SRI KRISHNA INSTITUTE OF TECHNOLOGY, BENGALURU

Academic Year 2018-19

Program:	B E - Basic Science
Semester:	2
Course Code:	18 CPL27
Course Title:	C Programming Laboratory
Credit /L-T-P:	$1 / 0-0-2$
Total Contact Hours:	42
Course Plan Author:	Iranna SA

Academic Evaluation and Monitoring Cell

No. 29, Chimney hills, Hesaraghatta Road, Chikkabanavara BANGALORE-560090, KARNATAKA , INDIA
Phone / Fax :+91-08023721315/23721477, Web: www.skit.org.in

INSTRUCTIONS TO TEACHERS

- Classroom / Lab activity shall be started after taking attendance.
- Attendance shall only be signed in the classroom by students.
- Three hours attendance should be given to each Lab.
- Use only Blue or Black Pen to fill the attendance.
- Attendance shall be updated on-line \& status discussed in DUGC.
- No attendance should be added to late comers.
- Modification of any attendance, over writings, etc is strictly prohibited.
- Updated register is to be brought to every academic review meeting as per the COE.

Table of Contents

A. LABORATORY INFORMATION 4

1. Laboratory Overview 4
2. Laboratory Content 5
3. Laboratory Material 5
4. Laboratory Prerequisites: 6
5. Content for Placement, Profession, HE and GATE 7
B. Laboratory Instructions7
6. General Instructions. 7
7. Laboratory Specific Instructions 7
C. OBE PARAMETERS 7
8. Laboratory Outcomes 7
9. Laboratory Applications 8
10. Mapping And Justification 8
11. Articulation Matrix 9
12. Curricular Gap and Experiments. 9
13. Experiments Beyond Syllabus 10
D. COURSE ASSESSMENT 10
14. Laboratory Coverage 10
15. Continuous Internal Assessment (CIA) 11
E. EXPERIMENTS 11
Experiment 01: Familiarization with programming environment by taking any simple C- code 11
Experiment 02 : Develop a program to simulate commercial calculator 12
Develop a program to solve simple computational problems using arithmetic expressions and use of each operator leading to simulation of a commercial calculator. (No built-in math function) 12
Experiment 03: Develop a program to compute the roots of a quadratic equation by accepting the coefficients. Print appropriate messages 13
Develop a program to compute the roots of a quadratic equation by accepting thecoefficients. Print appropriate messages.13
Experiment 04 : Develop a program to check for palindrome 14
Develop a program to find the reverse of a positive integer and check for palindrome or not. Display appropriate messages 14
Experiment 05: Write a program to read the name of the user, number of units consumed and print out the charges 15
An electricity board charges the following rates for the use of electricity: for thefirst 200 units 80 paise per unit: for the next 100 units 90 paise per unit: beyond300 units Rs 1 per unit. All users are charged a minimum of Rs. 100 as metercharge. If the total amount is more than Rs 400, then an additional surcharge of15% of total amount is charged. Write a program to read the name of the user,number of units consumed and print out the charges15
Experiment 06 : Introduce 1-D Array manipulation and implement Binary search. 16Introduce 1D Array manipulation and implement Binary search16
Experiment 07: Implement using functions to check whether the given number is prime 17
Implement using functions to check whether the given number is prime and display appropriate messages. (No built-in math function) 17
Experiment 08 : Develop a program to implement Matrix multiplication 19
Develop a program to introduce 2D Array manipulation and implement Matrix multiplication and ensure the rules of multiplication are checked 19
Experiment 09: Develop a Program to compute Sin(x) using Taylor series approximation 20
Develop a Program to compute $\operatorname{Sin}(x)$ using Taylor series approximation. Compareyour result with the built- in Library function. Print both the results withappropriate messages20
Experiment 10: Write functions to implement string operations. 21
Write functions to implement string operations such as compare, concatenate, string length. Convince the parameter passing techniques 21
Experiment 11 :Develop a program to sort the given set of N numbers using Bubble sort 21
Develop a program to sort the given set of N numbers using Bubble sort. 21
Experiment 12 : Develop a program to find the square root of a given number N 22
Develop a program to find the square root of a given number N and execute for allpossible inputs with appropriate messages. Note: Don't use library function sqrt(n)22
Experiment 13 : Implement structures to compute average- marks and the students scoring above and below the average marks for a class of N students... 23Implement structures to read, write, compute average- marks and the studentsscoring above and below the average marks for a class of N students23
Experiment 14 :Develop a program using pointers to compute the sum, mean and standard deviation 24
Develop a program using pointers to compute the sum, mean and standard deviation of all elements stored in an array of n real numbers 24
Experiment 15: Implement Recursive functions for Binary to Decimal Conversion 24Implement Recursive functions for Binary to Decimal Conversion................................... 24
F. Content to Experiment Outcomes 25
16. TLPA Parameters 25
17. Concepts and Outcomes: 26
Note : Remove "Table of Content" before including in CP BookEach Laboratory Plan shall be printed and made into a book with cover pageBlooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

A. LABORATORY INFORMATION

1. Laboratory Overview

Degree:	B E	Program:	BS
Year / Semester:	I/ II	Academic Year:	2018-19
Course Title:	C Programming Laboratory	Course Code:	18CPL27
Credit / L-T-P:	$1 /$ O-0-2	SEE Duration:	180 Minutes
Total Contact Hours:	40 Hrs	SEE Marks:	60 Marks
CIA Marks:	40	Assignment	-
Lab. Plan Author:	Iranna SA	Sign	Dt :
Checked By:		Sign	Dt :

2. Laboratory Content

Expt	Title of the Experiments	Lab Hou rs	Concept	Blooms Level
1	Familiarization with programming environment, concept of naming the program files, storing, compilation, execution and debugging. Taking any simple C- code	2	Execution of simple C Code	L3 Apply
	PART-A			
2	Develop a program to solve simple computational problems using arithmetic expressions and use of each operator leading to simulation of a commercial calculator. (No built-in math function)	2	Arithmetic Operators	L3 Apply
3	Develop a program to compute the roots of a quadratic equation by accepting the coefficients. Print appropriate messages.	2	Decisionmaking statements	L3 Apply
4	Develop a program to find the reverse of a positive integer and check for palindrome or not. Display appropriate messages	2	Looping statements	L3 Apply
	An electricity board charges the following rates for the use of electricity: for the first 200 units 80 paise per unit: for the next 100 units 90 paise per unit: beyond 300 units Rs 1 per unit. All users are charged a minimum of Rs. 100 as meter charge. If the total amount is more than Rs 400 , then an additional surcharge of 15% of total amount is charged. Write a program to read the name of the user, number of units consumed and print out the charges	2	Decisionmaking statements	L3 Apply
6	Introduce 1D Array manipulation and implement Binary search.	2	Linear representatio n of 1-D arrays	L4 Analyze
	Implement using functions to check whether the given number is prime and display appropriate messages. (No built-in math function)	2	Modular representatio n	L4 Analyze
	PART-B			
8	Develop a program to introduce 2D Array manipulation and implement Matrix multiplication and ensure the rules of multiplication are checked.	2	Linear representatio n of 2-D arrays	L4 Analyze
9	Develop a Program to compute $\operatorname{Sin}(x)$ using Taylor series approximation. Compare your result with the built- in Library function. Print both the results with appropriate messages.	2	Modular Representatio n	L4 Analyze
10	Write functions to implement string operations such as compare, concatenate, string length. Convince the parameter passing techniques.	2	String operations	L4 Analyze
	Develop a program to sort the given set of N numbers using Bubble sort.	2	Data arrangement	L4 Analyze
	Develop a program to find the square root of a given number N and execute for all possible inputs with appropriate messages. Note: Don't use library function sqrt(n).	2	Modular programming	L4 Analyze
13	Implement structures to read, write, compute average- marks and the students scoring above and below the average marks for a class of N students.	2	Derived datatype	L4 Analyze
14	Develop a program using pointers to compute the sum, mean and standard deviation of all elements stored in an array of n real numbers	2	Address of memory location	L4 Analyze
15	Implement Recursive functions for Binary to Decimal Conversion	2	Self- invoking functions	L3 Apply

3. Laboratory Material

Books \& other material as recommended by university (A, B) and additional resources used by Laboratory teacher (C).

Expt.	Details	Expt. in	Availability

		book	
A	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
	Programming in ANSI C , E. Balaguruswamy, ${ }^{\text {th }}$ Edition,Tata McGraw-Hill		In Library
	The C Programming Language ,Brian W. Kernighan and Dennis M. Ritchie, Prentice Hall of India.		In Library
B	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
	Sumitabha Das, Computer Fundamentals \& C Programming, Mc Graw Hill Education.		In Library
	Gary J Bronson, ANSI C Programming, 4 th Edition, Ceneage Learning		
	Vikas Gupta: Computer Concepts and C Programming, Dreamtech Press 2013.		
	R S Bichkar, Programming with C, University Press, 2012		
	V Rajaraman: Computer Programming in C, PHI, 2013.		
	Basavaraj S. Anami, Shanmukhappa A Angadi, Sunilkumar S. Manvi, Computer Concepts and C Programming: A Holistic Approach to Learning C, Second edition, PHI India, 2010.		
C	Concept Videos or Simulation for Understanding	-	-
Chttps://www.youtube.com/watch? v=OeZmijHQMgs			
Cattps://www.youtube.com/watch?v=aj_XgUwHXac https://www.youtube.com/watch?v=eytkPcvxb70			
Cbttps://www.youtube.com/watch?v=kTgvxEtV130			
C4	https://www.youtube.com/watch?v=xB3OnNnhDrU		
C5	https://www.youtube.com/watch?v=LEgitOGtgkM		
C6	https://www.youtube.com/watch?v=u93_v49rExo		
C7	https://www.youtube.com/watch?v=j1-68rfowsg		
C8	https://www.youtube.com/watch?v=Ranc3Vvjl88		
C9	https://www.edureka.co/blog/pointers-in-c/		
D	Software Tools for Design	-	-
E	Recent Developments for Research	-	-
		?	In lib
F	Others (Web, Video, Simulation, Notes etc.)	-	-

4. Laboratory Prerequisites:

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B. 5.
Students must have learnt the following Courses / Topics with described Content

Expt.	Lab. Code	Lab. Name	Topic / Description	Sem	Remarks	Blooms Level

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry \& profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.
Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Expt.	Topic / Description	Area	Remarks	Blooms Level

B. Laboratory Instructions

1. General Instructions

SNo	Instructions	Remarks
1	Observation book and Lab record are compulsory.	
2	Students should report to the concerned lab as per the time table.	
3	After completion of the program, certification of the concerned staff in- charge in the observation book is necessary.	
4	Student should bring a notebook of 100 pages and should enter the readings /observations into the notebook while performing the experiment.	
5	The record of observations along with the detailed experimental procedure of the experiment in the Immediate last session should be submitted and certified staff member in-charge.	
6	Should attempt all problems / assignments given in the list session wise.	
7	It is responsibility to create a separate directory to store all the programs, so that nobody else can read or copy.	
8	When the experiment is completed, should disconnect the setup made by them, and should return all the components/instruments taken for the purpose.	
9	Any damage of the equipment or burn-out components will be viewed seriously either by putting penalty or by dismissing the total group of students from the lab for the semester/year	
10	Completed lab assignments should be submitted in the form of a Lab Record in which you have to write the algorithm, program code along with comments and output for various inputs given	

2. Laboratory Specific Instructions

SNo	Specific Instructions	Remarks
1	Start windows Operating system	
2	Open the Turbo C text editor screen in Windows	
3	Select new file	
4	Write the program	
5	Save the program with ". c" extension	
6	Compile the program using Alt + F9	
7	Press Ctrl + F9 to Run to execute the Program	
8	Press Alt + F5 to view the output of the program at the output screen	

C. OBE PARAMETERS

1. Laboratory Outcomes

Expt. Lab Code \#	COs / Experiment Outcome	Teach. Hours	Concept	Instr Method	Assessment Method	Blooms' Level	
-	-	At the end of the experiment, the	-	-	-	-	-

[^0]| | | student should be able to ... | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 18CPL27.1 | Develop execution of C code using Turbo C compiler | 02 | Execution of simple C Code | Demons trate | Viva \& presentation | $\begin{gathered} \text { L3 } \\ \text { Apply } \end{gathered}$ |
| 2 | 18CPL27.2 | Develop a C code using Conditional branching statements | 08 | Decisionmaking statements | Demons trate | Viva \& presentation | L3 Apply |
| 3 | 18CPL27.3 | Develop a C code using Looping statements | 03 | Looping statements | Demons trate | Viva \& presentation | L3 Apply |
| 4 | 18CPL27.4 | Develop a C code using Arrays | 08 | Linear representatio n | Demons trate | Viva \& presentation | L4 Analyze |
| 5 | 18CPL27.5 | Develop a C code using user defined functions. | 09 | Modular representatio n | Demons trate | Viva \& presentation | L4 Analyze |
| 6 | 18CPL27.6 | Develop a C code using String manipulation functions parameters | 03 | String operations | Demons trate | Viva \& presentation | $\begin{gathered} \text { L4 } \\ \text { Analyze } \end{gathered}$ |
| 7 | 18CPL27.7 | Develop a C code using structures | 03 | Derived datatype | Demons trate | Viva \& presentation | L4 Analyze |
| 8 | 18CPL27.8 | Develop a C code using pointers | 03 | Address of memory location | Demons trate | Viva \& presentation | L4 Analyze |
| 9 | 18CPL27.9 | Develop a C code using recursion | 03 | Selfinvoking functions | Demons trate | Viva \& presentation | L3 Apply |
| - | | Total | 42 | - | - | - | - |

Note: Identify a max of 2 Concepts per unit. Write 1 CO per concept.

2. Laboratory Applications

Expt.	Application Area	CO	Level
1	Computer Science	CO 1	L 3
2	Banking sectors	CO 2	L 3
3	Theory of Algebra	CO 2	L 3
4	In Number theory ,DNA sequences	CO 3	L 3
5	Electricity department	CO 2	L 3
6	Applications of the binary search algorithm include sets,, trees dictionaries, bags, bag trees, bag dictionaries, hash sets, hash tables, maps	CO 4	L 3
7	Theory of Algebra	CO 3	L 3
8	Computer Graphics	CO 4	L 4
9	Power flow analysis of electrical power systems	CO 3	L 4
10	Database Management system	CO 5	L 4
11	Bubble sort is used in programming TV remote to sort channels on the basis of longer viewing time	CO 4	L 3
12	Mathematical statistics	CO 3	L 3
13	Computer Architecture	CO 6	L 3
14	Memory allocation	CO 7	L 3
15	Computer Technology for encoding and decoding	CO 8	L 3

Note: Write 1 or 2 applications per CO.

3. Mapping And Justification

CO - PO Mapping with mapping Level along with justification for each CO-PO pair.
To attain competency required (as defined in POs) in a specified area and the knowledge \& ability required to accomplish it.

Expt	Mapping		Mapping Level	Justification for each CO-PO pair	$\begin{array}{\|c\|} \hline \text { Lev } \\ \text { el } \end{array}$
-	CO	PO	-	'Area': ‘Competency' and 'Knowledge' for specified 'Accomplishment'	-
1	CO1	PO1	3	'Engineering Knowledge:' - Acquisition of Engineering Knowledge of Klystron Oscillator is essential to accomplish solutions to complex engineering problems in Electronics Engineering.	L2
1	CO1	PO 2		'Problem Analysis': Analyzing problems require knowledge / understanding of microwave oscillators and working of Klystron Oscillators to accomplish solutions to complex engineering problems in Electronics engineering.	L3
1	CO1	PO 3	1	'Design / Development of Solutions': Design \& development of solutions require knowledge / understanding \& analysis of microwave oscillators and working of Klystron Oscillators to accomplish solutions to complex engineering problems in Electronics engineering.	L6

4. Articulation Matrix

CO - PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	-	Experiment Outcomes	Program Outcomes														-
Expt.	CO.\#	At the end of the experiment student should be able to .		$\begin{array}{\|c\|c} \hline \mathrm{PO} & \mathrm{PO} \\ 2 & 3 \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{PO} \\ 4 \end{array}$	$\begin{gathered} \mathrm{PO} \\ 5 \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ 6 \end{gathered}$	PO 7	PO	$\begin{gathered} \mathrm{PO} \\ 9 \end{gathered}$	PO	$\begin{gathered} \mathrm{PO} \\ 11 \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ 12 \end{gathered}$	$\begin{aligned} & \mathrm{PS} \\ & \mathrm{O} \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{PS} \\ \mathrm{O} 2 \end{array}$	$\begin{aligned} & \mathrm{PS} \\ & \mathrm{O}_{3} \end{aligned}$	$\begin{gathered} \text { Lev } \\ \mathrm{el} \end{gathered}$
1	18CPL27.1	Develop execution of C code using Turbo C compiler		$2.52 .5$		2.5											L3
2,3,5	18CPL27.2	Develop a C code using Conditional branching statements		$2.52 .5$		2.5											L3
4	18CPL27.3	Develop a C code using Looping statements		$2.52 .5$		2.5											L3
6.8,11	18CPL27.4	Develop a C code using Arrays	2.5	2.52 .5		2.5											L4
7.9,12	18CPL27.5	Develop a C code using user defined functions.	2.5	$2.52 .5$		2.5											L4
10	18CPL27.6	Develop a C code using String manipulation functions parameters		$2.52 .5$		2.5											L4
13	18CPL27.7	Develop a C code using structures		$2.52 .5$		2.5											L4
14	18CPL27.8	Develop a C code using pointers	2.5	2.52 .5		2.5											L4
15	18CPL27.9	Develop a C code using recursion		$2.52 .5$		2.5											L3
-	18CPL27	Average attainment (1, 2, or 3)		$\begin{array}{ll} 2 . & 2 \\ 5 & 5 \end{array}$		$\begin{aligned} & 2 \\ & 5 \end{aligned}$											-
-	PO, PSO	1.Engineering Knowledge; 2.Proble 4. Conduct Investigations of Complex Society; 7.Environment and Sustran 10.Communication; 11.Project S1.Software Engineering; S2.Data Bas	blem lex Susta Man Base	Analy Problem Pinability agement e Mana	sis; ms; ty; nt agem	$\begin{array}{r} 3 . D \\ \text { 5.Mc } \\ \text { 8.Et } \\ \text { an } \\ \text { men } \end{array}$	Desig Moder Ethic and $n t ; S_{3}$	$\begin{aligned} & \text { sign } \\ & \text { ern } \\ & \text { cs; } \\ & \text { Fir } \\ & 33 . W \end{aligned}$	$\begin{gathered} \text { I } \\ \text { Toon } \\ \text { 9.Ir } \\ \text { nan } \\ \text { leb } \end{gathered}$		velop sage vidua 12. ign	$p m$	ent	of En g		eer	ions; and ork; ing;

5. Curricular Gap and Experiments

Topics \& contents not covered (from A.4), but essential for the course to address POs and PSOs.

Expt	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					

Note: Write Gap topics from A. 4 and add others also.		

6. Experiments Beyond Syllabus

Topics \& contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Expt	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					

D. COURSE ASSESSMENT

1. Laboratory Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Unit	Title		No. of question in Exam							CO	Levels
		$\begin{array}{\|c\|} \mathrm{ng} \\ \text { Hours } \\ \hline \end{array}$	CIA-1	CIA-2	CIA-3	Asg-1	Asg-2	Asg-3	SEE		
1	Familiarization C Program	02	1	-	-	-	-	-	1	CO1	L3
	PART-A										
2	Commercial calculator	02	1	-	-	-	-	-	1	CO 2	L3
3	Quadratic equation	03	1	-	-	-	-	-	1	CO 2	L3
4	palindrome or not.	02	1	-	-	-	-	-	1	CO 3	L3
5	Electricity Bill	03	1	-	-	-	-	-	1	CO 2	L3
6	Binary search	03	-	1	-	-	-	-	1	CO 4	L4
7	Prime number or not	03	-	1	-	-	-	-	1	CO_{5}	L4
	PART-B										
8	Matrix multiplication .	03	-	1	-	-	-	-	1	CO 4	L4
9	Sin (x) using Taylor series	03	-	1	-	-	-	-	1	CO_{5}	L4
10	string operations such as compare,concatenate, string length. .	03	-	1	-	-	-	-	1	CO6	L4
11	Bubble Sort	03	-	-	1	-	-	-	1	CO 4	L4
12	square root of a given number N	03	-	-	1	-	-	-	1	CO_{3}	L4
13	structures to read, write, compute average- marks	03	-	-	1	-	-	-	1	CO 7	L4
14	the sum, mean and standard deviation	03	-	-	1	-	-	-	1	C08	L4
15	Binary to Decimal Conversion	03	-	-	1	-	-	-	1	CO_{5}	L3
-	Total	42	5	5	5	-	-	-	15	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Evaluation	Weightage in Marks	CO	Levels
CIA Exam - 1	40	CO1, CO2, CO3	L3
CIA Exam - 2	40	$\mathrm{CO}_{3}, \mathrm{CO} 4, \mathrm{CO} 5$,	L3,L4
CIA Exam - 3	40	CO6,CO7, CO8,COg	L3,L4
Assignment - 1			
Assignment - 2			
Assignment - 3			
Seminar-1			
Seminar - 2			
Seminar-3			
Other Activities - define Slip test			
Final CIA Marks	40	-	-

SNo	Description	Marks
1	Observation and Weekly Laboratory Activities	05 Marks
2	Record Writing	20 Marks for each Expt
3	Internal Exam Assessment	15 Marks
4	Internal Assessment	40 Marks
5	SEE	60 Marks
-	Total	$\mathbf{1 0 0}$ Marks

E. EXPERIMENTS

Experiment 01: Familiarization with programming environment by taking any simple Ccode.

	Output	
9	Sample Calculations	
10	Graphs, Outputs	-
11	Results \& Analysis	-
12	Application Areas	Computer Science
13	Remarks	-
14	Faculty Signature with Date	-

Experiment 02 : Develop a program to simulate commercial calculator

		$6-5=1$ Enter the expression $5^{*} 6=30$ Enter the expression $6 / 2=3$ Enter the expression $6 @ 2$
		Illegal operator
	Sample Calculations	-
10	Graphs, Outputs	-
11	Results \& Analysis	-
12	Application Areas	banking sectors
13	Remarks 14	Faculty Signature with Date

Experiment 03 : Develop a program to compute the roots of a quadratic equation by accepting the coefficients. Print appropriate messages.

$\left.\begin{array}{|l|l|l|l|}\hline 8 & \begin{array}{l}\text { Observation Table, case 1: } \\ \text { Look-up } \\ \text { Output }\end{array} & \begin{array}{l}\text { Table, } \\ \text { enter the non-zero coefficient: } 101 \\ \text { Invalid Input }\end{array} \\ \text { case 2: } \\ \text { enter the non-zero coefficient: } 123 \\ \text { complex roots } \\ \text { root1=-1.000000+i1.414214 } \\ \text { root2=-1.000000-i1.414214 }\end{array}\right\}$

Experiment 04 : Develop a program to check for palindrome.

-	Experiment No.:	4	Marks	Date Planned	Date Conducted
1	Title	Develop a program to find the reverse of a positive integer and check for palindrome or not. Display appropriate messages			
2	Course Outcomes	Develop a C code using Repetitive statements			
3	Aim	To reverse a positive integer and check whether a given number is palindrome or not			
4	Material Equipment Required	Lab Manual			
5	Theory, Formula, Principle, Concept	To apply Looping constructs			
6	Procedure, Program, Activity, Algorithm, Pseudo Code	```Step1: [start] Step2: [read no] Read n Step3: [assign reverse o and n to m] reverse=0,m=n Step4: [reverse the number] while(n\not=0) digit=n%10 n=n/10 reverse=reverse*10+digit end while Step5: [Check whether reversed and original numbers are same] if(m==reverse) print "number is a palindrome" else print "number is not a palindrome" end if Step6: [finished]```			

		Stop
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	
8	Observation Table, Look-up Table, Output	```case 1: enter the number: 1221 number is palindrome case 2: enter the number: 1234 number is not palindrome```
9	Sample Calculations	
10	Graphs, Outputs	
11	Results \& Analysis	
12	Application Areas	In Number theory ,DNA sequences
13	Remarks	
14	Faculty Signature with Date	

Experiment 05 : Write a program to read the name of the user, number of units consumed and print out the charges.

-	Experiment No.:	5	Marks	Date Planned	Date Conducted
1	Title	An electricity board charges the following rates for the use of electricity: for the first 200 units 80 paise per unit: for the next 100 units 90 paise per unit: beyond 300 units Rs 1 per unit. All users are charged a minimum of Rs. 100 as meter charge. If the total amount is more than Rs 400, then an additional surcharge of 15% of total amount is charged. Write a program to read the name of the user, number of units consumed and print out the charges			
2	Course Outcomes	Develop a C code using Conditional branching statements			
3	Aim	To read the name of the user, number of units consumed and print the units consumed using If-else statements			
4	Material Equipment Required	Lab Manual			
5	Theory, Formula Principle, Concept	To Compute the electricity units consumption using If-else statements			
6	Procedure, Program, Activity Algorithm, Pseudo Code	Step 1: [start] ,Step 2: [read the input] read name, unit Step 3: [perform the operation on unit consumed] if(unit>=0 \&\& unit<=200) [Rs=unit**.80; Rs=Rs+100; \} else if(unit<=300 \&\& unit>200) [Rs=unit*0.90; Rs=Rs+100; \} else if(unit>300) [Rs=unit* ${ }^{*} 1.00$;			

] $\mathrm{Rs}=\mathrm{Rs}+100$; if(Rs>400)] $\mathrm{Rs}=\mathrm{Rs}+\left(0.15^{*} \mathrm{Rs}\right) ;$ Step 4: [print the result] print name,unit,Rs Step 5: [finished] step 6: [stop]
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	
8	Observation Table, Look-up Table, Output	1. enter the customer name: Sandhya enter the number of units consumed:260 the customer name is:divya number of units consumed is 260 total cost(Rs) is 334.000000 2. enter the customer name: sowmya enter the number of units consumed:180 the customer name is: sowmya number of units consumed is 180 total cost(Rs) is 244.000000 3. enter the customer name: Divya enter the number of units consumed:380 the customer name is: sandhya number of units consumed is 380 total cost(Rs) is 552.000000
9	Sample Calculations	
10	Graphs, Outputs	
11	Results \& Analysis	
12	Application Areas	Electricity department
13	Remarks	
14	Faculty Signature with Date	

Experiment 06 : Introduce 1-D Array manipulation and implement Binary search.

-	Experiment No.:	6	Marks	Date Planned	Date Conducted
1	Title	Introduce 1D Array manipulation and implement Binary search			
2	Course Outcomes	Develop a C code using Arrays			
3	Aim	To apply 1-Dimensional array manipulation and implement Binary search			
4	Material Equipment Required	Lab Manual			
5	Theory, Formula, Principle, Concept	Linear representation of 1-D arrays			
6	Procedure, Program, Activity, Algorithm, Pseudo Code	Step 1: [start] Step 2: [read the input] read n Step 3: [read the array elements] for(i=0;i<n;i++) read (arr[i]) Step 4:lenter the number to be searched] Read num Step 5: [search for key element through array]			


		```low=O; high=n-1; while(low<=high) [ mid=(low+high)/2; if(arr[mid]==num) [ print(num is present in the array at position mid+1); getch(); exit(o); } else if(arr[mid]>num) high=mid-1; else low=mid+1; } print( num does not exist in the array);None```
7	Block, Circuit,   Model Diagram,   Reaction Equation,   Expected Graph	
8	Observation Table, Look-up Table. Output	,enter the number of elements in the array in ascending order: 5 enter the elements:   12   23   34   45   56   enter the number that has to be searched: 34   34 is present in the array at position $=3$
9	Sample Calculations	
10	Graphs, Outputs	
11	Results \& Analysis	
12	Application Areas	Applications of the binary search algorithm include sets,, trees dictionaries, bags, bag trees, bag dictionaries, hash sets, hash tables, maps
13	3 Remarks	
14	Faculty Signature with Date	

Experiment 07 : Implement using functions to check whether the given number is prime

| - | Experiment No.: | Marks | Date <br> Planned | Date <br> Conducted |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Title | Implement using functions to check whether the given number <br> is prime and display appropriate messages. (No built-in math function) |  |  |
| 2 | Course Outcomes | Develop a C code using Repetitive statements <br> 3Aim check whether the given number is prime without using built-in math <br> function |  |  |
| 4Material <br> Equipment <br> Required /Lab Manual |  |  |  |  |


5	Theory, Formula, Principle, Concept	Linear representation of 1-D arrays
6	Procedure. Program, Activity, Algorithm, Pseudo Code	Step 1: [start]   Step 2: [read the input]   read $n$   Step 3:Ito check whether the number is prime or not] int isprime(int m)   int x,i,min,max,j;   if( $m=0$ )   [   printf("enter $x \backslash n$ ");   scanf("\%d",\&x);   for $\left(i=2 ; i<=x-1 ; i^{++}\right)$   [   if( $x \% \mathrm{i}==0$ )   [   ]   $\mathrm{p}=$ isprime $(\mathrm{n})$   Step 4: [print the prime number]   if $(p==1) \quad$ print( $n$ is prime)   else   print( $n$ is not prime)   Step 6: [finished]   stop
7	Block, Circuit,   Model Diagram,   Reaction Equation,   Expected Graph	
8	Observation Table, Look-up Table, Output	```Case 1: enter 1 for genarating prime numbers till N enter o to check whether the given number is prime or not 1 enter the minimum value and the maximum value 10 20 the list of prime no's are : 11 Case 2: enter 1 for generating prime numbers till N enter o to check whether the given number is prime or not o enter the number 5 it is a prime number Case 3: enter 1 for generating prime numbers till N enter o to check whether the given number is prime or not O enter the number 6```

LABORATORY PLAN - CAY 2018-19

		it is not a prime number
9	Sample   Calculations	
10	Graphs, Outputs	
11	Results \& Analysis	
12	Application Areas	Theory of Algebra
13	Remarks	
14	Faculty Signature   with Date	

Experiment 08 : Develop a program to implement Matrix multiplication.


		1   Multiplication is not possible
9	Sample   Calculations	
10	Graphs, Outputs	
11	Results \& Analysis	
12	Application Areas	Computer Graphics
13	Remarks	
14	Faculty Signature   with Date	

Experiment 09 : Develop a Program to compute $\operatorname{Sin}(x)$ using Taylor series approximation.

-	Experiment No.:	9	Marks	Date Planned	Date Conducted	
1	Title	Develop a Program to compute $\operatorname{Sin}(x)$ using Taylor series approximation Compare your result with the built- in Library function. Print both the results with appropriate messages.				
2	Course Outcomes	Develop a C code using Repetitive statements				
3	Aim	To compute $\sin (x)$ using Taylor series and compare with built- in Library function				
4	Material   Equipment   Required	Lab Manual				
5	Theory, Formula, Principle, Concept	Modular Representation				
6	Procedure, Program, Activity, Algorithm, Pseudo Code	Step 1: [start]   $y$,Step 2: read the value of $x$ in degrees   Step 3: read the number of terms more than three   Step 4: compute $\sin (x)$ value   Step 5: compare using built-in function   step 6: stop				
7	Block, Circuit,   Model Diagram,   Reaction Equation,   Expected Graph	,				
8	Observation Table, Look-up Table, Output	,enter x in degrees,eg:45,60,90...etc , 30 enter the no. of terms greater than three 4 sin value is 0.500059   sin value using built-in function is 0.500059				
9	Sample Calculations					
10	Graphs, Outputs					
11	Results \& Analysis					
12	Application Areas	Power flow analysis of electrical power systems				
13	Remarks					
14	Faculty Signature with Date					

Experiment 10 : Write functions to implement string operations.

| - | Experiment No.: | 10 | Marks |  | Date <br> Planned | Date <br> Conducted |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


1	Title	Write functions to implement string operations such as compare, concatenate, string length. Convince the parameter passing techniques.
2	Course Outcomes	Develop a C code using String manipulation functions
3	Aim	To implement string operations
4	Material Equipment Required	Lab Manual
5	Theory, Formula, Principle, Concept	String operations
6	Procedure,   Program, Activity, Algorithm, Pseudo Code	Step 1: [start]   Step 2: read the two strings   Step 3: compare two strings and print the result   Step 4: concatenate two strings and print the concatenated string   Step 5: compute string length   step 6: stop
	Block, Circuit,   Model Diagram,   Reaction Equation,   Expected Graph	
8	Observation Table, Look-up Table, Output	enter the first string: sandhya enter the second string: divya strings are not equal length of the string is 7 concatenated string is sandhyadivya
9	Sample Calculations	
10	Graphs, Outputs	
11	Results \& Analysis	
12	Application Areas	Database Management system
13	Remarks	
14	Faculty Signature with Date	

Experiment 11 :Develop a program to sort the given set of N numbers using Bubble sort.



Experiment 12 : Develop a program to find the square root of a given number N

-	Experiment No.:	12	Marks	Date Planned	Date Conducted	
1	Title	Develop a program to find the square root of a given number $N$ and execute for all possible inputs with appropriate messages. Note: Don't use library function sqrt(n)				
2	Course Outcomes	Develop a C code using Repetitive statements				
3	Aim	To find the square root of a given number N without using library function sqrt(n)				
4	Material Equipment Required	Lab Manual				
5	Theory, Formula, Principle, Concept	Derived datatype				
6	Procedure,   Program, Activity, Algorithm, Pseudo Code	Step 1: start   Step 2: read n   Step 3: compute square root using user defined function   Step 4: print the square root of a number   step 5: stop				
7	Block, Circuit,   Model Diagram,   Reaction Equation,   Expected Graph					
8	Observation Table,   Look-up Table,   Output	, Case 1 :   enter the no 64 the sqrt is 8.000   Case 2 :   enter the no   12   the sqrt is 3.464				
9	Sample Calculations					
10	Graphs, Outputs					
11	Results \& Analysis					
12	Application Areas	Mathematical statistics				
13	Remarks					
14	Faculty Signature with Date					

Experiment 13: Implement structures to compute average- marks and the students scoring above and below the average marks for a class of N students.


Experiment 14 :Develop a program using pointers to compute the sum, mean and standard deviation.

-	Experiment No.:	14	Marks	Date Planned	Date Conducted	
1	Title	Develop a program using pointers to compute the sum, mean and standard deviation of all elements stored in an array of $n$ real numbers				
2	Course Outcomes	Develop a C code using pointers				
3	Aim	To compute sum, mean and standard deviation of all elements stored in an array of $n$ real numbers using pointers				
4	Material Equipment Required	/Lab Manual				
5	Theory, Formula, A Principle, Concept	,Address of memory location				
6	$\begin{aligned} & \text { Procedure, } \\ & \text { Program, } \\ & \text { Activity, } \\ & \text { Algorithm, } \\ & \text { Code } \end{aligned}$	Step 1: start   Step 2: read array elements   Step 3: compute sum, mean and standard deviation Step 4: print the sum, mean and standard deviation step 5 : stop				
7	Block, Circuit,   Model Diagram,   Reaction Equation,   Expected Graph					
8	Observation Table,e   Look-up Table,5   Output	enter the max no. of elements an array .5   Enter the floating point(like:3.5...etc) elements into array 2.5   5.5   6.4   8.8   10.5   the value of sum=33.700001 and mean=6.740000   standard deviation is 3.082694				
9	Sample Calculations					
10	Graphs, Outputs					
11	Results \& Analysis	Memory allocation				
12	Application Areas					
13	Remarks					
4	Faculty Signature with Date					

Experiment 15: Implement Recursive functions for Binary to Decimal Conversion

-	Experiment No.:	15	Marks	Date   Planned	Date   Conducted		
1	Title	Implement Recursive functions for Binary to Decimal Conversion					
2	Course Outcomes	Develop a C code using recursion					
3	Aim	To convert Binary to Decimal number using recursion					
4	Material   Equipment   Required	Lab Manual					
5	Theory, Formula, Self- invoking functions   Principle, Concept						
6	Procedure,   Program, Activity,						Step 1: start
:---							
Algorithm, Pseado							


	Code	Step 4: print the decimal number   step 5: stop
7	Block, Circuit,   Model   Magram,   Reaction Equation,   Expected Graph	
8	Observation Table,   Look-up   Lob, Table,   Output	
9	Sample   Calculations	
10	Graphs, Outputs	
11	Results \& Analysis	
12	Application Areas	Computer Technology for encoding and decoding.
13	Remarks	
14	Faculty Signature   with Date	

## F. Content to Experiment Outcomes

## 1. TLPA Parameters

Table 1: TLPA - Example Course

$\begin{gathered} \text { Expt- } \\ \# \end{gathered}$	Course Content or Syllabus (Split module content into 2 parts which have similar concepts)	Conte nt Teachi ng Hours	Blooms'   Learnin   g Levels   for   Content	Final   Bloo ms' Level	Identified Action Verbs for Learning	nstruction Methods for Learning	Assessment Methods to Measure Learning
A	$B$	C	D	E	$F$	G	H
1	Familiarization with programming environment, concept of naming the program files, storing, compilation, execution and debugging. Taking any simple C- code.	3	$\begin{aligned} & -\mathrm{L} 2 \\ & -\mathrm{L} 3 \end{aligned}$	L3	- Illustrate	Demonstr ate	- Viva \& presentation
2	Develop a program to solve simple computational problems using arithmetic expressions and use of each operator leading to simulation of a commercial calculator. (No built-in math function)	3	$\begin{aligned} & -L 2 \\ & -L 3 \end{aligned}$	L3	Implemen	Demonstr ate	- Viva \& presentation
3	Develop a program to compute the roots of a quadratic equation by accepting the coefficients. Print appropriate messages.	3	$\begin{aligned} & -\mathrm{L} 2 \\ & -\mathrm{L} 3 \end{aligned}$	L3	Demonstr ate	Demonstr ate	- Viva \& presentation
4	Develop a program to find the reverse of a positive integer and check for palindrome or not. Display appropriate messages.	3	$\begin{aligned} & -\mathrm{L} 2 \\ & -\mathrm{L} 3 \end{aligned}$	L3	-Illustrate	Demonstr ate	- Viva \& presentation
5	An electricity board charges the following rates for the use of electricity: for the first 200 units 80 paise per unit: for the next 100 units 90 paise per unit: beyond 300 units Rs 1 per unit. All users are charged a minimum of Rs. 100 as meter charge. If the total amount is more than Rs 400, then an additional surcharge of $15 \%$ of total amount is charged. Write a program to read the name of the user, number of units consumed and print out the charges.	3	$\begin{aligned} & -\mathrm{L} 2 \\ & -\mathrm{L} 3 \end{aligned}$	L3	-Illustrate	Demonstr ate	- Viva \& presentation


6	Introduce 1D Array manipulation and implement Binary search.	3	$\begin{aligned} & \text { - L3 } \\ & -\mathrm{L} 4 \end{aligned}$	L4	Demonstr ate	Demonstr ate	- Viva \& presentation
7	Implement using functions to check whether the given number is prime and display appropriate messages. (No built-in math function)	3	$\begin{aligned} & -\mathrm{L} 3 \\ & -\mathrm{L} 4 \end{aligned}$	L4	Implemen	Demonstr ate	- Viva \& presentation
8	Develop a program to introduce 2D Array manipulation and implement Matrix multiplication and ensure the rules of multiplication are checked.	3	$\begin{aligned} & -\mathrm{L} 3 \\ & -\mathrm{L} 4 \end{aligned}$	L4	Demonstr ate	Demonstr ate	- Viva \& presentation
9	Develop a Program to compute $\operatorname{Sin}(x)$ using Taylor series approximation .Compare your result with the built- in Library function. Print both the results with appropriate messages.	3	$\begin{aligned} & -\mathrm{L} 3 \\ & -\mathrm{L} 4 \end{aligned}$	L4	-Illustrate	Demonstr ate	- Viva \& presentation
	Write functions to implement string operations such as compare, concatenate, string length. Convince the parameter passing techniques.	3	$\begin{aligned} & -\mathrm{L} 3 \\ & -\mathrm{L} 4 \end{aligned}$	L4	Demonstr ate	Demonstr ate	- Viva \& presentation
	Develop a program to sort the given set of N numbers using Bubble sort.	3	$\begin{aligned} & -\mathrm{L} 3 \\ & -\mathrm{L} 4 \end{aligned}$	L4	Demonstr ate	Demonstr ate	-Viva \& presentation
	Develop a program to find the square root of a given number N and execute for all possible inputs with appropriate messages. Note: Don't use library function sqrt(n).	3	$\begin{aligned} & -\mathrm{L} 3 \\ & -\mathrm{L} 4 \end{aligned}$	L4	Implemen   t	Demonstr ate	-Viva \& presentation
	Implement structures to read, write, compute average- marks and the students scoring above and below the average marks for a class of N students.	3	$\begin{aligned} & -\mathrm{L} 3 \\ & -\mathrm{L} 4 \end{aligned}$	L4	Implemen   t	Demonstr ate	-Viva \& presentation
	Develop a program using pointers to compute the sum, mean and standard deviation of all elements stored in an array of n real numbers.	3	$\begin{aligned} & -\mathrm{L} 3 \\ & -\mathrm{L} 4 \end{aligned}$	L4	Implemen   t	Demonstr ate	-Viva \& presentation
	Implement Recursive functions for Binary to Decimal Conversion.	3	$\begin{aligned} & -\mathrm{L} 2 \\ & -\mathrm{L} 3 \end{aligned}$	L3	Implemen   t	Demonstr ate	-Viva \& presentation

## 2. Concepts and Outcomes:

Table 2: Concept to Outcome - Example Course

$\begin{gathered} \text { Expt } \\ -\# \end{gathered}$	Learning or Outcome from study of the Content or Syllabus	Identified Concepts from Content	Final Concept	Concept Justification (What all Learning Happened from the study of Content / Syllabus. A short word for learning or outcome)	CO Components (1.Action Verb, 2.Knowledge, 3.Condition / Methodology, 4.Benchmark)	Course Outcome   Student Should be able to ...
A	1	$J$	K	L	M	N
1	- Study of simple C program	Compilati on execution debuggin g	Execution of simple C Code	Illustrate the execution of basic C programs	- Develop   - Turbo C compiler   - C code	Develop execution of C code using Turbo C compiler

LABORATORY PLAN - CAY 2018-19

2	-Study of arithmetic operators, quadratic equation	Condition al statement s	Decisionmaking statements	Implement the different arithmetic operators in C, quadratic equation using decision making statements	- Develop   - Conditional branching - C code	Develop a C code using Conditional branching statements
3	-Study of Palindrome	Repetition statement s	Looping statements	Illustrate positive integers to check palindrome using looping statements	-Develop   - Looping statements   - C code	Develop a C code using Looping statements
4	-Study of Binary Search Bubble sort, Matrix multiplicatio n	-Arrays	Linear representatio n	Demonstrate 1-D,2D in binary searching technique,bubble sort,matrix multiplication	- Develop   - Arrays   - C code	Develop a C code using Arrays
5	-Study of prime number, Taylor series, square root of number	-User Defined functions	Modular representatio n	Implementing functions to check prime or not, Taylor series, square root of number	- Develop   - User defined   functions   - C code	Develop a C code using user defined functions.
6	-Study of compare, concatenate length	-String Manipulat ion functions	String operations	Demonstrate different types of string operations	- Develop   - String manipulation functions   - C code	Develop a C code using String manipulation functions parameters
7	-Study of read, write, compute average marks of student	Structures	Derived datatype	Implement structures in student database	- Develop   - Structures   - C code	Develop a C code using structures
8	-Study of sum, mean, standard deviation	-Pointers	Address of memory location	Implement pointers in sum, mean and deviation	- Develop   - pointers   - C code	Develop a C code using pointers
9	-Study of binary to decimal conversion	Recursion	Self- invoking functions	```Implement recursion for binary to Decimal conversion```	- Develop   - Recursive function   - C code	Develop a C code using recursion


[^0]:    18CPL27/C Page \#7/27

