Ref No:

Sri Krishna Institute of Technology, Bangalore

COURSE PLAN

Academic Year 2019-2020

Program:	ISE
Semester :	6
Course Code:	17 S62
Course Title: File Structures	
Credit / L-T-P:	04/4-0-0
Total Contact Hours:	50
Course Plan Author:	Tejashwini N

Academic Evaluation and Monitoring Cell

Sri Krishna Institute of Technology #29,Chimney hills,Hesaraghata Main road, Chikkabanavara Post Bangalore – 560090, Karnataka, INDIA

Phone / Fax :08023721477/28392221/23721315 Web: www.skit.org.in , e-mail: <u>skitprinci@gmail.com</u>

Table of Contents

A. COURSE INFORMATION	2
<u>1. Course Overview</u>	2
2. Course Content	
3. Course Material	
<u>4. Course Prerequisites</u>	
5. Content for Placement, Profession, HE and GATE	
B. OBE PARAMETERS.	4
<u>1. Course Outcomes</u>	4
2. Course Applications	4
3. Articulation Matrix	
<u>4. Curricular Gap and Content</u>	5
C. COURSE ASSESSMENT.	5
1 Course Coverage	5
2. Continuous Internal Assessment (CIA)	5
D1. TEACHING PLAN - 1.	
Module - 1	5
Module – 2	
E1. CIA EXAM – 1.	
a. Model Question Paper - 1	
b. Assignment -1	7
D2. TEACHING PLAN - 2	7
Module – 3	7
Module – 4	8
E2. CIA EXAM – 2	9
a. Model Question Paper - 2	9
b. Assignment – 2	
D3. TEACHING PLAN - 3	
Module – 5	
E3. CIA EXAM – 3	11
a. Model Question Paper - 3	
b. Assignment – 3	
F. EXAM PREPARATION	
1. University Model Question Paper	
2. SEE Important Questions	

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	IS
Semester:	6	Academic Year:	2019-2020
Course Title:	File Structures	Course Code:	17 S62
Credit / L-T-P:	04/4-0-0	SEE Duration:	180 minutes
Total Contact Hours:	50	SEE Marks:	60 marks
CIA Marks:	40	Assignment	1\Module
Course Plan Author:	Tejashwini N	Sign	Dt:
Checked By:		Sign	Dt:
CO Targets	CIA Target :	SEE Target:	

Note: Define CIA and SEE % targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute.

Mod	Content	Teaching Hours	
ule	Content	reaching riours	Levels
	Introduction: File Structures: The Heart of the file structure	10	L2,L4
1	Design, A Short History of File Structure Design, A Conceptual		L2,L4
	Toolkit; Fundamental File Operations: Physical Files and		
	Logical Files, Opening Files, Closing Files, Reading and		
	Writing, Seeking, Special Characters, The Unix Directory		
	Structure, Physical devices and Logical Files, File-related		
	Header Files, UNIX file System Commands; Secondary		
	Storage and System Software: Disks, Magnetic Tape, Disk		
	versus Tape; CD-ROM: Introduction, Physical Organization,		
	Strengths and Weaknesses; Storage as Hierarchy, A journey		
	of a Byte, Buffer Management, Input /Output in UNIX		
	Fundamental File Structure Concepts, Managing Files of		
	Records : Field and Record Organization, Using Classes to		
	Manipulate Buffers, Using Inheritance for Record Buffer		
	Classes, Managing Fixed Length, Fixed Field Buffers, An		
	Object-Oriented Class for Record Files, Record Access, More		
	about Record Structures, Encapsulating Record Operations in		
	a Single Class, File Access and File Organization.		
2	Organization of Files for Performance, Indexing: Data	10	L4, L3
	Compression, Reclaiming Space in files, Internal Sorting and		
	Binary Searching, Key sorting; What is an Index? A Simple		
	Index for Entry-Sequenced File, Using Template Classes in C+		
	+ for Object I/O, Object-Oriented support for Indexed, Entry-		
	Sequenced Files of Data Objects, Indexes that are too large		
	to hold in Memory, Indexing to provide access by Multiple		
	keys, Retrieval Using Combinations of Secondary Keys,		
	Improving the Secondary Index structure: Inverted Lists,		
	Selective indexes, Binding.		
	Consequential Processing and the Sorting of Large Files: A	10	L3 ,L4
	Model for Implementing Cosequential Processes, Application		
	of the Model to a General Ledger Program, Extension of the		
	Model to include Mutiway Merging, A Second Look at Sorting		
	in Memory, Merging as a Way of Sorting Large Files on Disk.		
	Multi-Level Indexing and B-Trees: The invention of B-Tree,		
	Statement of the problem, Indexing with Binary Search Trees;		

-	Total	50	
	should be used?, Collision resolution by progressive overflow, Buckets, Making deletions, Other collision resolution techniques, Patterns of record access. Extendible Hashing: How Extendible Hashing Works, Implementation, Deletion, Extendible Hashing Performance, Alternative Approaches.		
5	Hashing: Introduction, A Simple Hashing Algorithm, Hashing Functions and Record Distribution, How much Extra Memory	10	L4,L6
4	Sequential Access, Maintaining a Sequence Set, Adding a Simple Index to the Sequence Set, The Content of the Index: Separators Instead of Keys, The Simple Prefix B+ Tree and its maintenance, Index Set Block Size, Internal Structure of Index Set Blocks: A Variable-order B- Tree, Loading a Simple Prefix B+ Trees, B-Trees, B+ Trees and Simple Prefix B+ Trees in Perspective.		L5
	Multi-Level Indexing, B-Trees, Example of Creating a B-Tree, An Object-Oriented Representation of B-Trees, B-Tree Methods; Nomenclature, Formal Definition of B-Tree Properties, Worst case Search Depth, Deletion, Merging and Redistribution, Redistribution during insertion; B* Trees, Buffering of pages; Virtual B-Trees; Variable-length Records and keys Indexed Sequential File Access and Prefix B + Trees: Indexed	10	

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 – 30 minutes

2. Design: Simulation and design tools used – software tools used ; Free / open source

3. Research: Recent developments on the concepts – publications in journals; conferences etc.

-	arch. Recent developments on the concepts – publications in journals, co	Jillelelices etc.			
Modul	Details	Chapters	Availability		
es		in book			
Α	Text books (Title, Authors, Edition, Publisher, Year.)	-	-		
	Michael J. Folk, Bill Zoellick, Greg Riccardi: File Structures-An		In Lib		
	Object Oriented Approach with C++, 3rd Edition, Pearson				
	Education, 1998				
В	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-		
1	K.R. Venugopal, K.G. Srinivas, P.M. Krishnaraj: File Structures Using C++, Tata McGraw-Hill, 2008.		In Lib		
2	Scot Robert Ladd: C++ Components and Algorithms, BPB Publications, 1993.		In Lib		
3	Raghu Ramakrishan and Johannes Gehrke: Database		In Lib		
	Management Systems, 3 rd Edition, McGraw Hill, 2003.				
С	Concept Videos or Simulation for Understanding	-	-		
C1					
C2					
C3					
C4					
C5					
D	Software Tools for Design	-	-		
1	Turbo c		In lab		
Е	Recent Developments for Research	-	-		
	•				
6 F F	Convright ©2017 cA	AS All rights	roconvod		

F	Others (Web, Video, Simulation, Notes etc.)	-	-
1			

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5. Students must have learnt the following Courses / Topics with described Content

Sidue	tudents must have team the following Courses / Topics with described Content					
Mod	Course	Course Name	Topic / Description	Sem	Remarks	Blooms
ules	Code					Level
1		Concepts	A Review of structures, Procedure– Oriented Programming system, Object Oriented Programming System, Console I/O,variables and reference variables, Function Prototyping, Function Overloading. Class and Objects Introduction, member functions and data, objects and functions, objects and arrays,			L3

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Mod ules	Topic / Description	Area	Remarks	Blooms Level

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs.

Mod	Course	Course Outcome	Teach. Hours	Instr Method	Assessme	Blooms'
ules	Code.#	At the end of the course, student			nt	Level
		should be able to			Method	
1	15CS564.1	Understanding the System	5	Lecture,	Assignm	L2
		Architecture		discussion	ent	
2		Analyze Buffer Management for	5	Lecture / PPT,	Assignme	L4
		writing the contents in the file			nt,	
					seminar	
3		Compare the Access Management	-	Lecture / PPT,	Assignme	L4
		technique in primary memory with		problem	nt,	
		time complexity		solving	seminar	
4	15CS564.4	Demonstrate the Indexed based	5	Lecture,	Question	L3
		access in accessing the files.		discussion	and	
					answer,	
					test	
5	15CS564.5	Demonstrate the Parallel accessing	5	Discussion,	Presentati	L3

		of files.		lecture, ppt	on, assignme	
					nt	
-	15CS564.6	Compare Accessing from Secondary storage and Primary Storage	5	Lecture, discussion	Assignme nt, viva	L4
		Evaluate the time taken from secondary storage.	5	Lecture, discussion	Assignme nt	L5
		Select the best technique for storing files in Random Storage format	5	Discussion, lecture , PPT	Seminar and assignme nt	L4
		Design a technique for collision resolution in Random Storage access	5	Discussion, lecture , PPT	Use case with Seminar and assignme nt	L6
			45			

2. Course Applications

Write 1 or 2 applications per CO.

Students should be able to employ / apply the course learnings to ...

Mod	Application Area	CO	Level
ules	Compiled from Module Applications.		Level
1	-	15CS56	
		4.1	
2	Batch Processing Application	15CS56	L4
		4.2	
3	Word processing Application	15CS56	L4
		4.3	
4	Search Engine	15CS56	L3
		4.4	
5	Batch Processing Application	15CS56	L3
		4.5	
6	Data Base (MYSQL) application	15CS56	L4
		4.6	
7	Data Base (MYSQL) application	15CS56	L5
		4.7	
8	Password verification	15CS56	L4
		4.8	
9	Compiler Application	15CS56	L6
		4.9	

3. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	-	Course Outcomes					P	rogr	am	Ou	tco	me	s					-
Mod	CO.#	At the end of the course	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	Lev
ules		student should be able to	1	2	3	4	5	6	7	8	9	10	11	12	O1	02	О3	el
1		Understanding the System Architecture	3				V											
2		Analyze Buffer Management for writing the contents in the file	3	1			V											
3		Compare the Access Management technique in primary memory with time complexity		V			V											

			-					-					-	-				
4	15CS564.4	Demonstrate the Indexed based	3	√	√	√	√			√	√	√						
		access in accessing the files.																
5	15CS564.5	Demonstrate the Parallel	3	√			√											
		accessing of files.																
6	15CS564.6	Compare Accessing from	3	√	√		√											
		Secondary storage and Primary																
		Storage																
7	15CS564.7	Evaluate the time taken from	3	√	√		√											
-		secondary storage.	_															
8	15CS564.8	Select the best technique for	3	√	√	√	√				√							
		storing files in Random Storage																
		format																
9	15CS564.9	Design a technique for collision	3	√	√	√	√			√	√	√						
-		resolution in Random Storage	-															
		access																
-	17IS62.	Average																-
-	-	1.Engineering Knowledge; 2.Probl	lem	Ar	่าลโง	sis:	3.1	Desi	ian	/	Dei	velc	bom	ent	of	So	luti	ons:
		4.Conduct Investigations of Compl																
		Society; 7.Environment and Su																
		10.Communication; 11.Project N																
		S1.Software Engineering; S2.Data E																

4. Curricular Gap and Content

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Mod	Gap ⁻	Торіс		Actions Planned	Schedule Planned	Resources Person	PO Mapping
ules							
	15CS45 / Oriented Cor		Object	Seminar	2 nd week / date	Dr XYZ, Inst	List from B4 above
2				Seminar	3 rd Week		

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation.

Mod	Title	Teach.			f quest				CO	Levels
ules		Hours						SEE		201010
							Asg			
1	Introduction	10	2	-	-	1	1	2	CO1 , CO2	L2,L4,
2	Organization of Files for	10	2	-	-	1	1	2	CO3, CO4	L4,L3
	Performance, Indexing									
3	Consequential Processing and the	10	-	2	-	1	1	2	CO5,	L4,L3,
	Sorting of Large Files								CO6	
4	Indexed Sequential File Access and	10	-	2	2	1	1	2	C07	L5
	Prefix B + Trees									
5	Hashing	10	-	-	2	1	1	2	CO8,	L4,L6
									Cog	
-	Total	50	4	4	4	5	5	10	-	

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Mod	Evaluation	Weightage in	СО	Levels
ules		Marks		
1, 2	CIA Exam – 1	30	CO1 , CO2 , CO3, CO4	L2,L4,L4,L3
3, 4	CIA Exam – 2	30	CO5,CO6,C07	L4,L3,L5

5	CIA Exam – 3	30	C07,CO8,C09	L5,L4,L6
1, 2	Assignment - 1	05	CO1 , CO2 , CO3, CO4	L2,L4,L4,L3
3, 4	Assignment - 2	05	CO5,CO6,C07	L4,L3,L5
5	Assignment - 3	05	C07,CO8,C09	L5,L4,L6
1, 2	Seminar - 1	05	CO1 , CO2 , CO3, CO4	L2,L4,L4,L3
3, 4	Seminar - 2	05	CO5,CO6,C07	L4,L3,L5
5	Seminar - 3	05	C07,C08,C09	L5,L4,L6
1, 2	Quiz - 1		-	-
3, 4	Quiz - 2		-	-
5	Quiz - 3		-	-
1 - 5	Other Activities – Mini Project	-		
	Final CIA Marks		-	-

D1. TEACHING PLAN - 1

Module - 1

Title:		Appr Time:	10 Hrs
a	Course Outcomes	СО	Blooms
1	Understanding the System Architecture	CO1	L2
2	Analyze Buffer Management for writing the contents in the file	CO2	L4
b	Course Schedule	-	-
Class No	p Portion covered per hour	-	-
1	File Structures: The Heart of the file structure Design, A Short History of File Structure Design, A Conceptual Toolkit;		
2	Fundamental File Operations: Physical Files and Logical Files, Opening Files, Closing Files, Reading and Writing, Seeking,		
3	Special Characters, The Unix Directory Structure, Physical devices and Logical Files, File-related Header Files,		
4	UNIX file System Commands; Secondary Storage and System Software: Disks, Magnetic Tape, Disk versus Tape; CD-ROM:		
5	Introduction, Physical Organization, Strengths and Weaknesses; Storage as Hierarchy, A journey of a Byte, Buffer Management, Input /Output in UNIX		
6	Fundamental File Structure Concepts, Managing Files of Records : Field and Record Organization, Using Classes to Manipulate Buffers,		
7	Using Inheritance for Record Buffer Classes, Managing Fixed Length,.		
8	Fixed Field Buffers, An Object-Oriented Class for Record Files,		
9	Record Access, More about Record Structures,		
10	Encapsulating Record Operations in a Single Class, File Access and File Organization		
с	Application Areas		
-	Students should be able employ / apply the Module learnings to		
1	-		
2	Batch Processing Application		
d	Review Questions		
1	What are file structures? Explain briefly the history of file structures design.		
2	Explain the different costs of disk access. Define i)seek time ii)rotational delay		

	iii)transfer time		
3	Explain the functions OPEN, READ and WRITE with parameters.		
4	Briefly explain the different basic ways to organize the data on a disk.		
5	Briefly explain the organization of data on Nine-Track tapes with a neat diagram		
6	With neat sketch, explain Unix directory structure		
7	Explain sector based data organization in magnetic disk.		
8	Differentiate between constant linear velocity (CLV) and constant angular velocity (CAV)		
9	Differentiate between physical file and logical file		
10	Discuss about the Fundamental File processing operations		
11	What are the major strengths and weekness of CD - ROM?		
12	What is a record? Explain different methods for organizing records		
	of a file. Or Explain the different Record structures used in the organization of a file.		
13	Write a pack() and unpack() methods in C++ for employee id, employee name, employee designation, employee contact number fields for variable length records.		
14	What are self-describing files? How it is supported in fixed length record structures, explain with an example.		
15	What is the advantage of using inheritance for record buffer classes?		
е	Experiences	-	_
1			

Title:		Appr	10 Hrs
		Time:	
a	Course Outcomes	СО	Blooms
-		-	Level
1	Demonstrate Object Oriented concepts in C#	CO2	L3
b	Course Schedule		_
Class No	Portion covered per hour	-	-
1	Organization of Files for Performance, Indexing: Data Compression, Reclaiming Space in files,		
2	Internal Sorting and Binary Searching, Key sorting; What is an Index?		
3	A Simple Index for Entry-Sequenced File, Using Template Classes in C++ for Object I/O, Object-Oriented support for Indexed,		
4	Entry- Sequenced Files of Data Objects,		
5	Indexes that are too large to hold in Memory,		
6	Indexing to provide access by Multiple keys,		
7	Retrieval Using Combinations of Secondary Keys,		
8	Improving the Secondary Index structure: Inverted Lists,		
9	Selective indexes,		
10	Binding		
с	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1			
2			

d	Review Questions	-	-
-			
1	Explain the operations required to maintain the index files.		
2	What is redundancy reduction? Explain how run- length- encoding helps in redundancy reduction with an example		
3	Write an algorithm for searching a record from a file using i)binary search		
	ii)sequential search		
4	Explain the limitations of binary searching and internal sorting.		
5	Explain how spaces can be reclaimed in files.		
6	What is an index? Explain a simple index for entry-sequenced file.		
7	Explain the advantages and disadvantages of 3 types of placement strategies.		
8	Explain the key sorting algorithm, with an example.	-	-
9	Discuss the advantages and disadvantages of indices that are too	CO3	L2
	large to hold in memory.		
е	Experiences		
1			
2			

E1. CIA EXAM – 1

a. Model Question Paper - 1

Crs Code) :	17 S62	Sem:	VI	Marks:	40	Time	e: 7	5 minute	S	
Cour	se:	File Structi	ures								
-	-	Note: Ansv	wer all que	stions, ead	ch carry equa	l marks.	Module : :	1, 2	Marks	CO	Level
1	а	What are design.	file struct	ures? Exp	lain briefly t	ne histor	ry of file	structure	S		
	b	Explain the delay iii)tra		costs of d	isk access. D	efine i)se	eek time ii)rotationa	al		
					OR						
2	а	Write an al ii)sequentia		r searching	a record fror	n a file u	sing i)binaı	ry search			
	b	Explain the	limitation	s of binary	searching an	d internal	l sorting.				
3	а	Explain the	limitation	s of binary	searching and	d interna	sorting.				
	b				aimed in files.						
	С	What is an	index? Exp	olain a simp	ole index for e	entry-sec	juenced fil	.e.			
					OR		·				
4	а		nployee d	esignation,	ethods in C++ employee						
	b	What are s structures,			How it is sup Iple.	ported ir	n fixed leng	gth recor	d		

b. Assignment -1

Crs Code:			90 – 120 r	ninute	S
course:	File Stri	uctures			
SI	No	Assignment Description	Marks	со	Leve
:	1	What are file structures? Explain briefly the history of file structures design.	e 8		L2
	2	Explain the different costs of disk access. Define i)seek time ii)rotational delay iii)transfer time	94		L2
	3	Explain the functions OPEN, READ and WRITE with parameters.			L2
2	4	Briefly explain the different basic ways to organize the data on a disk.	a 4		L2
Į	5	Briefly explain the organization of data on Nine-Track tapes with a neat diagram	s 6		L2
6	6	With neat sketch, explain Unix directory structure	6		L2
	7	Explain sector based data organization in magnetic disk.	5		L2
	8	Differentiate between constant linear velocity (CLV) and constant angular velocity (CAV)	6		L2
(9	Differentiate between physical file and logical file	6		L2
	.0	Discuss about the Fundamental File processing operations	4		L2
1	1	What are the major strengths and weekness of CD - ROM?	5		L1
1	2	What is a record? Explain different methods for organizing records of a file. Or Explain the different Record structures used in the organization of a file.	g 8		L2
1	.3	Write a pack() and unpack() methods in C++ for employee ic employee name, employee designation, employee contac number fields for variable length records.			L2
1	.4	What are self-describing files? How it is supported in fixed length record structures, explain with an example.	d 4		L3
1	.5	What is the advantage of using inheritance for record buffe classes?	r		L2
1	.6	Explain the operations required to maintain the index files.			L2
1	.7	What is redundancy reduction? Explain how run- length- encoding helps in redundancy reduction with an example			
1	.8	Write an algorithm for searching a record from a file using i)binary search ii)sequential search			
1	.9	Explain the limitations of binary searching and internal sorting.			
	20	Explain how spaces can be reclaimed in files.			
	21	What is an index? Explain a simple index for entry-sequenced file.			
2	22	Explain the advantages and disadvantages of 3 types of placement strategies.			
2	23	Explain the key sorting algorithm, with an example.			
	24	Discuss the advantages and disadvantages of indices that are too large to hold in memory.			

D2. TEACHING PLAN - 2

Title:		Appr	10 Hrs
		Time:	
a	Course Outcomes	СО	Blooms
-	At the end of the topic the student should be able to	-	Level

b	Course Schedule		
-	Portion covered per hour	-	-
1	Consequential Processing and the Sorting of Large Files: A Model for		
	Implementing Cosequential Processes,		
2	Application of the Model to a General Ledger Program,		
3	Extension of the Model to include Mutiway Merging,		
4	A Second Look at Sorting in Memory,		
5	Merging as a Way of Sorting Large Files on Disk.		
6	Multi-Level Indexing and B-Trees: The invention of B-Tree, Statement of the problem,		
7	Indexing with Binary Search Trees; Multi-Level Indexing,		
8	B-Trees, Example of Creating a B-Tree, An Object-Oriented		
9	Representation of B-Trees, B-Tree Methods; Nomenclature, Formal Definition of B-Tree Properties, Worst case Search Depth,		
10	Deletion, Merging and Redistribution, Redistribution during insertion; B* Trees, Buffering of pages; Virtual B-Trees; Variable-length		
<u> </u>	Application Areas		
С	Application Areas Students should be able employ / apply the Module learnings to	-	-
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	What is co-sequential processing and what are the assumptions and components of the model?		
2	Explain the following: i) K-way merge ii) A selection tree for merging large number of lists.		
3	Explain the model for implementing the consequential processing and its applications to general ledger program.		
4	Describe how merging is used to sort large files on the disk.		
5	Write a note on conceptual tool kit for external sorting.		
6	What is a heap? Explain heap sorting with code and example.		
7	Explain the different ways to improve the performance of merge sort.		
8	Suppose you have 40MB of memory available for sorting the 80,000,000 records file where each record is of 100 bytes. i) How long does it take to sort the file using merge-sort algorithm. ii) Ho long it takes to sortthe file using key-sort algorithm.		
9	Write an algorithm for heap sorting method for insertion. Show the construction of heap tree for the following sequence FDCGHIBEA		
	Exportaneor		
<u>е</u>	Experiences	-	- L2
1 2		CO6	L2

	Data Transmission and Telemetry Measurement of Non – Electrical Quantities	Appr Time:	10 Hrs
15EE	Copyright ©2017. cAAS. All rights	reserve	d.

a	Course Outcomes	CO	Bloom
_	At the end of the topic the student should be able to	_	Level
b	Course Schedule		
Class No	Portion covered per hour	-	-
1	Indexed Sequential File Access and Prefix B + Trees: Indexed Sequential Access,		
2	Maintaining a Sequence Set, Adding a Simple Index to the Sequence Set		
3	The Content of the Index: Separators Instead of Keys,		
4	The Simple Prefix B+ Tree and its maintenance,		
5	Index Set Block Size, Internal Structure of Index Set Blocks		
6	A Variable-order B- Tree		
7	Loading a Simple Prefix B+		
8	Trees, B-Trees,		
-	B+ Trees and Simple Prefix		
9			
10	B+ Trees in Perspective.		
с	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	Write a note on AVL Trees		
2	What are paged binary trees? Explain the problems associated with paged binary trees.		
3	Give the formal definition of properties of B-Tree. Why is it called as "Bottom- up" tree.		
4	Mention the four properties of B* trees		
5	What are the two major drawbacks with binary search to search a simple		
•	sorted index on secondary storage.		
6	Show the B-Tree of order 4 that result from loading the following sets of keys in order i) CGJXNSUOAEBHIF ii)CSDAMPIBWNGURKE		
7	Explain with an example the creation of B-trees.		
8	Explain the following with respect to B-Tree:		
-	i) Worst-case search depth ii) Redistribution during insertion.		
9	What is multilevel indexing? Explain the concept of B - Trees in multilevel indexing with an example.		
10	Explain deletion, Merging and redistribution of elements in B – Tree		
е	Experiences	-	-
		CO7	L2

E2. CIA EXAM – 2

a. Model Question Paper - 2

Crs Cod	e:	17 S62	Sem:	VI	Marks:	30	Time:	75	5 minutes		
Cou	rse:	File Struct	ures					1			
-	-			estions. ea	ach carry equa	l marks.	Module : 3.4		Marks	со	Leve
1	а		o-sequent	ial proces			e assumptions	s and			
	b	Explain the number of		: i) K-way	merge ii) A sel	ection tr	ee for merging	large			
	С	Explain the application				sequenti	al processing a	nd its			
					OR						
2	a	Show the E keys in ord ii)CSDAMPI	ler i) CGJ>	KNSUOAE		loading 1	the following s	ets of			
	b	Explain wit	h an exam								
	С				ect to B-Tree: ii) Redistributi	on durine	g insertion.				
3	a	Write a not	e on AVL 1	Trees							
	b	What are paged bina		nary trees	s? Explain the	e proble	ms associated	l with			
	С	Give the fo called as "E			operties of B-Ti	ree. Why	is it				
					OR						
4	a	Explain the	different \	ways to im	prove the perf	ormance	e of merge sort				
	b	records file	e where ea e using me	ich record erge-sort a	l is of 100 byte	s. i) How	rting the 80,00 long does it ta takes to sortth	ake to			

b. Assignment – 2

			M	odel Assignme	nt Questions	6			
Crs Code:	17IS62	Sem:	VI	Marks:	5 / 10	Time:	90 – 120 I	minute	S
Course:	File Stru	uctures		·					
		_							
SNo			A	ssignment De	scription		Marks	со	Level
1				ential proces omponents of t		what are th	ne 6		
2		Explain the merging lar		ng: i) K-way m ber of lists.	erge ii) A se	election tree f	or 4		
3		Explain the model for implementing the consequential 6 processing and its applications to general ledger program.							
4		Describe ho	w merg	ing is used to s	ort large file	s on the disk.	6		
5		Write a note	e on con	ceptual tool kit	for external	sorting.	7		
6		What is a he	eap? Exp	olain heap sorti	ng with code	e and example	. 4		
7		Explain the merge sort.	differe	nt ways to im	prove the	performance	of 4		
8		80,000,000 How long	records does it	40MB of mem file where ea take to sort ng it takes to	ch record is the file us	s of 100 bytes. sing merge-so	i) ort		

9	Write an algorithm for heap sorting method for insertion. Show the construction of heap tree for the following sequence FDCGHIBEA	4	
10	Write a note on AVL Trees	5	
11	What are paged binary trees? Explain the problems associated with paged binary trees.	6	
12	Give the formal definition of properties of B-Tree. Why is it called as "Bottom- up" tree.	7	
13	Mention the four properties of B* trees	4	
14	What are the two major drawbacks with binary search to search a simple sorted index on secondary storage.	5	
15	Show the B-Tree of order 4 that result from loading the following sets of keys in order i) CGJXNSUOAEBHIF ii)CSDAMPIBW/NGURKE	8	
16	Explain with an example the creation of B-trees.	5	
17	Explain the following with respect to B-Tree: i) Worst-case search depth ii) Redistribution during insertion.	6	
18	What is multilevel indexing? Explain the concept of B - Trees in multilevel indexing with an example.	4	
19	Explain deletion, Merging and redistribution of elements in B – Tree	8	

D3. TEACHING PLAN - 3

Title:	Loop and Horn Antenna and Antenna Types	Appr	10 Hrs
		Time:	
a	Course Outcomes	СО	Blooms
-	At the end of the topic the student should be able to	-	Level
b	Course Schedule		
	o Portion covered per hour	-	-
1	Hashing: Introduction, A Simple Hashing Algorithm	+ -	-
2	Hashing Functions and Record Distribution,		
3	How much Extra Memory should be used?,		
4	Collision resolution by progressive overflow, Buckets,		
5	Making deletions, Other collision resolution techniques, Patterns of record		
6	Extendible Hashing: How Extendible Hashing Works,		
7	Implementation of Deletion		
8	Extendible Hashing Performance,		
9	Alternative Approaches.		
10	Alternative Approaches.		
С	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	What is hashing? Explain a simple hashing algorithm.		

2	What is collision? Explain collision resolution by progressive		
	overflow.		
3	What is Hashing? Explain the different Hashing functions with an		
	example.		
4	Discuss the issues that are involved in implementing the hashed		
	file.		
5	Explain different methods used to avoid collision in hashing		
	technique.		
6	Problems on hashing & overflow		
7	Explain the working of extendible hashing.		
-	Write short notes on: i) Dynamic hashing ii) Linear hashing		
9	Write short notes on Extendible hashing performance.		
10	Write a note on buddy-buckets. Write a short notes on: a. Extendible Hashing		
11	While a short holes on, a. Extendible Hashing		
е	Experiences	-	-
1		CO10	L2
2		CO9	

E3. CIA EXAM – 3

a. Model Question Paper - 3

Crs Code) :	17IS62	Sem:	VI	Marks:	30	Time:	75 minute	minutes	
Cour	rse:	File Struct	ure							
-	-	Note: Answ	ver all que	stions, ea	ch carry equa	l marks.	Module : 5	Marks	CO	Level
1	а	What is col overflow.	lision? Exp	olain collisi	on resolution	oy progre	essive	8		
	b	What is Ha example.	shing? Exp	olain the di	fferent Hashin	g functic	ons with an	7		
					OR					
2	а	What is mu indexing wi			plain the conc	ept of B	- Trees in multile	vel 7		
	b	Explain del	etion, Mer	ging and re	edistribution c	f elemer	nts in B – Tree	8		
3	а	Write an algorithm for heap sorting method for insertion. Show the construction of heap tree for the following sequence FDCGHIBEA								
	b	Write a not	e on AVL 7	rees				8		
					OR					
4	а	Write short	notes on:	i) Dynamic	: hashing ii) Lir	near hash	ning	8		
	В	Write short	notes on	Extendible	hashing perfo	ormance		7		

С	Write a note on buddy-buckets.		

b. Assignment – 3

			Mc	del Assignme	ent Questions	S			
Crs Code:	17IS62	Sem:	VI	Marks:	5 / 10	Time:	90 – 120	minute	S
Course:	File Strue	ctures							
SNo			Assig	nment Descrij	otion		Marks	со	Level
1.	Explain h	iow extendi	ble hashir	ng works.			6	CO5	L6
2.	Write sho	ort notes or	n dynamic	hashing and l	inear hashin	g.	6	CO5	L6
3.	Define ha	ashing expl	ain a simp	le hashing alg	jorithm.	_	7	CO5	L6
4.		collision? Exite overflow		process of col	lision resolu	tion by	7	CO5	L6
5.	Define ha	ashing. Diffe	erentiate b	etween hashi	ng and inde>	king.	5	CO5	L6
6.				rogressive ove			8	CO5	L6
7.	Write short note on buddy bucket.						5	CO5	L6

F. EXAM PREPARATION

1. University Model Question Paper

Course:		File Structures		Month /	Month / Year					
Crs Code:		17 S62	Sem:	VI	Marks:	Time:	ime:		nutes	
Mod ule		Answer all FIVI		Marks	со	Level				
1	а	What are file structures? Explain briefly the history of file structures design.							CO1	L2
	b	Explain the different costs of disk access. Define i)seek time ii)rotational delay iii)transfer time							CO1	L3
	С	Explain the functions OPEN, READ and WRITE with parameters.							CO1	L3
2	а	Write a pack() and unpack() methods in C++ for employee id, employee name, employee designation, employee contact number fields for variable length records.							CO1	L2
	b	What are self-describing files? How it is supported in fixed length record structures, explain with an example.								L3
	С	What is the ad	vantage of us	ing inheritan	ce for recor	d buffer class	es?	04	CO1	L2

3	а	Explain the operations required to maintain the index files.	08	C02	L2
	b	What is redundancy reduction? Explain how run- length- encoding helps in redundancy reduction with an example	06	CO2	L3
	С	Write an algorithm for searching a record from a file using i)binary search ii)sequential search	06	CO2	L2
		OR			
4	а	Explain the advantages and disadvantages of 3 types of placement strategies.	06	CO2	L2
	b	Explain the key sorting algorithm, with an example.	08	CO2	L3
	С	Discuss the advantages and disadvantages of indices that are too large to hold in memory.	06	CO2	L2
5	а	What is co-sequential processing and what are the assumptions and components of the model?	08	CO3	L3
	b	Explain the following: i) K-way merge ii) A selection tree for merging large number of lists.	07	CO3	L2
	С	Explain the model for implementing the consequential processing and its applications to general ledger program.	05	CO3	L2
		OR			
6	a	Explain the different ways to improve the performance of merge sort.	08	CO4	L2
	b	Suppose you have 40MB of memory available for sorting the 80,000,000 records file where each record is of 100 bytes. i) How long does it take to sort the file using merge-sort algorithm. ii) Ho long it takes to sort the file using key-sort algorithm.	06	CO4	L3
	С	Write an algorithm for heap sorting method for insertion. Show the construction of heap tree for the following sequence FDCGHIBEA	06	CO4	L2
7	а	Write a note on AVL Trees	08	CO5	L2
/	b	What are paged binary trees? Explain the problems associated with paged binary trees.	05	CO5	L2 L2
	С	Give the formal definition of properties of B-Tree. Why is it called as "Bottom- up" tree.	07	CO5	L2
		OR			
8	а	What are the two major drawbacks with binary search to search a simple sorted index on secondary storage.	05	CO6	L2
	b	Show the B-Tree of order 4 that result from loading the following sets of keys in order i) CGJXNSUOAEBHIF ii)CSDAMPIBWNGURKE	07	CO6	L2
	С	Explain with an example the creation of B-trees.	08	CO6	L2
9	а	What is collision? Explain collision resolution by progressive overflow.	08	C07	L2
	b	What is Hashing? Explain the different Hashing functions with an example.	07	C07	L4
	С	Discuss the issues that are involved in implementing the hashed file.	05	CO7	L4
10	а	Write a note on buddy-buckets	07	C08	L3
	b	Write short notes on: i) Dynamic hashing ii) Linear hashing	05	C08	 L2
	C	Write short notes on Extendible hashing performance.	08	CO8	L2

2. SEE Important Questions

Cours	Course: File Structures Month							/ Year			
Crs C	Crs Code: 17IS62 Sem: VI Crs Code: 17IS62 Sem:							VI			
	Note	Answer all FIVE	-	-							
Mod	Qno.	Important Que	Marks	СО	Year						
ule											
1	1	Briefly explain the organization of data on Nine-Track tapes with a neat							CO1	2016	
		diagram	agram								
1-55			rights ros	oniod							

	2	With neat sketch, explain Unix directory structure	06	CO1	2016
	3	Explain sector based data organization in magnetic disk.	04	CO1	2016
	4	Differentiate between constant linear velocity (CLV) and constant angular velocity (CAV)	09	CO1	2016
	5	Differentiate between physical file and logical file	10	CO1	2017
2	1	Write an algorithm for searching a record from a file using i)binary search ii)sequential search	4	CO2	2017
	2	Explain the limitations of binary searching and internal sorting.	10	CO2	2017
	3	Explain how spaces can be reclaimed in files.	10	CO2	2017
	4	What is an index? Explain a simple index for entry-sequenced file.	05	CO2	2016
	5	Explain the advantages and disadvantages of 3 types of placement strategies.	06	CO2	2015
3	1	What is co-sequential processing and what are the assumptions and components of the model?	08	CO3	
	2	Explain the following: i) K-way merge ii) A selection tree for merging large number of lists.	05	CO3	
	3	Explain the model for implementing the consequential processing and its applications to general ledger program.	07	CO3	2016
	4	Describe how merging is used to sort large files on the disk.	5	CO4	
	5	Write a note on conceptual tool kit for external sorting.	5	CO4	
4	1	Show the B-Tree of order 4 that result from loading the following sets of keys in order i) CGJXNSUOAEBHIF ii)CSDAMPIBWNGURKE	08	CO5	
	2	Explain with an example the creation of B-trees.	05	CO6	
	3	Explain the following with respect to B-Tree: i) Worst-case search depth ii) Redistribution during insertion.	07	CO5	
	4	What is multilevel indexing? Explain the concept of B - Trees in multilevel indexing with an example.	08	CO6	
	5	Explain deletion, Merging and redistribution of elements in B – Tree	07	CO6	
5	1	What is collision? Explain collision resolution by progressive overflow.	08	CO7	2016
	2	What is Hashing? Explain the different Hashing functions with an example.	07	CO7	2010
	3	Discuss the issues that are involved in implementing the hashed file.	05	CO8	
	4	Explain different methods used to avoid collision in hashing technique.	07	CO8	2017
	5	Write a note on buddy-buckets.	05	CO8	2015

Course Outcome Computation

Academic Year:

.

Odd / Even semester													
INTERNAL TES			T2										
Course Outcor	ne	CO1		CO2		CO3		CO4		CO5		CO6	
QUESTION NO)	Q1	LV	Q2	LV	Q3	LV	Q1	LV	Q2	LV	Q3	LV
MAX MARKS		10	-	10	-	10	-	10	-	10	-	10	-
USN-1		5	2	10				10	3	9	3	4	1
USN-2		5	2	8	3								
USN-3		7	3	7	3	10	3	8	3	8	3	5	2
USN-4						4	1	10	3	8	3	6	2
USN-5		8	3	6	2	9	3	10	3	8	3		
USN-6								10	3	9	3	4	1
Average Attainment	СО		2.5		2.75		2.33		3		3		1.5

LV Threshold : 3:>60%, 2:>=50% and <=60%, 1: <=49%

CO1 Computation :(2+2+2+3)/4 = 10/4=2.5

PO Computation

Program Outcome	PO1 PC		PO3 PO3		03	PO1		PO12		PO12			
Weight of CO - PO	3		1		~	3	2	2	ź	2	C	3	
Course Outcome	CO1		CC)2	C	D3	CC	04	C	D5	CC	06	
Test/Quiz/Lab		T1							T2				
QUESTION NO	Q1	LV	Q2	LV	Q3	LV	Q1	LV	Q2	LV	Q3	LV	C
MAX MARKS	10	-	10	-	10	-	10	-	10	-	10	-	1
USN-1	5	2	10	3			10	3	9	3	4	1	
USN-2	5	2	8	3									
USN-3	7	3	7	3	10	3	8	3	8	3	5	2	
USN-4					4	1	10	3	8	3	6	2	
USN-5	8	3	6	2	9	3	10	3	8	3			1
USN-6							10	3	9	3	4	1	
Average CO Attainment		2.5		2.75		2.33		3		3		1.5	
15EE				.		Copyri	ght ©2017.	cAAS. Al	l rights re	served.			