Ref No:

SRI KRISHNA INSTITUTE OF TECHNOLOGY, BENGALURU

LABORATORY PLAN

Academic Year 2018-19

Program:	B E – Basic Science	
Semester :	2	
Course Code:	18CPL27	
Course Title:	C Programming Laboratory	
Credit / L-T-P:	1/ 0-0-2	
Total Contact Hours:	42	
Course Plan Author:	Iranna S A	

Academic Evaluation and Monitoring Cell

No. 29, Chimney hills, Hesaraghatta Road, Chikkabanavara BANGALORE-560090, KARNATAKA , INDIA Phone / Fax :+91-08023721315/23721477, Web: <u>www.skit.org.in</u>

INSTRUCTIONS TO TEACHERS

- Classroom / Lab activity shall be started after taking attendance.
- Attendance shall only be signed in the classroom by students.
- Three hours attendance should be given to each Lab.
- Use only Blue or Black Pen to fill the attendance.
- Attendance shall be updated on-line & status discussed in DUGC.
- No attendance should be added to late comers.
- Modification of any attendance, over writings, etc is strictly prohibited.
- Updated register is to be brought to every academic review meeting as per the COE.

Table of Contents

A. LABORATORY INFORMATION
2. Laboratory Content 5 3. Laboratory Material 5 4. Laboratory Prerequisites: 6 5. Content for Placement, Profession, HE and GATE 7 B. Laboratory Instructions 7 1. General Instructions 7 2. Laboratory Specific Instructions 7 2. Laboratory Outcomes 7 2. Laboratory Applications 7 2. Laboratory Applications 8 3. Mapping And Justification 8 3. Mapping And Justification 8 4. Articulation Matrix 9 5. Curricular Gap and Experiments 9 6. Experiments Beyond Syllabus 10 1. Laboratory Coverage 10 2. Continuous Internal Assessment (CIA) 11 Experiment 01: Familiarization with programming environment by taking any simple C - code 11 Experiment 02: Develop a program to simulate commercial calculator. 12 Develop a program to solve simple computational problems using arithmetic. 13 Experiment 03: Develop a program to compute the roots of a quadratic equation by accepting the coefficients. Print appropriate messages. 13 Develop a program to compute the roots of a quadratic equation by acce
3. Laboratory Material 5 4. Laboratory Prerequisites: 6 5. Content for Placement, Profession, HE and GATE. 7 B. Laboratory Instructions. 7 1. General Instructions. 7 2. Laboratory Specific Instructions. 7 2. Laboratory Outcomes. 7 1. Laboratory Outcomes. 7 2. Laboratory Applications. 8 3. Mapping And Justification. 8 4. Articulation Matrix. 9 5. Curricular Gap and Experiments. 9 6. Experiments Beyond Syllabus. 10 1. Laboratory Coverage. 11 Experiment 01: Familiarization with programming environment by taking any. 11 Experiment 02: Develop a program to simulate commercial calculator. 12 Develop a program to solve simple computational problems using arithmetic expressions and use of each operator leading to simulation of a commercial calculator. (No built-in math function). 12 Experiment 03: D
4. Laboratory Prerequisites: 6 5. Content for Placement. Profession, HE and GATE
B. Laboratory Instructions. 7 1. General Instructions. 7 2. Laboratory Specific Instructions. 7 7. OBE PARAMETERS. 7 1. Laboratory Outcomes. 7 2. Laboratory Applications 8 3. Mapping And Justification 8 4. Articulation Matrix. 9 5. Curricular Gap and Experiments. 9 6. Experiments Beyond Syllabus. 10 D. COURSE ASSESSMENT 10 1. Laboratory Coverage 10 2. Continuous Internal Assessment (CIA) 11 Experiment 01: Familiarization with programming environment by taking any simple C- code 11 Experiment 02: Develop a program to simulate commercial calculator. 12 Experiment 03: Develop a program to compute the roots of a quadratic equation by accepting the coefficients. Print appropriate messages. 13 Develop a program to compute the roots of a quadratic equation by accepting the coefficients. Print appropriate messages. 13 Experiment 04: Develop a program to check for palindrome. 14 Develop a program to find the reverse of a positive integer and check for palindrome or not. Display appropriate messages. 14 Experiment 05: Write a program to read the name of the user,
B. Laboratory Instructions. 7 1. General Instructions. 7 2. Laboratory Specific Instructions. 7 7. OBE PARAMETERS. 7 1. Laboratory Outcomes. 7 2. Laboratory Applications 8 3. Mapping And Justification 8 4. Articulation Matrix. 9 5. Curricular Gap and Experiments. 9 6. Experiments Beyond Syllabus. 10 D. COURSE ASSESSMENT 10 1. Laboratory Coverage 10 2. Continuous Internal Assessment (CIA) 11 Experiment 01: Familiarization with programming environment by taking any simple C- code 11 Experiment 02: Develop a program to simulate commercial calculator. 12 Experiment 03: Develop a program to compute the roots of a quadratic equation by accepting the coefficients. Print appropriate messages. 13 Develop a program to compute the roots of a quadratic equation by accepting the coefficients. Print appropriate messages. 13 Experiment 04: Develop a program to check for palindrome. 14 Develop a program to find the reverse of a positive integer and check for palindrome or not. Display appropriate messages. 14 Experiment 05: Write a program to read the name of the user,
1. General Instructions. 7 2. Laboratory Specific Instructions. 7 7. OBE PARAMETERS. 7 1. Laboratory Outcomes. 7 2. Laboratory Applications. 8 3. Mapping And Justification. 8 4. Articulation Matrix. 9 5. Curricular Gap and Experiments. 9 6. Experiments Beyond Syllabus. 10 D. COURSE ASSESSMENT. 10 1. Laboratory Coverage. 10 2. Continuous Internal Assessment (CIA). 11 Experiment 01: Familiarization with programming environment by taking any. simple C- code. 11 Experiment 02: Develop a program to simulate commercial calculator. 12 Develop a program to solve simple computational problems using arithmetic. expressions and use of each operator leading to simulation of a commercial calculator. (No built-in math function). 12 Experiment 03: Develop a program to compute the roots of a quadratic equation. 12 Experiment 04: Develop a program to compute the roots of a quadratic equation. 13 Develop a program to compute the roots of a quadratic equation. 14 Experiment 04: Develop a program to check for palindrome. 14 Develop a program to check for pal
C. OBE PARAMETERS. // 1. Laboratory Outcomes.
C. OBE PARAMETERS. // 1. Laboratory Outcomes.
1. Laboratory Outcomes. 7 2. Laboratory Applications. 8 3. Mapping And Justification. 8 4. Articulation Matrix. 9 5. Curricular Gap and Experiments. 9 6. Experiments Beyond Syllabus. 10 D. COURSE ASSESSMENT. 10 1. Laboratory Coverage. 10 2. Continuous Internal Assessment (CIA). 11 Experiment 01: Familiarization with programming environment by taking any simple C- code. 11 Experiment 02: Develop a program to simulate commercial calculator. 12 Develop a program to solve simple computational problems using arithmetic. expressions and use of each operator leading to simulation of a commercial calculator. (No built-in math function). 12 Experiment 03: Develop a program to compute the roots of a quadratic equation by accepting the coefficients. Print appropriate messages. 13 Develop a program to compute the roots of a quadratic equation by accepting the coefficients. Print appropriate messages. 13 Experiment 04: Develop a program to check for palindrome. 14 Develop a program to find the reverse of a positive integer and check for palindrome or not. Display appropriate messages. 14 Experiment 04: Develop a program to check for palindrome. 14 Experiment 05:
2. Laboratory Applications. 8 3. Mapping And Justification. 8 4. Articulation Matrix. 9 5. Curricular Gap and Experiments. 9 6. Experiments Beyond Syllabus. 10 D. COURSE ASSESSMENT. 10 1. Laboratory Coverage. 10 2. Continuous Internal Assessment (CIA). 11 E. EXPERIMENTS. 11 Experiment 01: Familiarization with programming environment by taking any 11 Experiment 02: Develop a program to simulate commercial calculator. 12 Develop a program to solve simple computational problems using arithmetic. expressions and use of each operator leading to simulation of a commercial calculator. (No built-in math function). 12 Experiment 03: Develop a program to compute the roots of a quadratic equation by accepting the coefficients. Print appropriate messages. 13 Develop a program to compute the roots of a quadratic equation by accepting the coefficients. Print appropriate messages. 13 Experiment 04: Develop a program to check for palindrome. 14 Develop a program to find the reverse of a positive integer and check for palindrome or not. Display appropriate messages. 14 Experiment 05: Write a program to read the name of the user, number of units consumed and print out the charges. 15
3. Mapping And Justification. 8 4. Articulation Matrix. 9 5. Curricular Gap and Experiments. 9 6. Experiments Beyond Syllabus. 10 D. COURSE ASSESSMENT. 10 1. Laboratory Coverage. 10 2. Continuous Internal Assessment (CIA). 11 E. EXPERIMENTS. 11 Experiment 01: Familiarization with programming environment by taking any simple C- code. 11 Experiment 02: Develop a program to simulate commercial calculator. 12 Develop a program to solve simple computational problems using arithmetic expressions and use of each operator leading to simulation of a commercial calculator. (No built-in math function). 12 Experiment 03: Develop a program to compute the roots of a quadratic equation by accepting the coefficients. Print appropriate messages. 13 Develop a program to compute the roots of a quadratic equation by accepting the coefficients. Print appropriate messages. 13 Experiment 04: Develop a program to check for palindrome. 14 Develop a program to find the reverse of a positive integer and check for palindrome or not. Display appropriate messages. 14 Experiment 05: Write a program to read the name of the user, number of units consumed and print out the charges. 15 An electricity board charges the following rates for the use
4. Articulation Matrix 9 5. Curricular Gap and Experiments 9 6. Experiments Beyond Syllabus 10 D. COURSE ASSESSMENT 10 1. Laboratory Coverage 10 2. Continuous Internal Assessment (CIA) 11 E. EXPERIMENTS 11 Experiment 01: Familiarization with programming environment by taking any simple C- code 11 Experiment 02: Develop a program to simulate commercial calculator 12 Develop a program to solve simple computational problems using arithmetic expressions and use of each operator leading to simulation of a commercial calculator. (No built-in math function) 12 Experiment 03: Develop a program to compute the roots of a quadratic equation by accepting the coefficients. Print appropriate messages. 13 Develop a program to compute the roots of a quadratic equation by accepting the coefficients. Print appropriate messages. 13 Experiment 04: Develop a program to check for palindrome. 14 Develop a program to find the reverse of a positive integer and check for palindrome or not. Display appropriate messages. 14 Experiment 05: Write a program to read the name of the user, number of units consumed and print out the charges. 15 An electricity board charges the following rates for the use of electricity: for the
5. Curricular Gap and Experiments. 9 6. Experiments Beyond Syllabus. 10 D. COURSE ASSESSMENT 10 1. Laboratory Coverage. 10 2. Continuous Internal Assessment (CIA) 11 E. EXPERIMENTS. 11 Experiment 01: Familiarization with programming environment by taking any simple C- code. 11 Experiment 02: Develop a program to simulate commercial calculator. 12 Develop a program to solve simple computational problems using arithmetic expressions and use of each operator leading to simulation of a commercial calculator. (No built-in math function) 12 Experiment 03: Develop a program to compute the roots of a quadratic equation by accepting the coefficients. Print appropriate messages. 13 Develop a program to compute the roots of a quadratic equation by accepting the coefficients. Print appropriate messages. 13 Experiment 04: Develop a program to check for palindrome. 14 Develop a program to find the reverse of a positive integer and check for 13 palindrome or not. Display appropriate messages. 14 Experiment 05: Write a program to read the name of the user, number of units 14 Consumed and print out the charges. 15 An electricity board charges the foll
6. Experiments Beyond Syllabus 10 D. COURSE ASSESSMENT 10 1. Laboratory Coverage 10 2. Continuous Internal Assessment (CIA) 11 E. EXPERIMENTS 11 Experiment 01: Familiarization with programming environment by taking any 11 Experiment 02: Develop a program to simulate commercial calculator 12 Develop a program to solve simple computational problems using arithmetic. 12 Develop a program to solve simple computational problems using arithmetic. 12 Experiment 03: Develop a program to compute the roots of a quadratic equation 12 Experiment 03: Develop a program to compute the roots of a quadratic equation 13 Develop a program to compute the roots of a quadratic equation 13 Develop a program to compute the roots of a quadratic equation 14 Develop a program to find the reverse of a positive integer and check for 13 Experiment 04: Develop a program to read the name of the user, number of units 14 Experiment 05: Write a program to read the name of the user, number of units 15 An electricity board charges the following rates for the use of electricity: for the 15
D. COURSE ASSESSMENT.101. Laboratory Coverage.102. Continuous Internal Assessment (CIA)11E. EXPERIMENTS.11Experiment 01: Familiarization with programming environment by taking any simple C- code.11Experiment 02 : Develop a program to simulate commercial calculator.12Develop a program to solve simple computational problems using arithmetic expressions and use of each operator leading to simulation of a commercial calculator. (No built-in math function)12Experiment 03 : Develop a program to compute the roots of a quadratic equation by accepting the coefficients. Print appropriate messages.13Develop a program to find the reverse of a positive integer and check for palindrome or not. Display appropriate messages.14Experiment 05 : Write a program to read the name of the user, number of units consumed and print out the charges.15An electricity board charges the following rates for the use of electricity: for the
1. Laboratory Coverage
E. EXPERIMENTS.11Experiment 01: Familiarization with programming environment by taking anysimple C- code.11Experiment 02 : Develop a program to simulate commercial calculator.12Develop a program to solve simple computational problems using arithmeticexpressions and use of each operator leading to simulation of a commercialcalculator. (No built-in math function).12Experiment 03 : Develop a program to compute the roots of a quadratic equationby accepting the coefficients. Print appropriate messages.13Develop a program to compute the roots of a quadratic equation by accepting the13Experiment 04 : Develop a program to check for palindrome.14Develop a program to find the reverse of a positive integer and check for14palindrome or not. Display appropriate messages.14Experiment 05 : Write a program to read the name of the user, number of units15An electricity board charges the following rates for the use of electricity: for the15
Experiment 01: Familiarization with programming environment by taking anysimple C- code.11Experiment 02 : Develop a program to simulate commercial calculator.12Develop a program to solve simple computational problems using arithmetic12expressions and use of each operator leading to simulation of a commercial12calculator. (No built-in math function).12Experiment 03 : Develop a program to compute the roots of a quadratic equation13by accepting the coefficients. Print appropriate messages.13Develop a program to compute the roots of a quadratic equation by accepting the14Develop a program to find the reverse of a positive integer and check for14Develop a program to 5 : Write a program to read the name of the user, number of units15An electricity board charges the following rates for the use of electricity: for the15
Experiment 01: Familiarization with programming environment by taking anysimple C- code.11Experiment 02 : Develop a program to simulate commercial calculator.12Develop a program to solve simple computational problems using arithmetic12expressions and use of each operator leading to simulation of a commercial12calculator. (No built-in math function).12Experiment 03 : Develop a program to compute the roots of a quadratic equation13by accepting the coefficients. Print appropriate messages.13Develop a program to compute the roots of a quadratic equation by accepting the14Develop a program to find the reverse of a positive integer and check for14Develop a program to 5 : Write a program to read the name of the user, number of units15An electricity board charges the following rates for the use of electricity: for the15
simple C- code.11Experiment 02 : Develop a program to simulate commercial calculator.12Develop a program to solve simple computational problems using arithmetic12expressions and use of each operator leading to simulation of a commercial12calculator. (No built-in math function).12Experiment 03 : Develop a program to compute the roots of a quadratic equationby accepting the coefficients. Print appropriate messages.13Develop a program to compute the roots of a quadratic equation by accepting the13Develop a program to compute the roots of a quadratic equation by accepting the14Develop a program to find the reverse of a positive integer and check for14Develop a program to find the reverse of a positive integer and check for14Experiment 05 : Write a program to read the name of the user, number of units15An electricity board charges the following rates for the use of electricity: for the15
Develop a program to solve simple computational problems using arithmetic expressions and use of each operator leading to simulation of a commercial calculator. (No built-in math function).12Experiment 03 : Develop a program to compute the roots of a quadratic equation by accepting the coefficients. Print appropriate messages.13Develop a program to compute the roots of a quadratic equation by accepting the coefficients. Print appropriate messages.13Develop a program to compute the roots of a quadratic equation by accepting the coefficients. Print appropriate messages.13Experiment 04 : Develop a program to check for palindrome.14Develop a program to find the reverse of a positive integer and check for palindrome or not. Display appropriate messages.14Experiment 05 : Write a program to read the name of the user, number of units consumed and print out the charges.15An electricity board charges the following rates for the use of electricity: for the
expressions and use of each operator leading to simulation of a commercial calculator. (No built-in math function)
calculator. (No built-in math function)
 Experiment 03 : Develop a program to compute the roots of a quadratic equation by accepting the coefficients. Print appropriate messages. Develop a program to compute the roots of a quadratic equation by accepting the coefficients. Print appropriate messages. Experiment 04 : Develop a program to check for palindrome. Develop a program to find the reverse of a positive integer and check for palindrome or not. Display appropriate messages. Experiment 05 : Write a program to read the name of the user, number of units consumed and print out the charges. An electricity board charges the following rates for the use of electricity: for the
by accepting the coefficients. Print appropriate messages
Develop a program to compute the roots of a quadratic equation by accepting the coefficients. Print appropriate messages
coefficients. Print appropriate messages
 Experiment 04 : Develop a program to check for palindrome
Develop a program to find the reverse of a positive integer and check for palindrome or not. Display appropriate messages
palindrome or not. Display appropriate messages
Experiment 05 : Write a program to read the name of the user, number of units consumed and print out the charges
<u>consumed and print out the charges15</u> <u>An electricity board charges the following rates for the use of electricity: for the</u>
An electricity board charges the following rates for the use of electricity: for the
<u>III'st 200 units 80 paise per unit: for the next 100 units 90 paise per unit: beyond</u>
200 units Do 1 por unit All users are obserred a minimum of Do 100 as motor
<u>300 units Rs 1 per unit. All users are charged a minimum of Rs. 100 as meter</u> charge. If the total amount is more than Rs 400, then an additional surcharge of
<u>15% of total amount is charged. Write a program to read the name of the user.</u>
number of units consumed and print out the charges
Experiment 06 : Introduce 1-D Array manipulation and implement Binary search16
Introduce 1D Array manipulation and implement Binary search
Experiment 07 : Implement using functions to check whether the given number is
prime
Implement using functions to check whether the given number is prime and
display appropriate messages. (No built-in math function)
Experiment 08 : Develop a program to implement Matrix multiplication

Develop a program to introduce 2D Array manipulation and implement Matrix	
multiplication and ensure the rules of multiplication are checked	19
Experiment 09 : Develop a Program to compute Sin(x) using Taylor series	
approximation	
Develop a Program to compute Sin(x) using Taylor series approximation. Comp	<u>are</u>
your result with the built- in Library function. Print both the results with	
appropriate messages	
Experiment 10 : Write functions to implement string operations	21
Write functions to implement string operations such as compare, concatenate,	_
string length. Convince the parameter passing techniques	21
Experiment 11 :Develop a program to sort the given set of N numbers using	
Bubble sort	
Develop a program to sort the given set of N numbers using Bubble sort	21
Experiment 12 : Develop a program to find the square root of a given number N	22
Develop a program to find the square root of a given number N and execute fo	<u>r all</u>
possible inputs with appropriate messages. Note: Don't use library function sqr	<u>t(n)</u>
	22
Experiment 13 : Implement structures to compute average- marks and the	
students scoring above and below the average marks for a class of N students	
Implement structures to read, write, compute average- marks and the students	
scoring above and below the average marks for a class of N students	
Experiment 14 :Develop a program using pointers to compute the sum, mean a	nd
standard deviation	24
Develop a program using pointers to compute the sum, mean and standard	
deviation of all elements stored in an array of n real numbers	
Experiment 15: Implement Recursive functions for Binary to Decimal Conversion	
Implement Recursive functions for Binary to Decimal Conversion	<u>24</u>
F. Content to Experiment Outcomes	25
<u>1. TLPA Parameters</u>	25
2. Concepts and Outcomes:	26

Note : Remove "Table of Content" before including in CP Book

Each Laboratory Plan shall be printed and made into a book with cover page Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

A. LABORATORY INFORMATION

1. Laboratory Overview

Degree:	BE	Program:	BS
Year / Semester :	IZ II	Academic Year:	2018-19
Course Title:	C Programming Laboratory	Course Code:	18CPL27
Credit / L-T-P:	1/0-0-2	SEE Duration:	180 Minutes
Total Contact Hours:	40 Hrs	SEE Marks:	60 Marks
CIA Marks:	40	Assignment	-
Lab. Plan Author:	Iranna S A	Sign	Dt :
Checked By:		Sign	Dt :

2. Laboratory Content

Expt	Title of the Experiments	Lab Hou rs	Concept	Blooms Level
1	Familiarization with programming environment, concept of naming the program files, storing, compilation, execution and debugging. Taking any simple C- code PART-A	2	Execution of simple C Code	L3 Apply
			A'the see a tile	
2	Develop a program to solve simple computational problems using arithmetic expressions and use of each operator leading to simulation of a commercial calculator. (No built-in math function)		Arithmetic Operators	L3 Apply
3	Develop a program to compute the roots of a quadratic equation by accepting the coefficients. Print appropriate messages.	2	Decision- making statements	L3 Apply
4	Develop a program to find the reverse of a positive integer and check for palindrome or not. Display appropriate messages		Looping statements	L3 Apply
	An electricity board charges the following rates for the use of electricity: for the first 200 units 80 paise per unit: for the next 100 units 90 paise per unit: beyond 300 units Rs 1 per unit. All users are charged a minimum of Rs. 100 as meter charge. If the total amount is more than Rs 400, then an additional surcharge of 15% of total amount is charged. Write a program to read the name of the user, number of units consumed and print out the charges		Decision- making statements	L3 Apply
6	Introduce 1D Array manipulation and implement Binary search.	2	Linear representatio n of 1-D arrays	L4 Analyze
7	Implement using functions to check whether the given number is prime and display appropriate messages. (No built-in math function)		Modular representatio n	L4 Analyze
	PART-B			
8	Develop a program to introduce 2D Array manipulation and implement Matrix multiplication and ensure the rules of multiplication are checked.		Linear representatio n of 2-D arrays	L4 Analyze
	Develop a Program to compute Sin(x) using Taylor series approximation. Compare your result with the built- in Library function. Print both the results with appropriate messages.	2	Modular Representatio n	L4 Analyze
10	Write functions to implement string operations such as compare, concatenate, string length. Convince the parameter passing techniques.		String operations	L4 Analyze
11	Develop a program to sort the given set of N numbers using Bubble sort.	2	Data arrangement	L4 Analyze
	Develop a program to find the square root of a given number N and execute for all possible inputs with appropriate messages. Note: Don't use library function sqrt(n).		Modular programming	L4 Analyze
13	Implement structures to read, write, compute average- marks and the students scoring above and below the average marks for a class of N students.		Derived datatype	L4 Analyze
14	Develop a program using pointers to compute the sum, mean and standard deviation of all elements stored in an array of n real numbers	2	Address of memory location	L4 Analyze
15	Implement Recursive functions for Binary to Decimal Conversion		Self- invoking functions	L3 Apply

3. Laboratory Material

Books & other material as recommended by university (A, B) and additional resources used by Laboratory teacher (C). Expt.

		book	
Α	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
	Programming in ANSI C ,E. Balaguruswamy, 7 th Edition,Tata McGraw-Hill		In Library
	The C Programming Language ,Brian W. Kernighan and Dennis M. Ritchie, Prentice Hall of India.		In Library
В	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
	Sumitabha Das, Computer Fundamentals & C Programming, Mc Graw Hill Education.		In Library
	Gary J Bronson, ANSI C Programming, 4 th Edition, Ceneage Learning		
	Vikas Gupta: Computer Concepts and C Programming, Dreamtech Press 2013.		
	R S Bichkar, Programming with C, University Press, 2012		
	V Rajaraman: Computer Programming in C, PHI, 2013.		
	Basavaraj S. Anami, Shanmukhappa A Angadi, Sunilkumar S. Manvi, Computer Concepts and C Programming: A Holistic Approach to Learning C, Second edition, PHI India, 2010.		
С	Concept Videos or Simulation for Understanding	-	-
C <u>htt</u>	ps://www.youtube.com/watch?v=OeZm1jHQMgs		
	<u>ps://www.youtube.com/watch?v=aj_X9UwHXac</u> ps://www.youtube.com/watch?v=eytkPcvxb7o		
C <u>Btt</u>	ps://www.youtube.com/watch?v=kTgvxEtV130		
C4	https://www.youtube.com/watch?v=xB3OnNnhDrU		
C5	https://www.youtube.com/watch?v=LEgitOGtgkM		
C6	https://www.youtube.com/watch?v=u93_v49rEx0		
C7	https://www.youtube.com/watch?v=j1-68rf0wsg		
C8	https://www.youtube.com/watch?v=Ranc3Vvjl88		
C9	https://www.edureka.co/blog/pointers-in-c/		
D	Software Tools for Design	-	-
Е	Recent Developments for Research	-	-
		?	In lib
F	Others (Web, Video, Simulation, Notes etc.)	-	-
1			

4. Laboratory Prerequisites:

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5. Students must have learnt the following Courses / Topics with described Content

Stude	students must have learnt the following Courses / Topics with described Content							
Expt.	Lab.	Lab. Name	Topic / Description	Sem	Remarks	Blooms		
	Code					Level		

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Expt.Topic / DescriptionAreaRemarksBlooms								
Topic / Description	Area	Remarks	Blooms					
			Level					

B. Laboratory Instructions

1. General Instructions

SNo	Instructions	Remarks
1	Observation book and Lab record are compulsory.	
2	Students should report to the concerned lab as per the time table.	
	After completion of the program, certification of the concerned staff in- charge in the observation book is necessary.	
4	Student should bring a notebook of 100 pages and should enter the readings /observations into the notebook while performing the experiment.	
5	The record of observations along with the detailed experimental procedure of the experiment in the Immediate last session should be submitted and certified staff member in-charge.	
6	Should attempt all problems / assignments given in the list session wise.	
	It is responsibility to create a separate directory to store all the programs, so that nobody else can read or copy.	
8	When the experiment is completed, should disconnect the setup made by them, and should return all the components/instruments taken for the purpose.	
9	Any damage of the equipment or burn-out components will be viewed seriously either by putting penalty or by dismissing the total group of students from the lab for the semester/year	
10	Completed lab assignments should be submitted in the form of a Lab Record in which you have to write the algorithm, program code along with comments and output for various inputs given	

2. Laboratory Specific Instructions

SNo	Specific Instructions	Remarks
1	Start windows Operating system	
2	Open the Turbo C text editor screen in Windows	
3	Select new file	
4	Write the program	
5	Save the program with ". c" extension	
	Compile the program using Alt + F9	
7	Press Ctrl + F9 to Run to execute the Program	
8	Press Alt+F5 to view the output of the program at the output screen	

C. OBE PARAMETERS

1. Laboratory Outcomes

Expt.	Lab Code #	COs / Experiment Outcome	Teach.	Concept	Instr	Assessment	Blooms'
			Hours	-	Method	Method	Level
-	-	At the end of the experiment, the	-	-	-	-	-
18CPL27 /C Copyright ©2017. cAAS. All rights reserved.							rved.

		student should be able to					
1	18CPL27.1	Develop execution of C code using Turbo C compiler	02	Execution of simple C Code		Viva & presentation	L3 Apply
2	18CPL27.2	Develop a C code using Conditional branching statements	08	Decision- making statements	Demons trate	Viva & presentation	L3 Apply
С	18CPL27.3	Develop a C code using Looping statements	03	Looping statements	Demons trate	Viva & presentation	L3 Apply
4	18CPL27.4	Develop a C code using Arrays	08	Linear representatio n	Demons trate	Viva & presentation	L4 Analyze
5	18CPL27.5	Develop a C code using user defined functions.	09	Modular representatio n	Demons trate	Viva & presentation	L4 Analyze
6	18CPL27.6	Develop a C code using String manipulation functions parameters	03	5	Demons trate	Viva & presentation	L4 Analyze
7	18CPL27.7	Develop a C code using structures	03	Derived datatype	Demons trate	Viva & presentation	L4 Analyze
8	18CPL27.8	Develop a C code using pointers	03	Address of memory location	Demons trate	Viva & presentation	L4 Analyze
9	18CPL27.9	Develop a C code using recursion	03	Self- invoking functions	Demons trate	Viva & presentation	L3 Apply
-		Total	42	-	-	-	-

Note: Identify a max of 2 Concepts per unit. Write 1 CO per concept.

2. Laboratory Applications

Expt.	Application Area	СО	Level
1	Computer Science	CO1	L3
2	Banking sectors	CO2	L3
3	Theory of Algebra	CO2	L3
4	In Number theory ,DNA sequences	CO3	L3
5	Electricity department	CO2	L3
6	Applications of the binary search algorithm include sets,, trees dictionaries, bags, bag trees, bag dictionaries, hash sets, hash tables, maps	CO4	L3
7	Theory of Algebra	CO3	L3
8	Computer Graphics	CO4	L4
9	Power flow analysis of electrical power systems	CO3	L4
10	Database Management system	CO5	L4
11	Bubble sort is used in programming TV remote to sort channels on the basis of longer viewing time	CO4	L3
12	Mathematical statistics	CO3	L3
13	Computer Architecture	CO6	L3
14	Memory allocation	CO7	L3
15	Computer Technology for encoding and decoding	CO8	L3
Noto:	W/rite 1 or 2 applications per CO		

Note: Write 1 or 2 applications per CO.

3. Mapping And Justification

CO – PO Mapping with mapping Level along with justification for each CO-PO pair. To attain competency required (as defined in POs) in a specified area and the knowledge & ability required to accomplish it.

Expt	pt Mapping Mapping		Mapping	Justification for each CO-PO pair	Lev				
	. Level		Level						
-	СО	PO	-	'Area': 'Competency' and 'Knowledge' for specified 'Accomplishment'	-				
1	CO1	PO1		'Engineering Knowledge:' - <u>Acquisition of Engineering Knowledge</u> of <u>Klystron Oscillator</u> is essential to accomplish <u>solutions to complex</u> <u>engineering problems</u> in Electronics Engineering.	L2				
1	CO1	PO2		Problem Analysis': <u>Analyzing problems</u> require knowledge / understanding of <u>microwave oscillators and working of Klystron</u> <u>Oscillators</u> to accomplish <u>solutions to complex engineering problems</u> in Electronics engineering.	L3				
1	CO1	PO3		'Design / Development of Solutions': <u>Design & development of solutions</u> require knowledge / understanding & analysis of <u>microwave oscillators</u> and working of Klystron Oscillators to accomplish <u>solutions to complex</u> <u>engineering problems</u> in Electronics engineering.	L6				

4. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	-	Experiment Outcomes	Program Outcomes										-					
Expt.	CO.#		PO	PO	PO	PO	PO	PÕ	PO	PO	PO	PO	PO	PO	PS	PS	PS	Lev
		student should be able to	1	2	3	4	5	6	7	8	9	10	11	12	O1	02	03	el
1		Develop execution of C code	2.5	2.5	2.5		2.5											L3
		using Turbo C compiler																
2,3,5		Develop a C code using	2.5	2.5	2.5		2.5											L3
		Conditional branching statements																
4		Develop a C code using Looping	25	2 5	25		2.5											L3
4		statements	2.5	2.5	2.5		2.5											∟3
			2.5	2.5	2.5		2.5											L4
7.9,12		Develop a C code using user	2.5	2.5	2.5		2.5											L4
		defined functions.																
10	18CPL27.6		2.5	2.5	2.5		2.5											L4
		manipulation functions parameters																
10			25	2 5	2 5		2 5											
13		Develop a C code using structures	2.5	2.5	2.5		2.5											L4
14		Develop a C code using pointers		-			2.5											L4
15			2.5	2.5	2.5		2.5											L3
		recursion																
-	18CPL27	Average attainment (1, 2, or 3)	2.	2.	2.	-	2.											-
			-	-	5		5											
-		1.Engineering Knowledge; 2.Prob																
		4.Conduct Investigations of Complex Problems; 5.Modern Tool Usage; 6.The Engineer and																
		Society; 7.Environment and Sustainability; 8.Ethics; 9.Individual and Teamwork;																
		10.Communication; 11.Project Management and Finance; 12.Life-long Learning;						ning;										
		S1.Software Engineering; S2.Data Base Management; S3.Web Design																

5. Curricular Gap and Experiments

Topics	Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.							
Expt	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping			
1								
2								
3								
4								
5								

Note: Write Gap topics from A.4 and add others also.

6. Experiments Beyond Syllabus

Topics & contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Expt	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					

D. COURSE ASSESSMENT

1. Laboratory Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

-	ludent. I Assignment per chapter per student. I seminar per test per student.										
Unit	Title	Teachi				lestior				CO	Levels
		ng	CIA-1	CIA-2	CIA-3	Asg-1	Asg-2	Asg-3	SEE		
		Hours									
1	Familiarization C Program	02	1	-	-	-	-	-	1	CO1	L3
	PART-A										
2	Commercial calculator	02	1	-	-	-	-	-	1	CO2	L3
3	Quadratic equation	03	1	-	-	-	-	-	1	CO2	L3
4	palindrome or not.	02	1	-	-	-	-	-	1	CO3	L3
5	Electricity Bill	03	1	-	-	-	-	-	1	CO2	L3
6	Binary search	03	-	1	-	-	-	-	1	CO4	L4
7	Prime number or not	03	-	1	-	-	-	-	1	CO5	L4
	PART-B										
8	Matrix multiplication .	03	-	1	-	-	-	-	1	CO4	L4
9	Sin(x) using Taylor series	03	-	1	-	-	-	-	1	CO5	L4
10	string operations such as	03	-	1	-	-	-	-	1	CO6	L4
	compare, concatenate, string										
	length										
11	Bubble Sort	03	-	-	1	-	-	-	1	CO4	L4
12	square root of a given number N	03	-	-	1	-	-	-	1	CO3	L4
13	structures to read, write, compute	03	-	-	1	-	-	-	1	CO7	L4
	average- marks										
14	the sum, mean and standard	03	-	-	1	-	-	-	1	CO8	L4
	deviation										
15	Binary to Decimal Conversion	03	-	-	1	-	-	-	1	CO5	L3
-	Total	42	5	5	5	-	-	-	15	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Evaluation	Weightage in Marks	СО	Levels
CIA Exam – 1	40	CO1, CO2, CO3	L3
CIA Exam – 2	40	CO3, CO4, CO5,	L3,L4
CIA Exam – 3	40	CO6,CO7, CO8,CO9	L3,L4
Assignment - 1			
Assignment - 2			
Assignment - 3			
Seminar - 1			
Seminar - 2			
Seminar - 3			
Other Activities – define –			
Slip test			
Final CIA Marks	40	-	-

-		
SNo	Description	Marks
1	Observation and Weekly Laboratory Activities	05 Marks
2	Record Writing	20 Marks for each Expt
3	Internal Exam Assessment	15 Marks
4	Internal Assessment	40 Marks
5	SEE	60Marks
-	Total	100 Marks

E. EXPERIMENTS

Experiment 01: Familiarization with programming environment by taking any simple C-code.

-	Experiment No.:	1 Marks		Date		Date				
				Planned		Conducted				
1	Title	Familiarization	with progra	mming env	rironment, c	oncept of	naming	the		
		program files,	storing, com	npilation, exe	ecution and	debugging.	Taking	any		
		simple C- code	iple C- code							
2	Course Outcomes	Develop execut	velop execution of C code using Turbo C compiler							
3	Aim	Exercise on sim	ple C prograi	m using Turb	o C compiler	·				
4	Material / Equipment	Lab Manual								
	Required									
5	Theory, Formula	eory, Formula, Theory- Basic structure of C program,								
	Principle, Concept	Concept-writing	g & Execution	of Simple C	program					
6	Procedure, Program,	step 1: start								
	Activity, Algorithm,	step 2: write pro	gram							
	Pseudo Code	step 3: save the	program							
		step 4: compile								
		step 5:if error th	en correct th	e errors						
		step 6:run								
		step 7:View the	output							
		step 7:stop								
7	Block, Circuit, Model									
	Diagram, Reaction									
	Equation, Expected									
	Graph									
8	Observation Table	 welcom 	ne to SKIT col	lege						
	Look-up Table									
19CD	27/0				opyright ©2017	CAAS All rights	reconved			

	Output	
9	Sample Calculations	-
10	Graphs, Outputs	-
11	Results & Analysis	-
12	Application Areas	Computer Science
13	Remarks	-
	Faculty Signature	-
	with Date	

Experiment 02 : Develop a program to simulate commercial calculator

-	Experiment No.:	2	Marks		Date Planned		Date Conducted				
1	Title	Deve	lop a progra	m to solve s	imple comp	utational pr		a arithmetic			
					operator lea						
		calcı	ılator. (No bı	uilt-in math f	unction)						
			evelop a C code using Conditional branching statements o solve simple arithmetic operations using operators without built-in functions								
_	Aim			rithmetic ope	erations using	operators w	vithout built-i	n functions			
4	Material / Equipment	Lab	Manual								
	Required										
5		To ap	apply Decision-making statements without using built-in function								
	Principle, Concept	inciple, Concept									
6			1: [start]	,							
	Program, Activity, Algorithm, Pseudo		2: [accept the read a,b ,o								
	Code				c operation o	n variables a	ubl				
			if(op=='+')								
				es=a+b;							
			else if(op=								
			r =else if(op	es=a-b; -'*')							
				es=a*b;							
			else if(op=								
			{								
			if(b!=0)	4							
			re: else	s=a/b;							
			{								
			printf("c	divide by zero	o∖n");						
			exit(0);	-							
			}								
			else								
			[
			printf("i	llegal operat	or∖n");						
			exit(0);								
			}								
		Sten	4: [print the r	esult]							
		otop	print a,op,								
		Step	5 [finished]								
		step	6: stop								
	Block, Circuit,										
	Model Diagram, Reaction Equation,										
	Expected Graph										
8	Observation Table,	Enter	the expressi	on							
	Look-up Table,	5+6=1	1								
		Enter	the expressi	on	-						
18CP	L27 /C				C	opvright ©2017	CAAS. All rights	reserved.			

		6-5=1 Enter the expression 5*6=30 Enter the expression 6/2=3 Enter the expression 6@2 Illegal operator
	Sample	-
	Calculations	
10	Graphs, Outputs	-
11	Results & Analysis	-
12	Application Areas	banking sectors
13	Remarks	
	Faculty Signature with Date	

Experiment 03 : Develop a program to compute the roots of a quadratic equation by accepting the coefficients. Print appropriate messages.

1		Develop a j					k	
2		accepting th	e coefficients. Pr				equation	by
	Course Outcomes	Develop a C d	code using Condi	tional brancł	hing stateme	ents		
3	Aim		quadratic equatio	n through co	pefficients			
4	Equipment Required	Lab Manual						
	Principle, Concept		sion-making state	ements in qu	iadratic equa	tion		
6	Program, Activity, Algorithm, Pseudo Code	Step3: [Find c D=b*b Step4: [Check If (D=	pt a,b,c for non ze discriminate] -4*a*c < the nature] =0) print' roots are r1=(-b)/(2*a) r2=(-b)/(2*a) print r1,r2 f(d>0) print'roots are r r1=(-b+sqrt(d))/r r2=(-b-sqrt(d))/ print r1,r2	real & equal real & distinc (2*a) ′(2*a)				
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph							

8	Observation Table, Look-up Table, Output	
		case 2: enter the non-zero coefficient: 1 2 3 complex roots root1=-1.00000+i1.414214 case 3: enter the non-zero coefficient: 5 5 1 real roots root1=-0.276393 root2=-0.723607 case 4: enter the non-zero coefficient: 1 2 1 equal roots root1=-1.00000 root2=-1.00000
9	Sample Calculations	
	Graphs, Outputs	
	Results & Analysis	
	Application Areas	Theory of Algebra
	Remarks	
14	Faculty Signature with Date	

Experiment 04 : Develop a program to check for palindrome.

-	Experiment No.:	4 Marks	Date Planned	Date Conducted
1	Title		ram to find the reverse ot. Display appropriate me	of a positive integer and check for essages
2	Course Outcomes		e using Repetitive stateme	
3	Aim	or not	itive integer and check w	hether a given number is palindrome
4	Material / Equipment Required	'Lab Manual		
5	Theory, Formula, Principle, Concept	,To apply Looping	g constructs	
6	Procedure, Program, Activity, Algorithm, Pseudo Code	Step3: [assign rev reverse=0 Step4: [reverse th while(n≠0 d n re end while Step5: [Check wh if(m==reve p else	ne number])) igit=n%10 =n/10 everse=reverse*10+digit e nether reversed and origin	ome"

		Stop
7	Block, Circuit,	
	Model Diagram,	
	Reaction Equation,	
	Expected Graph	
8	Observation Table,	case 1:
	Look-up Table,	enter the number:
	Output	1221
		number is palindrome
		case 2 :
		enter the number:
		1234
		number is not palindrome
9	Sample	
	Calculations	
10	Graphs, Outputs	
11	Results & Analysis	
12	Application Areas	In Number theory ,DNA sequences
13	Remarks	
14	Faculty Signature	
	with Date	

Experiment 05 : Write a program to read the name of the user, number of units consumed and print out the charges.

-	Experiment No.:	5	Marks		Date		Date	
					Planned		Conducted	
1		elec 100 are c than Write	tricity: for units 90 pa harged a mir Rs 400, ther	the first a aise per un nimum of Rs n an addition to read the r	200 units a nit: beyond 100 as met nal surcharge	BO paise p 1 300 unit s er charge. If e of 15% of	Der unit: fo s Rs 1 per u the total amount total amount	the use of or the next unit. All users ount is more t is charged. nsumed and
2	Course Outcomes	Deve	lop a C code	using Condi	tional branch	ning stateme	ents	
3	Aim		ad the name umed using I			f units consi	umed and pi	rint the units
	Equipment Required		Manual					
	Theory, Formula, Principle, Concept	To Co	ompute the e	lectricity uni	ts consumpt	ion using If-e	else statemer	nts
		To Compute the electricity units consumption using If-else statements Step 1: [start] (Step 2: [read the input] read name,unit Step 3: [perform the operation on unit consumed] if(unit>=0 && unit<=200) { Rs=unit*0.80; Rs=Rs+100; } else if(unit<=300 && unit>200) { Rs=unit*0.90; Rs=Rs+100; } else if(unit>300)						
			Rs=	unit*1.00;				

		Rs=Rs+100;
		}
		if(Rs>400)
		[
		Rs=Rs+(0.15*Rs);
		}
		Step 4: [print the result]
		print name,unit,Rs
		Step 5: [finished]
		step 6: [stop]
7	Block, Circuit,	
l '	Model Diagram,	
	Reaction Equation,	
	Expected Graph	
8	Observation Table,	1.
		enter the customer name: Sandhya
		enter the number of units consumed:260
		the customer name is:divya
		number of units consumed is 260 total cost(Rs) is 334.000000
		2.
		enter the customer name: sowmya
		enter the number of units consumed:180
		the customer name is: sowmya
		number of units consumed is 180 total cost(Rs) is 244.000000
		3.
		enter the customer name: Divya
		enter the number of units consumed:380
		the customer name is: sandhya
		number of units consumed is 380 total cost(Rs) is 552.000000
9	Sample	
	Calculations	
10	Graphs, Outputs	
11	Results & Analysis	
12	Application Areas	Electricity department
13	Remarks	
14	Faculty Signature	
	with Date	

Experiment 06 : Introduce 1-D Array manipulation and implement Binary search.

-	Experiment No.:	6	Marks		Date Planned		Date Conducted			
1	Title	Introd	roduce 1D Array manipulation and implement Binary search							
2	Course Outcomes	Deve	lop a C code	using Arrays	6					
3	Aim	To ap	ply 1-Dimen	sional array r	nanipulation	and impleme	ent Binary se	arch		
	Material / Equipment Required	Lab N	Manual							
-	Theory, Formula, Principle, Concept	Linea	ar representa	tion of 1-D ar	rays					
	Program, Activity, Algorithm, Pseudo Code	Step Step Step	read n 3: [read the a for(i=0;i <n; read (arr[i] 4:[enter the r Read num</n; 	nrray element i++)) number to be		ıy]				

Page # 16 / 27

		<pre>low=0; high=n-1; while(low<=high) { mid=(low+high)/2; if(arr[mid]==num) { print(num is present in the array at position mid+1); getch(); exit(0); } else if(arr[mid]>num) high=mid-1; else low=mid+1; } print(num does not exist in the array); Step 6: [finished] stop</pre>
	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	
8	Observation Table, Look-up Table, Output	enter the number of elements in the array in ascending order: 5 enter the elements: 12 23 34 45 56 enter the number that has to be searched: 34 34 is present in the array at position= 3
	Sample Calculations	
	Graphs, Outputs	
	Results & Analysis	
	Application Areas	Applications of the binary search algorithm include sets,, trees dictionaries, bags, bag trees, bag dictionaries, hash sets, hash tables, maps
13	Remarks	
14	Faculty Signature with Date	

Experiment o7 : Implement using functions to check whether the given number is prime.

-	Experiment No.:	7	Marks		Date Planned		Date Conducted				
1			nplement using functions to check whether the given number prime and display appropriate messages. (No built-in math function)								
2	Course Outcomes	Deve	evelop a C code using Repetitive statements								
3	Aim	1	check whether the given number is prime without using built-in math								
	Material / Equipment Required	Lab N	Manual								

	<u> </u>	
	Theory, Formula, Principle, Concept	Linear representation of 1-D arrays
		Step 1: [start]
		Step 2: [read the input]
	Algorithm, Pseudo	
	Code	
		Step 3:[to check whether the number is prime or not]
		int isprime(int m)
		int x,i,min,max,j;
		if(m==0)
		$\frac{1}{1}$
		printf("enter x\n"); scanf("%d",&x);
		for(i=2;i<=x-1;i++)
		if(x%i==O)
		{
		return(0);
		}
		return(1);
) n isprime(n)
		p= isprime(n) Step 4: [print the prime number]
		if(p==1) print(n is prime)
		else
		print(n is not prime)
		Step 6: [finished]
		stop
	Block, Circuit,	
	Model Diagram, Reaction Equation,	
	Expected Graph	
	Observation Table,	Case 1'
	Look-up Table,	
	a'	enter 1 for genarating prime numbers till N
		enter 0 to check whether the given number is prime or not
		1
		enter the minimum value and the maximum value
		10 20
		the list of prime no's are :
		11 13 17 19
		Case 2:
		enter 1 for generating prime numbers till N
		enter 0 to check whether the given number is prime or not
		0
		enter the number
		5
		it is a prime number
		Case 3: optor 1 for gonorating prime numbers till N
		enter 1 for generating prime numbers till N enter 0 to check whether the given number is prime or not
		o
		enter the number
		6
1 1		

		it is not a prime number
	Sample	
	Calculations	
10	Graphs, Outputs	
11	Results & Analysis	
12	Application Areas	Theory of Algebra
13	Remarks	
	Faculty Signature	
	with Date	

Experiment 08 : Develop a program to implement Matrix multiplication.

-	Experiment No.:	8	Marks		Date Planned		Date Conducted	
1	Title				uce 2D Array rules of multi		on and imple checked.	ement Matrix
2	Course Outcomes	Deve	lop a C code	using Arrays	5	•		
	Aim			trix multiplic				
	Material / Equipment Required		Aanual	·				
	Principle, Concept	Linea	r representa	tion of 2-D ar	rays			
6	Program, Activity, Algorithm, Pseudo Code	Step Step Step Step Step	3: [validate] if matrix A print matr 4: read the e 5: read the e		equal to mat ion is not pos 4atrix A 4atrix B			
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph							
8	Observation Table,	1. en	ter the size o	f matrix a				
		enter enter the r enter 2 the r 2 The r	1 2 3 4 natrix a is 2 4 the element 3 1 natrix b is 3 2 1 esultant mat	ts of matrix a ts of matrix b				
			er the size o 1 2 the size of n					

		1 2
		Multiplication is not possible
	Sample	
	Calculations	
10	Graphs, Outputs	
11	Results & Analysis	
12	Application Areas	Computer Graphics
13	Remarks	
14	Faculty Signature	
	with Date	

Experiment 09: Develop a Program to compute Sin(x) using Taylor series approximation.

-	Experiment No.:	9	Marks		Date Planned		Date Conducted	
1	Title	Com	lop a Progi pare your res opriate mess	ult with the I	npute Sin(x) ouilt- in Libra	using Taylo ry function. F	or series ap Print both the	proximation. e results with
2					itive stateme			
3	Aim			using Taylor	series and co	ompare with	built- in Lib	rary function
	Material / Equipment Required		1anual					
	Principle, Concept		ılar Represer	ntation				
	Program, Activity, Algorithm, Pseudo Code	Step Step Step Step	1: [start] 2: read the va 3: read the n 4: compute s 5: compare u 6: stop	umber of ter sin(x) value	ms more thar	n three		
	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph							
	Observation Table, Look-up Table, Output	30	-					
		enter	the no. of te	rms greater f	han three 4			
		sin va	lue is 0.5000	059				
		sin va	Ilue using bu	ilt-in functio	n is 0.500059			
-	Sample Calculations							
10	Graphs, Outputs							
	Results & Analysis							
		Powe	er flow analys	is of electric	al power syst	ems		
	Remarks							
	Faculty Signature with Date							

Experiment 10 : Write functions to implement string operations.

-	Experiment No.:	10	Marks	Date	Date	
				Planned	Conducted	

	L	
1		Write functions to implement string operations such as compare, concatenate, string length. Convince the parameter passing techniques.
2	Course Outcomes	Develop a C code using String manipulation functions
3	Aim	To implement string operations
·	Material / Equipment Required	Lab Manual
	Theory, Formula, Principle, Concept	String operations
	Program, Activity, Algorithm, Pseudo Code	Step 1: [start] Step 2: read the two strings Step 3: compare two strings and print the result Step 4: concatenate two strings and print the concatenated string Step 5: compute string length step 6: stop
	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	
8	Look-up Table, Output	enter the first string: sandhya enter the second string: divya strings are not equal length of the string is 7 concatenated string is sandhyadivya
9	Sample Calculations	
10	Graphs, Outputs	
	Results & Analysis	
	· · · · · · · · · · · · · · · · · · ·	Database Management system
13	Remarks	
	Faculty Signature with Date	

Experiment 11: Develop a program to sort the given set of N numbers using Bubble sort.

-	Experiment No.:	11	Marks		Date Planned		Date Conducted	
1	Title	Develop	p a prograi	m to sort the	given set of N	I numbers u	ising Bubble	sort.
2	Course Outcomes	Develop	Develop a C code using Arrays					
3	Aim	To arrar	nge the nu	mbers in asc	ending order	using bubb	le sort techn	ique
4	Material / Equipment Required	Lab Ma	nual					
5	Theory, Formula, Principle, Concept	Data arı	rangemen	t				
	Program, Activity, Algorithm, Pseudo Code	Step 1: [start] vity,Step 2: read size of array udo Step 3: read the array elements Step 4: sort the array elements Step 5: print the sorted array elements step 6: stop						
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph							
8	Observation Table, Look-up Table, Output	5		m no. of elen ts in to the ar		ray:		

		10 45 2 6 80
		the sorted array is:
		2
		6
		10
		45
		80
9	Sample	
	Calculations	
10	Graphs, Outputs	
11	Results & Analysis	
12	Application Areas	Bubble sort is used in programming TV remote to sort channels on the basis of
		longer viewing time
13	Remarks	
14	Faculty Signature	
	with Date	

Experiment 12 : Develop a program to find the square root of a given number N

-	Experiment No.:	12	Marks		Date Planned		Date Conducted		
1		all po sqrt(r	vevelop a program to find the square root of a given number N and execute fo Il possible inputs with appropriate messages. Note: Don't use library functio qrt(n)						
				e using Repet					
	Aim			e root of a give	en number N	without usi	ng library fun	ction sqrt(n)	
	Material / Equipment Required	Lab N	1anual						
	Principle, Concept		ed datatype						
	Program, Activity, Algorithm, Pseudo Code	Step Step Step		square root u quare root of		ined functio	n		
	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph								
	Observation Table, Look-up Table, Output		enter the no 64 the sqrt is 8	3.000 D					
	Sample Calculations								
	Graphs, Outputs								
	Results & Analysis								
	Application Areas	Math	ematical stat	tistics					
	Remarks								
	Faculty Signature with Date								

Experiment 13 : Implement structures to compute	e average- marks and the students scoring above
and below the average marks for a class of N student	5.

-	Experiment No.:	13	Marks		Date Planned		Date Conducted				
1	Title		nplement structures to read, write, compute average- marks and the students coring above and below the average marks for a class of N students.								
2	Course Outcomes	Deve	evelop a C code using structures								
3	Aim	To im	implement structure to compute student average marks for N students								
	Equipment Required		1anual								
	Theory, Formula, Principle, Concept	Deriv	ed datatype								
	Program, Activity, Algorithm, Pseudo Code	Step Step Step Step	3: read the s 4: compute a	average marl	6	ge marks					
	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	-									
		2 enter 32 enter sandy enter 100 99 roll no 33 enter vanith enter 100 99 roll no 32 va	the roll num the name: /a the marks ir o. name sub: andya 100 gg e Average the roll num the name: na the marks ir	nber: 1 2 subjects: 1 sub2 total) 100 nber: 1 2 subjects: 1 sub2 total	-						
	Sample Calculations										
10	Graphs, Outputs										
	Results & Analysis										
	Application Areas	Com	outer Archite	ecture							
	Remarks										
	Faculty Signature with Date										

-	Experiment No.:	14	Marks		Date Planned		Date Conducted		
1	Title		evelop a program using pointers to compute the sum, mean and standard eviation of all elements stored in an array of n real numbers						
2	Course Outcomes	Deve	lop a C code	using pointe	ers				
3	Aim			mean and st using pointe		ation of all el	ements store	ed in an array	
	Equipment Required		Manual						
	Principle, Concept		ess of memo	ry location					
	Program, Activity, Algorithm, Pseudo Code	Step Step Step		sum, mean ai	nd standard d d standard d				
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph								
8		5 Enter 2.5 5.5 6.4 8.8 10.5	the floating	point(like:3.5	an array etc) elemen nd mean=6.74				
				n is 3.082694					
	Sample Calculations								
10	Graphs, Outputs								
	Results & Analysis								
		Mem	ory allocatio	n					
	Remarks								
	Faculty Signature with Date								

Experiment 14: Develop a program using pointers to compute the sum, mean and standard deviation.

Experiment 15: Implement Recursive functions for Binary to Decimal Conversion

-	Experiment No.:	15	Marks		Date Planned	Date Conducted
1	Title	Imple	ment Recur	sive functior	ns for Binary to I	Decimal Conversion
2	Course Outcomes	Devel	op a C code	e using recur	sion	
3	Aim	To co	nvert Binary	to Decimal r	number using re	ecursion
	Material / Equipment Required	′Lab M	1anual			
<u> </u>	Theory, Formula Principle, Concept	,Self- i	nvoking fun	ctions		
			2: read binar		mal using recur	sive function
					0	

	Code	Step 4: print the decimal number
		step 5: stop
7	Block, Circuit	
	Model Diagram	
	Reaction Equation	
	Expected Graph	
8	Observation Table	
	Look-up Table	
	Output	
9	Sample	
	Calculations	
10	Graphs, Outputs	
11	Results & Analysis	
12	Application Areas	Computer Technology for encoding and decoding.
13	Remarks	
	Faculty Signature	
	with Date	

F. Content to Experiment Outcomes

1. TLPA Parameters

	Table 1: TLPA	<u>– Exa</u>	mple Cou	<u>rse</u>			
Expt-	Course Content or Syllabus	Conte	Blooms'	Final	Identified	Instruction	Assessment
#	(Split module content into 2 parts which	nt	Learnin	Bloo	Action	Methods	Methods to
	have similar concepts)	Teachi	g Levels	ms'	Verbs for	for	Measure
		ng	for	Level	Learning	Learning	Learning
			Content				
A	В	С	D	Ε	F	G	Н
1	Familiarization with programming	3	- L2	L3	- Illustrate		- Viva &
	environment, concept of naming the		- L3		-	Demonstr	presentation
	program files, storing, compilation,					ate	
	execution and debugging. Taking					-	
						-	
	any simple C- code.						
2	Develop a program to solve simple		- L2	L3		-	- Viva &
	computational problems using arithmetic		- L3		Implemen		presentation
	expressions and use of each operator				t	ate	
	leading to simulation of a commercial				-	-	
	calculator. (No built-in math function)					-) <i>(</i> '))
3	Develop a program to compute the roots of		- L2	L3	-	-	- Viva &
	a quadratic equation by accepting the		- L3				presentation
	coefficients. Print appropriate messages.				ate	ate	
	Develop a program to find the reverse of a	3	- L2	L3	- -Illustrate	-	- Viva &
4	positive integer and check for palindrome or		- L2 - L3	L3	-illustiale	- Domonstr	presentation
	not. Display appropriate messages.		- L3		-	ate	presentation
	not. Display appropriate messages.					-	
5	An electricity board charges the following	3	- L2	L3	-Illustrate	_	- Viva &
5	rates for the use of electricity: for the first		- L3		-	Demonstr	presentation
	200 units 80 paise per unit: for the next 100		5			ate	-
	units 90 paise per unit: beyond 300 units Rs					-	
	1 per unit. All users are charged a minimum						
	of Rs. 100 as meter charge. If the total						
	amount is more than Rs 400, then an						
	additional surcharge of 15% of total amount						
	is charged. Write a program to read the						
	name of the user, number of units						
	consumed and print out the charges.						

6	Introduce 1D Array manipulation and	3	- L3	L4	_	_	- Viva &
0	implement Binary search.	5	- L4	<u> </u>	Demonstr ate	Demonstr ate	presentation
7	Implement using functions to check whether the given number is prime and display appropriate messages. (No built-in math function)	3	- L3 - L4	L4	- Implemen t -	- Demonstr ate - -	- Viva & presentation - -
8	Develop a program to introduce 2D Array manipulation and implement Matrix multiplication and ensure the rules of multiplication are checked.	3	- L3 - L4	L4	- Demonstr ate -	- Demonstr ate	- Viva & presentation
9	Develop a Program to compute Sin(x) using Taylor series approximation .Compare your result with the built- in Library function. Print both the results with appropriate messages.	3	- L3 - L4	L4	-Illustrate -	- Demonstr ate	- Viva & presentation
	Write functions to implement string operations such as compare, concatenate, string length. Convince the parameter passing techniques.	3	- L3 - L4	L4	- Demonstr ate -	- Demonstr ate	- Viva & presentation
	Develop a program to sort the given set of N numbers using Bubble sort.	3	- L3 - L4	L4		- Demonstr ate	-Viva & presentation
	Develop a program to find the square root of a given number N and execute for all possible inputs with appropriate messages. Note: Don't use library function sqrt(n).	3	- L3 - L4	L4	- Implemen t	- Demonstr ate	-Viva & presentation
	Implement structures to read, write, compute average- marks and the students scoring above and below the average marks for a class of N students.	3	- L3 - L4	L4	- Implemen t	- Demonstr ate	-Viva & presentation
	Develop a program using pointers to compute the sum, mean and standard deviation of all elements stored in an array of n real numbers.	3	- L3 - L4	L4	- Implemen t	- Demonstr ate	-Viva & presentation
	Implement Recursive functions for Binary to Decimal Conversion.	3	- L2 - L3	L3	- Implemen t	- Demonstr ate	-Viva & presentation

2. Concepts and Outcomes:

Table 2: Concept to Outcome – Example Course

Expt	Learning or	Identified	Final Concept	Concept	CO Components	Course Outcome
- #	Outcome	Concepts		Justification	(1.Action Verb,	
	from study	from		(What all Learning	2.Knowledge,	
	of the	Content		Happened from the		Student Should be
	Content or			study of Content /	Methodology,	able to
	Syllabus			Syllabus. A short	4.Benchmark)	
				word for learning or		
				outcome)		
Α	1	J	K	L	М	N
1	- Study of	-	Execution of	Illustrate the	- Develop	Develop execution
	simple C	Compilati	simple C	execution of basic C	- Turbo C compiler	of C code using
	program	on	Code	programs	- C code	Turbo C compiler
		-				
		execution				
		-				
		debuggin				
		g				

	1	1	Γ		1	
	quadratic equation	Condition	statements	quadratic equation using decision making statements	- Develop - Conditional branching - C code	Develop a C code using Conditional branching statements
3		- Repetition statement s	Looping statements	Illustrate positive integers to check palindrome using looping statements	-Develop - Looping statements - C code	Develop a C code using Looping statements
4	-Study of Binary Search Bubble sort, Matrix multiplicatio n	-Arrays	Linear representatio n	Demonstrate 1-D,2- D in binary searching technique,bubble sort,matrix multiplication	- Develop - Arrays - C code	Develop a C code using Arrays
5	-Study of prime number, Taylor series, square root of number	-User Defined functions -	Modular representatio n	Implementing functions to check prime or not, Taylor series, square root of number	- Develop - User defined functions - C code	Develop a C code using user defined functions.
6	concatenate	-String Manipulat ion functions	String operations	Demonstrate different types of string operations	- Develop - String manipulation functions - C code	Develop a C code using String manipulation functions parameters
7	-Study of read, write, compute average marks of student	- Structures -	Derived datatype	Implement structures in student database	- Develop - Structures - C code	Develop a C code using structures
8	-Study of sum, mean, standard deviation	-Pointers	Address of memory location	Implement pointers in sum, mean and deviation		Develop a C code using pointers
9	-Study of binary to decimal conversion	- Recursion	Self- invoking functions	recursion for binary	- Develop - Recursive function - C code	Develop a C code using recursion