40	7 35	2	4	5	6 1 2		5	
	b	Explain th a. Class P I b. Class NI c. NP com	Item No. Weight Value e following with Problems Problems plete problem	40	7 35	2	4	5	6 1 2		5	

b. Assignment – 3

Note: A distinct assignment to be assigned to each student.

				Model	Assignr	nent Q	uestion	S				
Crs C	ode:	17CS43	Sem:	1	Marks:	30	0	Time:				
Cours	se:	Design a	and Analy	sis of Algorithm	IS							
Note	Each	student	to answe	r 2-3 assignmer	nts. Each	n assigr	nment c	arries ec	qual mai	rk.		
SNo		USN			nment					Marks	СО	Level
1	1KT17	7CS001		oacktracking co for S = {6,5,3,7}						10		
2	1KT17	7CS002		e backtracking he following gra		oroblen	n of finc	ling Harr	niltoniar	6		
3	1KT17	7CS003	How br backtrac		ound a	algorith	ım is	differen	t from	5		
4	1KT17	7CS004	instance	help of a sta of Knapsack n. Knapsack Cap	problen	n by t						
				Item No.	1	2	3	4				
				Weight	4	7	5	3				
				Value	40	42	25	12				
5	1KT17	7CS005										
6	1KT17	7CS006										
7	1KT17	7CS007										

8	1KT17CS008		
9	1KT17CS009		
10	1KT17CS010		
11	1KT17CS011		

F. EXAM PREPARATION

1. University Model Question Paper

Coui Crs (Code:	Design and Analysis of Algorithms Mont 17CS43 Sem: I Marks: 100 Time:	n / Year	180 m	
-		Answer all FIVE full questions. All questions carry equal marks.	Marks		Leve
1	a	Compare the orders of growth of following functions i) (½) n (n-1) and n ii) 3n+2 and n	8		
	b	Explain the mathematical analysis of fibonacci recursive algorithm. Write Bruteforce string matching algorithm.	12		
	с				1
	d				-
-	a	Explain the asymptotic notations with examples.	10		
	b	Write an algorithm for selection sort. Analyze its efficiency	10		+
	С				
	d				
2	а	Sort the following elements using merge sort. Write the recursion tree. 70, 20, 30, 40, 10, 50, 60 Twisted : Use D & C method which divid problem size by considering position	es 10		
	b	what is divide and conquer? Explain the general method of divide and conquer.	10		
	С				
	d				
-	а	Write the algorithm for sequential search, obtain the time complexity of this algorithm f successful and unsuccessful search in the worst case and best case. (04 Mark	or		
	b	Write a algorithm for Quick sort, and sort the following number's 10, 8, 5, 15, 25, 75, Obtain its time complexity. (10 Mar			
	С				
	d				
3	а	Obtain the optimal solution for the job sequencing problem with deadline, where $n = 4$ profit $(P_1, P_2, P_3, P_4) = (100, 10, 15, 27)$ and dead lines $(d_1, d_2, d_3, d_4) = (2, 1, 2, 1)$. (04 Marks)	6		
	b	Define MST. Apply PRIMS and KRUSKAL algorithm for the following graph to get MST. Show the intermediate steps.	14		
18CS	42	Copyright ©2017. cA	AS. All right	ts reserv	red.

-	a	Explain the concepts of greedy technique for prim's algorithm. Obtain minimum cost	10	
		spanning tree for the graph whose weight matrix is given below $\begin{bmatrix} 0 & 3 & \infty & 7 & \infty \end{bmatrix}$		
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
		$\infty \propto 6 4 0$		
			10	
	b	Explain the concept of greedy technique for Prim's algorithm. Obtain minimum cost spanning tree for the graph below Prim's algorithm. (09 Marks)	10	
		A-ZSAiksha.		
		20 %		
		2. 70/ 3 A		
		50 80		
		(3) 30		
	с			
	d			
4	а	Find the shortest path from S to T inthe following multistage graph using	10	
		dynamic programming. Use forward approach to solve the problem		
		$(A) \xrightarrow{4} (D)$		
		1 11 9 18		
		$S \xrightarrow{2} B \xrightarrow{5} E \xrightarrow{13} T$		
		5 16 2		
		°C → F		
	b	Generate transitive closoure for given graph.	10	
			10	
		$(n) ((\tilde{s}))$		
		$(H) \longrightarrow 0$		
	c d			
	u			
-	a		12	
		Explain Warshall algorithm to find the transitive closure of a directed graph. Apply this	14	
		algorithm to the graph given below. (08 Marks)		
		(00 million)		
		a		
		T		
		(d)		
	b	Write wharshall's Algorithms.	8	
	С			
	d			
<u> </u>		Chief the much low statement of a success much low. Further, the set of the	10	
5	a	Give the problem statement of n-queens problem. Explain the solution for 4-queens problem using state space tree.	10	
	b	Apply backtracking to solve the following instance of the subset-sum	10	
		problem : $S=\{1,3,4,5\}$ and $d=11$. Draw the state space tree.	10	
6	a	Apply backtracking based graph coloring algorithm for the graph given	10	

Copyright ©2017. cAAS. All rights reserved.

	below with m=4. Give state space tree showing first 3 valid assignments.		
	Give the backtracking based algorithm to the problem of finding Hamiltonian cycle in the graph	10	
с			
d			

2. SEE Important Questions

Cour	'se:	Design and Analysis of Algorithms Mo	nth / Y	ear	May /	2018
Crs (Code:	17CS43 Sem: 3 Marks: 100 Tim			180 m	
	Note	Answer all FIVE full questions. All questions carry equal marks.		-	-	
Mo dul e	Qno.	Important Question	Ma	arks	со	Year
1		Explain all the mathematical notations used for the analysis of an algorithm	C	6		
		Solve the following recurrence relations x(n) =3x(n-1) for n>1,x 1)=4 and x(n)=x(n/2)+n for n>1,x(1)=1,n=2k	C	6		
		Explain the method of comparing the order of the growth of two functions using limits. Compare order of growth of following functions i) log n and sqrt(n) ii) (log ₂ n) ² and log ₂ n ²	С	6		
		Explain in brief the basic asymptotic efficiency classes.	0)2		
	5					
2	1	Determine the efficiency of divide and conquer algorithms.	C)5		
	2	Explain and Analyze the merge sort algorithm.		.0		
	3	How quick sort can be improved?)5		
	4			-		
	5					
3	1	Explain Kruskal's Algorithm With an example	1	.0		
	2	Construct a Huffman code for the following data: Character : A B C D - Probability: 0.4 0.1 0.2 0.15 0.15	1	.0		
	3					
	4					
	5					
4		Write Warshall's algorithm and apply it to compute transitive closure the directed graph with the adjacency matrix shown below: A B C D A 0 1 0 0 B 0 0 0 1 C 0 0 0 0 D 1 0 1 0	e for 1	.0		
		Explain the dynamic programming with Floyd's algorithm in detail. Ap Floyd's all pairs shortest problem. For the digraph given below	oply 1	.0		
	3					
	4					
	5					

5		Write an algorithm for sum of subset problem using backtracking. Also solve the following instance of sum of subset problem : S ={1,5,2,7} with d = 8.		
		Apply Branch and Bound algorithm to solve the travelling salesman problem for the graph with a cost adjacency matrix is as follows. ABCDE A03158 B30679 C16042 D57403 E89230	10	
	3			
	4			
	5			

G. Content to Course Outcomes

1. TLPA Parameters

Table 1: TLPA – Example Course

Мо	Course Content or Syllabus	Content	Blooms'	Final	Identified	Instructi	Assessment
dul	(Split module content into 2 parts which have	Teachin		Bloo	Action	on	Methods to
e-	similar concepts)	g Hours	Levels	ms'	Verbs for	Methods	Measure
#			for	Leve	Learning	for	Learning
			Content	l		Learning	
A	В	С	D	Ε	F	G	Н
1	Introduction: What is an Algorithm?	4	- L1		Understa	-Black	-Test
	(T2:1.1),Algorithm Specification (T2:1.2),		- L2		nding	board	-
	Analysis Framework (T1:2.1), Performance					-system	assignment
	Analysis: Space complexity, Time complexity						S
	(T2:1.3).						
	Asymptotic Notations:Big-Oh notation (O),	6	- L3	L4	Evaluatio		-Test
	Omega notation (Ω),Theta notation (Θ), and		- L4	е	n	board	-
	Little-oh notation (o), Mathematical analysis					-system	assignment
	of Non-Recursive and recursive Algorithms						S
	with Examples (T1:2.2, 2.3, 2.4).Important						
	Problem Types:Sorting, Searching, String						
	processing, Graph Problems, Combinatorial						
	Problems. Fundamental Data Structures:						
	Stacks, Queues, Graphs, Trees, Sets and						
	Dictionaries . (T1:1.3,1.4) Divide and Conquer: General method, Binary	0	- L2	L4	Evaluatio	Diagle	-Test
	search, Recurrence equation for divide and	9	- L2 - L3			board	-Test
	conquer, Finding the maximum and minimum		- L3 -L4		n		- assignment
	(T2:3.1, 3.3, 3.4), Merge sort, Quick sort (T1:4.1,		-L4			-system	assignment
	4.2), Strassen's matrix multiplication (T2:3.8),						5
	Advantages and Disadvantages of divide and						
	conquer.						
	Decrease and Conquer Approach:	1	- L3	L4	Evaluatio	-Black	-Test
	Topological Sort. (T1:5.3)	-	- L4			board	-
	· -						assignment
							S
3	Greedy Method: General method, Coin	9	- L1	L4	Analyze	-Black	-Test
	Change Problem, Knapsack Problem, Job	-	-L2			board	-
	sequencing with deadlines (T2:4.1, 4.3, 4.5).		-L3			-system	assignment
	Minimum cost spanning trees: Prim's		- L4			-	s
	Algorithm, Kruskal's Algorithm (T1:9.1, 9.2) .						
	Single source shortest paths: Dijkstra's						

	Algorithm(T1:9.3).Optimal Tree problem: Huffman Trees and Codes(T1:9.4).)						
3	Transform and Conquer Approach: Heaps and Heap Sort(T1:6.4	1	- L2 - L3 -L4	L4	Evaluatio n	board	-Test - assignment s
	Dynamic Programming: General method with Examples, Multistage Graphs (T2:5.1, 5.2). Transitive Closure: Warshall's Algorithm, All Pairs Shortest Paths: Floyd's Algorithm, Optimal Binary Search Trees, Knapsack problem ((T1:8.2, 8.3, 8.4), Bellman-Ford Algorithm (T2:5.4), Travelling Sales Person problem (T2:5.9), Reliability design (T2:5.8).	10	- L2 -L3 - L4		Evaluatio n	board -system	-Test - assignment s
4	Backtracking: General method (T2:7.1), N- Queens problem (T1:12.1), Sum of subsets problem (T1:12.1), Graph coloring (T2:7.4), Hamiltonian cycles (T2:7.5). Branch and Bound: Assignment Problem, Travelling Sales Person problem (T1:12.2),	5	- L2 - L4	L4	Analyze	-Black board -system	-Test - assignment s
5	0/1 Knapsack problem (T2:8.2, T1:12.2): LC Branch and Bound solution (T2:8.2), FIFO Branch and Bound solution (T2:8.2). classes (T2:11.1).	3	- L3 -L4	L4	Analyze	-Black board -system	-Test - assignment s
5	NP-Complete and NP Hard problems: Basic concepts, non deterministic algorithms, P, NP, NP-Complete, and NP-Hard	2	- L2 - L3	L3	Apply	-Black board -system	-Test - assignment s

2. Concepts and Outcomes:

Table 2: Concept to Outcome – Example Course

Mo dul e- #	U U U	Concepts	Final Concept	Concept Justification (What all Learning Happened from the study of Content / Syllabus. A short word for learning or outcome)	Methodology, 4.Benchmark)	Course Outcome Student Should be able to
	-Algorithm Specification	Specificati on - Framewor k	<u>K</u> Algorithm Properties	<u>L</u> Understanding	-Time and space complexities - Asymptotic notations.	N understand a given algorithm and express its time and space complexities in asymptotic notations.
	Mathematical analysis of Non- Recursive and recursive	Recurren ce Notation - Mathemat	strategy	Evaluation	-Recurrence equations -Master's Theorem	Solve recurrence equations using Iteration Method, Recurrence Tree Method and Master's Theorem

				JORGE FEAN - CAT 2019-		
	Examples -Important Problem Types - Fundamental Data Structures: -Finding the	-Sorting	Divide-	Evaluation	-Design	Analyze time
	maximum and - minimum -MergeSort -Quick sort -Strassen's matrix multiplication	0	conquer		-Algorithms -Divide and Conquer Strategy.	efficiency of
2	-Topological Sort.		Decrease and conquer		-Algorithms	Analyze algorithms using Decrease and Conquer Strategy.
	Knapsack Problem -Job sequencing with deadlines -Prim's Algorithm, -Kruskal's Algorithm -		Technique	Analyze	-Optimization	solve Optimization problems using Greedy strategy.
	-Heaps and Heap Sort	- Represent ation change -Sorting	Transform and conquer	Evaluation	-Optimization	solve Optimization problems using transform and conquer strategy.
	Warshall's Algorithm, -Floyd's Algorithm, Optimal - Binary Search Trees, - Knapsack problem - Bellman-Ford	- Multistag e graph - Transitive Closure -Shortest path -Negetive Edge Weight	Dynamic Programming		-Solve	Distinguish Dynamic Programming and Greedy Strategies.

	problem					
5	-Sum of subsets problem - Graph coloring - Hamiltonian cycles .	-State Space Tree -Subsets Generatio n -Coloring of Graphical -Cycle Identificati on	Backtracking	Analyze	Design Algorithms using Back Tracking	Test the efficient algorithms using Back Tracking for solving problems.
5	Problem, - Traveling Sales Person problem	count -	Branch and Bound	Analyze	Design Algorithms using Branch Bound	Differentiate Branch Bound with Back tracking for solving problems.
5	-Basic concepts, -non deterministic		Computation al problem	Apply	Classify computational problems I P, NP, NP-Hard and NP-complete	examine computational problems into P, NP, NP-Hard and NP- complete