_

Table of Contents

5CS81 :Internet Of Things	<u>2</u>
A. COURSE INFORMATION.	
1. Course Overview.	
2. Course Content	<u>2</u>
3. Course Material	
4. Course Prerequisites.	<u>3</u>
B. OBE PARAMETERS	<u>3</u>
1. Course Outcomes.	
2. Course Applications	<u>4</u>
3. Articulation Matrix	
4. Mapping Justification.	
5. Curricular Gap and Content.	
6. Content Beyond Syllabus.	
C. COURSE ASSESSMENT.	
1. Course Coverage.	
2. Continuous Internal Assessment (CIA)	
<u>D1. TEACHING PLAN - 1</u> .	
Module - 1	
<u>Module – 2</u>	
<u>E1. CIA EXAM – 1</u> .	
a. Model Question Paper - 1.	
b. Assignment -1	
D2. TEACHING PLAN - 2.	
<u>Module – 3</u>	
Module – 4	
<u>E2. CIA EXAM – 2</u>	
a. Model Question Paper - 2.	
b. Assignment – 2.	
D3. TEACHING PLAN - 3.	
<u>Module – 5</u>	
<u>E3. CIA EXAM – 3</u>	
a. Model Question Paper - 3.	
<u>b. Assignment – 3</u> .	
<u>F. EXAM PREPARATION</u>	
1. University Model Question Paper	<u>13</u>
2. SEE Important Ouestions	14

Note: Remove "Table of Content" before including in CP Book
Each Course Plan shall be printed and made into a book with cover page
Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

18CS44 :MICRO CONTROLLER AND EMBEDDED SYSTEMS

A. COURSE INFORMATION

1. Course Overview

Degree:	BE			Program:	IS
Year / Semester :	2/4			Academic Year:	2019-20
	MICROCONTROLLER SYSTEMS	AND	EMBEDDED	Course Code:	18CS44
Credit / L-T-P:	4/4-0-0			SEE Duration:	180 Minutes
Total Contact Hours:	40			SEE Marks:	80Marks
CIA Marks:	30			Assignment	5
Course Plan Author:	Vinay Kumar B C			Sign	Dt:
Checked By:				Sign	Dt:

2. Course Content

Mod	Module Content	Teaching	Module	Blooms
ule		Hours	Concepts	Level
1	Microprocessors versus Microcontrollers, ARM Embedded Systems: The RISC design philosophy, The ARM Design Philosophy, Embedded System Hardware, Embedded System Software. ARM Processor Fundamentals: Registers, Current Program Status Register, Pipeline, Exceptions, Interrupts, and the Vector Table, Core Extensions		ARM BASICS	L1,L2
2	Introduction to the ARM Instruction Set: Data Processing Instructions, Programme Instructions, Software Interrupt Instructions, Program Status Register Instructions, Coprocessor Instructions, Loading Constants ARM programming using Assembly language: Writing Assembly code, Profiling and cycle counting, instruction scheduling, Register Allocation, Conditional Execution, Looping Constructs		ARM INSTRUCTION SET	L1,L2
3	Embedded System Components: Embedded Vs General computing system, History of embedded systems, Classification of Embedded systems, Major applications areas of embedded systems, purpose of embedded systems Core of an Embedded System including all types of processor/controller, Memory, Sensors, Actuators, LED, 7 segment LED display, stepper motor, Keyboard, Push button switch, Communication Interface (onboard and external types), Embedded firmware, Other system components.		EMBEDDED SYSTEM BASICS	L1,L2
4	Embedded System Design Concepts: Characteristics and Quality Attributes of Embedded Systems, Operational quality attributes ,non-operational quality attributes, Embedded Systems-Application and Domain specific, Hardware Software Co-Design and Program Modelling, embedded firmware design and development		EMBEDDED DESIGN CONCEPT	L1,L2
5	RTOS and IDE for Embedded System Design: Operating System basics, Types of operating systems, Task, process and threads (Only POSIX Threads with an example program), Thread preemption, Multiprocessing and Multitasking, Task Communication (without any program), Task synchronization issues - Racing and Deadlock, Concept of Binary and counting semaphores (Mutex example without any program), How to choose an RTOS, Integration and testing of Embedded hardware and firmware, Embedded system Development Environment -		RTOS AND IDE SYSTEM DESIGN	L1,L2

Block	diagram	(excluding	Keil),	Disassembler/decompiler,		
simulat	tor, emulat	tor and debu	gging te	chniques, target hardware		
debugg	ging, bound	lary scan.				

3. Course Material

Mod	Details	Available
ule		
1	Text books	
	 Andrew N Sloss, Dominic Symes and Chris Wright, ARM system developers guide, Elsevier, Morgan Kaufman publishers, 2008. Shibu K V, "Introduction to Embedded Systems", Tata McGraw Hill Education, Private Limited, 2nd Edition. 	
2	Reference books	
	1. RaghunandanG.H, Microcontroller (ARM) and Embedded System, Cengage learning Publication,2019 2. The Insider's Guide to the ARM7 Based Microcontrollers, Hitex Ltd.,1st edition, 2005. 3. Steve Furber, ARM System-on-Chip Architecture, Second Edition, Pearson, 2015.	
	4. Raj Kamal, Embedded System, Tata McGraw-Hill Publishers, 2nd Edition, 2008.	

4. Course Prerequisites

SNo	Course	Course Name	Module / Topic / Description	Sem	Remarks	Blooms
	Code					Level

Note: If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

B. OBE PARAMETERS

1. Course Outcomes

#	COs	Too	Concept	loctr	Assessment	Dlaama'
#	COS	Tea	Concept	Instr		
		ch.		Method	Method	Level
		Hou				
		rs				
	Students should be able to					
18cs44.1	Describe the architectural features	80	ARM	Lecture	Viva	
	and instructions of ARM		ARCHITECTURE		Assignment	L2
	microcontroller					
18cs44.2		08	INSTRUCTION	Discuss	Viva ,Discuss	L3
100344.2	Apply the knowledge gained for		SET OF ARM	Discuss	Assignment	_5
	Programming ARM for different		JET OF ARM		Assignment	
	applications and Interface external					
	devices and I/O with ARM					
	microcontroller.					
1900110	T , , , , , 1 1	00	HARDWARE	PPT	Describe	1.0
18cs44.3	Interpret the basic hardware		COMPONENTS	PPI		L3
	components and their selection				Viva ,Discuss	
	method based on the		OF EMBEDDED			
	characteristics and attributes of an		SYSTEM			
	embedded system.					
1900444		08	EMBEDDED	Discuss	Viva	12
18cs44.4	Develop the hardware /software			DISCUSS		L2
	co-design and firmware design		HARDWARE		Assignment	
	approaches.		AND SOFTWARE			
10 =	11	- 0	DESIGN	T 1. 1.1	D	
18cs44.5	Demonstrate the need of real time	08	RTOS	Tutorial	Describe	L2

	operating system for embedded system applications				Viva ,Discuss	
-	Total	40	-	-		-

Note: Identify a max of 2 Concepts per Module. Write 1 CO per concept.

2. Course Applications

SNo	Application Area	CO	Level
1	Microprocessors mainly involve in controllers in personal computers, home	CO1	L2
	appliances, wireless communication equipment, consumer electronic goods,		
	calculators, accounting system, video games, industrial controllers and data		
	acquisition systems		
	Assembly language programs are used to build system programs	CO2	L2
	Assembly language programs are used to build system device drivers		
	Interrupt functions are required to write assembly programs		
	Embedded devices are used in digital camera ,home appliances	CO3	L2
	Applications include Smartphones, Netbooks, eReaders,		
	ARM ALP programming is used in the development of embedded device software	CO4	L3
5	ARM ALP programming is used in Digital TV Servers and Networking	CO5	L2

Note: Write 1 or 2 applications per CO.

3. Articulation Matrix

(CO - PO MAPPING)

-	Course Outcomes		Program Outcomes DP02 P0 P04 P0 P0 P0 P01 P01 P01											
#	COs	PO 1	PO ₂	PO 3	PO4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	Level
18CS44.1	Describe the architectural features and instructions of ARM microcontroller.		2			2						2	2	L2
18CS44.2	Apply the knowledge gained for Programming ARM for different applications and Interface external devices and I/O with ARM microcontroller.		3	3								2		L2
18CS44.3	Interpret the basic hardware components and their selection method based on the characteristics and attributes of an embedded system.			2		2						2	2	L3
18CS44.4	Develop the hardware /software co-design and firmware design approaches.		2	3								2		L4
18cs44.5	Demonstrate the need of real time operating system for embedded system applications					3						2		L4
AVG														

4. Mapping Justification

Mapping		Justification	Mapping Level
СО	РО	-	-
CO1	CO1 PO2 Knowledge required to build microprocessor based systems such personal computers , home appliances		
CO1	PO ₅	To analyze the problems in microcontroller based system knowledge is required	L2
CO1	PO11	Knowledge is required in design of automobiles ,heavy traffic control devices, mplementation of projects requires the knowledge of architecture	L2
CO1	PO12	For managing the microcontroller based system individual require the knowledge of architecture Learning in the context of technology changes	
CO2	PO1	Assembly language programs are used to build system programs, device drivers .	L2
CO2	PO2	Knowledge is required to analyze the system programming	L2
CO2	PO3	For design and developing system programs knowledge of assembly language programming is required	L2
CO2	PO11	Assembly level programming is required for the development of tools compilers, editors	L3
CO3	PO3	Learning in the context of technology changes	L3
CO3	PO ₅	Students learn interfacing microprocessor with memory and /O devices such as keyboard, motors ,lcd and other external devices	L3
CO3	PO11	Understanding the details will help in analyzing and interpreting various components in mother board	L3
CO3	PO12	Embedded devices are used in home appliances	L3
CO4	PO1	Implementation of ARM based embedded projects requires the knowledge of ARM architecture	L4
CO4	PO2	Learning in the context of technology changes	L4
CO4	PO3	ARM processors used in mobile phones and computer hard drives.	L4
CO4	PO11	Implementation of ARM based embedded projects requires the knowledge of ARM architecture	L4
CO ₅	PO1	For managing and developing arm based embedded devices individual require the knowledge of ARM programming	L4
CO5	PO ₅	ARM programming is used in development of tools for embedded devices design	L4
CO ₅	PO11	Learning in the context of technology changes	L4

Note: Write justification for each CO-PO mapping.

5. Curricular Gap and Content

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					

Note: Write Gap topics from A.4 and add others also.

6. Content Beyond Syllabus

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					
6					

7			
8			
9			
10			

Note: Anything not covered above is included here.

C. COURSE ASSESSMENT

1. Course Coverage

Мо	Title	Teaching		No. of	f quest	ion in	Exam		CO	Level
dul		Hours	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE		S
e#							Asg			
1	Introduction to ARM	08	2	-	-	1	1	4	CO1	L3
2	Introduction to the ARM Instruction	08	2	-	-	1	1	4	CO2	L2
	Set									
3	Embedded System Components	08	-	2	-	1	1	3	CO3	L2,
4	Embedded System Design Concepts	08	-	2	-	1	1	4	CO4	L4
5	RTOS and IDE for Embedded System	08	-	-	4	1	1	4	CO5	L2
	Design									
-	Total	40	4	4	4	5	5	19	-	_

Note: Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

2. Continuous Internal Assessment (CIA)

Evaluation	Weightage in Marks	CO	Levels
CIA Exam - 1	30	CO1, CO2,	L2, l3
CIA Exam - 2	30	CO3,CO4	L3
CIA Exam - 3	30	CO5,	L3, L4
Assignment - 1	10	CO1, CO2,	L2, l3
Assignment - 2	10	CO3,CO4	L3
Assignment - 3	10	CO ₅	L3, L4
Seminar - 1	-	-	-
Seminar - 2	-	-	-
Seminar - 3	-	-	-
Other Activities - define -	-	-	-
Slip test			
Final CIA Marks	40	-	-

Note: Blooms Level in last column shall match with A.2 above.

D1. TEACHING PLAN - 1

Title:	Introduction to ARM	Appr	o8Hrs
		Time:	
a	Course Outcomes	-	Blooms
-		-	Level
1	Describe the architectural features and instructions of ARM microcontroller		L2

b	Course Schedule	-	-
Class No	Module ContentCovered	СО	Level
1	Comparison between Microprocessor and Microcontroller	CO1	L2
2	Architecture of a typical embedded device based on ARM core with a neat diagram	CO1	L2
3	eatures of ARM processor	CO1	12
4	ARM core data flow model with a neat diagram	CO1	12
5	different processor modes of ARM processor	CO1	L2
6	registers used under various modes	CO1	L2
7	fields in Current Program Status Register(CPSR)	CO1	L2
8	the pipeline mechanism in ARM processor, xceptions/interrupts	CO1	L2
	supported by ARM processor, core extensions in ARM processo		
С	Application Areas	СО	Level
1	Microprocessors mainly involve in controllers in personal computers, home appliances, wireless communication equipment, consumer electronic goods, calculators, accounting system, video games, industrial controllers and data acquisition systems	CO1	L2
d	Review Questions	_	_
1	Explain registers used under various modes	CO1	L2
2	Explain the various fields in Current Program Status Register(CPSR)	CO1	L2
3	Explain the pipeline mechanism in ARM processor	CO1	L2
4	Explain various exceptions/interrupts supported by ARM processor	CO1	L2
5	Explain the concept of core extensions in ARM processor	CO1	L2

Title:	ARM Instruction set	Appr Time:	o8Hrs
а	Course Outcomes	_	Blooms
-		-	Level
1	Apply the knowledge gained for Programming ARM for different applications	CO2	L2
b	Course Schedule	-	-
Class No	Module Content Covered	СО	Level
17	MOV and MVN instructions with an example	CO2	L3
18	arithmetic instructions with examples with respect to ARM process	CO2	L3
19	multiply instructions of ARM	CO2	L3
20	swap instructions with examples with respect to ARM processor.	CO2	L3
21	load-store instructions with respect to single register transfer and multiple register transfer.	CO3	L3
22	software interrupt instructions of ARM processor.	CO2	L3
23	coprocessor instructions of ARM processor.	CO2	L3
24	1. the following instructions: i) EOR ,R0,R2, LSL #1 ii) CMP R0,R1 iii) MOV R7,R5,LSL #7 iv) LDR R0,[R1,#4] v) LSL R0,R1,R2	CO2	L3
С	Application Areas	СО	Level
1	Assembly language programs are used to build system programs Assembly language programs are used to build system device drivers Interrupt functions are required to write assembly programs	CO2	L3

d	Review Questions	-	-
12	Explain the MOV and MVN instructions with an example for each.	CO2	L3
13	Explain the arithmetic instructions with examples with respect to ARM process	CO2	L3
14	Explain multiply instructions of ARM.	CO3	L3
15	Write a note on swap instructions with examples with respect to ARM processor.	CO3	L3
16	Discuss the load-store instructions with respect to single register transfer and multiple register transfer.	CO3	L3
17	Explain software interrupt instructions of ARM processor.	CO3	L3
	Explain coprocessor instructions of ARM processor.		
е	Experiences	-	-

E1. CIA EXAM – 1

a. Model Question Paper - 1

CrsC		18CS44	Sem:	IV	Marks:	30	Time: 7	5minutes	5	
Cour		Internet of								
-	-	Note: Ans	wer any 3		each carry e		S	Marks	CO	Level
		MODULE-1(15 marks)								
1	a	Explain tl	ne Archite	ecture of a	typical embe	dded devi	ce based on ARN	15	CO1	L2
		core with	a neat dia	ıgram						
	b	Explain th	ne various	fields in (Current Progr	am Status	Register(CPSR)		CO1	L2
2	а	Explain th	ne design	rules of RI	SC and ARM	1 design.		15	CO1	L2
	b	Explain v	arious ex	ceptions/in	terrupts supp	orted by A	ARM processor.		CO1	L2
3	a	Write a no processor		ap instruct	ions with exa	mples wi	th respect to ARN	15	CO2	L2
	b	Explain tl	ne MOV a	and MVN i	nstructions w	ith an exa	ample for each.		CO2	L2
4	а	1			structions: MP R0 R1 ii	i) MOV F	R7,R5,LSL #7	15	CO2	L2
		ĺ		,	Ź	,	(1,100,ESE 117			
	b				v) LSL R0,F	.1,K2			CO2	L2
		Expiain n	iuitipiy in	structions	OI AKM.				CO2	L2

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

	Model Assignment Questions											
CrsCode: 18CS44 Sen		Sem:	IV	Marks:	30	Time:	75	5 minutes				
Cours	ourse: Internet of Things											
Note:	Each:	student to answ	er 2-3 assign	ments. Each	n assignmer	nt carries eq	ual mark.					
SNo	USN		Assignm	nent Descri	ption		Marks	СО	Level			
1		Cirro Han C		1 .	3.5			-				
		Give the C	comparison	between	Microproc	cessor and	10	CO1	L2			
		Microcontroll	1	between	Microproc	cessor and	10	CO1	L2			
2			er			cessor and	10	CO1	L2 L3			

Describe the features of ARM processor	10	CO1	L3
Explain different processor modes of ARM processor	10	CO1	L3
Explain the various fields in Current Program Status	10	CO1	L3
	10	CO1	L3
Explain the MOV and MVN instructions with an example for each.	10	CO2	L3
Write a note on swap instructions with examples with respect to ARM processor.	10	CO2	L3
Discuss the load-store instructions with respect to single register transfer and multiple register transfer.	10	CO2	L3
Explain software interrupt instructions of ARM processor	10	CO2	L3
Explain coprocessor instructions of ARM processor	10	CO2	L3
Explain multiply instructions of ARM.	10	CO2	L3
Explain the following instructions: i) EOR ,R0,R2, LSL #1 ii) CMP R0,R1 iii) MOV R7,R5,LSL #7 iv) LDR R0,[R1,#4] v) LSL R0,R1,R2	10	CO2	l3
	Explain different processor modes of ARM processor Explain the various fields in Current Program Status Register(CPSR) Explain the pipeline mechanism in ARM processor Explain the MOV and MVN instructions with an example for each. Write a note on swap instructions with examples with respect to ARM processor. Discuss the load-store instructions with respect to single register transfer and multiple register transfer. Explain software interrupt instructions of ARM processor Explain coprocessor instructions of ARM processor Explain multiply instructions of ARM. Explain the following instructions: i) EOR ,R0,R2, LSL #1 ii) CMP R0,R1 iii) MOV R7,R5,LSL #7	Explain different processor modes of ARM processor Explain the various fields in Current Program Status Register(CPSR) Explain the pipeline mechanism in ARM processor Explain the MOV and MVN instructions with an example for each. Write a note on swap instructions with examples with respect to ARM processor. Discuss the load-store instructions with respect to single register transfer and multiple register transfer. Explain software interrupt instructions of ARM processor Explain coprocessor instructions of ARM processor Explain multiply instructions of ARM. Explain the following instructions: i) EOR ,R0,R2, LSL #1 ii) CMP R0,R1 iii) MOV R7,R5,LSL #7	Explain different processor modes of ARM processor Explain the various fields in Current Program Status Register(CPSR) Explain the pipeline mechanism in ARM processor Explain the pipeline mechanism in ARM processor Explain the MOV and MVN instructions with an example for each. Write a note on swap instructions with examples with respect to ARM processor. Discuss the load-store instructions with respect to single register transfer and multiple register transfer. Explain software interrupt instructions of ARM processor Explain coprocessor instructions of ARM processor Explain multiply instructions of ARM. 10 CO2 Explain the following instructions: i) EOR ,R0,R2, LSL #1 ii) CMP R0,R1 iii) MOV R7,R5,LSL #7

D2. TEACHING PLAN - 2

Module -	3		
Title:	IoT Network Layer	Appr	o8Hrs
		Time:	
а	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Interface external devices and I/O with ARM microcontroller.	CO3	L3
	interpret the basic hardware components and their selection method		
	based on the characteristics and attributes of an embedded system		
b	Course Schedule		
Class No	Module Content Covered	CO3	Level
1	Embedded Vs General computing system,	CO3	L3
2	History of embedded systems, Classification of Embedded systems,	CO3	L3
3	Major applications areas of embedded systems,	CO3	L3
4	Core of an Embedded System including all types of processor/controller	CO3	L3
5	Memory, Sensors, Actuators, LED, 7 segment LED display, stepper motor, Keyboard, Push button switch	CO3	L3
6	Communication Interface (onboard and external types	CO3	L3
7	Embedded firmware	CO3	L3
8	Other system components.	CO3	L3
С	Application Areas		Level
1	Embedded devices are used in digital camera ,home appliances Applications include Smartphones, Netbooks, eReaders,	CO3	L3

d	Review Questions	-	-
1	What is embedded systems? Diffirentiate between general purpose	CO3	L3
	computer and an embedded system		
2	Give the characteristics and constraints of embedded system	CO3	L3
3	What is embedded system give one example	CO3	L3
4	Explain the design of a requirement form for the beginning of project	CO3	L3
5	What is sensor? List sensor specification explain different types of	CO3	L3
	sensors		
6	Compare the RAM and ROM	CO3	L3
7	Compare the FPGA and ASIC	CO3	L3
8	Explain the purpose of Embedded system	CO3	L3
9	Explain the classification of embedded system based on generation and	CO3	L3
	based on complexity and performance		
10	Explain the following i)SPI ii) Opto couple	CO3	L3
е	Experiences	-	-

Module - 4

Module	•		
Title:	Embedded System Design Concepts	Appr	o8Hrs
	0	Time:	Diamon
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Develop the hardware /software co-design and firmware design	CO4	L4
	approaches.		
b	Course Schedule		
Class No	Module Content Covered	CO4	Level
1	Characteristics and Quality Attributes of Embedded Systems	CO4	L4
2	Operational quality attributes ,non-operational quality attributes	CO4	L4
3	Embedded Systems-Application and Domain specific	CO4	L4
4	Hardware Software Co-Design	CO4	L4
5	Hardware Software Co-Design and Program Modelling,	CO4	L4
6	embedded firmware design	CO4	L4
7	embedded firmware design and development		
8	embedded firmware design and development		
С	Application Areas	CO	Level
1.	ARM ALP programming is used in the development of embedded device	CO4	L3
	software		
d	Review Questions		
1	Describe various quality attributes of embedded system	CO4	L4
2	Explain embedded firmware design and developement	CO ₄	<u>.</u> L4
3	Write short note on automotive communication buses	CO4	L4
4	Explain application specific embedded system: washing Meschine	CO4	L4
5	Explain the following :i)DFD ii)Sequential program model	CO4	L4
6	What is embedded firmware development language?explain embedded		L4
	C and C language	.	
е	Experiences	-	

E2. CIA EXAM – 2

a. Model Question Paper - 2

	· · · · · · · · · · · · · · · · · · ·									
CrsCode: 18CS44 Sei		Sem:	IV	Marks:	30	Time: 7	5minutes	5		
Cou	Course: Internet of Things									
-	-	Note: Ans	Note: Answer any 2 questions, each carry equal marks.							
			Module-1(15 Marks)							
1	а	What is e	What is embedded systems? Diffirentiate between general purpose							L3

		computer and an embedded system			
	b	Compare the FPGA and ASIC		CO3	L3
		OR			
2	а	Explain the classification of embedded system based on generation and		CO3	L3
		based on complexity and performance			
	b	Explain the following i)SPI ii) Opto couple		CO3	L3
		MODULE-2(15 marks)	4 =		
		MODOLL-2(15 IIIai K3)	15		
3	a	Describe various quality attributes of embedded system	15	CO ₅	L3
3	a b		15	CO5	L3
3		Describe various quality attributes of embedded system	15		
3		Describe various quality attributes of embedded system Explain application specific embedded system: washing Meschine OR What is embedded firmware development language? explain	15		
	b	Describe various quality attributes of embedded system Explain application specific embedded system: washing Meschine OR	15	CO ₅	L3

b. Assignment – 2

Note: A distinct assignment to be assigned to each student.

Model Assignment Questions

					IVIO	det Assignme	ni Questi	SHS			
CrsCo	de:		S44	Sem:	IV	Marks:	30	Time:	75 mi	nutes	
Cours	e:	Inte	rnet of T	hings							
Note:	Each	stuc	dent to ar	nswer 2-3 ass	ignments.	Each assignm	ent carrie	es equal mark			
SNo	US	N				nt Description			Marks	СО	Level
1						iffirentiate bety	ween ger	neral purpose	10	CO3	L2
				er and an emb						0.0	
2						nstraints of em		system	10 10	CO3	L3
3				What is embedded system give one example						CO3	L4
4	Explain the design of a requirement form for the beginning of project								CO3	L3	
5			What is sensor? List sensor specification .explain different types of sensors							CO3	L4
6			Compare the RAM and ROM						10	CO3	L2
7			Compare the FPGA and ASIC							CO3	L3
8				he purpose o		•			10	CO3	L4
9				he classificati ed on comple		oedded systen erformance	n based d	on generation	10	CO3	L3
10			Explain t	he following i	i)SPI ii) Opt	to couple			10	CO4	L3
11			Describe	various qual	ity attribut	es of embedd	ed syster	n	10	CO4	L3
12			Explain e	embedded firi	mware de	sign and deve	lopemen	t	10	CO4	L3
13			Write sh	ort note on au	utomotive	communication	n buses		10	CO4	L4
14			Explain a	pplication sp	ecific emb	edded systen	n: washin	g Meschine	10	CO ₅	L2
15			Explain the following:i)DFD ii)Sequential program model						10	CO ₅	L3
16				embedded ed C and C la		e developme	ent lang	uage?explain	10	CO4	L4

D3. TEACHING PLAN - 3

Title:	RTOS and IDE for Embedded System Design	Appr	o8Hrs
		Time:	
а	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Demonstrate the need of real time operating system for embedded	CO6	L4
	system applications		

b	Course Schedule		
Class N	o Module Content Covered	СО	Level
1.	Operating System basics, Types of operating systems, Task, process and threads (Only POSIX Threads with an example program	CO5	L4
2.	Thread preemption, Multiprocessing and Multitasking, Task Communication (without any program), Task synchronization issues – Racing and Dead loc	CO5	L4
3.	Concept of Binary and counting semaphores (Mutex example without any program), How to choose an RTOS,	CO5	L4
4	Integration and testing of Embedded hardware and firmware	CO5	L4
5	Embedded system Development Environment – Block diagram (excluding Keil),	CO5	L4
6.	Disassembler/decompiler	CO5	L4
7	simulator, emulator and debugging techniques	CO5	L4
8	target hardware debugging, boundary scan	CO5	L4
С	Application Areas	СО	Level
2	ARM ALP programming is used in Digital TV Servers and Networking	CO5	L4
d	Review Questions		-
1	What is task? Explain task state model	CO ₅	L4
2	What is boundary scan ? Explain	CO ₅	 L4
3	Write note on: Multiprocessing and Multitasking	CO ₅	L4
4	What is process? Explain process control block	CO ₅	L4
5	How to chose an real time operating system?	CO5	L4
6	What is real time operating system? Explain qualities of good RTOS		
е	Experiences	-	-

E3. CIA EXAM – 3

a. Model Question Paper - 3

CrsC	ode:	18CS44	Sem:	IV	Marks:	30	Time:	75minutes	5	
Cour	se:	Internet o	of Things		•		•			
-	-	Note: An	swer any 2	questions	each carry e	qual mark	ζS.	Marks	СО	Level
			_	Mod	dule-1(15 Mar	ks)		15		
1	а	What is to	ask? Explain	task state	model				CO5	L3
	b	What is p	at is process? Explain process control block							L3
2	а	What is b	hat is boundary scan ? Explain						CO ₅	L4
	b	Write not	e on: Multip	rocessing	and Multitask	ing			CO ₅	L4
				Mod	lule-2(15 Marl	(S)				
3	а	How to c	hose an rea	l time ope	rating system [°]	?		15	CO ₅	L2
	b	What is re	eal time ope	erating sys	tem ? Explain	qualities o	of good RTOS		CO5	L3
4	а	Explain s	ocket functi	on and RP	C function wit	h respect	to RTOS	15	CO5	L3
	b	Define th	e following	:Remote p	rocedure call	RPC)			CO5	

b. Assignment – 3

Note. A dis	Note. A distinct assignment to be assigned to each student.									
Model Assignment Questions										
CrsCode:	18CS44	Sem:	IV	Marks:	10/10	Time:	75 minutes			
Course:	Internet of Thing									
Note: Each	student to answ	er 2-3 ass	ignments.	Each assignme	ent carries	equal mark.				

SNo	USN	Assignment Description	Marks	СО	Level
1		What is task? Explain task state model		CO ₅	L4
2		What is boundary scan ? Explain		CO5	L4

	3	Write note on: Multiprocessing and Multitasking	CO5	L4
	4	What is process? Explain process control block	CO5	L4
	5	How to chose an real time operating system?	CO5	L4
	6	What is real time operating system? Explain qualities of good RTOS	CO5	L4
ĺ	7	Explain socket function and RPC function with respect to RTOS	CO5	L4
İ	8	Define the following :Remote procedure call(RPC)	CO5	L4

F. EXAM PREPARATION

1. University Model Question Paper

Course:		MICRO CONT	ICRO CONTROLLER AND EMBEDDED SYSTEMS					′ Year		
CrsC	ode:	CS501PC	Sem:	V	Marks:	60	Time:		180 minute	
-	Note	Answer allFIV	E full questior	ns. All questic	ns carry equ	al marks.		Marks	СО	Level

2. SEE Important Questions

Course	e: MICRO CONTROLLER AND EMBEDDED SYSTEM	Month / Year	May /2	2018
CrsCo		īme:	180 mi	nutes
	Note Answer allFIVE full questions. All questions carry equal marks.	_	-	
1	Describe the features of ARM processor	CO1	L2	
2	Explain different processor modes of ARM processor	CO1	L2	
3	Explain the various fields in Current Program Status Register(C	PSR) CO1	L2	
4	Explain the pipeline mechanism in ARM processor	CO1	L2	
5	Explain software interrupt instructions of ARM processor	CO2	L2	
6	Explain coprocessor instructions of ARM processor	CO2	L2	
7	Explain multiply instructions of ARM.	CO2	L2	
8	What is embedded systems? Diffirentiate between general pu	ırpose CO3	L2	
	computer and an embedded system			
09	Give the characteristics and constraints of embedded system	CO3	L2	
10	What is embedded system give one example	CO3	L2	
11	Explain embedded firmware design and developement	CO ₄	L2	
12	Write short note on automotive communication buses	CO ₄	L2	
13	Explain application specific embedded system: washing Meschine	CO4	L2	
14	What is boundary scan ? Explain	CO5	L2	
15	Write note on: Multiprocessing and Multitasking	CO5	L2	
16	What is process? Explain process control block	CO5	L2	