

(Accredited by NAAC, Approved by A.I.C.T.E. New Delhi, Recognised by Govt. of Karnataka & Affiliated to V.T U., Belagavi) #29, Chimney Hills, Hesaraghatta Main Road, Chikkabanavara Post, Bengaluru- 560090

Dept. of Artificial Intelligence & Machine Learning

Academic Year: 2022-2023	Semester: 5 th
Course Name: Principles of Artificial Intelligence	Course Code: 18AI55
Total Contact hours: 40	Credits: 03
SEE Marks: 60; CIE: 40	Total Marks: 100
Course Plan Author: Prof. Manzoor Ahmed	Date: 06-10-2022

Course Prerequisites: Basics of mathematics, programming, statistics, Algorithms etc.

Course Objectives:

- 1. Gain a historical perspective of AI and its foundations.
- 2. Become familiar with basic principles of AI toward problem solving.
- 3. Get to know approaches of inference, perception, knowledge representation, and learning.

Course Outcomes:

- 1. Apply the knowledge of Artificial Intelligence to write simple algorithm for agents.
- 2. Apply the AI knowledge to solve problem on search algorithm.
- 3. Develop knowledge base sentences using propositional logic and first order logic.
- 4. Apply first order logic to solve knowledge engineering process.

CO	Course Outcome	Blooms'
Number	At the end of the course, student should be able to	Level
CO1	Apply the knowledge of Artificial Intelligence to write simple algorithm for agents.	L1,L2
CO2	Apply the AI knowledge to solve problem on search algorithm.	L1,L2
CO3	Develop knowledge base sentences using propositional logic and first order logic.	L1,L2
CO4	Apply first order logic to solve knowledge engineering process.	L1,L2

(Accredited by NAAC, Approved by A.I.C.T.E. New Delhi, Recognised by Govt. of Karnataka & Affiliated to V.T U., Belagavi) #29, Chimney Hills, Hesaraghatta Main Road, Chikkabanavara Post, Bengaluru- 560090

Dept. of Artificial Intelligence & Machine Learning

Program Outcomes and Program Specific Outcomes

PO,	1.Engineering Knowledge;
PSO	2.Problem Analysis;
	3.Design / Development of Solutions;
	4. Conduct Investigations of Complex Problems;
	5.Modern Tool Usage;
	6.The Engineer and Society;
	7.Environment and Sustainability;
	8.Ethics;
	9.Individual and Teamwork;
	10.Communication;
	11.Project Management and Finance;
	12.Life-long Learning;
	PSO1.: Graduates will have the ability to adapt, contribute and innovate ideas in the field of Artificial Intelligence and Machine Learning
	PSO2: To provide a concrete foundation and enrich their abilities to qualify for Employment, Higher studies and Research in various domains of Artificial Intelligence and Machine Learning such as Data Science, Computer Vision, Natural Language Processing with Ethical Values.
	PSO3: Graduates will acquire the practical proficiency with niche technologies and opensource platforms and to become Entrepreneur in the domain Artificial Intelligence and Machine Learning

CO - PO Mapping

Course Outcomes		Program Outcomes													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	2								1	1	2	
CO2	2	2	2	2					1			1	1	2	
CO3	2	2	2	2					1			1	1	2	
CO4	2	2	2	2					1			1	1	2	

(Accredited by NAAC, Approved by A.I.C.T.E. New Delhi, Recognised by Govt. of Karnataka & Affiliated to V.T U., Belagavi) #29, Chimney Hills, Hesaraghatta Main Road, Chikkabanavara Post, Bengaluru- 560090

Dept. of Artificial Intelligence & Machine Learning

Course Content (Syllabus)

(Effective from the academic year 2018 -2019) SEMESTER – V					
Course Code	18AI55	CIE Marks	40		
Number of Contact Hours/Week	3:0:0	SEE Marks	60		

DDINGIDLES OF A DELECTAL INVESTIGENCE

Course Code	18AI55	CIE Marks	40
Number of Contact Hours/Week	3:0:0	SEE Marks	60
Total Number of Contact Hours	40	Exam Hours	03 Hrs

Module-1

Introduction to AI: history, Intelligent systems, foundation and sub area of AI, applications, current trend and development of AI. Problem solving: state space search and control strategies.

Chapter 1 and 2 **RBT: L1, L2**

Module-2

Problem reduction and Game playing: Problem reduction, game playing, Bounded look-ahead strategy, alpha-beta pruning, Two player perfect information games

Chapter 3 **RBT: L1, L2**

Module-3

Logic concepts and logic Programming: propositional calculus, Propositional logic, natural deduction system, semantic tableau system, resolution refutation, predicate logic, Logic programming.

Chapter 4 **RBT:** L1, L2

Module-4

Advanced problem solving paradigm: Planning: types of planning sytem, block world problem, logic based planning, Linear planning using a goal stack, Means-ends analysis, Non linear planning strategies, learning plans

Chapter 6 **RBT**: L1, L2

Module-5

Knowledge Representation, Expert system

Approaches to knowledge representation, knowledge representation using semantic network, extended semantic networks for KR, Knowledge representation using Frames.

Expert system: introduction phases, architecture ES verses Traditional system

Chapter 7 and 8 (8.1 to 8.4)

RBT: L1, L2

(Accredited by NAAC, Approved by A.I.C.T.E. New Delhi, Recognised by Govt. of Karnataka & Affiliated to V.T U., Belagavi) #29, Chimney Hills, Hesaraghatta Main Road, Chikkabanavara Post, Bengaluru- 560090

Dept. of Artificial Intelligence & Machine Learning

Schedule of Instruction

Sl.no	Class	Module	Topic	Reference	Course	Delivery
	no			(Book,	Outcome	mode
				Page no.)		
1	2	Module1:	Introduction to AI: history, Intelligent systems, foundation and sub area of AI, Applications	T1, 1-9	CO1	PPTs
2	3		Current trend and development of AI.	T1, 9-18	CO1	Seminar
3	4		Problem solving: state space search and control strategies: Introduction, General Problem Solving: Production System-Water Jug Problem, Missionaries and Cannibals Problem, State-Space Search.	T1, 23-30	CO1, CO2	PPTs , Chalk & Talk
4	5		The Eight-Puzzle Problem, Control Strategies, Characteristics of Problem, Exhaustive Searches: BFS	T1, 30-35	CO1, CO2	PPTs , Chalk & Talk
5	6		DFS, Depth-First Iterative Deepening, Bidirectional Search, Analysis of Search methods,	T1, 35-42	CO1, CO2	PPTs , Chalk & Talk
6	7		Travelling Salesman Problem, Heuristic Search Techniques: General Purpose Heuristics, Branch and Bound Search, Hill Climbing, Beam Search	T1, 42-49	CO1, CO2	PPTs , Chalk & Talk
7	8		BFS, A* Algorithm, Optimal Solution by A* Algorithm,	T1, 49-55	CO1, CO2	PPTs , Chalk & Talk
8	9		Iterative-Deepening A*, Constraint Satisfaction, Crypt-Arithmetic Puzzle,	T1, 55-61	CO1,CO2	PPTs , Chalk & Talk
9	10	Module2:	Problem Reduction and Game Playing: Introduction, Problem Reduction,	T1, 65-72	CO1,CO2	PPTs , Chalk & Talk
10	11		Algorithmic Steps for AND-OR Graph, Cyclic Graphs, Interaction between Sub-Goals	T1, 72-75	CO1,CO2	PPTs , Chalk & Talk
11	12		Game Playing: Game Problem versus State Space Problem, Status Labelling Procedure in Game Tree,	T1, 75-78	CO1,CO2	PPTs , Chalk & Talk
12	13		Nim Game Problem. Validity of Cases for winning of MAX player- Case 1 & 2	T1, 78-83	CO1,CO2	PPTs , Chalk & Talk
13	14		Validity of Cases for winning of	T1, 84-86	CO1,CO2	PPTs ,

(Accredited by NAAC, Approved by A.I.C.T.E. New Delhi, Recognised by Govt. of Karnataka & Affiliated to V.T U., Belagavi) #29, Chimney Hills, Hesaraghatta Main Road, Chikkabanavara Post, Bengaluru- 560090

Dept. of Artificial Intelligence & Machine Learning

			MAX player-Case3 & 4			Chalk &
						Talk
14	15		Bouned Look-Ahead Strategy and	T1, 87-93	CO1,CO2	PPTs,
			Use of Evaluation Functions, MINIMAX Procedure			Chalk & Talk
15	16	_	Alpha-Beta Pruning	T1, 93-98	CO1,CO2	PPTs,
13	10		Aipiia-Beta i fulling	11, 93-98	CO1,CO2	Chalk &
						Talk
16	17		T DI D C (I C (T1, 99-	CO1,CO2	PPTs,
			Two-Player Perfect Information Games	100	,	Chalk &
			Games			Talk
17	18	Module	Logic Concepts and Logic	T1, 102-		PPTs,
		3:	Programming: Introduction,	105	CO3	Chalk &
		_	Propositional Calculus,			Talk
18	19		Propositional Logic	T1, 105-	CO2	PPTs,
				107	CO3	Chalk & Talk
19	20			T1, 107-		PPTs,
19	20		Natural Deduction System,	109	CO3	Chalk &
			Tratara Beauchon System,	109	003	Talk
20	21		Axiomatic System,	T1, 109-		PPTs ,
				111	CO3	Chalk &
						Talk
21	22		Semantic Tableau System in	T1, 111-		PPTs,
			Propositional Logic, Semantic	117	CO3	Chalk &
			Tableau Rules, Satisfiability and			Talk
22	22	_	Unsatisfiability Resolution Refutation in	T1 117		DDT-
22	23		Propositional Logic, Conversion of	T1, 117-		PPTs , Chalk &
			Formula into a Set of Clauses,	121	CO3	Talk
			Conversion of a Formula to its CNF,		203	Tuik
			Resolution of Clauses			
23	24		Predicate Logic, Predicate Calculus,	T1, 121-		PPTs,
			First Order Predicate Calculus,	124		Chalk &
			Interpretations of Formulae in FOL,		CO3	Talk
			Satisfiability and Unsatisfiability in			
2.1	0.5	_	FOL	TD1 107		DDT
24	25		Transformation of a Formula into	T1, 125-		PPTs , Chalk &
			Prenex Normal Form, Conversion of PNF to its Standard Form, Clauses in	128	CO3	Chaik & Talk
			FOL,			Taik
25	26			T1, 128-		PPTs,
			Resolution Refutation Method in	130	CO3	Chalk &
			FOL	150		Talk
26	27		Laria Danama	T1, 131-	COS	PPTs,
			Logic Programming	136	CO3	Chalk &

(Accredited by NAAC, Approved by A.I.C.T.E. New Delhi, Recognised by Govt. of Karnataka & Affiliated to V.T U., Belagavi) #29, Chimney Hills, Hesaraghatta Main Road, Chikkabanavara Post, Bengaluru- 560090

Dept. of Artificial Intelligence & Machine Learning

						Talk
27	28	Module 4:	Advanced Problem-Solving Paradigm: Planning, Introduction, Types of Planning Systems,	T1, 185- 191	CO2,CO3	PPTs , Chalk & Talk
28	29		Block World Problem: Description, Logic Based Planning	T1, 191- 195	CO2,CO3	PPTs , Chalk & Talk
29	30		Linear Planning Using a Goal Stack	T1, 195- 206	CO2,CO3	PPTs , Chalk & Talk
30	31		Means-Ends Analysis	T1, 207- 211	CO2,CO3	PPTs , Chalk & Talk
31	32		Non-linear Planning Strategies, Goal	T1, 211- 217	CO2,CO3	PPTs , Chalk & Talk
32	33		Set Method	T1, 211- 217	CO2,CO3	PPTs , Chalk & Talk
33	34		Constraint Posting Method, Compact Representation	T1, 217- 224	CO3	PPTs , Chalk & Talk
34	35		Learning Plans	T1, 225- 228	CO2,CO3	PPTs , Chalk & Talk
35	36	Module 5:	Knowledge Representation, Expert System: Introduction, Approaches to Knowledge representation,	T1, 231- 234	CO3,CO4	PPTs , Chalk & Talk
36	37		Knowledge representation using Semantic Network	T1, 234- 238	CO3, CO4	PPTs , Chalk & Talk
37	38		Extended Semantic Networks for KR, Inference Rules,	T1, 238- 244	CO3, CO4	PPTs , Chalk & Talk
38	39		Examples for Illustrating Inferencing Methods	T1, 244- 254	CO3, CO4	PPTs , Chalk & Talk
39	40		Knowledge Representation using Frames	T1, 254- 262	CO3, CO4	PPTs , Chalk & Talk
40	41		Expert System and Applications: Introduction, Phases in Building Expert Systems	T1, 264- 268	CO3, CO4	PPTs , Chalk & Talk
41	42		Expert System Architecture	T1, 269- 274	CO3, CO4	PPTs , Chalk & Talk

(Accredited by NAAC, Approved by A.I.C.T.E. New Delhi, Recognised by Govt. of Karnataka & Affiliated to V.T U., Belagavi) #29, Chimney Hills, Hesaraghatta Main Road, Chikkabanavara Post, Bengaluru- 560090

Dept. of Artificial Intelligence & Machine Learning

42	43	Expert Syst	ems versus Traditional	T1, 274-	CO3,	PPTs ,
		Systems		277	CO4	Chalk &
						Talk

^{*}L – Lecture, V- Videos or any other mode

Textb	Textbooks				
T1	Saroj Kaushik, Artificial Intelligence, Cengage learning, 2014				
Refer	rence books				
R1	Elaine Rich, Kevin Knight, Artificial Intelligence, Tata McGraw Hill				
R2	Nils J. Nilsson, Principles of Artificial Intelligence, Elsevier, 1980				
R3	StaurtRussel, Peter Norvig, Artificial Intelligence: A Modern Approach, Pearson Education, 3rd Edition, 2009				
R4	George F Lugar, Artificial Intelligence Structure and strategies for complex, Pearson Education, 5th Edition, 2011				

	Web links and Video Lectures (e-Resources):					
1	https://sites.google.com/view/manzoorahmed/home					
2						
3						
4						
5						

Assessment Schedule:						
Sl.No.	Assessment type	Contents	СО	Duration In Hours	Marks	Date & Time
1	CIE Test 1	Module 1 & Module 2	CO1, CO2	1.5	30	
2	CIE Test 2	Module 3 & Module 4	CO3, CO4	1.5	30	
	CIE Test 3	Module 5 & Module 1	CO3, CO4, CO1	1.5	30	
3	Assignment 1	Module 1 & Module 2	CO1, CO2		10	
4	Assignment 2	Module 3 & Module 4	CO3, CO4		10	
5	Seminar (or any planned activity)	Module 1	CO1		10	
6	Semester End Examination	Modules 1 to 5	CO1 to CO4	3	100	

(Accredited by NAAC, Approved by A.I.C.T.E. New Delhi, Recognised by Govt. of Karnataka & Affiliated to V.T U., Belagavi) #29, Chimney Hills, Hesaraghatta Main Road, Chikkabanavara Post, Bengaluru- 560090

Dept. of Artificial Intelligence & Machine Learning

Seminar: Group of 1 or 2 students

Module 1

The Average of total marks of three tests, two assignments, and seminar will be out of 40 marks and final exam will be for 100 marks scaled down to 60 marks.

CIE + SEE = 40 + 60 = 100 marks

Faculty Incharge DAC Chairman