SRI KRISHNA INSTITUTE OF TECHNOLOGY BANGALORE

COURSE PLAN
Academic Year FEB 2019

Program:	B E - Computer Science Engineering
Semester :	4
Course Code:	18 CS42
Course Title:	Design And Analysis of Algorithm
Credit / L-T-P:	$4 / 4-0-0$
Total Contact Hours:	50
Course Plan Author:	SHILPA

Academic Evaluation and Monitoring Cell

Table of Contents

A. COURSE INFORMATION 4

1. Course Overview 4
2. Course Content 4
3. Course Material 5
4. Course Prerequisites 6
5. Content for Placement, Profession, HE and GATE 6
B. OBE PARAMETERS 6
6. Course Outcomes 6
7. Course Applications 7
8. Mapping And Justification 7
9. Articulation Matrix 8
10. Curricular Gap and Content 8
11. Content Beyond Syllabus 9
C. COURSE ASSESSMENT 9
12. Course Coverage 9
13. Continuous Internal Assessment (CIA) 10
D1. TEACHING PLAN - 1 10
Module - 1 10
Module - 2 11
E1. CIA EXAM - 1 12
a. Model Question Paper - 1 12
b. Assignment -1 13
D2. TEACHING PLAN - 2 16
Module - 3 16
Module - 4 17
E2. CIA EXAM - 2 18
a. Model Question Paper - 2 18
b. Assignment - 2 19
D3. TEACHING PLAN - 3 22
Module - 5 22
E3. CIA EXAM - 3 24
a. Model Question Paper - 3 24
b. Assignment - 3 24
F. EXAM PREPARATION 26
14. University Model Question Paper 26
15. SEE Important Questions 28
G. Content to Course Outcomes 29
16. TLPA Parameters 29
17. Concepts and Outcomes 30
Note : Remove "Table of Content" before including in CP BookEach Course Plan shall be printed and made into a book with cover pageBlooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	CS
Year / Semester:	$2 / 4$	Academic Year:	$2019-20$
Course Title:	Design and Analysis of Algorthim	Course Code:	$17 \operatorname{cs43}$
Credit / L-T-P:	$4 /$ L	SEE Duration:	180 Minutes
Total Contact Hours:	50	SEE Marks:	60 Marks
CIA Marks:	30	Assignment	$5 / 5$
Course Plan Author:	Shilpa	Sign	Dt:
Checked By:		Sign	Dt:
CO Targets	CIA Target : \%	SEE Target:$\%$

Note: Define CIA and SEE \% targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute. Identify 2 concepts per module as in G.

Mod ule	Content	Teachi ng Hours	Identified Module Concepts	Blooms Learning Levels
1	Introduction: What is an Algorithm?(T2:1.1),Algorithm Specification (T2:1.2), Analysis Framework (T1:2.1), Performance Analysis: Space complexity, Time complexity (T2:1.3). Asymptotic Notations:Big-Oh notation (O), Omega notation (Ω), Theta notation (Θ), and Little-oh notation (0), Mathematical analysis of Non-Recursive and recursive Algorithms with Examples (T1:2.2, 2.3, 2.4).Important Problem Types:Sorting, Searching, String processing, Graph Problems, Combinatorial Problems. Fundamental Data Structures: Stacks, Queues, Graphs, Trees, Sets and Dictionaries (T1:1.3.1.4)	$\begin{gathered} 10 \\ (4,6) \end{gathered}$	- Specification -Framework -Recurrence Notation -Mathematical Analysis	
2	Divide and Conquer: General method, Binary search, Recurrence equation for divide and conquer, Finding the maximum and minimum (T2:3.1, 3.3. 3.4), Merge sort, Quick sort (T1:4.1, 4.2), Strassen's matrix multiplication (T2:3.8), Advantages and Disadvantages of divide and conquer. Decrease and Conquer Approach: Topological Sort. (T1:5.3)	$\begin{gathered} 10 \\ (9,1) \end{gathered}$	-Sorting -Matrix Operation -Travesal method -Source Removal Methodology	
3	Greedy Method: General method, Coin Change Problem, Knapsack Probl em, Job sequencing with deadlines (T2:4.1, 4.3, 4.5). Minimum cost spanning trees: Prim's Algorithm, Kruskal's Algorithm (T1:9.1, 9.2). Single source shortest paths: Dijkstra's Algorithm (T1:9.3). Optimal Tree problem: Huffman Trees and Codes (T1:9.4).)Transform and Conquer Approach: Heaps and Heap Sort (T1:6.4	$\begin{gathered} 10 \\ (9,1) \end{gathered}$	-Knapsack Problem -Sequencing -Spanning Tree -Shortest Path -Code Generation -Representation change -Sorting	
4	Dynamic Programming: General method with Examples, Multistage Graphs (T2:5.1, 5.2) . Transitive Closure: Warshall's Algorithm, All Pairs Shortest Paths: Floyd's Algorithm, Optimal Binary Search Trees, Knapsack problem ((T1:8.2, 8.3, 8.4), Bellman-Ford Algorithm (T2:5.4) , Travelling Sales Person problem (T2:5.9) , Reliability design (T2:5.8).	10	-Multistage graph -Transitive Closure -Shortest path - Negetive Edge Weight	

			-TSP Problem	
5	Backtracking: General method (T2:7.1), N-Queens problem (T1:12.1) , Sum of subsets problem (T1:12.1), Graph coloring (T2:7.4) , Hamiltonian cycles (T2:7.5). Branch and Bound: Assignment Problem, Travelling Sales Person problem (T1:12.2)0/1 Knapsack problem (T2:8.2, T1:12.2): LC Branch and Bound solution (T2:8.2) , FIFO Branch and Bound solution (T2:8.2) . classes (T2:11.1) . NP-Complete and NP Hard problems: Basic concepts, non deterministic algorithms, P, NP, NP-Complete, and NP-Hard	$\begin{gathered} 10 \\ (5,3,2) \end{gathered}$	-State Space Tree -Subsets Generation -Coloring of Graphical -Cycle Identification -Lower count -assignment -TSP Deteministic -NP,P Complete Problem	
-	Total	50	-	-

3. Course Material

Books \& other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15-30 minutes
2. Design: Simulation and design tools used - software tools used ; Free / open source
3. Research: Recent developments on the concepts - publications in journals; conferences etc.

$\begin{gathered} \text { Modul } \\ \text { es } \end{gathered}$	Details	Chapters in book	Availability
A	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
$\begin{gathered} 1,2,3 \\ 4,5 \\ \hline \end{gathered}$	T1.Introduction to the Design and Analysis of Algorithms, Anany Levitin:, 2rd Edition, 2009. Pearson.	$\begin{gathered} \hline 1,2,3,4,8 \\ 9 \end{gathered}$	In Lib / In Dept
$\begin{gathered} 1,2,3 \\ 4,5 \\ \hline \end{gathered}$	T2.Computer Algorithms/C++, Ellis Horowitz, Satraj Sahni and Rajasekaran, 2nd Edition, 2014, Universities Press	2,3,5,8,9	In Lib/ In dept
B	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
1, 2	1.Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronal L. Rivest, Clifford Stein, 3rd Edition, PHI	?	In Lib
$\begin{gathered} 1,2,3 \\ 4,5 \\ \hline \end{gathered}$	2.Design and Analysis of Algorithms , S. Sridhar, Oxford (Higher education)	?	Not Available
		?	In lib
C	Concept Videos or Simulation for Understanding	-	-
C1	www.tutorialspoint.com/design_and_analysis_of_algorithms		
C2	https://www.javatpoint.com/daa-tutorial		
C3	http://openclassroom.stanford.edu/MainFolder/CoursePage.php? course=IntroToAlgorithms		
C4	https://onlinecourses.nptel.ac.in/noc17_cs27/preview		
C5	https://www.khanacademy.org/computing/computer-science/ algorithms		
C6			
C7			
C8			
C9			
C10			
D	Software Tools for Design	-	-
	http://www.sciencehq.com/computing-technology/programmingtools.html		
	http://www.sciencehq.com/computing-technology/programmingtools.html		

\mathbf{E}	Recent Developments for Research	-	-
	http://Www.niser.ac.in/~aritra/AWorkshop		
		-	-
F	Others (Web, Video, Simulation, Notes etc.)		
1	https://www.tutorialspoint.com/design_and_analysis_of_algorithms/ design_and_analysis_of_algorithms_P_np_class.htm		
$?$			

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B. 5.
Students must have learnt the following Courses / Topics with described Content

Mod ules	Course Code	Course Name	Topic / Description	Sem	Remarks	Blooms Level
1	$17 p c d 13 /$ 23	C Programing	1. Knowledge on Data Structures	2		Understa nd L2
2	$17 \operatorname{cs33}$	Data Structure and Application		3	Understa nd L2	
3						
4						
-						
-						

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry \& profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.
Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Mod ules	Topic / Description	Area	Remarks	Blooms Level
1		Gap amplifiers	Understa nd L2	
3				
3				
5				
-				
-				

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs. Identify a max of 2 Concepts per Module. Write 1 CO per Concept.

Mod ules	Course Code.\#	Course Outcome At the end of the course, student should be able to ...	Teach. Hours	Concept	Instr Method	Assessme nt Method	Blooms' Level
1	18 CS42.1	understand a given algorithm and	3	Algorithm	Black	Test/	L 2

		express its time and space complexities in asymptotic notations.		Properties	board /system	assignme nts	Understand
1	18CS42.2	Solve recurrence equations using Iteration Method, Recurrence Tree Method and Master's Theorem	7	Recurrenc e strategy	Black board /system	Test/ assignme nts	L4 Analyze
2	18CS42.3	Analyze time efficiency of algorithms using Divide and Conquer Strategy.	8	Divide and Conquer	Black board /system	\qquad	L4 Analyze
2	18CS42.4	Analyze algorithms using Decrease and Conquer Strategy.	2	Decrease and Conquer	$\begin{array}{\|c\|} \hline \text { Black } \\ \text { board } \\ \text { /system } \end{array}$	Test/ assignme nts	L4 Analyze
3	18CS42.5	solve Optimization problems using Greedy strategy.	9	Optimizatio n	Black board /system	Test/ assignme nts	L4 Analyze
3	18CS42.6	solve Optimization problems using transform and conquer strategy.	1	Instance Transforma tion	Black board /system	Test/ assignme nts	L4 Analyze
4	18CS42.7	Distinguish Dynamic Programming and Greedy Strategies.	10	Dynamic Programmi ng	Black board /system	Test/ assignme nts	L4 Analyze
4	18CS42.8	Test the efficient algorithms using Back Tracking for solving problems.	3	Back tracking	Black board /system	Test/ assignme nts	L4 Analyze
5	18CS42.9	Differentiate Branch Bound with Back tracking for solving problems.	3	and Bound	Black board /system	\qquad	L4 Analyze
5	18CS42.10	examine computational problems into P, NP, NP-Hard and NPcomplete	4	Computati onal problem	$\begin{array}{\|c\|} \hline \text { Black } \\ \text { board } \\ \text { /system } \\ \hline \end{array}$	Test/ assignme nts	L3 Apply
-	-	Total	50	-	-	-	L2-L4

2. Course Applications

Write 1 or 2 applications per CO.
Students should be able to employ / apply the course learnings to ...

Mod ules	Application Area Compiled from Module Applications.	CO	Level
1	Database Management	CO 1	L 2
1	Web Design	CO 2	L 4
2	Traffic Management	CO 3	L 4
2	Big data,	CO 4	L 4
3	Data Science	CO 5	L 4
3	Optimized Telecommunications Routing	CO	L 4
4	Biometric Invention	CO 7	L 4
5	Genetic Algorithms	CO 8	L 4
5	Data Compression	CO 9	L 4
5	Resource Allocation	CO 10	L 3

3. Mapping And Justification

CO - PO Mapping with mapping Level along with justification for each CO-PO pair.
To attain competency required (as defined in POs) in a specified area and the knowledge \& ability required to accomplish it.

| Mod
 ules | Mapping | | Mapping
 Level | Justification for each CO-PO pair
 el | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | CO | PO | - | 'Area': ‘Competency' and 'Knowledge' for specified 'Accomplishment' | - |
| 1 | $17 c s$ | PO1 | 3 | As the students could just define the knowledge acquired | L2 |
| 13.1 | | | | | |
| 1 | $17 c s$ | PO2 | | Knowledge of algorithm analysis methods helps students in problem | L2 |

	43.1			analysis	
1	$\begin{array}{r} 17 \mathrm{cs} \\ 43.1 \\ \hline \end{array}$	PO3	1	Knowledge of algorithm analysis is the first step in developing solutions	L2
	$\begin{array}{r} 17 \mathrm{cs} \\ 43.1 \\ \hline \end{array}$	PO4		This knowledge is the basis of conducting investigations of complex problems	L2
2	$\begin{gathered} 17 \mathrm{Cs} \\ 43.1 \end{gathered}$	PO12		Learning is required as technology changes	L2
2	$\begin{aligned} & 17 \mathrm{Cs} \\ & 43.2 \\ & \hline \end{aligned}$	PO3		Complexity analysis of the engineering solutions will help students to design and develop sustainable solutions.	L4
2	$\begin{gathered} 17 \mathrm{Cs} \\ 43.2 \end{gathered}$	PO4		A complexity analysis of the engineering solutions provide Information to provide valid conclusions	L4
	$\begin{aligned} & \hline 17 \mathrm{cs} \\ & 43.2 \end{aligned}$	PO12		Learning is required as technology changes	L4
	$\begin{array}{r} 17 \mathrm{cs} \\ 43.3 \end{array}$	PO3		Choosing an appropriate problem solving method helps students during the design and development of solutions.	L4
	$\begin{aligned} & 17 \mathrm{Cs} \\ & 43.3 \end{aligned}$	PO5		A knowledge in the problem solving methods will help the students to choose the best method to solve a problem	L4
	$\begin{aligned} & \hline 17 \mathrm{Cs} \\ & 43.3 \\ & \hline \end{aligned}$	PO12		Learning is required as technology changes	L4
	$\begin{aligned} & 17 \mathrm{cs} \\ & 43.4 \\ & \hline \end{aligned}$	PO3		Knowledge of algorithm analysis is the first step in developing solutions	L2
	$\begin{array}{r} 17 \mathrm{Cs} \\ 43.4 \\ \hline \end{array}$	PO5		A knowledge in the problem solving methods will help the students to choose the best method to solve a problem	L4
5	$\begin{aligned} & 17 c s \\ & 43.4 \\ & \hline \end{aligned}$	PO12		Learning is required as technology changes	L4
5	$\begin{gathered} 17 \mathrm{cs} \\ 43.5 \end{gathered}$	PO1		As the students could just define the knowledge acquired	L4
5	$\begin{aligned} & 17 \mathrm{cs} \\ & 43.5 \\ & \hline \end{aligned}$	PO2		Knowledge of algorithm analysis methods helps students in problem analysis	L4
	$\begin{aligned} & 17 \mathrm{CS} \\ & 43.5 \end{aligned}$	PO3		Knowledge of algorithm analysis is the first step in developing solutions	L4
	$\begin{aligned} & \hline 17 \mathrm{cs} \\ & 43.5 \end{aligned}$	PO12		Learning is required as technology changes	L4
	$\begin{aligned} & 17 \mathrm{cs} \\ & 43.6 \\ & \hline \end{aligned}$	PO1		As the students could just define the knowledge acquired	L4
	$\begin{aligned} & 17 \mathrm{cs} \\ & 43.6 \\ & \hline \end{aligned}$	PO2		Knowledge of algorithm analysis methods helps students in problem analysis	L4
	$\begin{aligned} & 17 \mathrm{cs} \\ & 43.6 \end{aligned}$	PO3		Knowledge of algorithm analysis is the first step in developing solutions	L4
	$\begin{array}{r} 17 \mathrm{Cs} \\ 43.6 \\ \hline \end{array}$	PO12		Learning is required as technology changes	L4
	$\begin{gathered} 17 \mathrm{cs} \\ 43.7 \\ \hline \end{gathered}$	PO3		Knowledge of algorithm analysis is the first step in developing solutions	L4
	$\begin{aligned} & 17 \mathrm{cs} \\ & 43.7 \end{aligned}$	PO4		This knowledge is the basis of conducting investigations of complex problems	L4
	$\begin{aligned} & 17 c s \\ & 43.7 \\ & \hline \end{aligned}$	P12		Learning is required as technology changes	L4
	$\begin{aligned} & 17 c s \\ & 43.8 \end{aligned}$	PO1		As the students could just define the knowledge acquired	L4
	$\begin{aligned} & 17 \mathrm{cs} \\ & 43.8 \end{aligned}$	PO2		Knowledge of algorithm analysis methods helps students in problem analysis	L4
	$\begin{aligned} & 17 \mathrm{Cs} \\ & 43.8 \\ & \hline \end{aligned}$	PO3		Knowledge of algorithm analysis is the first step in developing solutions	L4
	$\begin{aligned} & 17 \mathrm{Cs} \\ & 43.8 \end{aligned}$	PO4		This knowledge is the basis of conducting investigations of complex problems	L4
	$\begin{array}{r} 17 \mathrm{Cs} \\ 43.8 \\ \hline \end{array}$	PO5		A knowledge in the problem solving methods will help the students to choose the best method to solve a problem	L4
	$\begin{array}{\|l\|} \hline 17 c s \\ 43.8 \end{array}$	PO12		Learning is required as technology changes	L4

$\begin{array}{r} 17 \mathrm{Cs} \\ 43.9 \\ \hline \end{array}$	PO1	As the students could just define the knowledge acquired	L3
$\begin{array}{r} 17 \mathrm{Cs} \\ 43.9 \\ \hline \end{array}$	PO 2	Knowledge of algorithm analysis methods helps students in problem analysis	L3
$\begin{array}{r} 17 \mathrm{Cs} \\ 43.9 \\ \hline \end{array}$	PO 3	Knowledge of algorithm analysis is the first step in developing solutions	L3
$\begin{array}{r} 17 \mathrm{Cs} \\ 43.9 \\ \hline \end{array}$	PO 4	This knowledge is the basis of conducting investigations of complex problems	L3
$\begin{array}{r} 17 C s \\ 43.9 \\ \hline \end{array}$	PO12	Learning is required as technology changes	L3
$\begin{aligned} & 17 \mathrm{Cs} \\ & 43.10 \end{aligned}$	PO1	As the students could just define the knowledge acquired	L3

4. Articulation Matrix

CO - PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	-	Course Outcomes	Program Outcomes															-
Mod ules	CO.\#	At the end of the course student should be able to ...				$\begin{gathered} \mathrm{PO} \\ 4 \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ 5 \end{gathered}$				$\begin{gathered} \mathrm{PO} \\ 9 \end{gathered}$	$\left\|\begin{array}{c} \mathrm{PO} \\ 10 \end{array}\right\|$		$\left\lvert\, \begin{gathered} \mathrm{PO} \\ 12 \end{gathered}\right.$		$\begin{aligned} & \mathrm{PS} \\ & \mathrm{O}_{2} \end{aligned}$		$\begin{array}{c\|c} \hline 5 & \text { Lev } \\ 3 & e l \end{array}$
1	18CS42.1	Analyze a given algorithm and 2 express its time and space complexities in asymptotic notations.	2.4	1.8	2.6	2.5	-	-	-	-	-	-	-	2.8	-	-	-	L2
1	18CS42.2	Solverecurrence using Iterationequations Recurrence Method,Master's Theorem	-	-	2.6	2.5	-	-	-	-	-	-	-	2.8	-	-	-	L4
2	18CS42.3	Classify the Problem using Divide and Conquer Strategy.	-	-	2.6	-	$\begin{gathered} 2.2 \\ 5 \end{gathered}$	-	-	-	-	-	-	2.8	-	-	-	L4
2	18CS42.4	Analyze algorithms using Decrease and Conquer Strategy.	-	-	2.6		$\begin{gathered} 2.2 \\ 5 \end{gathered}$						-	2.8	-	-	-	L4
3	18CS42.5	Compare Optimization problems 2. using Greedy strategy.	2.4	1.8	2.6	-	-	-	-	-	-	-	-	2.8	-	-	-	L4
3	18CS42.6	Analyze Optimization problems 2 using transform and conquer strategy.	2.4	2.4	2.6								-	2.8	-	-	-	L4
4	18CS42.7	Differentiate Programming and Conquer Strategies.	-	-	2.6	2.5	-	-	-	-	-	-	-	2.8	-	-	-	L4
4	18CS42.8	Analyze efficient algorithms 2 using Back Tracking and Branch Bound Techniques for solving problems.	2.4	1.8	2.6	2.5	$5 \begin{gathered} 2.2 \\ 5 \end{gathered}$	-	-	-	-	-	-	-	-	-	-	L4
5	18CS42.9	Analyze efficient algorithms 2 using Branch Bound Techniques for solving problems.	2.4	1.8	2.6	2.5							-	-	-	-	-	L3
5	18CS42.10	classify computational problems 2 into P, NP, NP-Hard and NPcomplete		-	-	-	-	-	-	-	-	-	-	-	-	-	-	L3
-	CS501PC	Average attainment (1, 2, or 3)																-
-	PO, PSO	1.Engineering Knowledge; 2.Proble 4. Conduct Investigations of Comple Society; 7.Environment and Susta 10.Communication; 11.Project S1.Software Engineering; S2.Data Ba	lem lex P ustai Mana Base	$\begin{aligned} & \text { T A } \\ & \text { Prol } \\ & \text { aina } \\ & \text { nage } \\ & \text { e } \end{aligned}$	blem abilit eme Mana	sis; ns; ity; nt agem	$\begin{array}{r} \text { S. } 3.2 \\ 5 . M c \\ 8 . E t \\ a n \\ \text { anen } \end{array}$	Des Mod Ethic and nt;	$53 . W$	$\begin{gathered} \text { I } \\ \text { Too } \\ \text { g.ll } \\ \text { nan } \\ \text { Veb } \end{gathered}$	Des	sign	6. ife	nent .The and fe-lor	of			ions; and ork; ing;

5. Curricular Gap and Content

Topics \& contents not covered (from A.4), but essential for the course to address POs and PSOs. | Mod Gap Topic | Actions Planned | Schedule Planned | Resources Person | PO Mapping |
| :--- | :--- | :--- | :--- | :--- |

COURSE PLAN - CAY 2019-20

ules					
1	Substitution method	Assignment	Given		-
2	Stress en's Matrix	Assignment	Given		3,4
3					
4					
5					

6. Content Beyond Syllabus

Topics \& contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Mod ules	Gap Topic	Area	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1	Examples of NP Hard, NP Complete problems.	Extra Classes		Concern Faculty		List from B4 above
1						
2						
2						
3						
3						
4						
4						
5						
5						

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Mod ules	Title	Teach. Hours	No. of question in Exam						CO	Levels
			CIA-1	CIA-2	CIA-3	Asg	$\begin{gathered} \text { Extra } \\ \text { Asg } \end{gathered}$	SEE		
1	Definition,specification,framework, Asymptotic notation, problem types	10	2	-	-	1	1	4	$\mathrm{CO} 1, \mathrm{CO} 2$	L2,L4
2	Divide and Conquer,Decrease and conquer	10	2	-	-	1	1	4	CO3, CO4	L4
3	Greedy method ,Transform and conquer approach	10	-	2	-	1	1	4	CO5,CO6	L4
4	Dynamic Programming	10	-	2	-	1	1	4	CO 7	L4
	Backtracking,Branch and Bound,Knapsack problem,NP- Complete and NP-Hard Problem	10	-	-	4	1	1	3	$\begin{gathered} \text { CO8,CO9,C } \\ \text { O10 } \end{gathered}$	$\begin{gathered} L 4, L 3, L \\ 3 \end{gathered}$
-	Total	50	4	4	4	5	5	19	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A. 2 .

Evaluation	Weightage in Marks	CO	Levels

CIA Exam -1	30	$\mathrm{CO} 1, \mathrm{CO} 2, \mathrm{CO} 3, \mathrm{CO} 4$	$\mathrm{~L} 2, \mathrm{~L} 3, \mathrm{~L} 4$
CIA Exam -2	30	$\mathrm{CO} 5, \mathrm{CO}, \mathrm{CO}$	$\mathrm{L} 3, \mathrm{~L} 4$
CIA Exam -3	30	$\mathrm{CO} 8, \mathrm{CO} 9, \mathrm{CO} 10$	$\mathrm{~L} 3, \mathrm{~L} 4$
Assignment -1	10	$\mathrm{CO} 1, \mathrm{CO} 2, \mathrm{CO} 3, \mathrm{CO} 4$	$\mathrm{~L} 2, \mathrm{~L} 3, \mathrm{~L} 4$
Assignment -2	10	$\mathrm{CO} 5, \mathrm{CO}, \mathrm{CO}$	$\mathrm{L} 3, \mathrm{~L} 4$
Assignment -3	10	$\mathrm{CO} 8, \mathrm{CO}, \mathrm{CO} 10$	$\mathrm{~L} 3, \mathrm{~L} 4$
Final CIA Marks	$\mathbf{4 0}$	$\mathbf{-}$	

D1. TEACHING PLAN - 1

Module - 1

Title:	Introduction to Algorithm and recurrence Method	Appr Time:	10 Hrs
a	Course Outcomes		Blooms
-	Students will be able	-	Level
1	To Analyze a given algorithm and express its time and space complexities in asymptotic notations.	-	L2
2	To Solve recurrence equations using Iteration Method, Recurrence Tree Method and Master's Theorem	-	L4
b	Course Schedule	-	-
Class No	Module Content Covered	CO	Level
1	What is an Algorithm?Algorithm Specification	CO1	L2
2	,Analysis Framework	CO1	L2
3	Performance Analysis: Space complexity,	CO 1	L2
4	Time complexity	CO1	L2
5	Asymptotic Notations:Big-Oh notation (O), Omega notation (Ω), Theta notation (Θ), and Little-oh notation (o),	CO2	L3
6	Mathematical analysis of Non-Recursive with Examples	CO2	L4
7	recursive Algorithms with Examples	CO2	L4
8	Important Problem Types:Sorting, Searching, String processing, Graph Problems, Combinatorial Problems.	CO1	L3
9	Fundamental Data Structures: Stacks, Queues,	CO1	L3
10	Graphs, Trees, Sets and Dictionaries.	CO1	L3
c	Application Areas	CO	Level
1	Able to Analyze a given algorithm and express its time and space complexities	CO1	L2
2	Able to Solve recurrence equations	CO 2	L4
d	Review Questions	-	-
1	Define best case, worst case and average case efficiency. Give these efficiencies for sequential search.	CO1	L2
2	Briefly explain important fundamental data structures used in algorithm design.	CO1	L2
3	Describe basic efficiency classes. (9 points)	CO1	L2
4	Briefly explain the important problem types coming under design and analysis of algorithms.	CO2	L4
5	Explain three asymptotic notations with a neat diagram. Prove $n 2+5 n+7=$ $\Theta(n 2)$	CO2	L3
e	Experiences		
1			
2			
3			

Module - 2

Title:	Divide and Conquer Technique	Appr Time:	10 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Design algorithms using Divide and Conquer Strategy.		L4
2			
b	Course Schedule	-	-
Class No	Module Content Covered	CO	Level
11	Divide and Conquer: General method,	CO 3	L4
12	Binary search,	CO_{3}	L4
13	Recurrence equation for divide and conquer,	CO_{3}	L4
14	Finding the maximum and minimum	CO_{3}	L4
15	Merge sort,	CO_{3}	L4
16	Quick sort,	CO_{3}	L4
17	Strassen's matrix multiplication	CO_{3}	L4
18	Advantages and Disadvantages of divide and conquer	CO_{3}	L4
19	Decrease and Conquer Approach:	CO_{3}	L4
20	Topological Sort.	CO_{3}	L4
c	Application Areas	CO	Level
1	Able to design algorithms using Divide and Conquer Strategy.	CO_{3}	L4
d	Review Questions	-	-
6	Find the upper bound of recurrences given below by substitution method. i) $T(n)=2 T(n / 2)+n$ ii) $T(n)=T(n / 2)+1$	CO 3	L4
7	Briefly explain binary search algorithm along with efficiency analysis	CO_{3}	L4
8	Write the algorithm for Merge Sort. Derive the time efficiency of the algorithm.	CO_{3}	L4
9	State and apply Master theorem application	CO_{3}	L3
10	Sort the following elements using merge sort. Write the recursion tree. 70, 20, 30, 40, 10, 50, 60 Twisted: Use D \& C method which divides problem size by considering position	CO_{3}	L4
e	Experiences	-	-
1			
2			
3			
4			
5			

E1. CIA EXAM - 1

a. Model Question Paper - 1

Crs Code: 17 CS 43			Sem:	IV	Marks:	30	Time:	minute		
Course:		Design and Analysis of Algorithms								
-	-	Note: An	wer any	estis	ch carry	ual m		Marks	CO	Level
1	a	Compare the orde		i) $(1 / 2) n(n-1)$ and n				5	CO 2	L4

	ii) $3 n+2$ and n				
	b	Explain the mathematical analysis of fibonacci recursive algorithm. Write Bruteforce string matching algorithm.	10	CO2	L4
2	a	Explain the asymptotic notations with examples.	5	CO_{2}	L3
	b	Write an algorithm for selection sort. Analyze its efficiency	10	CO 2	L4
3	a	Sort the following elements using merge sort. Write the recursion tree. 70, 20, 30, 40, 10, 50, 60 Twisted: Use D \& C method which divides problem size by considering position	9	CO_{3}	L4
	b	what is divide and conquer? Explain the general method of divide and conquer.	6	CO_{3}	L4
4	a	Write a algorithm for Quick sort, and sort the following number's $10,8,5,15,25,75,12$. Obtain its time complexity. (10 Marks)	9	CO_{3}	L4
	b	Write the algorithm for sequential scarch, obtain the time complexity of this algorithm for succeesfiul and unsucceessful search in the worst casc and best case. (OA Marks)	6	CO_{3}	L4

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

Model Assignment Questions							
Crs Code:	17CS43 Sem:	IV	Marks:	$5 / 10$	Time:	$90-120$ minutes	
Course:	Design and Analysis of Algorithms						

Note: Each student to answer 2-3 assignments. Each assignment carries equal mark.

SNo	USN	Assignment Description	Marks	CO	Level
1	1KT17CS001	Describe basic efficiency classes. (9 points)	5	CO1	L2
2	1KT17CS002	Briefly explain the important problem types coming under design and analysis of algorithms.	6	CO 2	L4
3	1KT17CS003	Consider Tower of Hanoi puzzle. Derive the recurrence relation for the total movement of disk. Solve the recurrence relation using substitution method	10	CO2	L4
4	1KT17CSO04	Write the algorithm for Quick Sort. Derive the best case, worst case, average case time efficiency of the algorithm	10	CO3	L4
5	1KT17CS005	What is an algorithm? Explain the notion of algorithm with an example.	10	CO3	L4
6	1KT17CS006	Find gcd(31415, 14142) by applying Euclid's algorithm. Estimate how many times it is faster when compared to the algoritlmm based on conscative integer checking. (04 Marks)	4	CO_{3}	L4
7	1KT17CS007	Compare the order of growth of $\frac{1}{2} n(n-1)$ and n^{2}.	4	CO_{3}	L4

D2. TEACHING PLAN - 2

Module - 3

Title:	Greedy Techqunic	Appr Time:	10 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Solve Optimization problems using Greedy strategy.	CO 4	L4
2			
b	Course Schedule	-	-
Class	Module Content Covered	CO	Level
21	General method, Coin Change Problem,	CO4	L2
22	Knapsack Problem,	CO4	L3
23	Job sequencing with deadlines	CO4	L4
24	Minimum cost spanning trees:Prim's Algorithm,	CO 4	L4
25	Kruskal's Algorithm	CO 4	L4
26	Single source shortest paths:Dijkstra's Algorithm	CO 4	L4
27	Optimal Tree problem:	CO4	L4
28	Huffman Trees and Codes	CO 4	L4
29	Transform and Conquer Approach		
30	Heaps and Heap Sort		
c	Application Area		
1	Able to solve Optimization problems using Greedy strategy.	CO 4	L4
2			
d	Review Questions		
	Introduction		
11	Define Optimal solution and feasible solution.	CO_{4}	L2
12	Define Coin Change Problem. State the greedy method to solve the coin change problem. For 49 rupees, find the denominations with least no. of coins. The available denominations in rupees are $\{1,2,5,10\}$	CO 4	L4
	Job Sequencing		
14	What is the solution generated by the function job scheduling (JS) when $\mathrm{n}=5$, $\left[P_{1}, P_{2}, P_{3}, P_{4}, P_{5}\right]=[20,15,10,5,1]$ and $\left[\mathrm{d}_{1}, \mathrm{~d}_{2}, \mathrm{~d}_{3}, \mathrm{~d}_{4}, \mathrm{~d}_{5}\right]=[2,2,1,3,3]$	CO 4	L4

COURSE PLAN - CAY 2019-20

Knapsack Problem			
	What is a knapsack problem? Obtain solution for the knapsack problem using greedy method for $n=3$, capacity $m=20$ values $25,24,15$ and weights $18,15,10$ respectively.	CO_{4}	L4
MST			
17	Write a Kruskal algorithm to find minimum cost spanning tree and obtain spanning tree of the graph shown below: (08 Marks)	CO 4	L4
18	Apply PRIMS algorithm for the following graph to find minimum spanning tree	CO 4	L4
19	Write Krushkal 's algorithm to construct minimum spanning tree and show that the time efficiency is $O(\|€\| \log \|€\|)$	CO 4	L4
20	Apply Kruskal's algorithm to find the min spanning tree of the graph.	CO 4	L4
21	Using Prim's algorithm, detemine minimum cost spanning tree for the following graph 5 Fig. 03 (b) 4 Fig. 03 (c)	CO 4	L4

Module - 4

Title:	Dynamic Programming Technique	Appr Time:	10 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Compare Dynamic Programming and Divide and Conquer Strategies.	CO 5	L4
2			
b	Course Schedule	-	-
Class No	Module Content Covered	CO	Level
31	Dynamic Programming: General method with Examples, Multistage Graphs	CO 5	L2
32	Transitive Closure:	CO 5	L4
33	Warshall's Algorithm,	CO 5	L4
34	All Pairs Shortest Paths:	CO 5	L4
35	Floyd's Algorithm,	CO 5	L4
36	Optimal Binary Search Trees,	CO 5	L4
37	Knapsack problem	CO 5	L4
38	Bellman-Ford Algorithm	CO 5	L3
39	Travelling Sales Person problem		
40	Reliability design		
c	Application Areas	CO	Level
1	Able to compare Dynamic Programming and Divide and Conquer Strategies.	CO 5	L4
2			
d	Review Questions	-	-
	Introduction		
30	Briefly explain how dynamic programming works.	CO 5	L2
	Multistage Graph		
31	Find the shortest path from A to L, in the following multistage graph, using dynamic programming. Use forward approach to solve the prob lem.	CO 5	L5
	Transitive Closure - Warshalls Algorithm		
32	Generate Transitive Closure for the given graph	CO 5	L5
33	explain warsnall algorinm to tind the transitive closure of a directed graph. Apply this algorithm to the graph given below. (08 Marks)	CO 5	L5

\mathbf{e}	Experiences		
1			
2			
3			
4			
5			

E2. CIA EXAM - 2

a. Model Question Paper - 2

Cr Code: 17 CS43	Sem:	IV	Marks:	30	Time:

Course: Design and Analysis of Algorithms

18CS42

b. Assignment - 2

Note: A distinct assignment to be assigned to each student.

COURSE PLAN - CAY 2019-20

D3. TEACHING PLAN - 3
Module - 5

Title:	Backtracking,Branch and Bound,P,NP-Hard	Appr Time:	10 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Design efficient algorithms using Back Tracking and Branch Bound Techniques for solving problems.		L\$
2	Classify computational problems into P, NP, NP-Hard and NP-complete		L3
3			
b	Course Schedule	-	-
Class No	Module Content Covered	CO	Level
41	Backtracking: General method, N-Queens problem.		
42	Sum of subsets problem, Graph coloring Hamiltonian cycles.		
43	Branch and Bound: Assignment Problem,		
44	Travelling Sales Person problem		
45	0/1 Knapsack problem LC Branch and Bound solution ,		
46	FIFO Branch and Bound solution		
47	NP- Complete and NP-Hard problems: Basic concepts,		
48	non-deterministic algorithms, P, NP,		
49	NP-Complete, and NP-Hard classes		
50			
c	Application Areas	CO	Level
1	Able to design efficient algorithms using Back Tracking and Branch Bound Techniques	CO6	L4
2	Able to classify computational problems into P, NP, NP-Hard and NPcomplete	CO7	L3
d	Review Questions	-	-
34	What is backtracking. Give the general Procedure.		
35	Apply backtracking to solve the 3-cloring problem for the graph given below.		
36	Apply the backtracking to the problem of finding Hamiltonian cycle in the following graphs		
37	What branch and bound method. How it is different from backtracking.		
38	Apply the branch - and -bound algorithm to solve the travelling sales man problem for the following graph. Start city is a. Give the states pace tree		

E3. CIA EXAM - 3

a. Model Question Paper - 3

Crs	ode	17CS43	Sem:	IV	Marks:	30	Time:	75	minutes		
Course:		Design and Analysis of Algorithms									
-	-	Note: Answer any 2 questions, each carry equal marks.							Marks	CO	Level
1	a	Give the problem statement of n -queens problem. Explain the solution for 4-queens problem using state space tree.							6		
	b	Apply backtracking to solve the following instance of the subset-sum problem : $\mathrm{S}=\{1,3,4,5$] and $\mathrm{d}=11$. Draw the state space tree.							9		
2	a	Apply backtracking based graph coloring algorithm for the graph given below with $\mathrm{m}=4$. Give state space tree showing first 3 valid assignments.							10		
	b	Give the backtracking based algorithm to the problem of finding Hamiltonian cycle in the graph							5		
3	a	Apply branch and bound method for the following instance of assignment problem to find the optimal solution. Give the complete state space tree$\left[\begin{array}{cccc} \text { Job 1 } & \text { Job 2 }^{2} & \text { Job 3 } & \text { Job 4 } \\ 9 & 2 & 7 & 8 \\ 6 & 4 & 3 & 7 \\ 5 & 8 & 1 & 8 \\ 7 & 6 & 9 & 4 \end{array}\right] \begin{aligned} & \text { Person a } \\ & \text { Person b } \\ & \text { Person c } \\ & \text { Person d } \\ & \hline \end{aligned}$							9		
	b	Apply the branch -and- bound algorithm to solve the travelling sales man problem for the							6		

b. Assignment - 3

Note: A distinct assignment to be assigned to each student.

COURSE PLAN - CAY 2019-20

| 8 | 1KT17CSO08 | | | |
| :---: | :--- | :--- | :--- | :--- | :--- |
| 9 | 1KT17CSO09 | | | |
| 10 | 1KT17CSO10 | | | |
| 11 | 1KT17CSO11 | | | |

F. EXAM PREPARATION

1. University Model Question Paper

2. SEE Important Questions

G. Content to Course Outcomes

1. TLPA Parameters

Table 1: TLPA - Example Course

Mo dul e- \#	Course Content or Syllabus (Split module content into 2 parts which have similar concepts)	Content Teachin g Hours	Blooms' Learning Levels for Content	Final Bloo ms' Leve l	Identified Action Verbs for Learning	Instructi on Methods for Learning	Assessment Methods to Measure Learning
A	B	C	D	E	F	G	H
1	Introduction: What is an Algorithm? (T2:1.1),Algorithm Specification (T2:1.2), Analysis Framework (T1:2.1), Performance Analysis: Space complexity, Time complexity (T2:1.3).	4	$\begin{aligned} & -\mathrm{L} 1 \\ & -\mathrm{L} 2 \end{aligned}$	L2	Understa nding	-Black board -system	```-Test assignment S```
1	Asymptotic Notations:Big-Oh notation (O), Omega notation (Ω), Theta notation (Θ), and Little-oh notation (o), Mathematical analysis of Non-Recursive and recursive Algorithms with Examples (T1:2.2, 2.3, 2.4).Important Problem Types:Sorting, Searching, String processing, Graph Problems, Combinatorial Problems. Fundamental Data Structures: Stacks, Queues, Graphs, Trees, Sets and Dictionaries. (T1:1.3,1.4)	6	$\begin{aligned} & -\mathrm{L} 3 \\ & -\mathrm{L} 4 \end{aligned}$	$\begin{gathered} \mathrm{L} 4 \\ \mathrm{e} \end{gathered}$	Evaluatio n	-Black board -system	```-Test assignment S```
2	Divide and Conquer: General method, Binary search, Recurrence equation for divide and conquer, Finding the maximum and minimum (T2:3.1, 3.3. 3.4), Merge sort, Quick sort (T1:4.1, 4.2) , Strassen's matrix multiplication (T2:3.8), Advantages and Disadvantages of divide and conquer.	9	$\begin{aligned} & -L 2 \\ & -L 3 \\ & -L 4 \end{aligned}$	L4	Evaluatio n	-Black board -system	```-Test assignment s```
2	Decrease and Conquer Approach: Topological Sort. (T1:5.3)	1	$\begin{array}{r} -\mathrm{L} 3 \\ -\mathrm{L} 4 \end{array}$	L4	Evaluatio n	-Black board -system	```-Test assignment s```
3	Greedy Method: General method, Coin Change Problem, Knapsack Probl em, Job sequencing with deadlines (T2:4.1, 4.3. 4.5). Minimum cost spanning trees: Prim's Algorithm, Kruskal's Algorithm (T1:9.1, 9.2) . Single source shortest paths: Dijkstra's	9	$\begin{aligned} & - \text { L1 } \\ & -L 2 \\ & -L 3 \\ & -L 4 \end{aligned}$	L4	Analyze	-Black board -system	```-Test assignment S```

	Algorithm (T1:9.3). Optimal Tree problem: Huffman Trees and Codes (T1:9.4).)						
3	Transform and Conquer Approach: Heaps and Heap Sort (T1:6.4	1	$\begin{aligned} & -L 2 \\ & -L 3 \\ & -L 4 \end{aligned}$	L4	Evaluatio n	-Black board -system	-Test assignment s
4	Dynamic Programming: General method with Examples, Multistage Graphs (T2:5.1, 5.2). Transitive Closure: Warshall's Algorithm, All Pairs Shortest Paths: Floyd's Algorithm, Optimal Binary Search Trees, Knapsack problem ((T1:8.2, 8.3, 8.4), Bellman-Ford Algorithm (T2:5.4), Travelling Sales Person problem (T2:5.9), Reliability design (T2:5.8).	10	$\begin{aligned} & -L 2 \\ & -L 3 \\ & -L 4 \end{aligned}$	L4	Evaluatio n	-Black board -system	-Test assignment s
4	Backtracking: General method (T2:7.1), NQueens problem (T1:12.1), Sum of subsets problem (T1:12.1), Graph coloring (T2:7.4), Hamiltonian cycles (T2:7:5). Branch and Bound: Assignment Problem, Travelling Sales Person problem (T1:12.2),	5	$\begin{aligned} & -\mathrm{L} 2 \\ & -\mathrm{L} 4 \end{aligned}$	L4	Analyze	-Black board -system	-Test assignment S
5	```0/1 Knapsack problem (T2:8.2, T1:12.2): LC Branch and Bound solution (T2:8.2) , FIFO Branch and Bound solution (T2:8.2). classes (T2:11.1).```	3	$\begin{aligned} & -L 3 \\ & -L 4 \end{aligned}$	L4	Analyze	-Black board -system	-Test assignment S
5	NP-Complete and NP Hard problems: Basic concepts, non deterministic algorithms, P, NP, NP-Complete, and NP-Hard	2	$\begin{aligned} & -L 2 \\ & -L 3 \end{aligned}$	L3	Apply	-Black board -system	-Test assignment s

2. Concepts and Outcomes:

Table 2: Concept to Outcome - Example Course

Mo dul e- \#	Learning or Outcome from study of the Content or Syllabus	Identified Concepts from Content	Final Concept	Concept Justification (What all Learning Happened from the study of Content / Syllabus. A short word for learning or outcome)	CO Components (1.Action Verb, 2.Knowledge, 3.Condition / Methodology, 4.Benchmark)	Course Outcome Student Should be able to ...
A	1	J	K	L	M	N
1	-What is an Algorithm? -Algorithm Specification -Analysis Framework - -Performance Analysis:	Specificati on Framewor k	Algorithm Properties	Understanding	-Analyze -Time and space complexities Asymptotic notations.	understand a given algorithm and -express its time and space complexities in asymptotic notations.
1	-Asymptotic Notations: Mathematical analysis of NonRecursive and recursive Algorithms with	Recurren ce Notation - Mathemat ical Analysis	Recurrence strategy	Evaluation	-Solve -Recurrence equations -Master's Theorem	Solve recurrence equations using Iteration Method, Recurrence Tree Method and Master's Theorem

	Examples -Important Problem Types Fundamental Data Structures:					
2	-Finding the maximum and minimum -MergeSort -Quick sort . -Strassen's matrix multiplication	-Sorting -Matrix Operation	Divideconquer	Evaluation	-Design -Algorithms -Divide and Conquer Strategy.	Analyze time efficiency of algorithms using Divide and Conquer Strategy.
2	-Topological Sort.	-Travesal method -Source Removal Methodol ogy	Decrease and conquer		-Design -Algorithms -Decrease and conque	Analyze algorithms using Decrease and Conquer Strategy.
3	-Coin Change Problem, Knapsack Problem -Job sequencing with deadlines -Prim's Algorithm, -Kruskal's Algorithm Dijkstra's Algorithm Optimal Tree problem: Huffman Trees and Codes	Knapsack Problem Sequenci ng -Spanning Tree -Shortest Path -Code Generatio n	Greedy Technique	Analyze	-Solve -Optimization problems -Greedy strategy.	solve Optimization problems using Greedy strategy.
3	-Heaps and Heap Sort	Represent ation change -Sorting	Transform tand conquer	Evaluation	-Solve -Optimization problems -Representation Change	solve Optimization problems using transform and conquer strategy.
4	-Multistage Graphs .Warshall's Algorithm, -Floyd's Algorithm, Optimal - Binary Search Trees, Knapsack problem -Bellman-Ford Algorithm Travelling Sales Person	- Multistag e graph Transitive Closure -Shortest path -Negetive Edge Weight -TSP Problem	Dynamic Programming		-Solve -Optimization problems -Dynamic Programming	Distinguish Dynamic Programming and Greedy Strategies.

COURSE PLAN - CAY 2019-20

	problem					
5	-N-Queens problem -Sum of subsets problem Graph coloring Hamiltonian cycles .	-State Space Tree -Subsets Generatio n -Coloring of Graphical -Cycle Identificati on	Backtracking	Analyze	Design Algorithms using Back Tracking	Test the efficient algorithms using Back Tracking for solving problems.
5	-Assignment Problem, Traveling Sales Person problem -LC Branch and Bound solution -FIFO Branch and Bound solution	-Lower count assignme nt -TSP	Branch and Bound	Analyze	Design Algorithms using Branch Bound	Differentiate Branch Bound with Back tracking for solving problems.
5	-Basic concepts, -non deterministic algorithms, -P, NP, NPComplete, and NP-Hard	Deteminis tic -NP,P Complete Problem	Computation al problem	Apply	Classify computational problems P, NP, NP-Hard and NP-complete	examine computational problems into P, NP, NP-Hard and NPcomplete

